1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2020 Intel Corporation. 3 */ 4 5 #ifndef _RTE_CRYPTODEV_H_ 6 #define _RTE_CRYPTODEV_H_ 7 8 /** 9 * @file rte_cryptodev.h 10 * 11 * RTE Cryptographic Device APIs 12 * 13 * Defines RTE Crypto Device APIs for the provisioning of cipher and 14 * authentication operations. 15 */ 16 17 #ifdef __cplusplus 18 extern "C" { 19 #endif 20 21 #include "rte_kvargs.h" 22 #include "rte_crypto.h" 23 #include "rte_dev.h" 24 #include <rte_common.h> 25 #include <rte_config.h> 26 #include <rte_rcu_qsbr.h> 27 28 #include "rte_cryptodev_trace_fp.h" 29 30 extern const char **rte_cyptodev_names; 31 32 /* Logging Macros */ 33 34 #define CDEV_LOG_ERR(...) \ 35 RTE_LOG(ERR, CRYPTODEV, \ 36 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 37 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 38 39 #define CDEV_LOG_INFO(...) \ 40 RTE_LOG(INFO, CRYPTODEV, \ 41 RTE_FMT(RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 42 RTE_FMT_TAIL(__VA_ARGS__,))) 43 44 #define CDEV_LOG_DEBUG(...) \ 45 RTE_LOG(DEBUG, CRYPTODEV, \ 46 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 47 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 48 49 #define CDEV_PMD_TRACE(...) \ 50 RTE_LOG(DEBUG, CRYPTODEV, \ 51 RTE_FMT("[%s] %s: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 52 dev, __func__, RTE_FMT_TAIL(__VA_ARGS__,))) 53 54 /** 55 * A macro that points to an offset from the start 56 * of the crypto operation structure (rte_crypto_op) 57 * 58 * The returned pointer is cast to type t. 59 * 60 * @param c 61 * The crypto operation. 62 * @param o 63 * The offset from the start of the crypto operation. 64 * @param t 65 * The type to cast the result into. 66 */ 67 #define rte_crypto_op_ctod_offset(c, t, o) \ 68 ((t)((char *)(c) + (o))) 69 70 /** 71 * A macro that returns the physical address that points 72 * to an offset from the start of the crypto operation 73 * (rte_crypto_op) 74 * 75 * @param c 76 * The crypto operation. 77 * @param o 78 * The offset from the start of the crypto operation 79 * to calculate address from. 80 */ 81 #define rte_crypto_op_ctophys_offset(c, o) \ 82 (rte_iova_t)((c)->phys_addr + (o)) 83 84 /** 85 * Crypto parameters range description 86 */ 87 struct rte_crypto_param_range { 88 uint16_t min; /**< minimum size */ 89 uint16_t max; /**< maximum size */ 90 uint16_t increment; 91 /**< if a range of sizes are supported, 92 * this parameter is used to indicate 93 * increments in byte size that are supported 94 * between the minimum and maximum 95 */ 96 }; 97 98 /** 99 * Data-unit supported lengths of cipher algorithms. 100 * A bit can represent any set of data-unit sizes 101 * (single size, multiple size, range, etc). 102 */ 103 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES RTE_BIT32(0) 104 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES RTE_BIT32(1) 105 106 /** 107 * Symmetric Crypto Capability 108 */ 109 struct rte_cryptodev_symmetric_capability { 110 enum rte_crypto_sym_xform_type xform_type; 111 /**< Transform type : Authentication / Cipher / AEAD */ 112 RTE_STD_C11 113 union { 114 struct { 115 enum rte_crypto_auth_algorithm algo; 116 /**< authentication algorithm */ 117 uint16_t block_size; 118 /**< algorithm block size */ 119 struct rte_crypto_param_range key_size; 120 /**< auth key size range */ 121 struct rte_crypto_param_range digest_size; 122 /**< digest size range */ 123 struct rte_crypto_param_range aad_size; 124 /**< Additional authentication data size range */ 125 struct rte_crypto_param_range iv_size; 126 /**< Initialisation vector data size range */ 127 } auth; 128 /**< Symmetric Authentication transform capabilities */ 129 struct { 130 enum rte_crypto_cipher_algorithm algo; 131 /**< cipher algorithm */ 132 uint16_t block_size; 133 /**< algorithm block size */ 134 struct rte_crypto_param_range key_size; 135 /**< cipher key size range */ 136 struct rte_crypto_param_range iv_size; 137 /**< Initialisation vector data size range */ 138 uint32_t dataunit_set; 139 /**< 140 * Supported data-unit lengths: 141 * RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_* bits 142 * or 0 for lengths defined in the algorithm standard. 143 */ 144 } cipher; 145 /**< Symmetric Cipher transform capabilities */ 146 struct { 147 enum rte_crypto_aead_algorithm algo; 148 /**< AEAD algorithm */ 149 uint16_t block_size; 150 /**< algorithm block size */ 151 struct rte_crypto_param_range key_size; 152 /**< AEAD key size range */ 153 struct rte_crypto_param_range digest_size; 154 /**< digest size range */ 155 struct rte_crypto_param_range aad_size; 156 /**< Additional authentication data size range */ 157 struct rte_crypto_param_range iv_size; 158 /**< Initialisation vector data size range */ 159 } aead; 160 }; 161 }; 162 163 /** 164 * Asymmetric Xform Crypto Capability 165 * 166 */ 167 struct rte_cryptodev_asymmetric_xform_capability { 168 enum rte_crypto_asym_xform_type xform_type; 169 /**< Transform type: RSA/MODEXP/DH/DSA/MODINV */ 170 171 uint32_t op_types; 172 /**< bitmask for supported rte_crypto_asym_op_type */ 173 174 __extension__ 175 union { 176 struct rte_crypto_param_range modlen; 177 /**< Range of modulus length supported by modulus based xform. 178 * Value 0 mean implementation default 179 */ 180 }; 181 }; 182 183 /** 184 * Asymmetric Crypto Capability 185 * 186 */ 187 struct rte_cryptodev_asymmetric_capability { 188 struct rte_cryptodev_asymmetric_xform_capability xform_capa; 189 }; 190 191 192 /** Structure used to capture a capability of a crypto device */ 193 struct rte_cryptodev_capabilities { 194 enum rte_crypto_op_type op; 195 /**< Operation type */ 196 197 RTE_STD_C11 198 union { 199 struct rte_cryptodev_symmetric_capability sym; 200 /**< Symmetric operation capability parameters */ 201 struct rte_cryptodev_asymmetric_capability asym; 202 /**< Asymmetric operation capability parameters */ 203 }; 204 }; 205 206 /** Structure used to describe crypto algorithms */ 207 struct rte_cryptodev_sym_capability_idx { 208 enum rte_crypto_sym_xform_type type; 209 union { 210 enum rte_crypto_cipher_algorithm cipher; 211 enum rte_crypto_auth_algorithm auth; 212 enum rte_crypto_aead_algorithm aead; 213 } algo; 214 }; 215 216 /** 217 * Structure used to describe asymmetric crypto xforms 218 * Each xform maps to one asym algorithm. 219 * 220 */ 221 struct rte_cryptodev_asym_capability_idx { 222 enum rte_crypto_asym_xform_type type; 223 /**< Asymmetric xform (algo) type */ 224 }; 225 226 /** 227 * Provide capabilities available for defined device and algorithm 228 * 229 * @param dev_id The identifier of the device. 230 * @param idx Description of crypto algorithms. 231 * 232 * @return 233 * - Return description of the symmetric crypto capability if exist. 234 * - Return NULL if the capability not exist. 235 */ 236 const struct rte_cryptodev_symmetric_capability * 237 rte_cryptodev_sym_capability_get(uint8_t dev_id, 238 const struct rte_cryptodev_sym_capability_idx *idx); 239 240 /** 241 * Provide capabilities available for defined device and xform 242 * 243 * @param dev_id The identifier of the device. 244 * @param idx Description of asym crypto xform. 245 * 246 * @return 247 * - Return description of the asymmetric crypto capability if exist. 248 * - Return NULL if the capability not exist. 249 */ 250 __rte_experimental 251 const struct rte_cryptodev_asymmetric_xform_capability * 252 rte_cryptodev_asym_capability_get(uint8_t dev_id, 253 const struct rte_cryptodev_asym_capability_idx *idx); 254 255 /** 256 * Check if key size and initial vector are supported 257 * in crypto cipher capability 258 * 259 * @param capability Description of the symmetric crypto capability. 260 * @param key_size Cipher key size. 261 * @param iv_size Cipher initial vector size. 262 * 263 * @return 264 * - Return 0 if the parameters are in range of the capability. 265 * - Return -1 if the parameters are out of range of the capability. 266 */ 267 int 268 rte_cryptodev_sym_capability_check_cipher( 269 const struct rte_cryptodev_symmetric_capability *capability, 270 uint16_t key_size, uint16_t iv_size); 271 272 /** 273 * Check if key size and initial vector are supported 274 * in crypto auth capability 275 * 276 * @param capability Description of the symmetric crypto capability. 277 * @param key_size Auth key size. 278 * @param digest_size Auth digest size. 279 * @param iv_size Auth initial vector size. 280 * 281 * @return 282 * - Return 0 if the parameters are in range of the capability. 283 * - Return -1 if the parameters are out of range of the capability. 