1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2020 Intel Corporation. 3 */ 4 5 #ifndef _RTE_CRYPTODEV_H_ 6 #define _RTE_CRYPTODEV_H_ 7 8 /** 9 * @file rte_cryptodev.h 10 * 11 * RTE Cryptographic Device APIs 12 * 13 * Defines RTE Crypto Device APIs for the provisioning of cipher and 14 * authentication operations. 15 */ 16 17 #ifdef __cplusplus 18 extern "C" { 19 #endif 20 21 #include <rte_compat.h> 22 #include "rte_kvargs.h" 23 #include "rte_crypto.h" 24 #include <rte_common.h> 25 #include <rte_rcu_qsbr.h> 26 27 #include "rte_cryptodev_trace_fp.h" 28 29 extern const char **rte_cyptodev_names; 30 31 /* Logging Macros */ 32 33 #define CDEV_LOG_ERR(...) \ 34 RTE_LOG(ERR, CRYPTODEV, \ 35 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 36 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 37 38 #define CDEV_LOG_INFO(...) \ 39 RTE_LOG(INFO, CRYPTODEV, \ 40 RTE_FMT(RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 41 RTE_FMT_TAIL(__VA_ARGS__,))) 42 43 #define CDEV_LOG_DEBUG(...) \ 44 RTE_LOG(DEBUG, CRYPTODEV, \ 45 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 46 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 47 48 #define CDEV_PMD_TRACE(...) \ 49 RTE_LOG(DEBUG, CRYPTODEV, \ 50 RTE_FMT("[%s] %s: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 51 dev, __func__, RTE_FMT_TAIL(__VA_ARGS__,))) 52 53 /** 54 * A macro that points to an offset from the start 55 * of the crypto operation structure (rte_crypto_op) 56 * 57 * The returned pointer is cast to type t. 58 * 59 * @param c 60 * The crypto operation. 61 * @param o 62 * The offset from the start of the crypto operation. 63 * @param t 64 * The type to cast the result into. 65 */ 66 #define rte_crypto_op_ctod_offset(c, t, o) \ 67 ((t)((char *)(c) + (o))) 68 69 /** 70 * A macro that returns the physical address that points 71 * to an offset from the start of the crypto operation 72 * (rte_crypto_op) 73 * 74 * @param c 75 * The crypto operation. 76 * @param o 77 * The offset from the start of the crypto operation 78 * to calculate address from. 79 */ 80 #define rte_crypto_op_ctophys_offset(c, o) \ 81 (rte_iova_t)((c)->phys_addr + (o)) 82 83 /** 84 * Crypto parameters range description 85 */ 86 struct rte_crypto_param_range { 87 uint16_t min; /**< minimum size */ 88 uint16_t max; /**< maximum size */ 89 uint16_t increment; 90 /**< if a range of sizes are supported, 91 * this parameter is used to indicate 92 * increments in byte size that are supported 93 * between the minimum and maximum 94 */ 95 }; 96 97 /** 98 * Data-unit supported lengths of cipher algorithms. 99 * A bit can represent any set of data-unit sizes 100 * (single size, multiple size, range, etc). 101 */ 102 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES RTE_BIT32(0) 103 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES RTE_BIT32(1) 104 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES RTE_BIT32(2) 105 106 /** 107 * Symmetric Crypto Capability 108 */ 109 struct rte_cryptodev_symmetric_capability { 110 enum rte_crypto_sym_xform_type xform_type; 111 /**< Transform type : Authentication / Cipher / AEAD */ 112 union { 113 struct { 114 enum rte_crypto_auth_algorithm algo; 115 /**< authentication algorithm */ 116 uint16_t block_size; 117 /**< algorithm block size */ 118 struct rte_crypto_param_range key_size; 119 /**< auth key size range */ 120 struct rte_crypto_param_range digest_size; 121 /**< digest size range */ 122 struct rte_crypto_param_range aad_size; 123 /**< Additional authentication data size range */ 124 struct rte_crypto_param_range iv_size; 125 /**< Initialisation vector data size range */ 126 } auth; 127 /**< Symmetric Authentication transform capabilities */ 128 struct { 129 enum rte_crypto_cipher_algorithm algo; 130 /**< cipher algorithm */ 131 uint16_t block_size; 132 /**< algorithm block size */ 133 struct rte_crypto_param_range key_size; 134 /**< cipher key size range */ 135 struct rte_crypto_param_range iv_size; 136 /**< Initialisation vector data size range */ 137 uint32_t dataunit_set; 138 /**< 139 * Supported data-unit lengths: 140 * RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_* bits 141 * or 0 for lengths defined in the algorithm standard. 142 */ 143 } cipher; 144 /**< Symmetric Cipher transform capabilities */ 145 struct { 146 enum rte_crypto_aead_algorithm algo; 147 /**< AEAD algorithm */ 148 uint16_t block_size; 149 /**< algorithm block size */ 150 struct rte_crypto_param_range key_size; 151 /**< AEAD key size range */ 152 struct rte_crypto_param_range digest_size; 153 /**< digest size range */ 154 struct rte_crypto_param_range aad_size; 155 /**< Additional authentication data size range */ 156 struct rte_crypto_param_range iv_size; 157 /**< Initialisation vector data size range */ 158 } aead; 159 }; 160 }; 161 162 /** 163 * Asymmetric Xform Crypto Capability 164 */ 165 struct rte_cryptodev_asymmetric_xform_capability { 166 enum rte_crypto_asym_xform_type xform_type; 167 /**< Transform type: RSA/MODEXP/DH/DSA/MODINV */ 168 169 uint32_t op_types; 170 /**< 171 * Bitmask for supported rte_crypto_asym_op_type or 172 * rte_crypto_asym_ke_type. Which enum is used is determined 173 * by the rte_crypto_asym_xform_type. For key exchange algorithms 174 * like Diffie-Hellman it is rte_crypto_asym_ke_type, for others 175 * it is rte_crypto_asym_op_type. 176 */ 177 178 __extension__ 179 union { 180 struct rte_crypto_param_range modlen; 181 /**< Range of modulus length supported by modulus based xform. 182 * Value 0 mean implementation default 183 */ 184 185 uint8_t internal_rng; 186 /**< Availability of random number generator for Elliptic curve based xform. 187 * Value 0 means unavailable, and application should pass the required 188 * random value. Otherwise, PMD would internally compute the random number. 189 */ 190 }; 191 192 uint64_t hash_algos; 193 /**< Bitmask of hash algorithms supported for op_type. */ 194 }; 195 196 /** 197 * Asymmetric Crypto Capability 198 */ 199 struct rte_cryptodev_asymmetric_capability { 200 struct rte_cryptodev_asymmetric_xform_capability xform_capa; 201 }; 202 203 204 /** Structure used to capture a capability of a crypto device */ 205 struct rte_cryptodev_capabilities { 206 enum rte_crypto_op_type op; 207 /**< Operation type */ 208 209 union { 210 struct rte_cryptodev_symmetric_capability sym; 211 /**< Symmetric operation capability parameters */ 212 struct rte_cryptodev_asymmetric_capability asym; 213 /**< Asymmetric operation capability parameters */ 214 }; 215 }; 216 217 /** Structure used to describe crypto algorithms */ 218 struct rte_cryptodev_sym_capability_idx { 219 enum rte_crypto_sym_xform_type type; 220 union { 221 enum rte_crypto_cipher_algorithm cipher; 222 enum rte_crypto_auth_algorithm auth; 223 enum rte_crypto_aead_algorithm aead; 224 } algo; 225 }; 226 227 /** 228 * Structure used to describe asymmetric crypto xforms 229 * Each xform maps to one asym algorithm. 230 */ 231 struct rte_cryptodev_asym_capability_idx { 232 enum rte_crypto_asym_xform_type type; 233 /**< Asymmetric xform (algo) type */ 234 }; 235 236 /** 237 * Provide capabilities available for defined device and algorithm 238 * 239 * @param dev_id The identifier of the device. 240 * @param idx Description of crypto algorithms. 241 * 242 * @return 243 * - Return description of the symmetric crypto capability if exist. 244 * - Return NULL if the capability not exist. 245 */ 246 const struct rte_cryptodev_symmetric_capability * 247 rte_cryptodev_sym_capability_get(uint8_t dev_id, 248 const struct rte_cryptodev_sym_capability_idx *idx); 249 250 /** 251 * Provide capabilities available for defined device and xform 252 * 253 * @param dev_id The identifier of the device. 254 * @param idx Description of asym crypto xform. 255 * 256 * @return 257 * - Return description of the asymmetric crypto capability if exist. 258 * - Return NULL if the capability not exist. 259 */ 260 __rte_experimental 261 const struct rte_cryptodev_asymmetric_xform_capability * 262 rte_cryptodev_asym_capability_get(uint8_t dev_id, 263 const struct rte_cryptodev_asym_capability_idx *idx); 264 265 /** 266 * Check if key size and initial vector are supported 267 * in crypto cipher capability 268 * 269 * @param capability Description of the symmetric crypto capability. 270 * @param key_size Cipher key size. 271 * @param iv_size Cipher initial vector size. 272 * 273 * @return 274 * - Return 0 if the parameters are in range of the capability. 275 * - Return -1 if the parameters are out of range of the capability. 276 */ 277 int 278 rte_cryptodev_sym_capability_check_cipher( 279 const struct rte_cryptodev_symmetric_capability *capability, 280 uint16_t key_size, uint16_t iv_size); 281 282 /** 283 * Check if key size and initial vector are supported 284 * in crypto auth capability 285 * 286 * @param capability Description of the symmetric crypto capability. 