1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2020 Intel Corporation. 3 */ 4 5 #ifndef _RTE_CRYPTODEV_H_ 6 #define _RTE_CRYPTODEV_H_ 7 8 /** 9 * @file rte_cryptodev.h 10 * 11 * RTE Cryptographic Device APIs 12 * 13 * Defines RTE Crypto Device APIs for the provisioning of cipher and 14 * authentication operations. 15 */ 16 17 #ifdef __cplusplus 18 extern "C" { 19 #endif 20 21 #include <rte_compat.h> 22 #include "rte_kvargs.h" 23 #include "rte_crypto.h" 24 #include <rte_common.h> 25 #include <rte_rcu_qsbr.h> 26 27 #include "rte_cryptodev_trace_fp.h" 28 29 extern const char **rte_cyptodev_names; 30 31 /* Logging Macros */ 32 33 #define CDEV_LOG_ERR(...) \ 34 RTE_LOG(ERR, CRYPTODEV, \ 35 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 36 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 37 38 #define CDEV_LOG_INFO(...) \ 39 RTE_LOG(INFO, CRYPTODEV, \ 40 RTE_FMT(RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 41 RTE_FMT_TAIL(__VA_ARGS__,))) 42 43 #define CDEV_LOG_DEBUG(...) \ 44 RTE_LOG(DEBUG, CRYPTODEV, \ 45 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 46 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 47 48 #define CDEV_PMD_TRACE(...) \ 49 RTE_LOG(DEBUG, CRYPTODEV, \ 50 RTE_FMT("[%s] %s: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 51 dev, __func__, RTE_FMT_TAIL(__VA_ARGS__,))) 52 53 /** 54 * A macro that points to an offset from the start 55 * of the crypto operation structure (rte_crypto_op) 56 * 57 * The returned pointer is cast to type t. 58 * 59 * @param c 60 * The crypto operation. 61 * @param o 62 * The offset from the start of the crypto operation. 63 * @param t 64 * The type to cast the result into. 65 */ 66 #define rte_crypto_op_ctod_offset(c, t, o) \ 67 ((t)((char *)(c) + (o))) 68 69 /** 70 * A macro that returns the physical address that points 71 * to an offset from the start of the crypto operation 72 * (rte_crypto_op) 73 * 74 * @param c 75 * The crypto operation. 76 * @param o 77 * The offset from the start of the crypto operation 78 * to calculate address from. 79 */ 80 #define rte_crypto_op_ctophys_offset(c, o) \ 81 (rte_iova_t)((c)->phys_addr + (o)) 82 83 /** 84 * Crypto parameters range description 85 */ 86 struct rte_crypto_param_range { 87 uint16_t min; /**< minimum size */ 88 uint16_t max; /**< maximum size */ 89 uint16_t increment; 90 /**< if a range of sizes are supported, 91 * this parameter is used to indicate 92 * increments in byte size that are supported 93 * between the minimum and maximum 94 */ 95 }; 96 97 /** 98 * Data-unit supported lengths of cipher algorithms. 99 * A bit can represent any set of data-unit sizes 100 * (single size, multiple size, range, etc). 101 */ 102 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES RTE_BIT32(0) 103 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES RTE_BIT32(1) 104 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES RTE_BIT32(2) 105 106 /** 107 * Symmetric Crypto Capability 108 */ 109 struct rte_cryptodev_symmetric_capability { 110 enum rte_crypto_sym_xform_type xform_type; 111 /**< Transform type : Authentication / Cipher / AEAD */ 112 RTE_STD_C11 113 union { 114 struct { 115 enum rte_crypto_auth_algorithm algo; 116 /**< authentication algorithm */ 117 uint16_t block_size; 118 /**< algorithm block size */ 119 struct rte_crypto_param_range key_size; 120 /**< auth key size range */ 121 struct rte_crypto_param_range digest_size; 122 /**< digest size range */ 123 struct rte_crypto_param_range aad_size; 124 /**< Additional authentication data size range */ 125 struct rte_crypto_param_range iv_size; 126 /**< Initialisation vector data size range */ 127 } auth; 128 /**< Symmetric Authentication transform capabilities */ 129 struct { 130 enum rte_crypto_cipher_algorithm algo; 131 /**< cipher algorithm */ 132 uint16_t block_size; 133 /**< algorithm block size */ 134 struct rte_crypto_param_range key_size; 135 /**< cipher key size range */ 136 struct rte_crypto_param_range iv_size; 137 /**< Initialisation vector data size range */ 138 uint32_t dataunit_set; 139 /**< 140 * Supported data-unit lengths: 141 * RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_* bits 142 * or 0 for lengths defined in the algorithm standard. 143 */ 144 } cipher; 145 /**< Symmetric Cipher transform capabilities */ 146 struct { 147 enum rte_crypto_aead_algorithm algo; 148 /**< AEAD algorithm */ 149 uint16_t block_size; 150 /**< algorithm block size */ 151 struct rte_crypto_param_range key_size; 152 /**< AEAD key size range */ 153 struct rte_crypto_param_range digest_size; 154 /**< digest size range */ 155 struct rte_crypto_param_range aad_size; 156 /**< Additional authentication data size range */ 157 struct rte_crypto_param_range iv_size; 158 /**< Initialisation vector data size range */ 159 } aead; 160 }; 161 }; 162 163 /** 164 * Asymmetric Xform Crypto Capability 165 * 166 */ 167 struct rte_cryptodev_asymmetric_xform_capability { 168 enum rte_crypto_asym_xform_type xform_type; 169 /**< Transform type: RSA/MODEXP/DH/DSA/MODINV */ 170 171 uint32_t op_types; 172 /**< 173 * Bitmask for supported rte_crypto_asym_op_type or 174 * rte_crypto_asym_ke_type. Which enum is used is determined 175 * by the rte_crypto_asym_xform_type. For key exchange algorithms 176 * like Diffie-Hellman it is rte_crypto_asym_ke_type, for others 177 * it is rte_crypto_asym_op_type. 178 */ 179 180 __extension__ 181 union { 182 struct rte_crypto_param_range modlen; 183 /**< Range of modulus length supported by modulus based xform. 184 * Value 0 mean implementation default 185 */ 186 }; 187 }; 188 189 /** 190 * Asymmetric Crypto Capability 191 * 192 */ 193 struct rte_cryptodev_asymmetric_capability { 194 struct rte_cryptodev_asymmetric_xform_capability xform_capa; 195 }; 196 197 198 /** Structure used to capture a capability of a crypto device */ 199 struct rte_cryptodev_capabilities { 200 enum rte_crypto_op_type op; 201 /**< Operation type */ 202 203 RTE_STD_C11 204 union { 205 struct rte_cryptodev_symmetric_capability sym; 206 /**< Symmetric operation capability parameters */ 207 struct rte_cryptodev_asymmetric_capability asym; 208 /**< Asymmetric operation capability parameters */ 209 }; 210 }; 211 212 /** Structure used to describe crypto algorithms */ 213 struct rte_cryptodev_sym_capability_idx { 214 enum rte_crypto_sym_xform_type type; 215 union { 216 enum rte_crypto_cipher_algorithm cipher; 217 enum rte_crypto_auth_algorithm auth; 218 enum rte_crypto_aead_algorithm aead; 219 } algo; 220 }; 221 222 /** 223 * Structure used to describe asymmetric crypto xforms 224 * Each xform maps to one asym algorithm. 225 * 226 */ 227 struct rte_cryptodev_asym_capability_idx { 228 enum rte_crypto_asym_xform_type type; 229 /**< Asymmetric xform (algo) type */ 230 }; 231 232 /** 233 * Provide capabilities available for defined device and algorithm 234 * 235 * @param dev_id The identifier of the device. 236 * @param idx Description of crypto algorithms. 237 * 238 * @return 239 * - Return description of the symmetric crypto capability if exist. 240 * - Return NULL if the capability not exist. 241 */ 242 const struct rte_cryptodev_symmetric_capability * 243 rte_cryptodev_sym_capability_get(uint8_t dev_id, 244 const struct rte_cryptodev_sym_capability_idx *idx); 245 246 /** 247 * Provide capabilities available for defined device and xform 248 * 249 * @param dev_id The identifier of the device. 250 * @param idx Description of asym crypto xform. 251 * 252 * @return 253 * - Return description of the asymmetric crypto capability if exist. 254 * - Return NULL if the capability not exist. 255 */ 256 __rte_experimental 257 const struct rte_cryptodev_asymmetric_xform_capability * 258 rte_cryptodev_asym_capability_get(uint8_t dev_id, 259 const struct rte_cryptodev_asym_capability_idx *idx); 260 261 /** 262 * Check if key size and initial vector are supported 263 * in crypto cipher capability 264 * 265 * @param capability Description of the symmetric crypto capability. 266 * @param key_size Cipher key size. 267 * @param iv_size Cipher initial vector size. 268 * 269 * @return 270 * - Return 0 if the parameters are in range of the capability. 271 * - Return -1 if the parameters are out of range of the capability. 