284 */ 285 int 286 rte_cryptodev_sym_capability_check_auth( 287 const struct rte_cryptodev_symmetric_capability *capability, 288 uint16_t key_size, uint16_t digest_size, uint16_t iv_size); 289 290 /** 291 * Check if key, digest, AAD and initial vector sizes are supported 292 * in crypto AEAD capability 293 * 294 * @param capability Description of the symmetric crypto capability. 295 * @param key_size AEAD key size. 296 * @param digest_size AEAD digest size. 297 * @param aad_size AEAD AAD size. 298 * @param iv_size AEAD IV size. 299 * 300 * @return 301 * - Return 0 if the parameters are in range of the capability. 302 * - Return -1 if the parameters are out of range of the capability. 303 */ 304 int 305 rte_cryptodev_sym_capability_check_aead( 306 const struct rte_cryptodev_symmetric_capability *capability, 307 uint16_t key_size, uint16_t digest_size, uint16_t aad_size, 308 uint16_t iv_size); 309 310 /** 311 * Check if op type is supported 312 * 313 * @param capability Description of the asymmetric crypto capability. 314 * @param op_type op type 315 * 316 * @return 317 * - Return 1 if the op type is supported 318 * - Return 0 if unsupported 319 */ 320 __rte_experimental 321 int 322 rte_cryptodev_asym_xform_capability_check_optype( 323 const struct rte_cryptodev_asymmetric_xform_capability *capability, 324 enum rte_crypto_asym_op_type op_type); 325 326 /** 327 * Check if modulus length is in supported range 328 * 329 * @param capability Description of the asymmetric crypto capability. 330 * @param modlen modulus length. 331 * 332 * @return 333 * - Return 0 if the parameters are in range of the capability. 334 * - Return -1 if the parameters are out of range of the capability. 335 */ 336 __rte_experimental 337 int 338 rte_cryptodev_asym_xform_capability_check_modlen( 339 const struct rte_cryptodev_asymmetric_xform_capability *capability, 340 uint16_t modlen); 341 342 /** 343 * Provide the cipher algorithm enum, given an algorithm string 344 * 345 * @param algo_enum A pointer to the cipher algorithm 346 * enum to be filled 347 * @param algo_string Authentication algo string 348 * 349 * @return 350 * - Return -1 if string is not valid 351 * - Return 0 is the string is valid 352 */ 353 int 354 rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum, 355 const char *algo_string); 356 357 /** 358 * Provide the authentication algorithm enum, given an algorithm string 359 * 360 * @param algo_enum A pointer to the authentication algorithm 361 * enum to be filled 362 * @param algo_string Authentication algo string 363 * 364 * @return 365 * - Return -1 if string is not valid 366 * - Return 0 is the string is valid 367 */ 368 int 369 rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum, 370 const char *algo_string); 371 372 /** 373 * Provide the AEAD algorithm enum, given an algorithm string 374 * 375 * @param algo_enum A pointer to the AEAD algorithm 376 * enum to be filled 377 * @param algo_string AEAD algorithm string 378 * 379 * @return 380 * - Return -1 if string is not valid 381 * - Return 0 is the string is valid 382 */ 383 int 384 rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum, 385 const char *algo_string); 386 387 /** 388 * Provide the Asymmetric xform enum, given an xform string 389 * 390 * @param xform_enum A pointer to the xform type 391 * enum to be filled 392 * @param xform_string xform string 393 * 394 * @return 395 * - Return -1 if string is not valid 396 * - Return 0 if the string is valid 397 */ 398 __rte_experimental 399 int 400 rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum, 401 const char *xform_string); 402 403 404 /** Macro used at end of crypto PMD list */ 405 #define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \ 406 { RTE_CRYPTO_OP_TYPE_UNDEFINED } 407 408 409 /** 410 * Crypto device supported feature flags 411 * 412 * Note: 413 * New features flags should be added to the end of the list 414 * 415 * Keep these flags synchronised with rte_cryptodev_get_feature_name() 416 */ 417 #define RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO (1ULL << 0) 418 /**< Symmetric crypto operations are supported */ 419 #define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO (1ULL << 1) 420 /**< Asymmetric crypto operations are supported */ 421 #define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING (1ULL << 2) 422 /**< Chaining symmetric crypto operations are supported */ 423 #define RTE_CRYPTODEV_FF_CPU_SSE (1ULL << 3) 424 /**< Utilises CPU SIMD SSE instructions */ 425 #define RTE_CRYPTODEV_FF_CPU_AVX (1ULL << 4) 426 /**< Utilises CPU SIMD AVX instructions */ 427 #define RTE_CRYPTODEV_FF_CPU_AVX2 (1ULL << 5) 428 /**< Utilises CPU SIMD AVX2 instructions */ 429 #define RTE_CRYPTODEV_FF_CPU_AESNI (1ULL << 6) 430 /**< Utilises CPU AES-NI instructions */ 431 #define RTE_CRYPTODEV_FF_HW_ACCELERATED (1ULL << 7) 432 /**< Operations are off-loaded to an 433 * external hardware accelerator 434 */ 435 #define RTE_CRYPTODEV_FF_CPU_AVX512 (1ULL << 8) 436 /**< Utilises CPU SIMD AVX512 instructions */ 437 #define RTE_CRYPTODEV_FF_IN_PLACE_SGL (1ULL << 9) 438 /**< In-place Scatter-gather (SGL) buffers, with multiple segments, 439 * are supported 440 */ 441 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT (1ULL << 10) 442 /**< Out-of-place Scatter-gather (SGL) buffers are 443 * supported in input and output 444 */ 445 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT (1ULL << 11) 446 /**< Out-of-place Scatter-gather (SGL) buffers are supported 447 * in input, combined with linear buffers (LB), with a 448 * single segment in output 449 */ 450 #define RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT (1ULL << 12) 451 /**< Out-of-place Scatter-gather (SGL) buffers are supported 452 * in output, combined with linear buffers (LB) in input 453 */ 454 #define RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT (1ULL << 13) 455 /**< Out-of-place linear buffers (LB) are supported in input and output */ 456 #define RTE_CRYPTODEV_FF_CPU_NEON (1ULL << 14) 457 /**< Utilises CPU NEON instructions */ 458 #define RTE_CRYPTODEV_FF_CPU_ARM_CE (1ULL << 15) 459 /**< Utilises ARM CPU Cryptographic Extensions */ 460 #define RTE_CRYPTODEV_FF_SECURITY (1ULL << 16) 461 /**< Support Security Protocol Processing */ 462 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP (1ULL << 17) 463 /**< Support RSA Private Key OP with exponent */ 464 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT (1ULL << 18) 465 /**< Support RSA Private Key OP with CRT (quintuple) Keys */ 466 #define RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED (1ULL << 19) 467 /**< Support encrypted-digest operations where digest is appended to data */ 468 #define RTE_CRYPTODEV_FF_ASYM_SESSIONLESS (1ULL << 20) 469 /**< Support asymmetric session-less operations */ 470 #define RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO (1ULL << 21) 471 /**< Support symmetric cpu-crypto processing */ 472 #define RTE_CRYPTODEV_FF_SYM_SESSIONLESS (1ULL << 22) 473 /**< Support symmetric session-less operations */ 474 #define RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA (1ULL << 23) 475 /**< Support operations on data which is not byte aligned */ 476 #define RTE_CRYPTODEV_FF_SYM_RAW_DP (1ULL << 24) 477 /**< Support accelerator specific symmetric raw data-path APIs */ 478 #define RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS (1ULL << 25) 479 /**< Support operations on multiple data-units message */ 480 #define RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY (1ULL << 26) 481 /**< Support wrapped key in cipher xform */ 482 483 /** 484 * Get the name of a crypto device feature flag 485 * 486 * @param flag The mask describing the flag. 487 * 488 * @return 489 * The name of this flag, or NULL if it's not a valid feature flag. 490 */ 491 492 extern const char * 493 rte_cryptodev_get_feature_name(uint64_t flag); 494 495 /** Crypto device information */ 496 struct rte_cryptodev_info { 497 const char *driver_name; /**< Driver name. */ 498 uint8_t driver_id; /**< Driver identifier */ 499 struct rte_device *device; /**< Generic device information. */ 500 501 uint64_t feature_flags; 502 /**< Feature flags exposes HW/SW features for the given device */ 503 504 const struct rte_cryptodev_capabilities *capabilities; 505 /**< Array of devices supported capabilities */ 506 507 unsigned max_nb_queue_pairs; 508 /**< Maximum number of queues pairs supported by device. */ 509 510 uint16_t min_mbuf_headroom_req; 511 /**< Minimum mbuf headroom required by device */ 512 513 uint16_t min_mbuf_tailroom_req; 514 /**< Minimum mbuf tailroom required by device */ 515 516 struct { 517 unsigned max_nb_sessions; 518 /**< Maximum number of sessions supported by device. 