287 * @param key_size Auth key size. 288 * @param digest_size Auth digest size. 289 * @param iv_size Auth initial vector size. 290 * 291 * @return 292 * - Return 0 if the parameters are in range of the capability. 293 * - Return -1 if the parameters are out of range of the capability. 294 */ 295 int 296 rte_cryptodev_sym_capability_check_auth( 297 const struct rte_cryptodev_symmetric_capability *capability, 298 uint16_t key_size, uint16_t digest_size, uint16_t iv_size); 299 300 /** 301 * Check if key, digest, AAD and initial vector sizes are supported 302 * in crypto AEAD capability 303 * 304 * @param capability Description of the symmetric crypto capability. 305 * @param key_size AEAD key size. 306 * @param digest_size AEAD digest size. 307 * @param aad_size AEAD AAD size. 308 * @param iv_size AEAD IV size. 309 * 310 * @return 311 * - Return 0 if the parameters are in range of the capability. 312 * - Return -1 if the parameters are out of range of the capability. 313 */ 314 int 315 rte_cryptodev_sym_capability_check_aead( 316 const struct rte_cryptodev_symmetric_capability *capability, 317 uint16_t key_size, uint16_t digest_size, uint16_t aad_size, 318 uint16_t iv_size); 319 320 /** 321 * Check if op type is supported 322 * 323 * @param capability Description of the asymmetric crypto capability. 324 * @param op_type op type 325 * 326 * @return 327 * - Return 1 if the op type is supported 328 * - Return 0 if unsupported 329 */ 330 __rte_experimental 331 int 332 rte_cryptodev_asym_xform_capability_check_optype( 333 const struct rte_cryptodev_asymmetric_xform_capability *capability, 334 enum rte_crypto_asym_op_type op_type); 335 336 /** 337 * Check if modulus length is in supported range 338 * 339 * @param capability Description of the asymmetric crypto capability. 340 * @param modlen modulus length. 341 * 342 * @return 343 * - Return 0 if the parameters are in range of the capability. 344 * - Return -1 if the parameters are out of range of the capability. 345 */ 346 __rte_experimental 347 int 348 rte_cryptodev_asym_xform_capability_check_modlen( 349 const struct rte_cryptodev_asymmetric_xform_capability *capability, 350 uint16_t modlen); 351 352 /** 353 * Check if hash algorithm is supported. 354 * 355 * @param capability Asymmetric crypto capability. 356 * @param hash Hash algorithm. 357 * 358 * @return 359 * - Return true if the hash algorithm is supported. 360 * - Return false if the hash algorithm is not supported. 361 */ 362 __rte_experimental 363 bool 364 rte_cryptodev_asym_xform_capability_check_hash( 365 const struct rte_cryptodev_asymmetric_xform_capability *capability, 366 enum rte_crypto_auth_algorithm hash); 367 368 /** 369 * Provide the cipher algorithm enum, given an algorithm string 370 * 371 * @param algo_enum A pointer to the cipher algorithm 372 * enum to be filled 373 * @param algo_string Authentication algo string 374 * 375 * @return 376 * - Return -1 if string is not valid 377 * - Return 0 is the string is valid 378 */ 379 int 380 rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum, 381 const char *algo_string); 382 383 /** 384 * Provide the authentication algorithm enum, given an algorithm string 385 * 386 * @param algo_enum A pointer to the authentication algorithm 387 * enum to be filled 388 * @param algo_string Authentication algo string 389 * 390 * @return 391 * - Return -1 if string is not valid 392 * - Return 0 is the string is valid 393 */ 394 int 395 rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum, 396 const char *algo_string); 397 398 /** 399 * Provide the AEAD algorithm enum, given an algorithm string 400 * 401 * @param algo_enum A pointer to the AEAD algorithm 402 * enum to be filled 403 * @param algo_string AEAD algorithm string 404 * 405 * @return 406 * - Return -1 if string is not valid 407 * - Return 0 is the string is valid 408 */ 409 int 410 rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum, 411 const char *algo_string); 412 413 /** 414 * Provide the Asymmetric xform enum, given an xform string 415 * 416 * @param xform_enum A pointer to the xform type 417 * enum to be filled 418 * @param xform_string xform string 419 * 420 * @return 421 * - Return -1 if string is not valid 422 * - Return 0 if the string is valid 423 */ 424 __rte_experimental 425 int 426 rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum, 427 const char *xform_string); 428 429 /** 430 * Provide the cipher algorithm string, given an algorithm enum. 431 * 432 * @param algo_enum cipher algorithm enum 433 * 434 * @return 435 * - Return NULL if enum is not valid 436 * - Return algo_string corresponding to enum 437 */ 438 __rte_experimental 439 const char * 440 rte_cryptodev_get_cipher_algo_string(enum rte_crypto_cipher_algorithm algo_enum); 441 442 /** 443 * Provide the authentication algorithm string, given an algorithm enum. 444 * 445 * @param algo_enum auth algorithm enum 446 * 447 * @return 448 * - Return NULL if enum is not valid 449 * - Return algo_string corresponding to enum 450 */ 451 __rte_experimental 452 const char * 453 rte_cryptodev_get_auth_algo_string(enum rte_crypto_auth_algorithm algo_enum); 454 455 /** 456 * Provide the AEAD algorithm string, given an algorithm enum. 457 * 458 * @param algo_enum AEAD algorithm enum 459 * 460 * @return 461 * - Return NULL if enum is not valid 462 * - Return algo_string corresponding to enum 463 */ 464 __rte_experimental 465 const char * 466 rte_cryptodev_get_aead_algo_string(enum rte_crypto_aead_algorithm algo_enum); 467 468 /** 469 * Provide the Asymmetric xform string, given an xform enum. 470 * 471 * @param xform_enum xform type enum 472 * 473 * @return 474 * - Return NULL, if enum is not valid. 475 * - Return xform string, for valid enum. 476 */ 477 __rte_experimental 478 const char * 479 rte_cryptodev_asym_get_xform_string(enum rte_crypto_asym_xform_type xform_enum); 480 481 482 /** Macro used at end of crypto PMD list */ 483 #define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \ 484 { RTE_CRYPTO_OP_TYPE_UNDEFINED } 485 486 487 /** 488 * Crypto device supported feature flags 489 * 490 * Note: 491 * New features flags should be added to the end of the list 492 * 493 * Keep these flags synchronised with rte_cryptodev_get_feature_name() 494 */ 495 #define RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO (1ULL << 0) 496 /**< Symmetric crypto operations are supported */ 497 #define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO (1ULL << 1) 498 /**< Asymmetric crypto operations are supported */ 499 #define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING (1ULL << 2) 500 /**< Chaining symmetric crypto operations are supported */ 501 #define RTE_CRYPTODEV_FF_CPU_SSE (1ULL << 3) 502 /**< Utilises CPU SIMD SSE instructions */ 503 #define RTE_CRYPTODEV_FF_CPU_AVX (1ULL << 4) 504 /**< Utilises CPU SIMD AVX instructions */ 505 #define RTE_CRYPTODEV_FF_CPU_AVX2 (1ULL << 5) 506 /**< Utilises CPU SIMD AVX2 instructions */ 507 #define RTE_CRYPTODEV_FF_CPU_AESNI (1ULL << 6) 508 /**< Utilises CPU AES-NI instructions */ 509 #define RTE_CRYPTODEV_FF_HW_ACCELERATED (1ULL << 7) 510 /**< Operations are off-loaded to an 511 * external hardware accelerator 512 */ 513 #define RTE_CRYPTODEV_FF_CPU_AVX512 (1ULL << 8) 514 /**< Utilises CPU SIMD AVX512 instructions */ 515 #define RTE_CRYPTODEV_FF_IN_PLACE_SGL (1ULL << 9) 516 /**< In-place Scatter-gather (SGL) buffers, with multiple segments, 517 * are supported 518 */ 519 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT (1ULL << 10) 520 /**< Out-of-place Scatter-gather (SGL) buffers are 521 * supported in input and output 522 */ 523 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT (1ULL << 11) 524 /**< Out-of-place Scatter-gather (SGL) buffers are supported 525 * in input, combined with linear buffers (LB), with a 526 * single segment in output 527 */ 528 #define RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT (1ULL << 12) 529 /**< Out-of-place Scatter-gather (SGL) buffers are supported 530 * in output, combined with linear buffers (LB) in input 531 */ 532 #define RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT (1ULL << 13) 533 /**< Out-of-place linear buffers (LB) are supported in input and output */ 534 #define RTE_CRYPTODEV_FF_CPU_NEON (1ULL << 14) 535 /**< Utilises CPU NEON instructions */ 536 #define RTE_CRYPTODEV_FF_CPU_ARM_CE (1ULL << 15) 537 /**< Utilises ARM CPU Cryptographic Extensions */ 538 #define RTE_CRYPTODEV_FF_SECURITY (1ULL << 16) 539 /**< Support Security Protocol Processing */ 540 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP (1ULL << 17) 541 /**< Support RSA Private Key OP with exponent */ 542 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT (1ULL << 18) 543 /**< Support RSA Private Key OP with CRT (quintuple) Keys */ 544 #define RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED (1ULL << 19) 545 /**< Support encrypted-digest operations where digest is appended to data */ 546 #define RTE_CRYPTODEV_FF_ASYM_SESSIONLESS (1ULL << 20) 547 /**< Support asymmetric session-less operations */ 548 #define RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO (1ULL << 21) 549 /**< Support symmetric cpu-crypto processing */ 550 #define RTE_CRYPTODEV_FF_SYM_SESSIONLESS (1ULL << 22) 551 /**< Support symmetric session-less operations */ 552 #define RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA (1ULL << 23) 553 /**< Support operations on data which is not byte aligned */ 554 #define RTE_CRYPTODEV_FF_SYM_RAW_DP (1ULL << 24) 555 /**< Support accelerator specific symmetric raw data-path APIs */ 556 #define RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS (1ULL << 25) 557 /**< Support operations on multiple data-units message */ 558 #define RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY (1ULL << 26) 559 /**< Support wrapped key in cipher xform */ 560 #define RTE_CRYPTODEV_FF_SECURITY_INNER_CSUM (1ULL << 27) 561 /**< Support inner checksum computation/verification */ 562 563 /** 564 * Get the name of a crypto device feature flag 565 * 566 * @param flag The mask describing the flag. 567 * 568 * @return 569 * The name of this flag, or NULL if it's not a valid feature flag. 570 */ 571 const char * 572 rte_cryptodev_get_feature_name(uint64_t flag); 573 574 /** Crypto device information */ 575 /* Structure rte_cryptodev_info 8< */ 576 struct rte_cryptodev_info { 577 const char *driver_name; /**< Driver name. */ 578 uint8_t driver_id; /**< Driver identifier */ 579 struct rte_device *device; /**< Generic device information. */ 580 581 uint64_t feature_flags; 582 /**< Feature flags exposes HW/SW features for the given device */ 583 584 const struct rte_cryptodev_capabilities *capabilities; 585 /**< Array of devices supported capabilities */ 586 587 unsigned max_nb_queue_pairs; 588 /**< Maximum number of queues pairs supported by device. */ 589 590 uint16_t min_mbuf_headroom_req; 591 /**< Minimum mbuf headroom required by device */ 592 593 uint16_t min_mbuf_tailroom_req; 594 /**< Minimum mbuf tailroom required by device */ 595 596 struct { 597 unsigned max_nb_sessions; 598 /**< Maximum number of sessions supported by device. 599 * If 0, the device does not have any limitation in 600 * number of sessions that can be used. 601 */ 602 } sym; 603 }; 604 /* >8 End of structure rte_cryptodev_info. */ 605 606 #define RTE_CRYPTODEV_DETACHED (0) 607 #define RTE_CRYPTODEV_ATTACHED (1) 608 609 /** Definitions of Crypto device event types */ 610 enum rte_cryptodev_event_type { 611 RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */ 612 RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */ 613 RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */ 614 }; 615 616 /** Crypto device queue pair configuration structure. */ 617 /* Structure rte_cryptodev_qp_conf 8<*/ 618 struct rte_cryptodev_qp_conf { 619 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */ 620 struct rte_mempool *mp_session; 621 /**< The mempool for creating session in sessionless mode */ 622 }; 623 /* >8 End of structure rte_cryptodev_qp_conf. */ 624 625 /** 626 * Function type used for processing crypto ops when enqueue/dequeue burst is 627 * called. 628 * 629 * The callback function is called on enqueue/dequeue burst immediately. 630 * 631 * @param dev_id The identifier of the device. 632 * @param qp_id The index of the queue pair on which ops are 633 * enqueued/dequeued. The value must be in the 634 * range [0, nb_queue_pairs - 1] previously 635 * supplied to *rte_cryptodev_configure*. 636 * @param ops The address of an array of *nb_ops* pointers 637 * to *rte_crypto_op* structures which contain 638 * the crypto operations to be processed. 639 * @param nb_ops The number of operations to process. 640 * @param user_param The arbitrary user parameter passed in by the 641 * application when the callback was originally 642 * registered. 643 * @return The number of ops to be enqueued to the 644 * crypto device. 645 */ 646 typedef uint16_t (*rte_cryptodev_callback_fn)(uint16_t dev_id, uint16_t qp_id, 647 struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param); 648 649 /** 650 * Typedef for application callback function to be registered by application 651 * software for notification of device events 652 * 653 * @param dev_id Crypto device identifier 654 * @param event Crypto device event to register for notification of. 655 * @param cb_arg User specified parameter to be passed as to passed to 656 * users callback function. 657 */ 658 typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id, 659 enum rte_cryptodev_event_type event, void *cb_arg); 660 661 662 /** Crypto Device statistics */ 663 struct rte_cryptodev_stats { 664 uint64_t enqueued_count; 665 /**< Count of all operations enqueued */ 666 uint64_t dequeued_count; 667 /**< Count of all operations dequeued */ 668 669 uint64_t enqueue_err_count; 670 /**< Total error count on operations enqueued */ 671 uint64_t dequeue_err_count; 672 /**< Total error count on operations dequeued */ 673 }; 674 675 #define RTE_CRYPTODEV_NAME_MAX_LEN (64) 676 /**< Max length of name of crypto PMD */ 677 678 /** 679 * Get the device identifier for the named crypto device. 680 * 681 * @param name device name to select the device structure. 682 * 683 * @return 684 * - Returns crypto device identifier on success. 685 * - Return -1 on failure to find named crypto device. 686 */ 687 int 688 rte_cryptodev_get_dev_id(const char *name); 689 690 /** 691 * Get the crypto device name given a device identifier. 692 * 693 * @param dev_id 694 * The identifier of the device 695 * 696 * @return 697 * - Returns crypto device name. 698 * - Returns NULL if crypto device is not present. 699 */ 700 const char * 701 rte_cryptodev_name_get(uint8_t dev_id); 702 703 /** 704 * Get the total number of crypto devices that have been successfully 705 * initialised. 706 * 707 * @return 708 * - The total number of usable crypto devices. 709 */ 710 uint8_t 711 rte_cryptodev_count(void); 712 713 /** 714 * Get number of crypto device defined type. 715 * 716 * @param driver_id driver identifier. 717 * 718 * @return 719 * Returns number of crypto device. 720 */ 721 uint8_t 722 rte_cryptodev_device_count_by_driver(uint8_t driver_id); 723 724 /** 725 * Get number and identifiers of attached crypto devices that 726 * use the same crypto driver. 727 * 728 * @param driver_name driver name. 729 * @param devices output devices identifiers. 730 * @param nb_devices maximal number of devices. 731 * 732 * @return 733 * Returns number of attached crypto device. 734 */ 735 uint8_t 736 rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices, 737 uint8_t nb_devices); 738 /* 739 * Return the NUMA socket to which a device is connected 740 * 741 * @param dev_id 742 * The identifier of the device 743 * @return 744 * The NUMA socket id to which the device is connected or 745 * a default of zero if the socket could not be determined. 746 * -1 if returned is the dev_id value is out of range. 747 */ 748 int 749 rte_cryptodev_socket_id(uint8_t dev_id); 750 751 /** Crypto device configuration structure */ 752 /* Structure rte_cryptodev_config 8< */ 753 struct rte_cryptodev_config { 754 int socket_id; /**< Socket to allocate resources on */ 755 uint16_t nb_queue_pairs; 756 /**< Number of queue pairs to configure on device */ 757 uint64_t ff_disable; 758 /**< Feature flags to be disabled. Only the following features are 759 * allowed to be disabled, 760 * - RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO 761 * - RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO 762 * - RTE_CRYTPODEV_FF_SECURITY 763 */ 764 }; 765 /* >8 End of structure rte_cryptodev_config. */ 766 767 /** 768 * Configure a device. 769 * 770 * This function must be invoked first before any other function in the 771 * API. This function can also be re-invoked when a device is in the 772 * stopped state. 773 * 774 * @param dev_id The identifier of the device to configure. 775 * @param config The crypto device configuration structure. 776 * 777 * @return 778 * - 0: Success, device configured. 779 * - <0: Error code returned by the driver configuration function. 780 */ 781 int 782 rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config); 783 784 /** 785 * Start an device. 786 * 787 * The device start step is the last one and consists of setting the configured 788 * offload features and in starting the transmit and the receive units of the 789 * device. 790 * On success, all basic functions exported by the API (link status, 791 * receive/transmit, and so on) can be invoked. 792 * 793 * @param dev_id 794 * The identifier of the device. 795 * @return 796 * - 0: Success, device started. 