272 */ 273 int 274 rte_cryptodev_sym_capability_check_cipher( 275 const struct rte_cryptodev_symmetric_capability *capability, 276 uint16_t key_size, uint16_t iv_size); 277 278 /** 279 * Check if key size and initial vector are supported 280 * in crypto auth capability 281 * 282 * @param capability Description of the symmetric crypto capability. 283 * @param key_size Auth key size. 284 * @param digest_size Auth digest size. 285 * @param iv_size Auth initial vector size. 286 * 287 * @return 288 * - Return 0 if the parameters are in range of the capability. 289 * - Return -1 if the parameters are out of range of the capability. 290 */ 291 int 292 rte_cryptodev_sym_capability_check_auth( 293 const struct rte_cryptodev_symmetric_capability *capability, 294 uint16_t key_size, uint16_t digest_size, uint16_t iv_size); 295 296 /** 297 * Check if key, digest, AAD and initial vector sizes are supported 298 * in crypto AEAD capability 299 * 300 * @param capability Description of the symmetric crypto capability. 301 * @param key_size AEAD key size. 302 * @param digest_size AEAD digest size. 303 * @param aad_size AEAD AAD size. 304 * @param iv_size AEAD IV size. 305 * 306 * @return 307 * - Return 0 if the parameters are in range of the capability. 308 * - Return -1 if the parameters are out of range of the capability. 309 */ 310 int 311 rte_cryptodev_sym_capability_check_aead( 312 const struct rte_cryptodev_symmetric_capability *capability, 313 uint16_t key_size, uint16_t digest_size, uint16_t aad_size, 314 uint16_t iv_size); 315 316 /** 317 * Check if op type is supported 318 * 319 * @param capability Description of the asymmetric crypto capability. 320 * @param op_type op type 321 * 322 * @return 323 * - Return 1 if the op type is supported 324 * - Return 0 if unsupported 325 */ 326 __rte_experimental 327 int 328 rte_cryptodev_asym_xform_capability_check_optype( 329 const struct rte_cryptodev_asymmetric_xform_capability *capability, 330 enum rte_crypto_asym_op_type op_type); 331 332 /** 333 * Check if modulus length is in supported range 334 * 335 * @param capability Description of the asymmetric crypto capability. 336 * @param modlen modulus length. 337 * 338 * @return 339 * - Return 0 if the parameters are in range of the capability. 340 * - Return -1 if the parameters are out of range of the capability. 341 */ 342 __rte_experimental 343 int 344 rte_cryptodev_asym_xform_capability_check_modlen( 345 const struct rte_cryptodev_asymmetric_xform_capability *capability, 346 uint16_t modlen); 347 348 /** 349 * Provide the cipher algorithm enum, given an algorithm string 350 * 351 * @param algo_enum A pointer to the cipher algorithm 352 * enum to be filled 353 * @param algo_string Authentication algo string 354 * 355 * @return 356 * - Return -1 if string is not valid 357 * - Return 0 is the string is valid 358 */ 359 int 360 rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum, 361 const char *algo_string); 362 363 /** 364 * Provide the authentication algorithm enum, given an algorithm string 365 * 366 * @param algo_enum A pointer to the authentication algorithm 367 * enum to be filled 368 * @param algo_string Authentication algo string 369 * 370 * @return 371 * - Return -1 if string is not valid 372 * - Return 0 is the string is valid 373 */ 374 int 375 rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum, 376 const char *algo_string); 377 378 /** 379 * Provide the AEAD algorithm enum, given an algorithm string 380 * 381 * @param algo_enum A pointer to the AEAD algorithm 382 * enum to be filled 383 * @param algo_string AEAD algorithm string 384 * 385 * @return 386 * - Return -1 if string is not valid 387 * - Return 0 is the string is valid 388 */ 389 int 390 rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum, 391 const char *algo_string); 392 393 /** 394 * Provide the Asymmetric xform enum, given an xform string 395 * 396 * @param xform_enum A pointer to the xform type 397 * enum to be filled 398 * @param xform_string xform string 399 * 400 * @return 401 * - Return -1 if string is not valid 402 * - Return 0 if the string is valid 403 */ 404 __rte_experimental 405 int 406 rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum, 407 const char *xform_string); 408 409 410 /** Macro used at end of crypto PMD list */ 411 #define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \ 412 { RTE_CRYPTO_OP_TYPE_UNDEFINED } 413 414 415 /** 416 * Crypto device supported feature flags 417 * 418 * Note: 419 * New features flags should be added to the end of the list 420 * 421 * Keep these flags synchronised with rte_cryptodev_get_feature_name() 422 */ 423 #define RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO (1ULL << 0) 424 /**< Symmetric crypto operations are supported */ 425 #define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO (1ULL << 1) 426 /**< Asymmetric crypto operations are supported */ 427 #define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING (1ULL << 2) 428 /**< Chaining symmetric crypto operations are supported */ 429 #define RTE_CRYPTODEV_FF_CPU_SSE (1ULL << 3) 430 /**< Utilises CPU SIMD SSE instructions */ 431 #define RTE_CRYPTODEV_FF_CPU_AVX (1ULL << 4) 432 /**< Utilises CPU SIMD AVX instructions */ 433 #define RTE_CRYPTODEV_FF_CPU_AVX2 (1ULL << 5) 434 /**< Utilises CPU SIMD AVX2 instructions */ 435 #define RTE_CRYPTODEV_FF_CPU_AESNI (1ULL << 6) 436 /**< Utilises CPU AES-NI instructions */ 437 #define RTE_CRYPTODEV_FF_HW_ACCELERATED (1ULL << 7) 438 /**< Operations are off-loaded to an 439 * external hardware accelerator 440 */ 441 #define RTE_CRYPTODEV_FF_CPU_AVX512 (1ULL << 8) 442 /**< Utilises CPU SIMD AVX512 instructions */ 443 #define RTE_CRYPTODEV_FF_IN_PLACE_SGL (1ULL << 9) 444 /**< In-place Scatter-gather (SGL) buffers, with multiple segments, 445 * are supported 446 */ 447 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT (1ULL << 10) 448 /**< Out-of-place Scatter-gather (SGL) buffers are 449 * supported in input and output 450 */ 451 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT (1ULL << 11) 452 /**< Out-of-place Scatter-gather (SGL) buffers are supported 453 * in input, combined with linear buffers (LB), with a 454 * single segment in output 455 */ 456 #define RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT (1ULL << 12) 457 /**< Out-of-place Scatter-gather (SGL) buffers are supported 458 * in output, combined with linear buffers (LB) in input 459 */ 460 #define RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT (1ULL << 13) 461 /**< Out-of-place linear buffers (LB) are supported in input and output */ 462 #define RTE_CRYPTODEV_FF_CPU_NEON (1ULL << 14) 463 /**< Utilises CPU NEON instructions */ 464 #define RTE_CRYPTODEV_FF_CPU_ARM_CE (1ULL << 15) 465 /**< Utilises ARM CPU Cryptographic Extensions */ 466 #define RTE_CRYPTODEV_FF_SECURITY (1ULL << 16) 467 /**< Support Security Protocol Processing */ 468 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP (1ULL << 17) 469 /**< Support RSA Private Key OP with exponent */ 470 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT (1ULL << 18) 471 /**< Support RSA Private Key OP with CRT (quintuple) Keys */ 472 #define RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED (1ULL << 19) 473 /**< Support encrypted-digest operations where digest is appended to data */ 474 #define RTE_CRYPTODEV_FF_ASYM_SESSIONLESS (1ULL << 20) 475 /**< Support asymmetric session-less operations */ 476 #define RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO (1ULL << 21) 477 /**< Support symmetric cpu-crypto processing */ 478 #define RTE_CRYPTODEV_FF_SYM_SESSIONLESS (1ULL << 22) 479 /**< Support symmetric session-less operations */ 480 #define RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA (1ULL << 23) 481 /**< Support operations on data which is not byte aligned */ 482 #define RTE_CRYPTODEV_FF_SYM_RAW_DP (1ULL << 24) 483 /**< Support accelerator specific symmetric raw data-path APIs */ 484 #define RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS (1ULL << 25) 485 /**< Support operations on multiple data-units message */ 486 #define RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY (1ULL << 26) 487 /**< Support wrapped key in cipher xform */ 488 #define RTE_CRYPTODEV_FF_SECURITY_INNER_CSUM (1ULL << 27) 489 /**< Support inner checksum computation/verification */ 490 491 /** 492 * Get the name of a crypto device feature flag 493 * 494 * @param flag The mask describing the flag. 495 * 496 * @return 497 * The name of this flag, or NULL if it's not a valid feature flag. 498 */ 499 500 extern const char * 501 rte_cryptodev_get_feature_name(uint64_t flag); 502 503 /** Crypto device information */ 504 struct rte_cryptodev_info { 505 const char *driver_name; /**< Driver name. */ 506 uint8_t driver_id; /**< Driver identifier */ 507 struct rte_device *device; /**< Generic device information. */ 508 509 uint64_t feature_flags; 510 /**< Feature flags exposes HW/SW features for the given device */ 511 512 const struct rte_cryptodev_capabilities *capabilities; 513 /**< Array of devices supported capabilities */ 514 515 unsigned max_nb_queue_pairs; 516 /**< Maximum number of queues pairs supported by device. */ 517 518 uint16_t min_mbuf_headroom_req; 519 /**< Minimum mbuf headroom required by device */ 520 521 uint16_t min_mbuf_tailroom_req; 522 /**< Minimum mbuf tailroom required by device */ 523 524 struct { 525 unsigned max_nb_sessions; 526 /**< Maximum number of sessions supported by device. 