519 * If 0, the device does not have any limitation in 520 * number of sessions that can be used. 521 */ 522 } sym; 523 }; 524 525 #define RTE_CRYPTODEV_DETACHED (0) 526 #define RTE_CRYPTODEV_ATTACHED (1) 527 528 /** Definitions of Crypto device event types */ 529 enum rte_cryptodev_event_type { 530 RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */ 531 RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */ 532 RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */ 533 }; 534 535 /** Crypto device queue pair configuration structure. */ 536 struct rte_cryptodev_qp_conf { 537 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */ 538 struct rte_mempool *mp_session; 539 /**< The mempool for creating session in sessionless mode */ 540 struct rte_mempool *mp_session_private; 541 /**< The mempool for creating sess private data in sessionless mode */ 542 }; 543 544 /** 545 * Function type used for processing crypto ops when enqueue/dequeue burst is 546 * called. 547 * 548 * The callback function is called on enqueue/dequeue burst immediately. 549 * 550 * @param dev_id The identifier of the device. 551 * @param qp_id The index of the queue pair on which ops are 552 * enqueued/dequeued. The value must be in the 553 * range [0, nb_queue_pairs - 1] previously 554 * supplied to *rte_cryptodev_configure*. 555 * @param ops The address of an array of *nb_ops* pointers 556 * to *rte_crypto_op* structures which contain 557 * the crypto operations to be processed. 558 * @param nb_ops The number of operations to process. 559 * @param user_param The arbitrary user parameter passed in by the 560 * application when the callback was originally 561 * registered. 562 * @return The number of ops to be enqueued to the 563 * crypto device. 564 */ 565 typedef uint16_t (*rte_cryptodev_callback_fn)(uint16_t dev_id, uint16_t qp_id, 566 struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param); 567 568 /** 569 * Typedef for application callback function to be registered by application 570 * software for notification of device events 571 * 572 * @param dev_id Crypto device identifier 573 * @param event Crypto device event to register for notification of. 574 * @param cb_arg User specified parameter to be passed as to passed to 575 * users callback function. 576 */ 577 typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id, 578 enum rte_cryptodev_event_type event, void *cb_arg); 579 580 581 /** Crypto Device statistics */ 582 struct rte_cryptodev_stats { 583 uint64_t enqueued_count; 584 /**< Count of all operations enqueued */ 585 uint64_t dequeued_count; 586 /**< Count of all operations dequeued */ 587 588 uint64_t enqueue_err_count; 589 /**< Total error count on operations enqueued */ 590 uint64_t dequeue_err_count; 591 /**< Total error count on operations dequeued */ 592 }; 593 594 #define RTE_CRYPTODEV_NAME_MAX_LEN (64) 595 /**< Max length of name of crypto PMD */ 596 597 /** 598 * Get the device identifier for the named crypto device. 599 * 600 * @param name device name to select the device structure. 601 * 602 * @return 603 * - Returns crypto device identifier on success. 604 * - Return -1 on failure to find named crypto device. 605 */ 606 extern int 607 rte_cryptodev_get_dev_id(const char *name); 608 609 /** 610 * Get the crypto device name given a device identifier. 611 * 612 * @param dev_id 613 * The identifier of the device 614 * 615 * @return 616 * - Returns crypto device name. 617 * - Returns NULL if crypto device is not present. 618 */ 619 extern const char * 620 rte_cryptodev_name_get(uint8_t dev_id); 621 622 /** 623 * Get the total number of crypto devices that have been successfully 624 * initialised. 625 * 626 * @return 627 * - The total number of usable crypto devices. 628 */ 629 extern uint8_t 630 rte_cryptodev_count(void); 631 632 /** 633 * Get number of crypto device defined type. 634 * 635 * @param driver_id driver identifier. 636 * 637 * @return 638 * Returns number of crypto device. 639 */ 640 extern uint8_t 641 rte_cryptodev_device_count_by_driver(uint8_t driver_id); 642 643 /** 644 * Get number and identifiers of attached crypto devices that 645 * use the same crypto driver. 646 * 647 * @param driver_name driver name. 648 * @param devices output devices identifiers. 649 * @param nb_devices maximal number of devices. 650 * 651 * @return 652 * Returns number of attached crypto device. 653 */ 654 uint8_t 655 rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices, 656 uint8_t nb_devices); 657 /* 658 * Return the NUMA socket to which a device is connected 659 * 660 * @param dev_id 661 * The identifier of the device 662 * @return 663 * The NUMA socket id to which the device is connected or 664 * a default of zero if the socket could not be determined. 665 * -1 if returned is the dev_id value is out of range. 666 */ 667 extern int 668 rte_cryptodev_socket_id(uint8_t dev_id); 669 670 /** Crypto device configuration structure */ 671 struct rte_cryptodev_config { 672 int socket_id; /**< Socket to allocate resources on */ 673 uint16_t nb_queue_pairs; 674 /**< Number of queue pairs to configure on device */ 675 uint64_t ff_disable; 676 /**< Feature flags to be disabled. Only the following features are 677 * allowed to be disabled, 678 * - RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO 679 * - RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO 680 * - RTE_CRYTPODEV_FF_SECURITY 681 */ 682 }; 683 684 /** 685 * Configure a device. 686 * 687 * This function must be invoked first before any other function in the 688 * API. This function can also be re-invoked when a device is in the 689 * stopped state. 690 * 691 * @param dev_id The identifier of the device to configure. 692 * @param config The crypto device configuration structure. 693 * 694 * @return 695 * - 0: Success, device configured. 696 * - <0: Error code returned by the driver configuration function. 697 */ 698 extern int 699 rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config); 700 701 /** 702 * Start an device. 703 * 704 * The device start step is the last one and consists of setting the configured 705 * offload features and in starting the transmit and the receive units of the 706 * device. 707 * On success, all basic functions exported by the API (link status, 708 * receive/transmit, and so on) can be invoked. 709 * 710 * @param dev_id 711 * The identifier of the device. 712 * @return 713 * - 0: Success, device started. 714 * - <0: Error code of the driver device start function. 715 */ 716 extern int 717 rte_cryptodev_start(uint8_t dev_id); 718 719 /** 720 * Stop an device. The device can be restarted with a call to 721 * rte_cryptodev_start() 722 * 723 * @param dev_id The identifier of the device. 724 */ 725 extern void 726 rte_cryptodev_stop(uint8_t dev_id); 727 728 /** 729 * Close an device. The device cannot be restarted! 730 * 731 * @param dev_id The identifier of the device. 732 * 733 * @return 734 * - 0 on successfully closing device 735 * - <0 on failure to close device 736 */ 737 extern int 738 rte_cryptodev_close(uint8_t dev_id); 739 740 /** 741 * Allocate and set up a receive queue pair for a device. 742 * 743 * 744 * @param dev_id The identifier of the device. 745 * @param queue_pair_id The index of the queue pairs to set up. The 746 * value must be in the range [0, nb_queue_pair 747 * - 1] previously supplied to 748 * rte_cryptodev_configure(). 749 * @param qp_conf The pointer to the configuration data to be 750 * used for the queue pair. 751 * @param socket_id The *socket_id* argument is the socket 752 * identifier in case of NUMA. The value can be 753 * *SOCKET_ID_ANY* if there is no NUMA constraint 754 * for the DMA memory allocated for the receive 755 * queue pair. 756 * 757 * @return 758 * - 0: Success, queue pair correctly set up. 759 * - <0: Queue pair configuration failed 760 */ 761 extern int 762 rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 763 const struct rte_cryptodev_qp_conf *qp_conf, int socket_id); 764 765 /** 766 * Get the status of queue pairs setup on a specific crypto device 767 * 768 * @param dev_id Crypto device identifier. 769 * @param queue_pair_id The index of the queue pairs to set up. The 770 * value must be in the range [0, nb_queue_pair 771 * - 1] previously supplied to 772 * rte_cryptodev_configure(). 773 * @return 774 * - 0: qp was not configured 775 * - 1: qp was configured 776 * - -EINVAL: device was not configured 777 */ 778 __rte_experimental 779 int 780 rte_cryptodev_get_qp_status(uint8_t dev_id, uint16_t queue_pair_id); 781 782 /** 783 * Get the number of queue pairs on a specific crypto device 784 * 785 * @param dev_id Crypto device identifier. 786 * @return 787 * - The number of configured queue pairs. 788 */ 789 extern uint16_t 790 rte_cryptodev_queue_pair_count(uint8_t dev_id); 791 792 793 /** 794 * Retrieve the general I/O statistics of a device. 795 * 796 * @param dev_id The identifier of the device. 