797 * - <0: Error code of the driver device start function. 798 */ 799 int 800 rte_cryptodev_start(uint8_t dev_id); 801 802 /** 803 * Stop an device. The device can be restarted with a call to 804 * rte_cryptodev_start() 805 * 806 * @param dev_id The identifier of the device. 807 */ 808 void 809 rte_cryptodev_stop(uint8_t dev_id); 810 811 /** 812 * Close an device. The device cannot be restarted! 813 * 814 * @param dev_id The identifier of the device. 815 * 816 * @return 817 * - 0 on successfully closing device 818 * - <0 on failure to close device 819 */ 820 int 821 rte_cryptodev_close(uint8_t dev_id); 822 823 /** 824 * Allocate and set up a receive queue pair for a device. 825 * 826 * 827 * @param dev_id The identifier of the device. 828 * @param queue_pair_id The index of the queue pairs to set up. The 829 * value must be in the range [0, nb_queue_pair 830 * - 1] previously supplied to 831 * rte_cryptodev_configure(). 832 * @param qp_conf The pointer to the configuration data to be 833 * used for the queue pair. 834 * @param socket_id The *socket_id* argument is the socket 835 * identifier in case of NUMA. The value can be 836 * *SOCKET_ID_ANY* if there is no NUMA constraint 837 * for the DMA memory allocated for the receive 838 * queue pair. 839 * 840 * @return 841 * - 0: Success, queue pair correctly set up. 842 * - <0: Queue pair configuration failed 843 */ 844 int 845 rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 846 const struct rte_cryptodev_qp_conf *qp_conf, int socket_id); 847 848 /** 849 * Get the status of queue pairs setup on a specific crypto device 850 * 851 * @param dev_id Crypto device identifier. 852 * @param queue_pair_id The index of the queue pairs to set up. The 853 * value must be in the range [0, nb_queue_pair 854 * - 1] previously supplied to 855 * rte_cryptodev_configure(). 856 * @return 857 * - 0: qp was not configured 858 * - 1: qp was configured 859 * - -EINVAL: device was not configured 860 */ 861 __rte_experimental 862 int 863 rte_cryptodev_get_qp_status(uint8_t dev_id, uint16_t queue_pair_id); 864 865 /** 866 * Get the number of queue pairs on a specific crypto device 867 * 868 * @param dev_id Crypto device identifier. 869 * @return 870 * - The number of configured queue pairs. 871 */ 872 uint16_t 873 rte_cryptodev_queue_pair_count(uint8_t dev_id); 874 875 876 /** 877 * Retrieve the general I/O statistics of a device. 878 * 879 * @param dev_id The identifier of the device. 880 * @param stats A pointer to a structure of type 881 * *rte_cryptodev_stats* to be filled with the 882 * values of device counters. 883 * @return 884 * - Zero if successful. 885 * - Non-zero otherwise. 886 */ 887 int 888 rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats); 889 890 /** 891 * Reset the general I/O statistics of a device. 892 * 893 * @param dev_id The identifier of the device. 894 */ 895 void 896 rte_cryptodev_stats_reset(uint8_t dev_id); 897 898 /** 899 * Retrieve the contextual information of a device. 900 * 901 * @param dev_id The identifier of the device. 902 * @param dev_info A pointer to a structure of type 903 * *rte_cryptodev_info* to be filled with the 904 * contextual information of the device. 905 * 906 * @note The capabilities field of dev_info is set to point to the first 907 * element of an array of struct rte_cryptodev_capabilities. The element after 908 * the last valid element has it's op field set to 909 * RTE_CRYPTO_OP_TYPE_UNDEFINED. 910 */ 911 void 912 rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info); 913 914 915 /** 916 * Register a callback function for specific device id. 917 * 918 * @param dev_id Device id. 919 * @param event Event interested. 920 * @param cb_fn User supplied callback function to be called. 921 * @param cb_arg Pointer to the parameters for the registered 922 * callback. 923 * 924 * @return 925 * - On success, zero. 926 * - On failure, a negative value. 927 */ 928 int 929 rte_cryptodev_callback_register(uint8_t dev_id, 930 enum rte_cryptodev_event_type event, 931 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 932 933 /** 934 * Unregister a callback function for specific device id. 935 * 936 * @param dev_id The device identifier. 937 * @param event Event interested. 938 * @param cb_fn User supplied callback function to be called. 939 * @param cb_arg Pointer to the parameters for the registered 940 * callback. 941 * 942 * @return 943 * - On success, zero. 944 * - On failure, a negative value. 945 */ 946 int 947 rte_cryptodev_callback_unregister(uint8_t dev_id, 948 enum rte_cryptodev_event_type event, 949 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 950 951 /** 952 * @warning 953 * @b EXPERIMENTAL: this API may change without prior notice. 954 * 955 * Query a cryptodev queue pair if there are pending RTE_CRYPTODEV_EVENT_ERROR 956 * events. 957 * 958 * @param dev_id The device identifier. 959 * @param qp_id Queue pair index to be queried. 960 * 961 * @return 962 * - 1 if requested queue has a pending event. 963 * - 0 if no pending event is found. 964 * - a negative value on failure 965 */ 966 __rte_experimental 967 int 968 rte_cryptodev_queue_pair_event_error_query(uint8_t dev_id, uint16_t qp_id); 969 970 struct rte_cryptodev_callback; 971 972 /** Structure to keep track of registered callbacks */ 973 RTE_TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback); 974 975 /** 976 * Structure used to hold information about the callbacks to be called for a 977 * queue pair on enqueue/dequeue. 978 */ 979 struct rte_cryptodev_cb { 980 struct rte_cryptodev_cb *next; 981 /**< Pointer to next callback */ 982 rte_cryptodev_callback_fn fn; 983 /**< Pointer to callback function */ 984 void *arg; 985 /**< Pointer to argument */ 986 }; 987 988 /** 989 * @internal 990 * Structure used to hold information about the RCU for a queue pair. 991 */ 992 struct rte_cryptodev_cb_rcu { 993 struct rte_cryptodev_cb *next; 994 /**< Pointer to next callback */ 995 struct rte_rcu_qsbr *qsbr; 996 /**< RCU QSBR variable per queue pair */ 997 }; 998 999 /** 1000 * Get the security context for the cryptodev. 1001 * 1002 * @param dev_id 1003 * The device identifier. 1004 * @return 1005 * - NULL on error. 1006 * - Pointer to security context on success. 1007 */ 1008 void * 1009 rte_cryptodev_get_sec_ctx(uint8_t dev_id); 1010 1011 /** 1012 * Create a symmetric session mempool. 1013 * 1014 * @param name 1015 * The unique mempool name. 1016 * @param nb_elts 1017 * The number of elements in the mempool. 1018 * @param elt_size 1019 * The size of the element. This should be the size of the cryptodev PMD 1020 * session private data obtained through 1021 * rte_cryptodev_sym_get_private_session_size() function call. 1022 * For the user who wants to use the same mempool for heterogeneous PMDs 1023 * this value should be the maximum value of their private session sizes. 1024 * Please note the created mempool will have bigger elt size than this 1025 * value as necessary session header and the possible padding are filled 1026 * into each elt. 1027 * @param cache_size 1028 * The number of per-lcore cache elements 1029 * @param priv_size 1030 * The private data size of each session. 1031 * @param socket_id 1032 * The *socket_id* argument is the socket identifier in the case of 1033 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 1034 * constraint for the reserved zone. 1035 * 1036 * @return 1037 * - On success returns the created session mempool pointer 1038 * - On failure returns NULL 1039 */ 1040 __rte_experimental 1041 struct rte_mempool * 1042 rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, 1043 uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, 1044 int socket_id); 1045 1046 1047 /** 1048 * Create an asymmetric session mempool. 1049 * 1050 * @param name 1051 * The unique mempool name. 1052 * @param nb_elts 1053 * The number of elements in the mempool. 1054 * @param cache_size 1055 * The number of per-lcore cache elements 1056 * @param user_data_size 1057 * The size of user data to be placed after session private data. 1058 * @param socket_id 1059 * The *socket_id* argument is the socket identifier in the case of 1060 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 1061 * constraint for the reserved zone. 1062 * 1063 * @return 1064 * - On success return mempool 1065 * - On failure returns NULL 1066 */ 1067 __rte_experimental 1068 struct rte_mempool * 1069 rte_cryptodev_asym_session_pool_create(const char *name, uint32_t nb_elts, 1070 uint32_t cache_size, uint16_t user_data_size, int socket_id); 1071 1072 /** 1073 * Create symmetric crypto session and fill out private data for the device id, 1074 * based on its device type. 1075 * 1076 * @param dev_id ID of device that we want the session to be used on 1077 * @param xforms Symmetric crypto transform operations to apply on flow 1078 * processed with this session 1079 * @param mp Mempool to allocate symmetric session objects from 1080 * 1081 * @return 1082 * - On success return pointer to sym-session. 