527 * If 0, the device does not have any limitation in 528 * number of sessions that can be used. 529 */ 530 } sym; 531 }; 532 533 #define RTE_CRYPTODEV_DETACHED (0) 534 #define RTE_CRYPTODEV_ATTACHED (1) 535 536 /** Definitions of Crypto device event types */ 537 enum rte_cryptodev_event_type { 538 RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */ 539 RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */ 540 RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */ 541 }; 542 543 /** Crypto device queue pair configuration structure. */ 544 struct rte_cryptodev_qp_conf { 545 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */ 546 struct rte_mempool *mp_session; 547 /**< The mempool for creating session in sessionless mode */ 548 }; 549 550 /** 551 * Function type used for processing crypto ops when enqueue/dequeue burst is 552 * called. 553 * 554 * The callback function is called on enqueue/dequeue burst immediately. 555 * 556 * @param dev_id The identifier of the device. 557 * @param qp_id The index of the queue pair on which ops are 558 * enqueued/dequeued. The value must be in the 559 * range [0, nb_queue_pairs - 1] previously 560 * supplied to *rte_cryptodev_configure*. 561 * @param ops The address of an array of *nb_ops* pointers 562 * to *rte_crypto_op* structures which contain 563 * the crypto operations to be processed. 564 * @param nb_ops The number of operations to process. 565 * @param user_param The arbitrary user parameter passed in by the 566 * application when the callback was originally 567 * registered. 568 * @return The number of ops to be enqueued to the 569 * crypto device. 570 */ 571 typedef uint16_t (*rte_cryptodev_callback_fn)(uint16_t dev_id, uint16_t qp_id, 572 struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param); 573 574 /** 575 * Typedef for application callback function to be registered by application 576 * software for notification of device events 577 * 578 * @param dev_id Crypto device identifier 579 * @param event Crypto device event to register for notification of. 580 * @param cb_arg User specified parameter to be passed as to passed to 581 * users callback function. 582 */ 583 typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id, 584 enum rte_cryptodev_event_type event, void *cb_arg); 585 586 587 /** Crypto Device statistics */ 588 struct rte_cryptodev_stats { 589 uint64_t enqueued_count; 590 /**< Count of all operations enqueued */ 591 uint64_t dequeued_count; 592 /**< Count of all operations dequeued */ 593 594 uint64_t enqueue_err_count; 595 /**< Total error count on operations enqueued */ 596 uint64_t dequeue_err_count; 597 /**< Total error count on operations dequeued */ 598 }; 599 600 #define RTE_CRYPTODEV_NAME_MAX_LEN (64) 601 /**< Max length of name of crypto PMD */ 602 603 /** 604 * Get the device identifier for the named crypto device. 605 * 606 * @param name device name to select the device structure. 607 * 608 * @return 609 * - Returns crypto device identifier on success. 610 * - Return -1 on failure to find named crypto device. 611 */ 612 extern int 613 rte_cryptodev_get_dev_id(const char *name); 614 615 /** 616 * Get the crypto device name given a device identifier. 617 * 618 * @param dev_id 619 * The identifier of the device 620 * 621 * @return 622 * - Returns crypto device name. 623 * - Returns NULL if crypto device is not present. 624 */ 625 extern const char * 626 rte_cryptodev_name_get(uint8_t dev_id); 627 628 /** 629 * Get the total number of crypto devices that have been successfully 630 * initialised. 631 * 632 * @return 633 * - The total number of usable crypto devices. 634 */ 635 extern uint8_t 636 rte_cryptodev_count(void); 637 638 /** 639 * Get number of crypto device defined type. 640 * 641 * @param driver_id driver identifier. 642 * 643 * @return 644 * Returns number of crypto device. 645 */ 646 extern uint8_t 647 rte_cryptodev_device_count_by_driver(uint8_t driver_id); 648 649 /** 650 * Get number and identifiers of attached crypto devices that 651 * use the same crypto driver. 652 * 653 * @param driver_name driver name. 654 * @param devices output devices identifiers. 655 * @param nb_devices maximal number of devices. 656 * 657 * @return 658 * Returns number of attached crypto device. 659 */ 660 uint8_t 661 rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices, 662 uint8_t nb_devices); 663 /* 664 * Return the NUMA socket to which a device is connected 665 * 666 * @param dev_id 667 * The identifier of the device 668 * @return 669 * The NUMA socket id to which the device is connected or 670 * a default of zero if the socket could not be determined. 671 * -1 if returned is the dev_id value is out of range. 672 */ 673 extern int 674 rte_cryptodev_socket_id(uint8_t dev_id); 675 676 /** Crypto device configuration structure */ 677 struct rte_cryptodev_config { 678 int socket_id; /**< Socket to allocate resources on */ 679 uint16_t nb_queue_pairs; 680 /**< Number of queue pairs to configure on device */ 681 uint64_t ff_disable; 682 /**< Feature flags to be disabled. Only the following features are 683 * allowed to be disabled, 684 * - RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO 685 * - RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO 686 * - RTE_CRYTPODEV_FF_SECURITY 687 */ 688 }; 689 690 /** 691 * Configure a device. 692 * 693 * This function must be invoked first before any other function in the 694 * API. This function can also be re-invoked when a device is in the 695 * stopped state. 696 * 697 * @param dev_id The identifier of the device to configure. 698 * @param config The crypto device configuration structure. 699 * 700 * @return 701 * - 0: Success, device configured. 702 * - <0: Error code returned by the driver configuration function. 703 */ 704 extern int 705 rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config); 706 707 /** 708 * Start an device. 709 * 710 * The device start step is the last one and consists of setting the configured 711 * offload features and in starting the transmit and the receive units of the 712 * device. 713 * On success, all basic functions exported by the API (link status, 714 * receive/transmit, and so on) can be invoked. 715 * 716 * @param dev_id 717 * The identifier of the device. 718 * @return 719 * - 0: Success, device started. 720 * - <0: Error code of the driver device start function. 721 */ 722 extern int 723 rte_cryptodev_start(uint8_t dev_id); 724 725 /** 726 * Stop an device. The device can be restarted with a call to 727 * rte_cryptodev_start() 728 * 729 * @param dev_id The identifier of the device. 730 */ 731 extern void 732 rte_cryptodev_stop(uint8_t dev_id); 733 734 /** 735 * Close an device. The device cannot be restarted! 736 * 737 * @param dev_id The identifier of the device. 738 * 739 * @return 740 * - 0 on successfully closing device 741 * - <0 on failure to close device 742 */ 743 extern int 744 rte_cryptodev_close(uint8_t dev_id); 745 746 /** 747 * Allocate and set up a receive queue pair for a device. 748 * 749 * 750 * @param dev_id The identifier of the device. 751 * @param queue_pair_id The index of the queue pairs to set up. The 752 * value must be in the range [0, nb_queue_pair 753 * - 1] previously supplied to 754 * rte_cryptodev_configure(). 