797 * @param stats A pointer to a structure of type 798 * *rte_cryptodev_stats* to be filled with the 799 * values of device counters. 800 * @return 801 * - Zero if successful. 802 * - Non-zero otherwise. 803 */ 804 extern int 805 rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats); 806 807 /** 808 * Reset the general I/O statistics of a device. 809 * 810 * @param dev_id The identifier of the device. 811 */ 812 extern void 813 rte_cryptodev_stats_reset(uint8_t dev_id); 814 815 /** 816 * Retrieve the contextual information of a device. 817 * 818 * @param dev_id The identifier of the device. 819 * @param dev_info A pointer to a structure of type 820 * *rte_cryptodev_info* to be filled with the 821 * contextual information of the device. 822 * 823 * @note The capabilities field of dev_info is set to point to the first 824 * element of an array of struct rte_cryptodev_capabilities. The element after 825 * the last valid element has it's op field set to 826 * RTE_CRYPTO_OP_TYPE_UNDEFINED. 827 */ 828 extern void 829 rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info); 830 831 832 /** 833 * Register a callback function for specific device id. 834 * 835 * @param dev_id Device id. 836 * @param event Event interested. 837 * @param cb_fn User supplied callback function to be called. 838 * @param cb_arg Pointer to the parameters for the registered 839 * callback. 840 * 841 * @return 842 * - On success, zero. 843 * - On failure, a negative value. 844 */ 845 extern int 846 rte_cryptodev_callback_register(uint8_t dev_id, 847 enum rte_cryptodev_event_type event, 848 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 849 850 /** 851 * Unregister a callback function for specific device id. 852 * 853 * @param dev_id The device identifier. 854 * @param event Event interested. 855 * @param cb_fn User supplied callback function to be called. 856 * @param cb_arg Pointer to the parameters for the registered 857 * callback. 858 * 859 * @return 860 * - On success, zero. 861 * - On failure, a negative value. 862 */ 863 extern int 864 rte_cryptodev_callback_unregister(uint8_t dev_id, 865 enum rte_cryptodev_event_type event, 866 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 867 868 typedef uint16_t (*dequeue_pkt_burst_t)(void *qp, 869 struct rte_crypto_op **ops, uint16_t nb_ops); 870 /**< Dequeue processed packets from queue pair of a device. */ 871 872 typedef uint16_t (*enqueue_pkt_burst_t)(void *qp, 873 struct rte_crypto_op **ops, uint16_t nb_ops); 874 /**< Enqueue packets for processing on queue pair of a device. */ 875 876 877 878 879 struct rte_cryptodev_callback; 880 881 /** Structure to keep track of registered callbacks */ 882 TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback); 883 884 /** 885 * Structure used to hold information about the callbacks to be called for a 886 * queue pair on enqueue/dequeue. 887 */ 888 struct rte_cryptodev_cb { 889 struct rte_cryptodev_cb *next; 890 /**< Pointer to next callback */ 891 rte_cryptodev_callback_fn fn; 892 /**< Pointer to callback function */ 893 void *arg; 894 /**< Pointer to argument */ 895 }; 896 897 /** 898 * @internal 899 * Structure used to hold information about the RCU for a queue pair. 900 */ 901 struct rte_cryptodev_cb_rcu { 902 struct rte_cryptodev_cb *next; 903 /**< Pointer to next callback */ 904 struct rte_rcu_qsbr *qsbr; 905 /**< RCU QSBR variable per queue pair */ 906 }; 907 908 /** The data structure associated with each crypto device. */ 909 struct rte_cryptodev { 910 dequeue_pkt_burst_t dequeue_burst; 911 /**< Pointer to PMD receive function. */ 912 enqueue_pkt_burst_t enqueue_burst; 913 /**< Pointer to PMD transmit function. */ 914 915 struct rte_cryptodev_data *data; 916 /**< Pointer to device data */ 917 struct rte_cryptodev_ops *dev_ops; 918 /**< Functions exported by PMD */ 919 uint64_t feature_flags; 920 /**< Feature flags exposes HW/SW features for the given device */ 921 struct rte_device *device; 922 /**< Backing device */ 923 924 uint8_t driver_id; 925 /**< Crypto driver identifier*/ 926 927 struct rte_cryptodev_cb_list link_intr_cbs; 928 /**< User application callback for interrupts if present */ 929 930 void *security_ctx; 931 /**< Context for security ops */ 932 933 __extension__ 934 uint8_t attached : 1; 935 /**< Flag indicating the device is attached */ 936 937 struct rte_cryptodev_cb_rcu *enq_cbs; 938 /**< User application callback for pre enqueue processing */ 939 940 struct rte_cryptodev_cb_rcu *deq_cbs; 941 /**< User application callback for post dequeue processing */ 942 } __rte_cache_aligned; 943 944 void * 945 rte_cryptodev_get_sec_ctx(uint8_t dev_id); 946 947 /** 948 * 949 * The data part, with no function pointers, associated with each device. 950 * 951 * This structure is safe to place in shared memory to be common among 952 * different processes in a multi-process configuration. 953 */ 954 struct rte_cryptodev_data { 955 uint8_t dev_id; 956 /**< Device ID for this instance */ 957 uint8_t socket_id; 958 /**< Socket ID where memory is allocated */ 959 char name[RTE_CRYPTODEV_NAME_MAX_LEN]; 960 /**< Unique identifier name */ 961 962 __extension__ 963 uint8_t dev_started : 1; 964 /**< Device state: STARTED(1)/STOPPED(0) */ 965 966 struct rte_mempool *session_pool; 967 /**< Session memory pool */ 968 void **queue_pairs; 969 /**< Array of pointers to queue pairs. */ 970 uint16_t nb_queue_pairs; 971 /**< Number of device queue pairs. */ 972 973 void *dev_private; 974 /**< PMD-specific private data */ 975 } __rte_cache_aligned; 976 977 extern struct rte_cryptodev *rte_cryptodevs; 978 /** 979 * 980 * Dequeue a burst of processed crypto operations from a queue on the crypto 981 * device. The dequeued operation are stored in *rte_crypto_op* structures 982 * whose pointers are supplied in the *ops* array. 983 * 984 * The rte_cryptodev_dequeue_burst() function returns the number of ops 985 * actually dequeued, which is the number of *rte_crypto_op* data structures 986 * effectively supplied into the *ops* array. 987 * 988 * A return value equal to *nb_ops* indicates that the queue contained 989 * at least *nb_ops* operations, and this is likely to signify that other 990 * processed operations remain in the devices output queue. Applications 991 * implementing a "retrieve as many processed operations as possible" policy 992 * can check this specific case and keep invoking the 993 * rte_cryptodev_dequeue_burst() function until a value less than 994 * *nb_ops* is returned. 995 * 996 * The rte_cryptodev_dequeue_burst() function does not provide any error 997 * notification to avoid the corresponding overhead. 998 * 999 * @param dev_id The symmetric crypto device identifier 1000 * @param qp_id The index of the queue pair from which to 1001 * retrieve processed packets. The value must be 1002 * in the range [0, nb_queue_pair - 1] previously 1003 * supplied to rte_cryptodev_configure(). 1004 * @param ops The address of an array of pointers to 1005 * *rte_crypto_op* structures that must be 1006 * large enough to store *nb_ops* pointers in it. 1007 * @param nb_ops The maximum number of operations to dequeue. 1008 * 1009 * @return 1010 * - The number of operations actually dequeued, which is the number 1011 * of pointers to *rte_crypto_op* structures effectively supplied to the 1012 * *ops* array. 1013 */ 1014 static inline uint16_t 1015 rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, 1016 struct rte_crypto_op **ops, uint16_t nb_ops) 1017 { 1018 struct rte_cryptodev *dev = &rte_cryptodevs[dev_id]; 1019 1020 rte_cryptodev_trace_dequeue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1021 nb_ops = (*dev->dequeue_burst) 1022 (dev->data->queue_pairs[qp_id], ops, nb_ops); 1023 #ifdef RTE_CRYPTO_CALLBACKS 1024 if (unlikely(dev->deq_cbs != NULL)) { 1025 struct rte_cryptodev_cb_rcu *list; 1026 struct rte_cryptodev_cb *cb; 1027 1028 /* __ATOMIC_RELEASE memory order was used when the 1029 * call back was inserted into the list. 1030 * Since there is a clear dependency between loading 1031 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1032 * not required. 1033 */ 1034 list = &dev->deq_cbs[qp_id]; 1035 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1036 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1037 1038 while (cb != NULL) { 1039 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1040 cb->arg); 1041 cb = cb->next; 1042 }; 1043 1044 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1045 } 1046 #endif 1047 return nb_ops; 1048 } 1049 1050 /** 1051 * Enqueue a burst of operations for processing on a crypto device. 1052 * 1053 * The rte_cryptodev_enqueue_burst() function is invoked to place 1054 * crypto operations on the queue *qp_id* of the device designated by 1055 * its *dev_id*. 