1083 * - On failure returns NULL and rte_errno is set to the error code: 1084 * - EINVAL on invalid arguments. 1085 * - ENOMEM on memory error for session allocation. 1086 * - ENOTSUP if device doesn't support session configuration. 1087 */ 1088 void * 1089 rte_cryptodev_sym_session_create(uint8_t dev_id, 1090 struct rte_crypto_sym_xform *xforms, 1091 struct rte_mempool *mp); 1092 /** 1093 * Create and initialise an asymmetric crypto session structure. 1094 * Calls the PMD to configure the private session data. 1095 * 1096 * @param dev_id ID of device that we want the session to be used on 1097 * @param xforms Asymmetric crypto transform operations to apply on flow 1098 * processed with this session 1099 * @param mp mempool to allocate asymmetric session 1100 * objects from 1101 * @param session void ** for session to be used 1102 * 1103 * @return 1104 * - 0 on success. 1105 * - -EINVAL on invalid arguments. 1106 * - -ENOMEM on memory error for session allocation. 1107 * - -ENOTSUP if device doesn't support session configuration. 1108 */ 1109 __rte_experimental 1110 int 1111 rte_cryptodev_asym_session_create(uint8_t dev_id, 1112 struct rte_crypto_asym_xform *xforms, struct rte_mempool *mp, 1113 void **session); 1114 1115 /** 1116 * Frees session for the device id and returning it to its mempool. 1117 * It is the application's responsibility to ensure that the session 1118 * is not still in-flight operations using it. 1119 * 1120 * @param dev_id ID of device that uses the session. 1121 * @param sess Session header to be freed. 1122 * 1123 * @return 1124 * - 0 if successful. 1125 * - -EINVAL if session is NULL or the mismatched device ids. 1126 */ 1127 int 1128 rte_cryptodev_sym_session_free(uint8_t dev_id, 1129 void *sess); 1130 1131 /** 1132 * Clears and frees asymmetric crypto session header and private data, 1133 * returning it to its original mempool. 1134 * 1135 * @param dev_id ID of device that uses the asymmetric session. 1136 * @param sess Session header to be freed. 1137 * 1138 * @return 1139 * - 0 if successful. 1140 * - -EINVAL if device is invalid or session is NULL. 1141 */ 1142 __rte_experimental 1143 int 1144 rte_cryptodev_asym_session_free(uint8_t dev_id, void *sess); 1145 1146 /** 1147 * Get the size of the asymmetric session header. 1148 * 1149 * @return 1150 * Size of the asymmetric header session. 1151 */ 1152 __rte_experimental 1153 unsigned int 1154 rte_cryptodev_asym_get_header_session_size(void); 1155 1156 /** 1157 * Get the size of the private symmetric session data 1158 * for a device. 1159 * 1160 * @param dev_id The device identifier. 1161 * 1162 * @return 1163 * - Size of the private data, if successful 1164 * - 0 if device is invalid or does not have private 1165 * symmetric session 1166 */ 1167 unsigned int 1168 rte_cryptodev_sym_get_private_session_size(uint8_t dev_id); 1169 1170 /** 1171 * Get the size of the private data for asymmetric session 1172 * on device 1173 * 1174 * @param dev_id The device identifier. 1175 * 1176 * @return 1177 * - Size of the asymmetric private data, if successful 1178 * - 0 if device is invalid or does not have private session 1179 */ 1180 __rte_experimental 1181 unsigned int 1182 rte_cryptodev_asym_get_private_session_size(uint8_t dev_id); 1183 1184 /** 1185 * Validate if the crypto device index is valid attached crypto device. 1186 * 1187 * @param dev_id Crypto device index. 1188 * 1189 * @return 1190 * - If the device index is valid (1) or not (0). 1191 */ 1192 unsigned int 1193 rte_cryptodev_is_valid_dev(uint8_t dev_id); 1194 1195 /** 1196 * Provide driver identifier. 1197 * 1198 * @param name 1199 * The pointer to a driver name. 1200 * @return 1201 * The driver type identifier or -1 if no driver found 1202 */ 1203 int rte_cryptodev_driver_id_get(const char *name); 1204 1205 /** 1206 * Provide driver name. 1207 * 1208 * @param driver_id 1209 * The driver identifier. 1210 * @return 1211 * The driver name or null if no driver found 1212 */ 1213 const char *rte_cryptodev_driver_name_get(uint8_t driver_id); 1214 1215 /** 1216 * Store user data in a session. 1217 * 1218 * @param sess Session pointer allocated by 1219 * *rte_cryptodev_sym_session_create*. 1220 * @param data Pointer to the user data. 1221 * @param size Size of the user data. 1222 * 1223 * @return 1224 * - On success, zero. 1225 * - On failure, a negative value. 1226 */ 1227 __rte_experimental 1228 int 1229 rte_cryptodev_sym_session_set_user_data(void *sess, 1230 void *data, 1231 uint16_t size); 1232 1233 #define CRYPTO_SESS_OPAQUE_DATA_OFF 0 1234 /** 1235 * Get opaque data from session handle 1236 */ 1237 static inline uint64_t 1238 rte_cryptodev_sym_session_opaque_data_get(void *sess) 1239 { 1240 return *((uint64_t *)sess + CRYPTO_SESS_OPAQUE_DATA_OFF); 1241 } 1242 1243 /** 1244 * Set opaque data in session handle 1245 */ 1246 static inline void 1247 rte_cryptodev_sym_session_opaque_data_set(void *sess, uint64_t opaque) 1248 { 1249 uint64_t *data; 1250 data = (((uint64_t *)sess) + CRYPTO_SESS_OPAQUE_DATA_OFF); 1251 *data = opaque; 1252 } 1253 1254 /** 1255 * Get user data stored in a session. 1256 * 1257 * @param sess Session pointer allocated by 1258 * *rte_cryptodev_sym_session_create*. 1259 * 1260 * @return 1261 * - On success return pointer to user data. 1262 * - On failure returns NULL. 1263 */ 1264 __rte_experimental 1265 void * 1266 rte_cryptodev_sym_session_get_user_data(void *sess); 1267 1268 /** 1269 * Store user data in an asymmetric session. 1270 * 1271 * @param sess Session pointer allocated by 1272 * *rte_cryptodev_asym_session_create*. 1273 * @param data Pointer to the user data. 1274 * @param size Size of the user data. 1275 * 1276 * @return 1277 * - On success, zero. 1278 * - -EINVAL if the session pointer is invalid. 1279 * - -ENOMEM if the available user data size is smaller than the size parameter. 1280 */ 1281 __rte_experimental 1282 int 1283 rte_cryptodev_asym_session_set_user_data(void *sess, void *data, uint16_t size); 1284 1285 /** 1286 * Get user data stored in an asymmetric session. 1287 * 1288 * @param sess Session pointer allocated by 1289 * *rte_cryptodev_asym_session_create*. 1290 * 1291 * @return 1292 * - On success return pointer to user data. 1293 * - On failure returns NULL. 1294 */ 1295 __rte_experimental 1296 void * 1297 rte_cryptodev_asym_session_get_user_data(void *sess); 1298 1299 /** 1300 * Perform actual crypto processing (encrypt/digest or auth/decrypt) 1301 * on user provided data. 1302 * 1303 * @param dev_id The device identifier. 1304 * @param sess Cryptodev session structure 1305 * @param ofs Start and stop offsets for auth and cipher operations 1306 * @param vec Vectorized operation descriptor 1307 * 1308 * @return 1309 * - Returns number of successfully processed packets. 1310 */ 1311 __rte_experimental 1312 uint32_t 1313 rte_cryptodev_sym_cpu_crypto_process(uint8_t dev_id, 1314 void *sess, union rte_crypto_sym_ofs ofs, 1315 struct rte_crypto_sym_vec *vec); 1316 1317 /** 1318 * Get the size of the raw data-path context buffer. 1319 * 1320 * @param dev_id The device identifier. 1321 * 1322 * @return 1323 * - If the device supports raw data-path APIs, return the context size. 1324 * - If the device does not support the APIs, return -1. 1325 */ 1326 __rte_experimental 1327 int 1328 rte_cryptodev_get_raw_dp_ctx_size(uint8_t dev_id); 1329 1330 /** 1331 * Set session event meta data 1332 * 1333 * @param dev_id The device identifier. 1334 * @param sess Crypto or security session. 1335 * @param op_type Operation type. 1336 * @param sess_type Session type. 1337 * @param ev_mdata Pointer to the event crypto meta data 1338 * (aka *union rte_event_crypto_metadata*) 1339 * @param size Size of ev_mdata. 1340 * 1341 * @return 1342 * - On success, zero. 1343 * - On failure, a negative value. 1344 */ 1345 __rte_experimental 1346 int 1347 rte_cryptodev_session_event_mdata_set(uint8_t dev_id, void *sess, 1348 enum rte_crypto_op_type op_type, 1349 enum rte_crypto_op_sess_type sess_type, 1350 void *ev_mdata, uint16_t size); 1351 1352 /** 1353 * Union of different crypto session types, including session-less xform 1354 * pointer. 1355 */ 1356 union rte_cryptodev_session_ctx {void *crypto_sess; 1357 struct rte_crypto_sym_xform *xform; 1358 struct rte_security_session *sec_sess; 1359 }; 1360 1361 /** 1362 * Enqueue a vectorized operation descriptor into the device queue but the 1363 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1364 * is called. 1365 * 1366 * @param qp Driver specific queue pair data. 1367 * @param drv_ctx Driver specific context data. 1368 * @param vec Vectorized operation descriptor. 1369 * @param ofs Start and stop offsets for auth and cipher 1370 * operations. 