755 * @param qp_conf The pointer to the configuration data to be 756 * used for the queue pair. 757 * @param socket_id The *socket_id* argument is the socket 758 * identifier in case of NUMA. The value can be 759 * *SOCKET_ID_ANY* if there is no NUMA constraint 760 * for the DMA memory allocated for the receive 761 * queue pair. 762 * 763 * @return 764 * - 0: Success, queue pair correctly set up. 765 * - <0: Queue pair configuration failed 766 */ 767 extern int 768 rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 769 const struct rte_cryptodev_qp_conf *qp_conf, int socket_id); 770 771 /** 772 * Get the status of queue pairs setup on a specific crypto device 773 * 774 * @param dev_id Crypto device identifier. 775 * @param queue_pair_id The index of the queue pairs to set up. The 776 * value must be in the range [0, nb_queue_pair 777 * - 1] previously supplied to 778 * rte_cryptodev_configure(). 779 * @return 780 * - 0: qp was not configured 781 * - 1: qp was configured 782 * - -EINVAL: device was not configured 783 */ 784 __rte_experimental 785 int 786 rte_cryptodev_get_qp_status(uint8_t dev_id, uint16_t queue_pair_id); 787 788 /** 789 * Get the number of queue pairs on a specific crypto device 790 * 791 * @param dev_id Crypto device identifier. 792 * @return 793 * - The number of configured queue pairs. 794 */ 795 extern uint16_t 796 rte_cryptodev_queue_pair_count(uint8_t dev_id); 797 798 799 /** 800 * Retrieve the general I/O statistics of a device. 801 * 802 * @param dev_id The identifier of the device. 803 * @param stats A pointer to a structure of type 804 * *rte_cryptodev_stats* to be filled with the 805 * values of device counters. 806 * @return 807 * - Zero if successful. 808 * - Non-zero otherwise. 809 */ 810 extern int 811 rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats); 812 813 /** 814 * Reset the general I/O statistics of a device. 815 * 816 * @param dev_id The identifier of the device. 817 */ 818 extern void 819 rte_cryptodev_stats_reset(uint8_t dev_id); 820 821 /** 822 * Retrieve the contextual information of a device. 823 * 824 * @param dev_id The identifier of the device. 825 * @param dev_info A pointer to a structure of type 826 * *rte_cryptodev_info* to be filled with the 827 * contextual information of the device. 828 * 829 * @note The capabilities field of dev_info is set to point to the first 830 * element of an array of struct rte_cryptodev_capabilities. The element after 831 * the last valid element has it's op field set to 832 * RTE_CRYPTO_OP_TYPE_UNDEFINED. 833 */ 834 extern void 835 rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info); 836 837 838 /** 839 * Register a callback function for specific device id. 840 * 841 * @param dev_id Device id. 842 * @param event Event interested. 843 * @param cb_fn User supplied callback function to be called. 844 * @param cb_arg Pointer to the parameters for the registered 845 * callback. 846 * 847 * @return 848 * - On success, zero. 849 * - On failure, a negative value. 850 */ 851 extern int 852 rte_cryptodev_callback_register(uint8_t dev_id, 853 enum rte_cryptodev_event_type event, 854 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 855 856 /** 857 * Unregister a callback function for specific device id. 858 * 859 * @param dev_id The device identifier. 860 * @param event Event interested. 861 * @param cb_fn User supplied callback function to be called. 862 * @param cb_arg Pointer to the parameters for the registered 863 * callback. 864 * 865 * @return 866 * - On success, zero. 867 * - On failure, a negative value. 868 */ 869 extern int 870 rte_cryptodev_callback_unregister(uint8_t dev_id, 871 enum rte_cryptodev_event_type event, 872 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 873 874 struct rte_cryptodev_callback; 875 876 /** Structure to keep track of registered callbacks */ 877 RTE_TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback); 878 879 /** 880 * Structure used to hold information about the callbacks to be called for a 881 * queue pair on enqueue/dequeue. 882 */ 883 struct rte_cryptodev_cb { 884 struct rte_cryptodev_cb *next; 885 /**< Pointer to next callback */ 886 rte_cryptodev_callback_fn fn; 887 /**< Pointer to callback function */ 888 void *arg; 889 /**< Pointer to argument */ 890 }; 891 892 /** 893 * @internal 894 * Structure used to hold information about the RCU for a queue pair. 895 */ 896 struct rte_cryptodev_cb_rcu { 897 struct rte_cryptodev_cb *next; 898 /**< Pointer to next callback */ 899 struct rte_rcu_qsbr *qsbr; 900 /**< RCU QSBR variable per queue pair */ 901 }; 902 903 void * 904 rte_cryptodev_get_sec_ctx(uint8_t dev_id); 905 906 /** 907 * Create a symmetric session mempool. 908 * 909 * @param name 910 * The unique mempool name. 911 * @param nb_elts 912 * The number of elements in the mempool. 913 * @param elt_size 914 * The size of the element. This value will be ignored if it is smaller than 915 * the minimum session header size required for the system. For the user who 916 * want to use the same mempool for sym session and session private data it 917 * can be the maximum value of all existing devices' private data and session 918 * header sizes. 919 * @param cache_size 920 * The number of per-lcore cache elements 921 * @param priv_size 922 * The private data size of each session. 923 * @param socket_id 924 * The *socket_id* argument is the socket identifier in the case of 925 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 926 * constraint for the reserved zone. 927 * 928 * @return 929 * - On success return size of the session 930 * - On failure returns 0 931 */ 932 __rte_experimental 933 struct rte_mempool * 934 rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, 935 uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, 936 int socket_id); 937 938 939 /** 940 * Create an asymmetric session mempool. 941 * 942 * @param name 943 * The unique mempool name. 944 * @param nb_elts 945 * The number of elements in the mempool. 946 * @param cache_size 947 * The number of per-lcore cache elements 948 * @param user_data_size 949 * The size of user data to be placed after session private data. 950 * @param socket_id 951 * The *socket_id* argument is the socket identifier in the case of 952 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 953 * constraint for the reserved zone. 954 * 955 * @return 956 * - On success return mempool 957 * - On failure returns NULL 958 */ 959 __rte_experimental 960 struct rte_mempool * 961 rte_cryptodev_asym_session_pool_create(const char *name, uint32_t nb_elts, 962 uint32_t cache_size, uint16_t user_data_size, int socket_id); 963 964 /** 965 * Create symmetric crypto session and fill out private data for the device id, 966 * based on its device type. 967 * 968 * @param dev_id ID of device that we want the session to be used on 969 * @param xforms Symmetric crypto transform operations to apply on flow 970 * processed with this session 971 * @param mp Mempool where the private data is allocated. 972 * 973 * @return 974 * - On success return pointer to sym-session. 975 * - On failure returns NULL. 976 */ 977 void * 978 rte_cryptodev_sym_session_create(uint8_t dev_id, 979 struct rte_crypto_sym_xform *xforms, 980 struct rte_mempool *mp); 981 /** 982 * Create and initialise an asymmetric crypto session structure. 983 * Calls the PMD to configure the private session data. 984 * 985 * @param dev_id ID of device that we want the session to be used on 986 * @param xforms Asymmetric crypto transform operations to apply on flow 987 * processed with this session 988 * @param mp mempool to allocate asymmetric session 989 * objects from 990 * @param session void ** for session to be used 991 * 992 * @return 993 * - 0 on success. 994 * - -EINVAL on invalid arguments. 995 * - -ENOMEM on memory error for session allocation. 996 * - -ENOTSUP if device doesn't support session configuration. 997 */ 998 __rte_experimental 999 int 1000 rte_cryptodev_asym_session_create(uint8_t dev_id, 1001 struct rte_crypto_asym_xform *xforms, struct rte_mempool *mp, 1002 void **session); 1003 1004 /** 1005 * Frees session for the device id and returning it to its mempool. 1006 * It is the application's responsibility to ensure that the session 1007 * is not still in-flight operations using it. 1008 * 1009 * @param dev_id ID of device that uses the session. 1010 * @param sess Session header to be freed. 1011 * 1012 * @return 1013 * - 0 if successful. 1014 * - -EINVAL if session is NULL or the mismatched device ids. 1015 */ 1016 int 1017 rte_cryptodev_sym_session_free(uint8_t dev_id, 1018 void *sess); 1019 1020 /** 1021 * Clears and frees asymmetric crypto session header and private data, 1022 * returning it to its original mempool. 