1056 * 1057 * The *nb_ops* parameter is the number of operations to process which are 1058 * supplied in the *ops* array of *rte_crypto_op* structures. 1059 * 1060 * The rte_cryptodev_enqueue_burst() function returns the number of 1061 * operations it actually enqueued for processing. A return value equal to 1062 * *nb_ops* means that all packets have been enqueued. 1063 * 1064 * @param dev_id The identifier of the device. 1065 * @param qp_id The index of the queue pair which packets are 1066 * to be enqueued for processing. The value 1067 * must be in the range [0, nb_queue_pairs - 1] 1068 * previously supplied to 1069 * *rte_cryptodev_configure*. 1070 * @param ops The address of an array of *nb_ops* pointers 1071 * to *rte_crypto_op* structures which contain 1072 * the crypto operations to be processed. 1073 * @param nb_ops The number of operations to process. 1074 * 1075 * @return 1076 * The number of operations actually enqueued on the crypto device. The return 1077 * value can be less than the value of the *nb_ops* parameter when the 1078 * crypto devices queue is full or if invalid parameters are specified in 1079 * a *rte_crypto_op*. 1080 */ 1081 static inline uint16_t 1082 rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, 1083 struct rte_crypto_op **ops, uint16_t nb_ops) 1084 { 1085 struct rte_cryptodev *dev = &rte_cryptodevs[dev_id]; 1086 1087 #ifdef RTE_CRYPTO_CALLBACKS 1088 if (unlikely(dev->enq_cbs != NULL)) { 1089 struct rte_cryptodev_cb_rcu *list; 1090 struct rte_cryptodev_cb *cb; 1091 1092 /* __ATOMIC_RELEASE memory order was used when the 1093 * call back was inserted into the list. 1094 * Since there is a clear dependency between loading 1095 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1096 * not required. 1097 */ 1098 list = &dev->enq_cbs[qp_id]; 1099 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1100 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1101 1102 while (cb != NULL) { 1103 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1104 cb->arg); 1105 cb = cb->next; 1106 }; 1107 1108 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1109 } 1110 #endif 1111 1112 rte_cryptodev_trace_enqueue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1113 return (*dev->enqueue_burst)( 1114 dev->data->queue_pairs[qp_id], ops, nb_ops); 1115 } 1116 1117 1118 /** Cryptodev symmetric crypto session 1119 * Each session is derived from a fixed xform chain. Therefore each session 1120 * has a fixed algo, key, op-type, digest_len etc. 1121 */ 1122 struct rte_cryptodev_sym_session { 1123 uint64_t opaque_data; 1124 /**< Can be used for external metadata */ 1125 uint16_t nb_drivers; 1126 /**< number of elements in sess_data array */ 1127 uint16_t user_data_sz; 1128 /**< session user data will be placed after sess_data */ 1129 __extension__ struct { 1130 void *data; 1131 uint16_t refcnt; 1132 } sess_data[0]; 1133 /**< Driver specific session material, variable size */ 1134 }; 1135 1136 /** Cryptodev asymmetric crypto session */ 1137 struct rte_cryptodev_asym_session { 1138 __extension__ void *sess_private_data[0]; 1139 /**< Private asymmetric session material */ 1140 }; 1141 1142 /** 1143 * Create a symmetric session mempool. 1144 * 1145 * @param name 1146 * The unique mempool name. 1147 * @param nb_elts 1148 * The number of elements in the mempool. 1149 * @param elt_size 1150 * The size of the element. This value will be ignored if it is smaller than 1151 * the minimum session header size required for the system. For the user who 1152 * want to use the same mempool for sym session and session private data it 1153 * can be the maximum value of all existing devices' private data and session 1154 * header sizes. 1155 * @param cache_size 1156 * The number of per-lcore cache elements 1157 * @param priv_size 1158 * The private data size of each session. 1159 * @param socket_id 1160 * The *socket_id* argument is the socket identifier in the case of 1161 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 1162 * constraint for the reserved zone. 1163 * 1164 * @return 1165 * - On success return size of the session 1166 * - On failure returns 0 1167 */ 1168 __rte_experimental 1169 struct rte_mempool * 1170 rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, 1171 uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, 1172 int socket_id); 1173 1174 /** 1175 * Create symmetric crypto session header (generic with no private data) 1176 * 1177 * @param mempool Symmetric session mempool to allocate session 1178 * objects from 1179 * @return 1180 * - On success return pointer to sym-session 1181 * - On failure returns NULL 1182 */ 1183 struct rte_cryptodev_sym_session * 1184 rte_cryptodev_sym_session_create(struct rte_mempool *mempool); 1185 1186 /** 1187 * Create asymmetric crypto session header (generic with no private data) 1188 * 1189 * @param mempool mempool to allocate asymmetric session 1190 * objects from 1191 * @return 1192 * - On success return pointer to asym-session 1193 * - On failure returns NULL 1194 */ 1195 __rte_experimental 1196 struct rte_cryptodev_asym_session * 1197 rte_cryptodev_asym_session_create(struct rte_mempool *mempool); 1198 1199 /** 1200 * Frees symmetric crypto session header, after checking that all 1201 * the device private data has been freed, returning it 1202 * to its original mempool. 1203 * 1204 * @param sess Session header to be freed. 1205 * 1206 * @return 1207 * - 0 if successful. 1208 * - -EINVAL if session is NULL. 1209 * - -EBUSY if not all device private data has been freed. 1210 */ 1211 int 1212 rte_cryptodev_sym_session_free(struct rte_cryptodev_sym_session *sess); 1213 1214 /** 1215 * Frees asymmetric crypto session header, after checking that all 1216 * the device private data has been freed, returning it 1217 * to its original mempool. 1218 * 1219 * @param sess Session header to be freed. 1220 * 1221 * @return 1222 * - 0 if successful. 1223 * - -EINVAL if session is NULL. 1224 * - -EBUSY if not all device private data has been freed. 1225 */ 1226 __rte_experimental 1227 int 1228 rte_cryptodev_asym_session_free(struct rte_cryptodev_asym_session *sess); 1229 1230 /** 1231 * Fill out private data for the device id, based on its device type. 1232 * 1233 * @param dev_id ID of device that we want the session to be used on 1234 * @param sess Session where the private data will be attached to 1235 * @param xforms Symmetric crypto transform operations to apply on flow 1236 * processed with this session 1237 * @param mempool Mempool where the private data is allocated. 1238 * 1239 * @return 1240 * - On success, zero. 1241 * - -EINVAL if input parameters are invalid. 1242 * - -ENOTSUP if crypto device does not support the crypto transform or 1243 * does not support symmetric operations. 1244 * - -ENOMEM if the private session could not be allocated. 1245 */ 1246 int 1247 rte_cryptodev_sym_session_init(uint8_t dev_id, 1248 struct rte_cryptodev_sym_session *sess, 1249 struct rte_crypto_sym_xform *xforms, 1250 struct rte_mempool *mempool); 1251 1252 /** 1253 * Initialize asymmetric session on a device with specific asymmetric xform 1254 * 1255 * @param dev_id ID of device that we want the session to be used on 1256 * @param sess Session to be set up on a device 1257 * @param xforms Asymmetric crypto transform operations to apply on flow 1258 * processed with this session 1259 * @param mempool Mempool to be used for internal allocation. 1260 * 1261 * @return 1262 * - On success, zero. 1263 * - -EINVAL if input parameters are invalid. 1264 * - -ENOTSUP if crypto device does not support the crypto transform. 1265 * - -ENOMEM if the private session could not be allocated. 1266 */ 1267 __rte_experimental 1268 int 1269 rte_cryptodev_asym_session_init(uint8_t dev_id, 1270 struct rte_cryptodev_asym_session *sess, 1271 struct rte_crypto_asym_xform *xforms, 1272 struct rte_mempool *mempool); 1273 1274 /** 1275 * Frees private data for the device id, based on its device type, 1276 * returning it to its mempool. It is the application's responsibility 1277 * to ensure that private session data is not cleared while there are 1278 * still in-flight operations using it. 1279 * 1280 * @param dev_id ID of device that uses the session. 1281 * @param sess Session containing the reference to the private data 1282 * 1283 * @return 1284 * - 0 if successful. 1285 * - -EINVAL if device is invalid or session is NULL. 1286 * - -ENOTSUP if crypto device does not support symmetric operations. 1287 */ 1288 int 1289 rte_cryptodev_sym_session_clear(uint8_t dev_id, 1290 struct rte_cryptodev_sym_session *sess); 1291 1292 /** 1293 * Frees resources held by asymmetric session during rte_cryptodev_session_init 1294 * 1295 * @param dev_id ID of device that uses the asymmetric session. 