1371 * @param user_data The array of user data for dequeue later. 1372 * @param enqueue_status Driver written value to specify the 1373 * enqueue status. Possible values: 1374 * - 1: The number of operations returned are 1375 * enqueued successfully. 1376 * - 0: The number of operations returned are 1377 * cached into the queue but are not processed 1378 * until rte_cryptodev_raw_enqueue_done() is 1379 * called. 1380 * - negative integer: Error occurred. 1381 * @return 1382 * - The number of operations in the descriptor successfully enqueued or 1383 * cached into the queue but not enqueued yet, depends on the 1384 * "enqueue_status" value. 1385 */ 1386 typedef uint32_t (*cryptodev_sym_raw_enqueue_burst_t)( 1387 void *qp, uint8_t *drv_ctx, struct rte_crypto_sym_vec *vec, 1388 union rte_crypto_sym_ofs ofs, void *user_data[], int *enqueue_status); 1389 1390 /** 1391 * Enqueue single raw data vector into the device queue but the driver may or 1392 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1393 * 1394 * @param qp Driver specific queue pair data. 1395 * @param drv_ctx Driver specific context data. 1396 * @param data_vec The buffer data vector. 1397 * @param n_data_vecs Number of buffer data vectors. 1398 * @param ofs Start and stop offsets for auth and cipher 1399 * operations. 1400 * @param iv IV virtual and IOVA addresses 1401 * @param digest digest virtual and IOVA addresses 1402 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1403 * depends on the algorithm used. 1404 * @param user_data The user data. 1405 * @return 1406 * - 1: The data vector is enqueued successfully. 1407 * - 0: The data vector is cached into the queue but is not processed 1408 * until rte_cryptodev_raw_enqueue_done() is called. 1409 * - negative integer: failure. 1410 */ 1411 typedef int (*cryptodev_sym_raw_enqueue_t)( 1412 void *qp, uint8_t *drv_ctx, struct rte_crypto_vec *data_vec, 1413 uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs, 1414 struct rte_crypto_va_iova_ptr *iv, 1415 struct rte_crypto_va_iova_ptr *digest, 1416 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1417 void *user_data); 1418 1419 /** 1420 * Inform the cryptodev queue pair to start processing or finish dequeuing all 1421 * enqueued/dequeued operations. 1422 * 1423 * @param qp Driver specific queue pair data. 1424 * @param drv_ctx Driver specific context data. 1425 * @param n The total number of processed operations. 1426 * @return 1427 * - On success return 0. 1428 * - On failure return negative integer. 1429 */ 1430 typedef int (*cryptodev_sym_raw_operation_done_t)(void *qp, uint8_t *drv_ctx, 1431 uint32_t n); 1432 1433 /** 1434 * Typedef that the user provided for the driver to get the dequeue count. 1435 * The function may return a fixed number or the number parsed from the user 1436 * data stored in the first processed operation. 1437 * 1438 * @param user_data Dequeued user data. 1439 * @return 1440 * - The number of operations to be dequeued. 1441 */ 1442 typedef uint32_t (*rte_cryptodev_raw_get_dequeue_count_t)(void *user_data); 1443 1444 /** 1445 * Typedef that the user provided to deal with post dequeue operation, such 1446 * as filling status. 1447 * 1448 * @param user_data Dequeued user data. 1449 * @param index Index number of the processed descriptor. 1450 * @param is_op_success Operation status provided by the driver. 1451 */ 1452 typedef void (*rte_cryptodev_raw_post_dequeue_t)(void *user_data, 1453 uint32_t index, uint8_t is_op_success); 1454 1455 /** 1456 * Dequeue a burst of symmetric crypto processing. 1457 * 1458 * @param qp Driver specific queue pair data. 1459 * @param drv_ctx Driver specific context data. 1460 * @param get_dequeue_count User provided callback function to 1461 * obtain dequeue operation count. 1462 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1463 * value is used to pass the maximum 1464 * number of operations to be dequeued. 1465 * @param post_dequeue User provided callback function to 1466 * post-process a dequeued operation. 1467 * @param out_user_data User data pointer array to be retrieve 1468 * from device queue. In case of 1469 * *is_user_data_array* is set there 1470 * should be enough room to store all 1471 * user data. 1472 * @param is_user_data_array Set 1 if every dequeued user data will 1473 * be written into out_user_data array. 1474 * Set 0 if only the first user data will 1475 * be written into out_user_data array. 1476 * @param n_success Driver written value to specific the 1477 * total successful operations count. 1478 * @param dequeue_status Driver written value to specify the 1479 * dequeue status. Possible values: 1480 * - 1: Successfully dequeued the number 1481 * of operations returned. The user 1482 * data previously set during enqueue 1483 * is stored in the "out_user_data". 1484 * - 0: The number of operations returned 1485 * are completed and the user data is 1486 * stored in the "out_user_data", but 1487 * they are not freed from the queue 1488 * until 1489 * rte_cryptodev_raw_dequeue_done() 1490 * is called. 1491 * - negative integer: Error occurred. 1492 * @return 1493 * - The number of operations dequeued or completed but not freed from the 1494 * queue, depends on "dequeue_status" value. 1495 */ 1496 typedef uint32_t (*cryptodev_sym_raw_dequeue_burst_t)(void *qp, 1497 uint8_t *drv_ctx, 1498 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1499 uint32_t max_nb_to_dequeue, 1500 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1501 void **out_user_data, uint8_t is_user_data_array, 1502 uint32_t *n_success, int *dequeue_status); 1503 1504 /** 1505 * Dequeue a symmetric crypto processing. 1506 * 1507 * @param qp Driver specific queue pair data. 1508 * @param drv_ctx Driver specific context data. 1509 * @param dequeue_status Driver written value to specify the 1510 * dequeue status. Possible values: 1511 * - 1: Successfully dequeued a operation. 1512 * The user data is returned. 1513 * - 0: The first operation in the queue 1514 * is completed and the user data 1515 * previously set during enqueue is 1516 * returned, but it is not freed from 1517 * the queue until 1518 * rte_cryptodev_raw_dequeue_done() is 1519 * called. 1520 * - negative integer: Error occurred. 1521 * @param op_status Driver written value to specify 1522 * operation status. 1523 * @return 1524 * - The user data pointer retrieved from device queue or NULL if no 1525 * operation is ready for dequeue. 1526 */ 1527 typedef void * (*cryptodev_sym_raw_dequeue_t)( 1528 void *qp, uint8_t *drv_ctx, int *dequeue_status, 1529 enum rte_crypto_op_status *op_status); 1530 1531 /** 1532 * Context data for raw data-path API crypto process. The buffer of this 1533 * structure is to be allocated by the user application with the size equal 1534 * or bigger than rte_cryptodev_get_raw_dp_ctx_size() returned value. 1535 */ 1536 struct rte_crypto_raw_dp_ctx { 1537 void *qp_data; 1538 1539 cryptodev_sym_raw_enqueue_t enqueue; 1540 cryptodev_sym_raw_enqueue_burst_t enqueue_burst; 1541 cryptodev_sym_raw_operation_done_t enqueue_done; 1542 cryptodev_sym_raw_dequeue_t dequeue; 1543 cryptodev_sym_raw_dequeue_burst_t dequeue_burst; 1544 cryptodev_sym_raw_operation_done_t dequeue_done; 1545 1546 /* Driver specific context data */ 1547 __extension__ uint8_t drv_ctx_data[]; 1548 }; 1549 1550 /** 1551 * Configure raw data-path context data. 1552 * 1553 * @param dev_id The device identifier. 1554 * @param qp_id The index of the queue pair from which to 1555 * retrieve processed packets. The value must be 1556 * in the range [0, nb_queue_pair - 1] previously 1557 * supplied to rte_cryptodev_configure(). 1558 * @param ctx The raw data-path context data. 1559 * @param sess_type Session type. 1560 * @param session_ctx Session context data. 1561 * @param is_update Set 0 if it is to initialize the ctx. 1562 * Set 1 if ctx is initialized and only to update 1563 * session context data. 1564 * @return 1565 * - On success return 0. 1566 * - On failure return negative integer. 1567 * - -EINVAL if input parameters are invalid. 1568 * - -ENOTSUP if crypto device does not support raw DP operations with the 1569 * provided session. 1570 */ 1571 __rte_experimental 1572 int 1573 rte_cryptodev_configure_raw_dp_ctx(uint8_t dev_id, uint16_t qp_id, 1574 struct rte_crypto_raw_dp_ctx *ctx, 1575 enum rte_crypto_op_sess_type sess_type, 1576 union rte_cryptodev_session_ctx session_ctx, 1577 uint8_t is_update); 1578 1579 /** 1580 * Enqueue a vectorized operation descriptor into the device queue but the 1581 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1582 * is called. 1583 * 1584 * @param ctx The initialized raw data-path context data. 1585 * @param vec Vectorized operation descriptor. 1586 * @param ofs Start and stop offsets for auth and cipher 1587 * operations. 1588 * @param user_data The array of user data for dequeue later. 