1023 * 1024 * @param dev_id ID of device that uses the asymmetric session. 1025 * @param sess Session header to be freed. 1026 * 1027 * @return 1028 * - 0 if successful. 1029 * - -EINVAL if device is invalid or session is NULL. 1030 */ 1031 __rte_experimental 1032 int 1033 rte_cryptodev_asym_session_free(uint8_t dev_id, void *sess); 1034 1035 /** 1036 * Get the size of the asymmetric session header. 1037 * 1038 * @return 1039 * Size of the asymmetric header session. 1040 */ 1041 __rte_experimental 1042 unsigned int 1043 rte_cryptodev_asym_get_header_session_size(void); 1044 1045 /** 1046 * Get the size of the private symmetric session data 1047 * for a device. 1048 * 1049 * @param dev_id The device identifier. 1050 * 1051 * @return 1052 * - Size of the private data, if successful 1053 * - 0 if device is invalid or does not have private 1054 * symmetric session 1055 */ 1056 unsigned int 1057 rte_cryptodev_sym_get_private_session_size(uint8_t dev_id); 1058 1059 /** 1060 * Get the size of the private data for asymmetric session 1061 * on device 1062 * 1063 * @param dev_id The device identifier. 1064 * 1065 * @return 1066 * - Size of the asymmetric private data, if successful 1067 * - 0 if device is invalid or does not have private session 1068 */ 1069 __rte_experimental 1070 unsigned int 1071 rte_cryptodev_asym_get_private_session_size(uint8_t dev_id); 1072 1073 /** 1074 * Validate if the crypto device index is valid attached crypto device. 1075 * 1076 * @param dev_id Crypto device index. 1077 * 1078 * @return 1079 * - If the device index is valid (1) or not (0). 1080 */ 1081 unsigned int 1082 rte_cryptodev_is_valid_dev(uint8_t dev_id); 1083 1084 /** 1085 * Provide driver identifier. 1086 * 1087 * @param name 1088 * The pointer to a driver name. 1089 * @return 1090 * The driver type identifier or -1 if no driver found 1091 */ 1092 int rte_cryptodev_driver_id_get(const char *name); 1093 1094 /** 1095 * Provide driver name. 1096 * 1097 * @param driver_id 1098 * The driver identifier. 1099 * @return 1100 * The driver name or null if no driver found 1101 */ 1102 const char *rte_cryptodev_driver_name_get(uint8_t driver_id); 1103 1104 /** 1105 * Store user data in a session. 1106 * 1107 * @param sess Session pointer allocated by 1108 * *rte_cryptodev_sym_session_create*. 1109 * @param data Pointer to the user data. 1110 * @param size Size of the user data. 1111 * 1112 * @return 1113 * - On success, zero. 1114 * - On failure, a negative value. 1115 */ 1116 __rte_experimental 1117 int 1118 rte_cryptodev_sym_session_set_user_data(void *sess, 1119 void *data, 1120 uint16_t size); 1121 1122 #define CRYPTO_SESS_OPAQUE_DATA_OFF 0 1123 /** 1124 * Get opaque data from session handle 1125 */ 1126 static inline uint64_t 1127 rte_cryptodev_sym_session_opaque_data_get(void *sess) 1128 { 1129 return *((uint64_t *)sess + CRYPTO_SESS_OPAQUE_DATA_OFF); 1130 } 1131 1132 /** 1133 * Set opaque data in session handle 1134 */ 1135 static inline void 1136 rte_cryptodev_sym_session_opaque_data_set(void *sess, uint64_t opaque) 1137 { 1138 uint64_t *data; 1139 data = (((uint64_t *)sess) + CRYPTO_SESS_OPAQUE_DATA_OFF); 1140 *data = opaque; 1141 } 1142 1143 /** 1144 * Get user data stored in a session. 1145 * 1146 * @param sess Session pointer allocated by 1147 * *rte_cryptodev_sym_session_create*. 1148 * 1149 * @return 1150 * - On success return pointer to user data. 1151 * - On failure returns NULL. 1152 */ 1153 __rte_experimental 1154 void * 1155 rte_cryptodev_sym_session_get_user_data(void *sess); 1156 1157 /** 1158 * Store user data in an asymmetric session. 1159 * 1160 * @param sess Session pointer allocated by 1161 * *rte_cryptodev_asym_session_create*. 1162 * @param data Pointer to the user data. 1163 * @param size Size of the user data. 1164 * 1165 * @return 1166 * - On success, zero. 1167 * - -EINVAL if the session pointer is invalid. 1168 * - -ENOMEM if the available user data size is smaller than the size parameter. 1169 */ 1170 __rte_experimental 1171 int 1172 rte_cryptodev_asym_session_set_user_data(void *sess, void *data, uint16_t size); 1173 1174 /** 1175 * Get user data stored in an asymmetric session. 1176 * 1177 * @param sess Session pointer allocated by 1178 * *rte_cryptodev_asym_session_create*. 1179 * 1180 * @return 1181 * - On success return pointer to user data. 1182 * - On failure returns NULL. 1183 */ 1184 __rte_experimental 1185 void * 1186 rte_cryptodev_asym_session_get_user_data(void *sess); 1187 1188 /** 1189 * Perform actual crypto processing (encrypt/digest or auth/decrypt) 1190 * on user provided data. 1191 * 1192 * @param dev_id The device identifier. 1193 * @param sess Cryptodev session structure 1194 * @param ofs Start and stop offsets for auth and cipher operations 1195 * @param vec Vectorized operation descriptor 1196 * 1197 * @return 1198 * - Returns number of successfully processed packets. 1199 */ 1200 __rte_experimental 1201 uint32_t 1202 rte_cryptodev_sym_cpu_crypto_process(uint8_t dev_id, 1203 void *sess, union rte_crypto_sym_ofs ofs, 1204 struct rte_crypto_sym_vec *vec); 1205 1206 /** 1207 * Get the size of the raw data-path context buffer. 1208 * 1209 * @param dev_id The device identifier. 1210 * 1211 * @return 1212 * - If the device supports raw data-path APIs, return the context size. 1213 * - If the device does not support the APIs, return -1. 1214 */ 1215 __rte_experimental 1216 int 1217 rte_cryptodev_get_raw_dp_ctx_size(uint8_t dev_id); 1218 1219 /** 1220 * Set session event meta data 1221 * 1222 * @param dev_id The device identifier. 1223 * @param sess Crypto or security session. 1224 * @param op_type Operation type. 1225 * @param sess_type Session type. 1226 * @param ev_mdata Pointer to the event crypto meta data 1227 * (aka *union rte_event_crypto_metadata*) 1228 * @param size Size of ev_mdata. 1229 * 1230 * @return 1231 * - On success, zero. 1232 * - On failure, a negative value. 1233 */ 1234 __rte_experimental 1235 int 1236 rte_cryptodev_session_event_mdata_set(uint8_t dev_id, void *sess, 1237 enum rte_crypto_op_type op_type, 1238 enum rte_crypto_op_sess_type sess_type, 1239 void *ev_mdata, uint16_t size); 1240 1241 /** 1242 * Union of different crypto session types, including session-less xform 1243 * pointer. 1244 */ 1245 union rte_cryptodev_session_ctx {void *crypto_sess; 1246 struct rte_crypto_sym_xform *xform; 1247 struct rte_security_session *sec_sess; 1248 }; 1249 1250 /** 1251 * Enqueue a vectorized operation descriptor into the device queue but the 1252 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1253 * is called. 1254 * 1255 * @param qp Driver specific queue pair data. 1256 * @param drv_ctx Driver specific context data. 1257 * @param vec Vectorized operation descriptor. 1258 * @param ofs Start and stop offsets for auth and cipher 1259 * operations. 1260 * @param user_data The array of user data for dequeue later. 1261 * @param enqueue_status Driver written value to specify the 1262 * enqueue status. Possible values: 1263 * - 1: The number of operations returned are 1264 * enqueued successfully. 1265 * - 0: The number of operations returned are 1266 * cached into the queue but are not processed 1267 * until rte_cryptodev_raw_enqueue_done() is 1268 * called. 1269 * - negative integer: Error occurred. 1270 * @return 1271 * - The number of operations in the descriptor successfully enqueued or 1272 * cached into the queue but not enqueued yet, depends on the 1273 * "enqueue_status" value. 1274 */ 1275 typedef uint32_t (*cryptodev_sym_raw_enqueue_burst_t)( 1276 void *qp, uint8_t *drv_ctx, struct rte_crypto_sym_vec *vec, 1277 union rte_crypto_sym_ofs ofs, void *user_data[], int *enqueue_status); 1278 1279 /** 1280 * Enqueue single raw data vector into the device queue but the driver may or 1281 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1282 * 1283 * @param qp Driver specific queue pair data. 1284 * @param drv_ctx Driver specific context data. 1285 * @param data_vec The buffer data vector. 1286 * @param n_data_vecs Number of buffer data vectors. 1287 * @param ofs Start and stop offsets for auth and cipher 1288 * operations. 