1296 * @param sess Asymmetric session setup on device using 1297 * rte_cryptodev_session_init 1298 * @return 1299 * - 0 if successful. 1300 * - -EINVAL if device is invalid or session is NULL. 1301 */ 1302 __rte_experimental 1303 int 1304 rte_cryptodev_asym_session_clear(uint8_t dev_id, 1305 struct rte_cryptodev_asym_session *sess); 1306 1307 /** 1308 * Get the size of the header session, for all registered drivers excluding 1309 * the user data size. 1310 * 1311 * @return 1312 * Size of the symmetric header session. 1313 */ 1314 unsigned int 1315 rte_cryptodev_sym_get_header_session_size(void); 1316 1317 /** 1318 * Get the size of the header session from created session. 1319 * 1320 * @param sess 1321 * The sym cryptodev session pointer 1322 * 1323 * @return 1324 * - If sess is not NULL, return the size of the header session including 1325 * the private data size defined within sess. 1326 * - If sess is NULL, return 0. 1327 */ 1328 __rte_experimental 1329 unsigned int 1330 rte_cryptodev_sym_get_existing_header_session_size( 1331 struct rte_cryptodev_sym_session *sess); 1332 1333 /** 1334 * Get the size of the asymmetric session header, for all registered drivers. 1335 * 1336 * @return 1337 * Size of the asymmetric header session. 1338 */ 1339 __rte_experimental 1340 unsigned int 1341 rte_cryptodev_asym_get_header_session_size(void); 1342 1343 /** 1344 * Get the size of the private symmetric session data 1345 * for a device. 1346 * 1347 * @param dev_id The device identifier. 1348 * 1349 * @return 1350 * - Size of the private data, if successful 1351 * - 0 if device is invalid or does not have private 1352 * symmetric session 1353 */ 1354 unsigned int 1355 rte_cryptodev_sym_get_private_session_size(uint8_t dev_id); 1356 1357 /** 1358 * Get the size of the private data for asymmetric session 1359 * on device 1360 * 1361 * @param dev_id The device identifier. 1362 * 1363 * @return 1364 * - Size of the asymmetric private data, if successful 1365 * - 0 if device is invalid or does not have private session 1366 */ 1367 __rte_experimental 1368 unsigned int 1369 rte_cryptodev_asym_get_private_session_size(uint8_t dev_id); 1370 1371 /** 1372 * Provide driver identifier. 1373 * 1374 * @param name 1375 * The pointer to a driver name. 1376 * @return 1377 * The driver type identifier or -1 if no driver found 1378 */ 1379 int rte_cryptodev_driver_id_get(const char *name); 1380 1381 /** 1382 * Provide driver name. 1383 * 1384 * @param driver_id 1385 * The driver identifier. 1386 * @return 1387 * The driver name or null if no driver found 1388 */ 1389 const char *rte_cryptodev_driver_name_get(uint8_t driver_id); 1390 1391 /** 1392 * Store user data in a session. 1393 * 1394 * @param sess Session pointer allocated by 1395 * *rte_cryptodev_sym_session_create*. 1396 * @param data Pointer to the user data. 1397 * @param size Size of the user data. 1398 * 1399 * @return 1400 * - On success, zero. 1401 * - On failure, a negative value. 1402 */ 1403 __rte_experimental 1404 int 1405 rte_cryptodev_sym_session_set_user_data( 1406 struct rte_cryptodev_sym_session *sess, 1407 void *data, 1408 uint16_t size); 1409 1410 /** 1411 * Get user data stored in a session. 1412 * 1413 * @param sess Session pointer allocated by 1414 * *rte_cryptodev_sym_session_create*. 1415 * 1416 * @return 1417 * - On success return pointer to user data. 1418 * - On failure returns NULL. 1419 */ 1420 __rte_experimental 1421 void * 1422 rte_cryptodev_sym_session_get_user_data( 1423 struct rte_cryptodev_sym_session *sess); 1424 1425 /** 1426 * Perform actual crypto processing (encrypt/digest or auth/decrypt) 1427 * on user provided data. 1428 * 1429 * @param dev_id The device identifier. 1430 * @param sess Cryptodev session structure 1431 * @param ofs Start and stop offsets for auth and cipher operations 1432 * @param vec Vectorized operation descriptor 1433 * 1434 * @return 1435 * - Returns number of successfully processed packets. 1436 */ 1437 __rte_experimental 1438 uint32_t 1439 rte_cryptodev_sym_cpu_crypto_process(uint8_t dev_id, 1440 struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs ofs, 1441 struct rte_crypto_sym_vec *vec); 1442 1443 /** 1444 * Get the size of the raw data-path context buffer. 1445 * 1446 * @param dev_id The device identifier. 1447 * 1448 * @return 1449 * - If the device supports raw data-path APIs, return the context size. 1450 * - If the device does not support the APIs, return -1. 1451 */ 1452 __rte_experimental 1453 int 1454 rte_cryptodev_get_raw_dp_ctx_size(uint8_t dev_id); 1455 1456 /** 1457 * Union of different crypto session types, including session-less xform 1458 * pointer. 1459 */ 1460 union rte_cryptodev_session_ctx { 1461 struct rte_cryptodev_sym_session *crypto_sess; 1462 struct rte_crypto_sym_xform *xform; 1463 struct rte_security_session *sec_sess; 1464 }; 1465 1466 /** 1467 * Enqueue a vectorized operation descriptor into the device queue but the 1468 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1469 * is called. 1470 * 1471 * @param qp Driver specific queue pair data. 1472 * @param drv_ctx Driver specific context data. 1473 * @param vec Vectorized operation descriptor. 1474 * @param ofs Start and stop offsets for auth and cipher 1475 * operations. 1476 * @param user_data The array of user data for dequeue later. 1477 * @param enqueue_status Driver written value to specify the 1478 * enqueue status. Possible values: 1479 * - 1: The number of operations returned are 1480 * enqueued successfully. 1481 * - 0: The number of operations returned are 1482 * cached into the queue but are not processed 1483 * until rte_cryptodev_raw_enqueue_done() is 1484 * called. 1485 * - negative integer: Error occurred. 1486 * @return 1487 * - The number of operations in the descriptor successfully enqueued or 1488 * cached into the queue but not enqueued yet, depends on the 1489 * "enqueue_status" value. 1490 */ 1491 typedef uint32_t (*cryptodev_sym_raw_enqueue_burst_t)( 1492 void *qp, uint8_t *drv_ctx, struct rte_crypto_sym_vec *vec, 1493 union rte_crypto_sym_ofs ofs, void *user_data[], int *enqueue_status); 1494 1495 /** 1496 * Enqueue single raw data vector into the device queue but the driver may or 1497 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1498 * 1499 * @param qp Driver specific queue pair data. 1500 * @param drv_ctx Driver specific context data. 1501 * @param data_vec The buffer data vector. 1502 * @param n_data_vecs Number of buffer data vectors. 1503 * @param ofs Start and stop offsets for auth and cipher 1504 * operations. 1505 * @param iv IV virtual and IOVA addresses 1506 * @param digest digest virtual and IOVA addresses 1507 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1508 * depends on the algorithm used. 1509 * @param user_data The user data. 1510 * @return 1511 * - 1: The data vector is enqueued successfully. 1512 * - 0: The data vector is cached into the queue but is not processed 1513 * until rte_cryptodev_raw_enqueue_done() is called. 1514 * - negative integer: failure. 1515 */ 1516 typedef int (*cryptodev_sym_raw_enqueue_t)( 1517 void *qp, uint8_t *drv_ctx, struct rte_crypto_vec *data_vec, 1518 uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs, 1519 struct rte_crypto_va_iova_ptr *iv, 1520 struct rte_crypto_va_iova_ptr *digest, 1521 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1522 void *user_data); 1523 1524 /** 1525 * Inform the cryptodev queue pair to start processing or finish dequeuing all 1526 * enqueued/dequeued operations. 1527 * 1528 * @param qp Driver specific queue pair data. 1529 * @param drv_ctx Driver specific context data. 1530 * @param n The total number of processed operations. 1531 * @return 1532 * - On success return 0. 1533 * - On failure return negative integer. 1534 */ 1535 typedef int (*cryptodev_sym_raw_operation_done_t)(void *qp, uint8_t *drv_ctx, 1536 uint32_t n); 1537 1538 /** 1539 * Typedef that the user provided for the driver to get the dequeue count. 1540 * The function may return a fixed number or the number parsed from the user 1541 * data stored in the first processed operation. 1542 * 1543 * @param user_data Dequeued user data. 1544 * @return 1545 * - The number of operations to be dequeued. 1546 **/ 1547 typedef uint32_t (*rte_cryptodev_raw_get_dequeue_count_t)(void *user_data); 1548 1549 /** 1550 * Typedef that the user provided to deal with post dequeue operation, such 1551 * as filling status. 1552 * 1553 * @param user_data Dequeued user data. 1554 * @param index Index number of the processed descriptor. 1555 * @param is_op_success Operation status provided by the driver. 