1589 * @param enqueue_status Driver written value to specify the 1590 * enqueue status. Possible values: 1591 * - 1: The number of operations returned are 1592 * enqueued successfully. 1593 * - 0: The number of operations returned are 1594 * cached into the queue but are not processed 1595 * until rte_cryptodev_raw_enqueue_done() is 1596 * called. 1597 * - negative integer: Error occurred. 1598 * @return 1599 * - The number of operations in the descriptor successfully enqueued or 1600 * cached into the queue but not enqueued yet, depends on the 1601 * "enqueue_status" value. 1602 */ 1603 __rte_experimental 1604 uint32_t 1605 rte_cryptodev_raw_enqueue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1606 struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs, 1607 void **user_data, int *enqueue_status); 1608 1609 /** 1610 * Enqueue single raw data vector into the device queue but the driver may or 1611 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1612 * 1613 * @param ctx The initialized raw data-path context data. 1614 * @param data_vec The buffer data vector. 1615 * @param n_data_vecs Number of buffer data vectors. 1616 * @param ofs Start and stop offsets for auth and cipher 1617 * operations. 1618 * @param iv IV virtual and IOVA addresses 1619 * @param digest digest virtual and IOVA addresses 1620 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1621 * depends on the algorithm used. 1622 * @param user_data The user data. 1623 * @return 1624 * - 1: The data vector is enqueued successfully. 1625 * - 0: The data vector is cached into the queue but is not processed 1626 * until rte_cryptodev_raw_enqueue_done() is called. 1627 * - negative integer: failure. 1628 */ 1629 __rte_experimental 1630 static __rte_always_inline int 1631 rte_cryptodev_raw_enqueue(struct rte_crypto_raw_dp_ctx *ctx, 1632 struct rte_crypto_vec *data_vec, uint16_t n_data_vecs, 1633 union rte_crypto_sym_ofs ofs, 1634 struct rte_crypto_va_iova_ptr *iv, 1635 struct rte_crypto_va_iova_ptr *digest, 1636 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1637 void *user_data) 1638 { 1639 return (*ctx->enqueue)(ctx->qp_data, ctx->drv_ctx_data, data_vec, 1640 n_data_vecs, ofs, iv, digest, aad_or_auth_iv, user_data); 1641 } 1642 1643 /** 1644 * Start processing all enqueued operations from last 1645 * rte_cryptodev_configure_raw_dp_ctx() call. 1646 * 1647 * @param ctx The initialized raw data-path context data. 1648 * @param n The number of operations cached. 1649 * @return 1650 * - On success return 0. 1651 * - On failure return negative integer. 1652 */ 1653 __rte_experimental 1654 int 1655 rte_cryptodev_raw_enqueue_done(struct rte_crypto_raw_dp_ctx *ctx, 1656 uint32_t n); 1657 1658 /** 1659 * Dequeue a burst of symmetric crypto processing. 1660 * 1661 * @param ctx The initialized raw data-path context 1662 * data. 1663 * @param get_dequeue_count User provided callback function to 1664 * obtain dequeue operation count. 1665 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1666 * value is used to pass the maximum 1667 * number of operations to be dequeued. 1668 * @param post_dequeue User provided callback function to 1669 * post-process a dequeued operation. 1670 * @param out_user_data User data pointer array to be retrieve 1671 * from device queue. In case of 1672 * *is_user_data_array* is set there 1673 * should be enough room to store all 1674 * user data. 1675 * @param is_user_data_array Set 1 if every dequeued user data will 1676 * be written into out_user_data array. 1677 * Set 0 if only the first user data will 1678 * be written into out_user_data array. 1679 * @param n_success Driver written value to specific the 1680 * total successful operations count. 1681 * @param dequeue_status Driver written value to specify the 1682 * dequeue status. Possible values: 1683 * - 1: Successfully dequeued the number 1684 * of operations returned. The user 1685 * data previously set during enqueue 1686 * is stored in the "out_user_data". 1687 * - 0: The number of operations returned 1688 * are completed and the user data is 1689 * stored in the "out_user_data", but 1690 * they are not freed from the queue 1691 * until 1692 * rte_cryptodev_raw_dequeue_done() 1693 * is called. 1694 * - negative integer: Error occurred. 1695 * @return 1696 * - The number of operations dequeued or completed but not freed from the 1697 * queue, depends on "dequeue_status" value. 1698 */ 1699 __rte_experimental 1700 uint32_t 1701 rte_cryptodev_raw_dequeue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1702 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1703 uint32_t max_nb_to_dequeue, 1704 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1705 void **out_user_data, uint8_t is_user_data_array, 1706 uint32_t *n_success, int *dequeue_status); 1707 1708 /** 1709 * Dequeue a symmetric crypto processing. 1710 * 1711 * @param ctx The initialized raw data-path context 1712 * data. 1713 * @param dequeue_status Driver written value to specify the 1714 * dequeue status. Possible values: 1715 * - 1: Successfully dequeued a operation. 1716 * The user data is returned. 1717 * - 0: The first operation in the queue 1718 * is completed and the user data 1719 * previously set during enqueue is 1720 * returned, but it is not freed from 1721 * the queue until 1722 * rte_cryptodev_raw_dequeue_done() is 1723 * called. 1724 * - negative integer: Error occurred. 1725 * @param op_status Driver written value to specify 1726 * operation status. 1727 * @return 1728 * - The user data pointer retrieved from device queue or NULL if no 1729 * operation is ready for dequeue. 1730 */ 1731 __rte_experimental 1732 static __rte_always_inline void * 1733 rte_cryptodev_raw_dequeue(struct rte_crypto_raw_dp_ctx *ctx, 1734 int *dequeue_status, enum rte_crypto_op_status *op_status) 1735 { 1736 return (*ctx->dequeue)(ctx->qp_data, ctx->drv_ctx_data, dequeue_status, 1737 op_status); 1738 } 1739 1740 /** 1741 * Inform the queue pair dequeue operations is finished. 1742 * 1743 * @param ctx The initialized raw data-path context data. 1744 * @param n The number of operations. 1745 * @return 1746 * - On success return 0. 1747 * - On failure return negative integer. 1748 */ 1749 __rte_experimental 1750 int 1751 rte_cryptodev_raw_dequeue_done(struct rte_crypto_raw_dp_ctx *ctx, 1752 uint32_t n); 1753 1754 /** 1755 * Add a user callback for a given crypto device and queue pair which will be 1756 * called on crypto ops enqueue. 1757 * 1758 * This API configures a function to be called for each burst of crypto ops 1759 * received on a given crypto device queue pair. The return value is a pointer 1760 * that can be used later to remove the callback using 1761 * rte_cryptodev_remove_enq_callback(). 1762 * 1763 * Callbacks registered by application would not survive 1764 * rte_cryptodev_configure() as it reinitializes the callback list. 1765 * It is user responsibility to remove all installed callbacks before 1766 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1767 * Application is expected to call add API after rte_cryptodev_configure(). 1768 * 1769 * Multiple functions can be registered per queue pair & they are called 1770 * in the order they were added. The API does not restrict on maximum number 1771 * of callbacks. 1772 * 1773 * @param dev_id The identifier of the device. 1774 * @param qp_id The index of the queue pair on which ops are 1775 * to be enqueued for processing. The value 1776 * must be in the range [0, nb_queue_pairs - 1] 1777 * previously supplied to 1778 * *rte_cryptodev_configure*. 1779 * @param cb_fn The callback function 1780 * @param cb_arg A generic pointer parameter which will be passed 1781 * to each invocation of the callback function on 1782 * this crypto device and queue pair. 1783 * 1784 * @return 1785 * - NULL on error & rte_errno will contain the error code. 1786 * - On success, a pointer value which can later be used to remove the 1787 * callback. 1788 */ 1789 1790 __rte_experimental 1791 struct rte_cryptodev_cb * 1792 rte_cryptodev_add_enq_callback(uint8_t dev_id, 1793 uint16_t qp_id, 1794 rte_cryptodev_callback_fn cb_fn, 1795 void *cb_arg); 1796 1797 /** 1798 * Remove a user callback function for given crypto device and queue pair. 1799 * 1800 * This function is used to remove enqueue callbacks that were added to a 1801 * crypto device queue pair using rte_cryptodev_add_enq_callback(). 1802 * 1803 * 1804 * 1805 * @param dev_id The identifier of the device. 1806 * @param qp_id The index of the queue pair on which ops are 1807 * to be enqueued. The value must be in the 1808 * range [0, nb_queue_pairs - 1] previously 1809 * supplied to *rte_cryptodev_configure*. 1810 * @param cb Pointer to user supplied callback created via 1811 * rte_cryptodev_add_enq_callback(). 1812 * 1813 * @return 1814 * - 0: Success. Callback was removed. 