1289 * @param iv IV virtual and IOVA addresses 1290 * @param digest digest virtual and IOVA addresses 1291 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1292 * depends on the algorithm used. 1293 * @param user_data The user data. 1294 * @return 1295 * - 1: The data vector is enqueued successfully. 1296 * - 0: The data vector is cached into the queue but is not processed 1297 * until rte_cryptodev_raw_enqueue_done() is called. 1298 * - negative integer: failure. 1299 */ 1300 typedef int (*cryptodev_sym_raw_enqueue_t)( 1301 void *qp, uint8_t *drv_ctx, struct rte_crypto_vec *data_vec, 1302 uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs, 1303 struct rte_crypto_va_iova_ptr *iv, 1304 struct rte_crypto_va_iova_ptr *digest, 1305 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1306 void *user_data); 1307 1308 /** 1309 * Inform the cryptodev queue pair to start processing or finish dequeuing all 1310 * enqueued/dequeued operations. 1311 * 1312 * @param qp Driver specific queue pair data. 1313 * @param drv_ctx Driver specific context data. 1314 * @param n The total number of processed operations. 1315 * @return 1316 * - On success return 0. 1317 * - On failure return negative integer. 1318 */ 1319 typedef int (*cryptodev_sym_raw_operation_done_t)(void *qp, uint8_t *drv_ctx, 1320 uint32_t n); 1321 1322 /** 1323 * Typedef that the user provided for the driver to get the dequeue count. 1324 * The function may return a fixed number or the number parsed from the user 1325 * data stored in the first processed operation. 1326 * 1327 * @param user_data Dequeued user data. 1328 * @return 1329 * - The number of operations to be dequeued. 1330 **/ 1331 typedef uint32_t (*rte_cryptodev_raw_get_dequeue_count_t)(void *user_data); 1332 1333 /** 1334 * Typedef that the user provided to deal with post dequeue operation, such 1335 * as filling status. 1336 * 1337 * @param user_data Dequeued user data. 1338 * @param index Index number of the processed descriptor. 1339 * @param is_op_success Operation status provided by the driver. 1340 **/ 1341 typedef void (*rte_cryptodev_raw_post_dequeue_t)(void *user_data, 1342 uint32_t index, uint8_t is_op_success); 1343 1344 /** 1345 * Dequeue a burst of symmetric crypto processing. 1346 * 1347 * @param qp Driver specific queue pair data. 1348 * @param drv_ctx Driver specific context data. 1349 * @param get_dequeue_count User provided callback function to 1350 * obtain dequeue operation count. 1351 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1352 * value is used to pass the maximum 1353 * number of operations to be dequeued. 1354 * @param post_dequeue User provided callback function to 1355 * post-process a dequeued operation. 1356 * @param out_user_data User data pointer array to be retrieve 1357 * from device queue. In case of 1358 * *is_user_data_array* is set there 1359 * should be enough room to store all 1360 * user data. 1361 * @param is_user_data_array Set 1 if every dequeued user data will 1362 * be written into out_user_data array. 1363 * Set 0 if only the first user data will 1364 * be written into out_user_data array. 1365 * @param n_success Driver written value to specific the 1366 * total successful operations count. 1367 * @param dequeue_status Driver written value to specify the 1368 * dequeue status. Possible values: 1369 * - 1: Successfully dequeued the number 1370 * of operations returned. The user 1371 * data previously set during enqueue 1372 * is stored in the "out_user_data". 1373 * - 0: The number of operations returned 1374 * are completed and the user data is 1375 * stored in the "out_user_data", but 1376 * they are not freed from the queue 1377 * until 1378 * rte_cryptodev_raw_dequeue_done() 1379 * is called. 1380 * - negative integer: Error occurred. 1381 * @return 1382 * - The number of operations dequeued or completed but not freed from the 1383 * queue, depends on "dequeue_status" value. 1384 */ 1385 typedef uint32_t (*cryptodev_sym_raw_dequeue_burst_t)(void *qp, 1386 uint8_t *drv_ctx, 1387 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1388 uint32_t max_nb_to_dequeue, 1389 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1390 void **out_user_data, uint8_t is_user_data_array, 1391 uint32_t *n_success, int *dequeue_status); 1392 1393 /** 1394 * Dequeue a symmetric crypto processing. 1395 * 1396 * @param qp Driver specific queue pair data. 1397 * @param drv_ctx Driver specific context data. 1398 * @param dequeue_status Driver written value to specify the 1399 * dequeue status. Possible values: 1400 * - 1: Successfully dequeued a operation. 1401 * The user data is returned. 1402 * - 0: The first operation in the queue 1403 * is completed and the user data 1404 * previously set during enqueue is 1405 * returned, but it is not freed from 1406 * the queue until 1407 * rte_cryptodev_raw_dequeue_done() is 1408 * called. 1409 * - negative integer: Error occurred. 1410 * @param op_status Driver written value to specify 1411 * operation status. 1412 * @return 1413 * - The user data pointer retrieved from device queue or NULL if no 1414 * operation is ready for dequeue. 1415 */ 1416 typedef void * (*cryptodev_sym_raw_dequeue_t)( 1417 void *qp, uint8_t *drv_ctx, int *dequeue_status, 1418 enum rte_crypto_op_status *op_status); 1419 1420 /** 1421 * Context data for raw data-path API crypto process. The buffer of this 1422 * structure is to be allocated by the user application with the size equal 1423 * or bigger than rte_cryptodev_get_raw_dp_ctx_size() returned value. 1424 */ 1425 struct rte_crypto_raw_dp_ctx { 1426 void *qp_data; 1427 1428 cryptodev_sym_raw_enqueue_t enqueue; 1429 cryptodev_sym_raw_enqueue_burst_t enqueue_burst; 1430 cryptodev_sym_raw_operation_done_t enqueue_done; 1431 cryptodev_sym_raw_dequeue_t dequeue; 1432 cryptodev_sym_raw_dequeue_burst_t dequeue_burst; 1433 cryptodev_sym_raw_operation_done_t dequeue_done; 1434 1435 /* Driver specific context data */ 1436 __extension__ uint8_t drv_ctx_data[]; 1437 }; 1438 1439 /** 1440 * Configure raw data-path context data. 1441 * 1442 * NOTE: 1443 * After the context data is configured, the user should call 1444 * rte_cryptodev_raw_attach_session() before using it in 1445 * rte_cryptodev_raw_enqueue/dequeue function call. 1446 * 1447 * @param dev_id The device identifier. 1448 * @param qp_id The index of the queue pair from which to 1449 * retrieve processed packets. The value must be 1450 * in the range [0, nb_queue_pair - 1] previously 1451 * supplied to rte_cryptodev_configure(). 1452 * @param ctx The raw data-path context data. 1453 * @param sess_type session type. 1454 * @param session_ctx Session context data. 1455 * @param is_update Set 0 if it is to initialize the ctx. 1456 * Set 1 if ctx is initialized and only to update 1457 * session context data. 1458 * @return 1459 * - On success return 0. 1460 * - On failure return negative integer. 1461 */ 1462 __rte_experimental 1463 int 1464 rte_cryptodev_configure_raw_dp_ctx(uint8_t dev_id, uint16_t qp_id, 1465 struct rte_crypto_raw_dp_ctx *ctx, 1466 enum rte_crypto_op_sess_type sess_type, 1467 union rte_cryptodev_session_ctx session_ctx, 1468 uint8_t is_update); 1469 1470 /** 1471 * Enqueue a vectorized operation descriptor into the device queue but the 1472 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1473 * is called. 1474 * 1475 * @param ctx The initialized raw data-path context data. 1476 * @param vec Vectorized operation descriptor. 1477 * @param ofs Start and stop offsets for auth and cipher 1478 * operations. 1479 * @param user_data The array of user data for dequeue later. 1480 * @param enqueue_status Driver written value to specify the 1481 * enqueue status. Possible values: 1482 * - 1: The number of operations returned are 1483 * enqueued successfully. 1484 * - 0: The number of operations returned are 1485 * cached into the queue but are not processed 1486 * until rte_cryptodev_raw_enqueue_done() is 1487 * called. 1488 * - negative integer: Error occurred. 1489 * @return 1490 * - The number of operations in the descriptor successfully enqueued or 1491 * cached into the queue but not enqueued yet, depends on the 1492 * "enqueue_status" value. 1493 */ 1494 __rte_experimental 1495 uint32_t 1496 rte_cryptodev_raw_enqueue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1497 struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs, 1498 void **user_data, int *enqueue_status); 1499 1500 /** 1501 * Enqueue single raw data vector into the device queue but the driver may or 1502 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1503 * 1504 * @param ctx The initialized raw data-path context data. 1505 * @param data_vec The buffer data vector. 