1556 **/ 1557 typedef void (*rte_cryptodev_raw_post_dequeue_t)(void *user_data, 1558 uint32_t index, uint8_t is_op_success); 1559 1560 /** 1561 * Dequeue a burst of symmetric crypto processing. 1562 * 1563 * @param qp Driver specific queue pair data. 1564 * @param drv_ctx Driver specific context data. 1565 * @param get_dequeue_count User provided callback function to 1566 * obtain dequeue operation count. 1567 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1568 * value is used to pass the maximum 1569 * number of operations to be dequeued. 1570 * @param post_dequeue User provided callback function to 1571 * post-process a dequeued operation. 1572 * @param out_user_data User data pointer array to be retrieve 1573 * from device queue. In case of 1574 * *is_user_data_array* is set there 1575 * should be enough room to store all 1576 * user data. 1577 * @param is_user_data_array Set 1 if every dequeued user data will 1578 * be written into out_user_data array. 1579 * Set 0 if only the first user data will 1580 * be written into out_user_data array. 1581 * @param n_success Driver written value to specific the 1582 * total successful operations count. 1583 * @param dequeue_status Driver written value to specify the 1584 * dequeue status. Possible values: 1585 * - 1: Successfully dequeued the number 1586 * of operations returned. The user 1587 * data previously set during enqueue 1588 * is stored in the "out_user_data". 1589 * - 0: The number of operations returned 1590 * are completed and the user data is 1591 * stored in the "out_user_data", but 1592 * they are not freed from the queue 1593 * until 1594 * rte_cryptodev_raw_dequeue_done() 1595 * is called. 1596 * - negative integer: Error occurred. 1597 * @return 1598 * - The number of operations dequeued or completed but not freed from the 1599 * queue, depends on "dequeue_status" value. 1600 */ 1601 typedef uint32_t (*cryptodev_sym_raw_dequeue_burst_t)(void *qp, 1602 uint8_t *drv_ctx, 1603 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1604 uint32_t max_nb_to_dequeue, 1605 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1606 void **out_user_data, uint8_t is_user_data_array, 1607 uint32_t *n_success, int *dequeue_status); 1608 1609 /** 1610 * Dequeue a symmetric crypto processing. 1611 * 1612 * @param qp Driver specific queue pair data. 1613 * @param drv_ctx Driver specific context data. 1614 * @param dequeue_status Driver written value to specify the 1615 * dequeue status. Possible values: 1616 * - 1: Successfully dequeued a operation. 1617 * The user data is returned. 1618 * - 0: The first operation in the queue 1619 * is completed and the user data 1620 * previously set during enqueue is 1621 * returned, but it is not freed from 1622 * the queue until 1623 * rte_cryptodev_raw_dequeue_done() is 1624 * called. 1625 * - negative integer: Error occurred. 1626 * @param op_status Driver written value to specify 1627 * operation status. 1628 * @return 1629 * - The user data pointer retrieved from device queue or NULL if no 1630 * operation is ready for dequeue. 1631 */ 1632 typedef void * (*cryptodev_sym_raw_dequeue_t)( 1633 void *qp, uint8_t *drv_ctx, int *dequeue_status, 1634 enum rte_crypto_op_status *op_status); 1635 1636 /** 1637 * Context data for raw data-path API crypto process. The buffer of this 1638 * structure is to be allocated by the user application with the size equal 1639 * or bigger than rte_cryptodev_get_raw_dp_ctx_size() returned value. 1640 */ 1641 struct rte_crypto_raw_dp_ctx { 1642 void *qp_data; 1643 1644 cryptodev_sym_raw_enqueue_t enqueue; 1645 cryptodev_sym_raw_enqueue_burst_t enqueue_burst; 1646 cryptodev_sym_raw_operation_done_t enqueue_done; 1647 cryptodev_sym_raw_dequeue_t dequeue; 1648 cryptodev_sym_raw_dequeue_burst_t dequeue_burst; 1649 cryptodev_sym_raw_operation_done_t dequeue_done; 1650 1651 /* Driver specific context data */ 1652 __extension__ uint8_t drv_ctx_data[]; 1653 }; 1654 1655 /** 1656 * Configure raw data-path context data. 1657 * 1658 * NOTE: 1659 * After the context data is configured, the user should call 1660 * rte_cryptodev_raw_attach_session() before using it in 1661 * rte_cryptodev_raw_enqueue/dequeue function call. 1662 * 1663 * @param dev_id The device identifier. 1664 * @param qp_id The index of the queue pair from which to 1665 * retrieve processed packets. The value must be 1666 * in the range [0, nb_queue_pair - 1] previously 1667 * supplied to rte_cryptodev_configure(). 1668 * @param ctx The raw data-path context data. 1669 * @param sess_type session type. 1670 * @param session_ctx Session context data. 1671 * @param is_update Set 0 if it is to initialize the ctx. 1672 * Set 1 if ctx is initialized and only to update 1673 * session context data. 1674 * @return 1675 * - On success return 0. 1676 * - On failure return negative integer. 1677 */ 1678 __rte_experimental 1679 int 1680 rte_cryptodev_configure_raw_dp_ctx(uint8_t dev_id, uint16_t qp_id, 1681 struct rte_crypto_raw_dp_ctx *ctx, 1682 enum rte_crypto_op_sess_type sess_type, 1683 union rte_cryptodev_session_ctx session_ctx, 1684 uint8_t is_update); 1685 1686 /** 1687 * Enqueue a vectorized operation descriptor into the device queue but the 1688 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1689 * is called. 1690 * 1691 * @param ctx The initialized raw data-path context data. 1692 * @param vec Vectorized operation descriptor. 1693 * @param ofs Start and stop offsets for auth and cipher 1694 * operations. 1695 * @param user_data The array of user data for dequeue later. 1696 * @param enqueue_status Driver written value to specify the 1697 * enqueue status. Possible values: 1698 * - 1: The number of operations returned are 1699 * enqueued successfully. 1700 * - 0: The number of operations returned are 1701 * cached into the queue but are not processed 1702 * until rte_cryptodev_raw_enqueue_done() is 1703 * called. 1704 * - negative integer: Error occurred. 1705 * @return 1706 * - The number of operations in the descriptor successfully enqueued or 1707 * cached into the queue but not enqueued yet, depends on the 1708 * "enqueue_status" value. 1709 */ 1710 __rte_experimental 1711 uint32_t 1712 rte_cryptodev_raw_enqueue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1713 struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs, 1714 void **user_data, int *enqueue_status); 1715 1716 /** 1717 * Enqueue single raw data vector into the device queue but the driver may or 1718 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1719 * 1720 * @param ctx The initialized raw data-path context data. 1721 * @param data_vec The buffer data vector. 1722 * @param n_data_vecs Number of buffer data vectors. 1723 * @param ofs Start and stop offsets for auth and cipher 1724 * operations. 1725 * @param iv IV virtual and IOVA addresses 1726 * @param digest digest virtual and IOVA addresses 1727 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1728 * depends on the algorithm used. 1729 * @param user_data The user data. 1730 * @return 1731 * - 1: The data vector is enqueued successfully. 1732 * - 0: The data vector is cached into the queue but is not processed 1733 * until rte_cryptodev_raw_enqueue_done() is called. 1734 * - negative integer: failure. 1735 */ 1736 __rte_experimental 1737 static __rte_always_inline int 1738 rte_cryptodev_raw_enqueue(struct rte_crypto_raw_dp_ctx *ctx, 1739 struct rte_crypto_vec *data_vec, uint16_t n_data_vecs, 1740 union rte_crypto_sym_ofs ofs, 1741 struct rte_crypto_va_iova_ptr *iv, 1742 struct rte_crypto_va_iova_ptr *digest, 1743 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1744 void *user_data) 1745 { 1746 return (*ctx->enqueue)(ctx->qp_data, ctx->drv_ctx_data, data_vec, 1747 n_data_vecs, ofs, iv, digest, aad_or_auth_iv, user_data); 1748 } 1749 1750 /** 1751 * Start processing all enqueued operations from last 1752 * rte_cryptodev_configure_raw_dp_ctx() call. 1753 * 1754 * @param ctx The initialized raw data-path context data. 1755 * @param n The number of operations cached. 1756 * @return 1757 * - On success return 0. 1758 * - On failure return negative integer. 1759 */ 1760 __rte_experimental 1761 int 1762 rte_cryptodev_raw_enqueue_done(struct rte_crypto_raw_dp_ctx *ctx, 1763 uint32_t n); 1764 1765 /** 1766 * Dequeue a burst of symmetric crypto processing. 1767 * 1768 * @param ctx The initialized raw data-path context 1769 * data. 1770 * @param get_dequeue_count User provided callback function to 1771 * obtain dequeue operation count. 1772 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1773 * value is used to pass the maximum 1774 * number of operations to be dequeued. 1775 * @param post_dequeue User provided callback function to 1776 * post-process a dequeued operation. 