1815 * - <0: The dev_id or the qp_id is out of range, or the callback 1816 * is NULL or not found for the crypto device queue pair. 1817 */ 1818 1819 __rte_experimental 1820 int rte_cryptodev_remove_enq_callback(uint8_t dev_id, 1821 uint16_t qp_id, 1822 struct rte_cryptodev_cb *cb); 1823 1824 /** 1825 * Add a user callback for a given crypto device and queue pair which will be 1826 * called on crypto ops dequeue. 1827 * 1828 * This API configures a function to be called for each burst of crypto ops 1829 * received on a given crypto device queue pair. The return value is a pointer 1830 * that can be used later to remove the callback using 1831 * rte_cryptodev_remove_deq_callback(). 1832 * 1833 * Callbacks registered by application would not survive 1834 * rte_cryptodev_configure() as it reinitializes the callback list. 1835 * It is user responsibility to remove all installed callbacks before 1836 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1837 * Application is expected to call add API after rte_cryptodev_configure(). 1838 * 1839 * Multiple functions can be registered per queue pair & they are called 1840 * in the order they were added. The API does not restrict on maximum number 1841 * of callbacks. 1842 * 1843 * @param dev_id The identifier of the device. 1844 * @param qp_id The index of the queue pair on which ops are 1845 * to be dequeued. The value must be in the 1846 * range [0, nb_queue_pairs - 1] previously 1847 * supplied to *rte_cryptodev_configure*. 1848 * @param cb_fn The callback function 1849 * @param cb_arg A generic pointer parameter which will be passed 1850 * to each invocation of the callback function on 1851 * this crypto device and queue pair. 1852 * 1853 * @return 1854 * - NULL on error & rte_errno will contain the error code. 1855 * - On success, a pointer value which can later be used to remove the 1856 * callback. 1857 */ 1858 1859 __rte_experimental 1860 struct rte_cryptodev_cb * 1861 rte_cryptodev_add_deq_callback(uint8_t dev_id, 1862 uint16_t qp_id, 1863 rte_cryptodev_callback_fn cb_fn, 1864 void *cb_arg); 1865 1866 /** 1867 * Remove a user callback function for given crypto device and queue pair. 1868 * 1869 * This function is used to remove dequeue callbacks that were added to a 1870 * crypto device queue pair using rte_cryptodev_add_deq_callback(). 1871 * 1872 * 1873 * 1874 * @param dev_id The identifier of the device. 1875 * @param qp_id The index of the queue pair on which ops are 1876 * to be dequeued. The value must be in the 1877 * range [0, nb_queue_pairs - 1] previously 1878 * supplied to *rte_cryptodev_configure*. 1879 * @param cb Pointer to user supplied callback created via 1880 * rte_cryptodev_add_deq_callback(). 1881 * 1882 * @return 1883 * - 0: Success. Callback was removed. 1884 * - <0: The dev_id or the qp_id is out of range, or the callback 1885 * is NULL or not found for the crypto device queue pair. 1886 */ 1887 __rte_experimental 1888 int rte_cryptodev_remove_deq_callback(uint8_t dev_id, 1889 uint16_t qp_id, 1890 struct rte_cryptodev_cb *cb); 1891 1892 #include <rte_cryptodev_core.h> 1893 /** 1894 * 1895 * Dequeue a burst of processed crypto operations from a queue on the crypto 1896 * device. The dequeued operation are stored in *rte_crypto_op* structures 1897 * whose pointers are supplied in the *ops* array. 1898 * 1899 * The rte_cryptodev_dequeue_burst() function returns the number of ops 1900 * actually dequeued, which is the number of *rte_crypto_op* data structures 1901 * effectively supplied into the *ops* array. 1902 * 1903 * A return value equal to *nb_ops* indicates that the queue contained 1904 * at least *nb_ops* operations, and this is likely to signify that other 1905 * processed operations remain in the devices output queue. Applications 1906 * implementing a "retrieve as many processed operations as possible" policy 1907 * can check this specific case and keep invoking the 1908 * rte_cryptodev_dequeue_burst() function until a value less than 1909 * *nb_ops* is returned. 1910 * 1911 * The rte_cryptodev_dequeue_burst() function does not provide any error 1912 * notification to avoid the corresponding overhead. 1913 * 1914 * @param dev_id The symmetric crypto device identifier 1915 * @param qp_id The index of the queue pair from which to 1916 * retrieve processed packets. The value must be 1917 * in the range [0, nb_queue_pair - 1] previously 1918 * supplied to rte_cryptodev_configure(). 1919 * @param ops The address of an array of pointers to 1920 * *rte_crypto_op* structures that must be 1921 * large enough to store *nb_ops* pointers in it. 1922 * @param nb_ops The maximum number of operations to dequeue. 1923 * 1924 * @return 1925 * - The number of operations actually dequeued, which is the number 1926 * of pointers to *rte_crypto_op* structures effectively supplied to the 1927 * *ops* array. 1928 */ 1929 static inline uint16_t 1930 rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, 1931 struct rte_crypto_op **ops, uint16_t nb_ops) 1932 { 1933 const struct rte_crypto_fp_ops *fp_ops; 1934 void *qp; 1935 1936 rte_cryptodev_trace_dequeue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1937 1938 fp_ops = &rte_crypto_fp_ops[dev_id]; 1939 qp = fp_ops->qp.data[qp_id]; 1940 1941 nb_ops = fp_ops->dequeue_burst(qp, ops, nb_ops); 1942 1943 #ifdef RTE_CRYPTO_CALLBACKS 1944 if (unlikely(fp_ops->qp.deq_cb != NULL)) { 1945 struct rte_cryptodev_cb_rcu *list; 1946 struct rte_cryptodev_cb *cb; 1947 1948 /* __ATOMIC_RELEASE memory order was used when the 1949 * call back was inserted into the list. 1950 * Since there is a clear dependency between loading 1951 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1952 * not required. 1953 */ 1954 list = &fp_ops->qp.deq_cb[qp_id]; 1955 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1956 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1957 1958 while (cb != NULL) { 1959 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1960 cb->arg); 1961 cb = cb->next; 1962 }; 1963 1964 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1965 } 1966 #endif 1967 return nb_ops; 1968 } 1969 1970 /** 1971 * Enqueue a burst of operations for processing on a crypto device. 1972 * 1973 * The rte_cryptodev_enqueue_burst() function is invoked to place 1974 * crypto operations on the queue *qp_id* of the device designated by 1975 * its *dev_id*. 1976 * 1977 * The *nb_ops* parameter is the number of operations to process which are 1978 * supplied in the *ops* array of *rte_crypto_op* structures. 1979 * 1980 * The rte_cryptodev_enqueue_burst() function returns the number of 1981 * operations it actually enqueued for processing. A return value equal to 1982 * *nb_ops* means that all packets have been enqueued. 1983 * 1984 * @param dev_id The identifier of the device. 1985 * @param qp_id The index of the queue pair which packets are 1986 * to be enqueued for processing. The value 1987 * must be in the range [0, nb_queue_pairs - 1] 1988 * previously supplied to 1989 * *rte_cryptodev_configure*. 1990 * @param ops The address of an array of *nb_ops* pointers 1991 * to *rte_crypto_op* structures which contain 1992 * the crypto operations to be processed. 1993 * @param nb_ops The number of operations to process. 1994 * 1995 * @return 1996 * The number of operations actually enqueued on the crypto device. The return 1997 * value can be less than the value of the *nb_ops* parameter when the 1998 * crypto devices queue is full or if invalid parameters are specified in 1999 * a *rte_crypto_op*. 2000 */ 2001 static inline uint16_t 2002 rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, 2003 struct rte_crypto_op **ops, uint16_t nb_ops) 2004 { 2005 const struct rte_crypto_fp_ops *fp_ops; 2006 void *qp; 2007 2008 fp_ops = &rte_crypto_fp_ops[dev_id]; 2009 qp = fp_ops->qp.data[qp_id]; 2010 #ifdef RTE_CRYPTO_CALLBACKS 2011 if (unlikely(fp_ops->qp.enq_cb != NULL)) { 2012 struct rte_cryptodev_cb_rcu *list; 2013 struct rte_cryptodev_cb *cb; 2014 2015 /* __ATOMIC_RELEASE memory order was used when the 2016 * call back was inserted into the list. 2017 * Since there is a clear dependency between loading 2018 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 2019 * not required. 2020 */ 2021 list = &fp_ops->qp.enq_cb[qp_id]; 2022 rte_rcu_qsbr_thread_online(list->qsbr, 0); 2023 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 2024 2025 while (cb != NULL) { 2026 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 2027 cb->arg); 2028 cb = cb->next; 2029 }; 2030 2031 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 2032 } 2033 #endif 2034 2035 rte_cryptodev_trace_enqueue_burst(dev_id, qp_id, (void **)ops, nb_ops); 2036 return fp_ops->enqueue_burst(qp, ops, nb_ops); 2037 } 2038 2039 2040 2041 #ifdef __cplusplus 2042 } 2043 #endif 2044 2045 #endif /* _RTE_CRYPTODEV_H_ */ 2046