1506 * @param n_data_vecs Number of buffer data vectors. 1507 * @param ofs Start and stop offsets for auth and cipher 1508 * operations. 1509 * @param iv IV virtual and IOVA addresses 1510 * @param digest digest virtual and IOVA addresses 1511 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1512 * depends on the algorithm used. 1513 * @param user_data The user data. 1514 * @return 1515 * - 1: The data vector is enqueued successfully. 1516 * - 0: The data vector is cached into the queue but is not processed 1517 * until rte_cryptodev_raw_enqueue_done() is called. 1518 * - negative integer: failure. 1519 */ 1520 __rte_experimental 1521 static __rte_always_inline int 1522 rte_cryptodev_raw_enqueue(struct rte_crypto_raw_dp_ctx *ctx, 1523 struct rte_crypto_vec *data_vec, uint16_t n_data_vecs, 1524 union rte_crypto_sym_ofs ofs, 1525 struct rte_crypto_va_iova_ptr *iv, 1526 struct rte_crypto_va_iova_ptr *digest, 1527 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1528 void *user_data) 1529 { 1530 return (*ctx->enqueue)(ctx->qp_data, ctx->drv_ctx_data, data_vec, 1531 n_data_vecs, ofs, iv, digest, aad_or_auth_iv, user_data); 1532 } 1533 1534 /** 1535 * Start processing all enqueued operations from last 1536 * rte_cryptodev_configure_raw_dp_ctx() call. 1537 * 1538 * @param ctx The initialized raw data-path context data. 1539 * @param n The number of operations cached. 1540 * @return 1541 * - On success return 0. 1542 * - On failure return negative integer. 1543 */ 1544 __rte_experimental 1545 int 1546 rte_cryptodev_raw_enqueue_done(struct rte_crypto_raw_dp_ctx *ctx, 1547 uint32_t n); 1548 1549 /** 1550 * Dequeue a burst of symmetric crypto processing. 1551 * 1552 * @param ctx The initialized raw data-path context 1553 * data. 1554 * @param get_dequeue_count User provided callback function to 1555 * obtain dequeue operation count. 1556 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1557 * value is used to pass the maximum 1558 * number of operations to be dequeued. 1559 * @param post_dequeue User provided callback function to 1560 * post-process a dequeued operation. 1561 * @param out_user_data User data pointer array to be retrieve 1562 * from device queue. In case of 1563 * *is_user_data_array* is set there 1564 * should be enough room to store all 1565 * user data. 1566 * @param is_user_data_array Set 1 if every dequeued user data will 1567 * be written into out_user_data array. 1568 * Set 0 if only the first user data will 1569 * be written into out_user_data array. 1570 * @param n_success Driver written value to specific the 1571 * total successful operations count. 1572 * @param dequeue_status Driver written value to specify the 1573 * dequeue status. Possible values: 1574 * - 1: Successfully dequeued the number 1575 * of operations returned. The user 1576 * data previously set during enqueue 1577 * is stored in the "out_user_data". 1578 * - 0: The number of operations returned 1579 * are completed and the user data is 1580 * stored in the "out_user_data", but 1581 * they are not freed from the queue 1582 * until 1583 * rte_cryptodev_raw_dequeue_done() 1584 * is called. 1585 * - negative integer: Error occurred. 1586 * @return 1587 * - The number of operations dequeued or completed but not freed from the 1588 * queue, depends on "dequeue_status" value. 1589 */ 1590 __rte_experimental 1591 uint32_t 1592 rte_cryptodev_raw_dequeue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1593 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1594 uint32_t max_nb_to_dequeue, 1595 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1596 void **out_user_data, uint8_t is_user_data_array, 1597 uint32_t *n_success, int *dequeue_status); 1598 1599 /** 1600 * Dequeue a symmetric crypto processing. 1601 * 1602 * @param ctx The initialized raw data-path context 1603 * data. 1604 * @param dequeue_status Driver written value to specify the 1605 * dequeue status. Possible values: 1606 * - 1: Successfully dequeued a operation. 1607 * The user data is returned. 1608 * - 0: The first operation in the queue 1609 * is completed and the user data 1610 * previously set during enqueue is 1611 * returned, but it is not freed from 1612 * the queue until 1613 * rte_cryptodev_raw_dequeue_done() is 1614 * called. 1615 * - negative integer: Error occurred. 1616 * @param op_status Driver written value to specify 1617 * operation status. 1618 * @return 1619 * - The user data pointer retrieved from device queue or NULL if no 1620 * operation is ready for dequeue. 1621 */ 1622 __rte_experimental 1623 static __rte_always_inline void * 1624 rte_cryptodev_raw_dequeue(struct rte_crypto_raw_dp_ctx *ctx, 1625 int *dequeue_status, enum rte_crypto_op_status *op_status) 1626 { 1627 return (*ctx->dequeue)(ctx->qp_data, ctx->drv_ctx_data, dequeue_status, 1628 op_status); 1629 } 1630 1631 /** 1632 * Inform the queue pair dequeue operations is finished. 1633 * 1634 * @param ctx The initialized raw data-path context data. 1635 * @param n The number of operations. 1636 * @return 1637 * - On success return 0. 1638 * - On failure return negative integer. 1639 */ 1640 __rte_experimental 1641 int 1642 rte_cryptodev_raw_dequeue_done(struct rte_crypto_raw_dp_ctx *ctx, 1643 uint32_t n); 1644 1645 /** 1646 * Add a user callback for a given crypto device and queue pair which will be 1647 * called on crypto ops enqueue. 1648 * 1649 * This API configures a function to be called for each burst of crypto ops 1650 * received on a given crypto device queue pair. The return value is a pointer 1651 * that can be used later to remove the callback using 1652 * rte_cryptodev_remove_enq_callback(). 1653 * 1654 * Callbacks registered by application would not survive 1655 * rte_cryptodev_configure() as it reinitializes the callback list. 1656 * It is user responsibility to remove all installed callbacks before 1657 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1658 * Application is expected to call add API after rte_cryptodev_configure(). 1659 * 1660 * Multiple functions can be registered per queue pair & they are called 1661 * in the order they were added. The API does not restrict on maximum number 1662 * of callbacks. 1663 * 1664 * @param dev_id The identifier of the device. 1665 * @param qp_id The index of the queue pair on which ops are 1666 * to be enqueued for processing. The value 1667 * must be in the range [0, nb_queue_pairs - 1] 1668 * previously supplied to 1669 * *rte_cryptodev_configure*. 1670 * @param cb_fn The callback function 1671 * @param cb_arg A generic pointer parameter which will be passed 1672 * to each invocation of the callback function on 1673 * this crypto device and queue pair. 1674 * 1675 * @return 1676 * - NULL on error & rte_errno will contain the error code. 1677 * - On success, a pointer value which can later be used to remove the 1678 * callback. 1679 */ 1680 1681 __rte_experimental 1682 struct rte_cryptodev_cb * 1683 rte_cryptodev_add_enq_callback(uint8_t dev_id, 1684 uint16_t qp_id, 1685 rte_cryptodev_callback_fn cb_fn, 1686 void *cb_arg); 1687 1688 /** 1689 * Remove a user callback function for given crypto device and queue pair. 1690 * 1691 * This function is used to remove enqueue callbacks that were added to a 1692 * crypto device queue pair using rte_cryptodev_add_enq_callback(). 1693 * 1694 * 1695 * 1696 * @param dev_id The identifier of the device. 1697 * @param qp_id The index of the queue pair on which ops are 1698 * to be enqueued. The value must be in the 1699 * range [0, nb_queue_pairs - 1] previously 1700 * supplied to *rte_cryptodev_configure*. 1701 * @param cb Pointer to user supplied callback created via 1702 * rte_cryptodev_add_enq_callback(). 1703 * 1704 * @return 1705 * - 0: Success. Callback was removed. 1706 * - <0: The dev_id or the qp_id is out of range, or the callback 1707 * is NULL or not found for the crypto device queue pair. 1708 */ 1709 1710 __rte_experimental 1711 int rte_cryptodev_remove_enq_callback(uint8_t dev_id, 1712 uint16_t qp_id, 1713 struct rte_cryptodev_cb *cb); 1714 1715 /** 1716 * Add a user callback for a given crypto device and queue pair which will be 1717 * called on crypto ops dequeue. 