1777 * @param out_user_data User data pointer array to be retrieve 1778 * from device queue. In case of 1779 * *is_user_data_array* is set there 1780 * should be enough room to store all 1781 * user data. 1782 * @param is_user_data_array Set 1 if every dequeued user data will 1783 * be written into out_user_data array. 1784 * Set 0 if only the first user data will 1785 * be written into out_user_data array. 1786 * @param n_success Driver written value to specific the 1787 * total successful operations count. 1788 * @param dequeue_status Driver written value to specify the 1789 * dequeue status. Possible values: 1790 * - 1: Successfully dequeued the number 1791 * of operations returned. The user 1792 * data previously set during enqueue 1793 * is stored in the "out_user_data". 1794 * - 0: The number of operations returned 1795 * are completed and the user data is 1796 * stored in the "out_user_data", but 1797 * they are not freed from the queue 1798 * until 1799 * rte_cryptodev_raw_dequeue_done() 1800 * is called. 1801 * - negative integer: Error occurred. 1802 * @return 1803 * - The number of operations dequeued or completed but not freed from the 1804 * queue, depends on "dequeue_status" value. 1805 */ 1806 __rte_experimental 1807 uint32_t 1808 rte_cryptodev_raw_dequeue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1809 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1810 uint32_t max_nb_to_dequeue, 1811 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1812 void **out_user_data, uint8_t is_user_data_array, 1813 uint32_t *n_success, int *dequeue_status); 1814 1815 /** 1816 * Dequeue a symmetric crypto processing. 1817 * 1818 * @param ctx The initialized raw data-path context 1819 * data. 1820 * @param dequeue_status Driver written value to specify the 1821 * dequeue status. Possible values: 1822 * - 1: Successfully dequeued a operation. 1823 * The user data is returned. 1824 * - 0: The first operation in the queue 1825 * is completed and the user data 1826 * previously set during enqueue is 1827 * returned, but it is not freed from 1828 * the queue until 1829 * rte_cryptodev_raw_dequeue_done() is 1830 * called. 1831 * - negative integer: Error occurred. 1832 * @param op_status Driver written value to specify 1833 * operation status. 1834 * @return 1835 * - The user data pointer retrieved from device queue or NULL if no 1836 * operation is ready for dequeue. 1837 */ 1838 __rte_experimental 1839 static __rte_always_inline void * 1840 rte_cryptodev_raw_dequeue(struct rte_crypto_raw_dp_ctx *ctx, 1841 int *dequeue_status, enum rte_crypto_op_status *op_status) 1842 { 1843 return (*ctx->dequeue)(ctx->qp_data, ctx->drv_ctx_data, dequeue_status, 1844 op_status); 1845 } 1846 1847 /** 1848 * Inform the queue pair dequeue operations is finished. 1849 * 1850 * @param ctx The initialized raw data-path context data. 1851 * @param n The number of operations. 1852 * @return 1853 * - On success return 0. 1854 * - On failure return negative integer. 1855 */ 1856 __rte_experimental 1857 int 1858 rte_cryptodev_raw_dequeue_done(struct rte_crypto_raw_dp_ctx *ctx, 1859 uint32_t n); 1860 1861 /** 1862 * Add a user callback for a given crypto device and queue pair which will be 1863 * called on crypto ops enqueue. 1864 * 1865 * This API configures a function to be called for each burst of crypto ops 1866 * received on a given crypto device queue pair. The return value is a pointer 1867 * that can be used later to remove the callback using 1868 * rte_cryptodev_remove_enq_callback(). 1869 * 1870 * Callbacks registered by application would not survive 1871 * rte_cryptodev_configure() as it reinitializes the callback list. 1872 * It is user responsibility to remove all installed callbacks before 1873 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1874 * Application is expected to call add API after rte_cryptodev_configure(). 1875 * 1876 * Multiple functions can be registered per queue pair & they are called 1877 * in the order they were added. The API does not restrict on maximum number 1878 * of callbacks. 1879 * 1880 * @param dev_id The identifier of the device. 1881 * @param qp_id The index of the queue pair on which ops are 1882 * to be enqueued for processing. The value 1883 * must be in the range [0, nb_queue_pairs - 1] 1884 * previously supplied to 1885 * *rte_cryptodev_configure*. 1886 * @param cb_fn The callback function 1887 * @param cb_arg A generic pointer parameter which will be passed 1888 * to each invocation of the callback function on 1889 * this crypto device and queue pair. 1890 * 1891 * @return 1892 * - NULL on error & rte_errno will contain the error code. 1893 * - On success, a pointer value which can later be used to remove the 1894 * callback. 1895 */ 1896 1897 __rte_experimental 1898 struct rte_cryptodev_cb * 1899 rte_cryptodev_add_enq_callback(uint8_t dev_id, 1900 uint16_t qp_id, 1901 rte_cryptodev_callback_fn cb_fn, 1902 void *cb_arg); 1903 1904 /** 1905 * Remove a user callback function for given crypto device and queue pair. 1906 * 1907 * This function is used to remove enqueue callbacks that were added to a 1908 * crypto device queue pair using rte_cryptodev_add_enq_callback(). 1909 * 1910 * 1911 * 1912 * @param dev_id The identifier of the device. 1913 * @param qp_id The index of the queue pair on which ops are 1914 * to be enqueued. The value must be in the 1915 * range [0, nb_queue_pairs - 1] previously 1916 * supplied to *rte_cryptodev_configure*. 1917 * @param cb Pointer to user supplied callback created via 1918 * rte_cryptodev_add_enq_callback(). 1919 * 1920 * @return 1921 * - 0: Success. Callback was removed. 1922 * - <0: The dev_id or the qp_id is out of range, or the callback 1923 * is NULL or not found for the crypto device queue pair. 1924 */ 1925 1926 __rte_experimental 1927 int rte_cryptodev_remove_enq_callback(uint8_t dev_id, 1928 uint16_t qp_id, 1929 struct rte_cryptodev_cb *cb); 1930 1931 /** 1932 * Add a user callback for a given crypto device and queue pair which will be 1933 * called on crypto ops dequeue. 1934 * 1935 * This API configures a function to be called for each burst of crypto ops 1936 * received on a given crypto device queue pair. The return value is a pointer 1937 * that can be used later to remove the callback using 1938 * rte_cryptodev_remove_deq_callback(). 1939 * 1940 * Callbacks registered by application would not survive 1941 * rte_cryptodev_configure() as it reinitializes the callback list. 1942 * It is user responsibility to remove all installed callbacks before 1943 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1944 * Application is expected to call add API after rte_cryptodev_configure(). 1945 * 1946 * Multiple functions can be registered per queue pair & they are called 1947 * in the order they were added. The API does not restrict on maximum number 1948 * of callbacks. 1949 * 1950 * @param dev_id The identifier of the device. 1951 * @param qp_id The index of the queue pair on which ops are 1952 * to be dequeued. The value must be in the 1953 * range [0, nb_queue_pairs - 1] previously 1954 * supplied to *rte_cryptodev_configure*. 1955 * @param cb_fn The callback function 1956 * @param cb_arg A generic pointer parameter which will be passed 1957 * to each invocation of the callback function on 1958 * this crypto device and queue pair. 1959 * 1960 * @return 1961 * - NULL on error & rte_errno will contain the error code. 1962 * - On success, a pointer value which can later be used to remove the 1963 * callback. 1964 */ 1965 1966 __rte_experimental 1967 struct rte_cryptodev_cb * 1968 rte_cryptodev_add_deq_callback(uint8_t dev_id, 1969 uint16_t qp_id, 1970 rte_cryptodev_callback_fn cb_fn, 1971 void *cb_arg); 1972 1973 /** 1974 * Remove a user callback function for given crypto device and queue pair. 1975 * 1976 * This function is used to remove dequeue callbacks that were added to a 1977 * crypto device queue pair using rte_cryptodev_add_deq_callback(). 1978 * 1979 * 1980 * 1981 * @param dev_id The identifier of the device. 1982 * @param qp_id The index of the queue pair on which ops are 1983 * to be dequeued. The value must be in the 1984 * range [0, nb_queue_pairs - 1] previously 1985 * supplied to *rte_cryptodev_configure*. 1986 * @param cb Pointer to user supplied callback created via 1987 * rte_cryptodev_add_deq_callback(). 1988 * 1989 * @return 1990 * - 0: Success. Callback was removed. 1991 * - <0: The dev_id or the qp_id is out of range, or the callback 1992 * is NULL or not found for the crypto device queue pair. 1993 */ 1994 __rte_experimental 1995 int rte_cryptodev_remove_deq_callback(uint8_t dev_id, 1996 uint16_t qp_id, 1997 struct rte_cryptodev_cb *cb); 1998 1999 #ifdef __cplusplus 2000 } 2001 #endif 2002 2003 #endif /* _RTE_CRYPTODEV_H_ */ 2004