1718 * 1719 * This API configures a function to be called for each burst of crypto ops 1720 * received on a given crypto device queue pair. The return value is a pointer 1721 * that can be used later to remove the callback using 1722 * rte_cryptodev_remove_deq_callback(). 1723 * 1724 * Callbacks registered by application would not survive 1725 * rte_cryptodev_configure() as it reinitializes the callback list. 1726 * It is user responsibility to remove all installed callbacks before 1727 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1728 * Application is expected to call add API after rte_cryptodev_configure(). 1729 * 1730 * Multiple functions can be registered per queue pair & they are called 1731 * in the order they were added. The API does not restrict on maximum number 1732 * of callbacks. 1733 * 1734 * @param dev_id The identifier of the device. 1735 * @param qp_id The index of the queue pair on which ops are 1736 * to be dequeued. The value must be in the 1737 * range [0, nb_queue_pairs - 1] previously 1738 * supplied to *rte_cryptodev_configure*. 1739 * @param cb_fn The callback function 1740 * @param cb_arg A generic pointer parameter which will be passed 1741 * to each invocation of the callback function on 1742 * this crypto device and queue pair. 1743 * 1744 * @return 1745 * - NULL on error & rte_errno will contain the error code. 1746 * - On success, a pointer value which can later be used to remove the 1747 * callback. 1748 */ 1749 1750 __rte_experimental 1751 struct rte_cryptodev_cb * 1752 rte_cryptodev_add_deq_callback(uint8_t dev_id, 1753 uint16_t qp_id, 1754 rte_cryptodev_callback_fn cb_fn, 1755 void *cb_arg); 1756 1757 /** 1758 * Remove a user callback function for given crypto device and queue pair. 1759 * 1760 * This function is used to remove dequeue callbacks that were added to a 1761 * crypto device queue pair using rte_cryptodev_add_deq_callback(). 1762 * 1763 * 1764 * 1765 * @param dev_id The identifier of the device. 1766 * @param qp_id The index of the queue pair on which ops are 1767 * to be dequeued. The value must be in the 1768 * range [0, nb_queue_pairs - 1] previously 1769 * supplied to *rte_cryptodev_configure*. 1770 * @param cb Pointer to user supplied callback created via 1771 * rte_cryptodev_add_deq_callback(). 1772 * 1773 * @return 1774 * - 0: Success. Callback was removed. 1775 * - <0: The dev_id or the qp_id is out of range, or the callback 1776 * is NULL or not found for the crypto device queue pair. 1777 */ 1778 __rte_experimental 1779 int rte_cryptodev_remove_deq_callback(uint8_t dev_id, 1780 uint16_t qp_id, 1781 struct rte_cryptodev_cb *cb); 1782 1783 #include <rte_cryptodev_core.h> 1784 /** 1785 * 1786 * Dequeue a burst of processed crypto operations from a queue on the crypto 1787 * device. The dequeued operation are stored in *rte_crypto_op* structures 1788 * whose pointers are supplied in the *ops* array. 1789 * 1790 * The rte_cryptodev_dequeue_burst() function returns the number of ops 1791 * actually dequeued, which is the number of *rte_crypto_op* data structures 1792 * effectively supplied into the *ops* array. 1793 * 1794 * A return value equal to *nb_ops* indicates that the queue contained 1795 * at least *nb_ops* operations, and this is likely to signify that other 1796 * processed operations remain in the devices output queue. Applications 1797 * implementing a "retrieve as many processed operations as possible" policy 1798 * can check this specific case and keep invoking the 1799 * rte_cryptodev_dequeue_burst() function until a value less than 1800 * *nb_ops* is returned. 1801 * 1802 * The rte_cryptodev_dequeue_burst() function does not provide any error 1803 * notification to avoid the corresponding overhead. 1804 * 1805 * @param dev_id The symmetric crypto device identifier 1806 * @param qp_id The index of the queue pair from which to 1807 * retrieve processed packets. The value must be 1808 * in the range [0, nb_queue_pair - 1] previously 1809 * supplied to rte_cryptodev_configure(). 1810 * @param ops The address of an array of pointers to 1811 * *rte_crypto_op* structures that must be 1812 * large enough to store *nb_ops* pointers in it. 1813 * @param nb_ops The maximum number of operations to dequeue. 1814 * 1815 * @return 1816 * - The number of operations actually dequeued, which is the number 1817 * of pointers to *rte_crypto_op* structures effectively supplied to the 1818 * *ops* array. 1819 */ 1820 static inline uint16_t 1821 rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, 1822 struct rte_crypto_op **ops, uint16_t nb_ops) 1823 { 1824 const struct rte_crypto_fp_ops *fp_ops; 1825 void *qp; 1826 1827 rte_cryptodev_trace_dequeue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1828 1829 fp_ops = &rte_crypto_fp_ops[dev_id]; 1830 qp = fp_ops->qp.data[qp_id]; 1831 1832 nb_ops = fp_ops->dequeue_burst(qp, ops, nb_ops); 1833 1834 #ifdef RTE_CRYPTO_CALLBACKS 1835 if (unlikely(fp_ops->qp.deq_cb != NULL)) { 1836 struct rte_cryptodev_cb_rcu *list; 1837 struct rte_cryptodev_cb *cb; 1838 1839 /* __ATOMIC_RELEASE memory order was used when the 1840 * call back was inserted into the list. 1841 * Since there is a clear dependency between loading 1842 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1843 * not required. 1844 */ 1845 list = &fp_ops->qp.deq_cb[qp_id]; 1846 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1847 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1848 1849 while (cb != NULL) { 1850 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1851 cb->arg); 1852 cb = cb->next; 1853 }; 1854 1855 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1856 } 1857 #endif 1858 return nb_ops; 1859 } 1860 1861 /** 1862 * Enqueue a burst of operations for processing on a crypto device. 1863 * 1864 * The rte_cryptodev_enqueue_burst() function is invoked to place 1865 * crypto operations on the queue *qp_id* of the device designated by 1866 * its *dev_id*. 1867 * 1868 * The *nb_ops* parameter is the number of operations to process which are 1869 * supplied in the *ops* array of *rte_crypto_op* structures. 1870 * 1871 * The rte_cryptodev_enqueue_burst() function returns the number of 1872 * operations it actually enqueued for processing. A return value equal to 1873 * *nb_ops* means that all packets have been enqueued. 1874 * 1875 * @param dev_id The identifier of the device. 1876 * @param qp_id The index of the queue pair which packets are 1877 * to be enqueued for processing. The value 1878 * must be in the range [0, nb_queue_pairs - 1] 1879 * previously supplied to 1880 * *rte_cryptodev_configure*. 1881 * @param ops The address of an array of *nb_ops* pointers 1882 * to *rte_crypto_op* structures which contain 1883 * the crypto operations to be processed. 1884 * @param nb_ops The number of operations to process. 1885 * 1886 * @return 1887 * The number of operations actually enqueued on the crypto device. The return 1888 * value can be less than the value of the *nb_ops* parameter when the 1889 * crypto devices queue is full or if invalid parameters are specified in 1890 * a *rte_crypto_op*. 1891 */ 1892 static inline uint16_t 1893 rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, 1894 struct rte_crypto_op **ops, uint16_t nb_ops) 1895 { 1896 const struct rte_crypto_fp_ops *fp_ops; 1897 void *qp; 1898 1899 fp_ops = &rte_crypto_fp_ops[dev_id]; 1900 qp = fp_ops->qp.data[qp_id]; 1901 #ifdef RTE_CRYPTO_CALLBACKS 1902 if (unlikely(fp_ops->qp.enq_cb != NULL)) { 1903 struct rte_cryptodev_cb_rcu *list; 1904 struct rte_cryptodev_cb *cb; 1905 1906 /* __ATOMIC_RELEASE memory order was used when the 1907 * call back was inserted into the list. 1908 * Since there is a clear dependency between loading 1909 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1910 * not required. 1911 */ 1912 list = &fp_ops->qp.enq_cb[qp_id]; 1913 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1914 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1915 1916 while (cb != NULL) { 1917 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1918 cb->arg); 1919 cb = cb->next; 1920 }; 1921 1922 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1923 } 1924 #endif 1925 1926 rte_cryptodev_trace_enqueue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1927 return fp_ops->enqueue_burst(qp, ops, nb_ops); 1928 } 1929 1930 1931 1932 #ifdef __cplusplus 1933 } 1934 #endif 1935 1936 #endif /* _RTE_CRYPTODEV_H_ */ 1937