1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2020 Intel Corporation. 3 */ 4 5 #ifndef _RTE_CRYPTODEV_H_ 6 #define _RTE_CRYPTODEV_H_ 7 8 /** 9 * @file rte_cryptodev.h 10 * 11 * RTE Cryptographic Device APIs 12 * 13 * Defines RTE Crypto Device APIs for the provisioning of cipher and 14 * authentication operations. 15 */ 16 17 #ifdef __cplusplus 18 extern "C" { 19 #endif 20 21 #include <rte_compat.h> 22 #include "rte_kvargs.h" 23 #include "rte_crypto.h" 24 #include <rte_common.h> 25 #include <rte_rcu_qsbr.h> 26 27 #include "rte_cryptodev_trace_fp.h" 28 29 extern const char **rte_cyptodev_names; 30 31 /* Logging Macros */ 32 33 #define CDEV_LOG_ERR(...) \ 34 RTE_LOG(ERR, CRYPTODEV, \ 35 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 36 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 37 38 #define CDEV_LOG_INFO(...) \ 39 RTE_LOG(INFO, CRYPTODEV, \ 40 RTE_FMT(RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 41 RTE_FMT_TAIL(__VA_ARGS__,))) 42 43 #define CDEV_LOG_DEBUG(...) \ 44 RTE_LOG(DEBUG, CRYPTODEV, \ 45 RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 46 __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,))) 47 48 #define CDEV_PMD_TRACE(...) \ 49 RTE_LOG(DEBUG, CRYPTODEV, \ 50 RTE_FMT("[%s] %s: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \ 51 dev, __func__, RTE_FMT_TAIL(__VA_ARGS__,))) 52 53 /** 54 * A macro that points to an offset from the start 55 * of the crypto operation structure (rte_crypto_op) 56 * 57 * The returned pointer is cast to type t. 58 * 59 * @param c 60 * The crypto operation. 61 * @param o 62 * The offset from the start of the crypto operation. 63 * @param t 64 * The type to cast the result into. 65 */ 66 #define rte_crypto_op_ctod_offset(c, t, o) \ 67 ((t)((char *)(c) + (o))) 68 69 /** 70 * A macro that returns the physical address that points 71 * to an offset from the start of the crypto operation 72 * (rte_crypto_op) 73 * 74 * @param c 75 * The crypto operation. 76 * @param o 77 * The offset from the start of the crypto operation 78 * to calculate address from. 79 */ 80 #define rte_crypto_op_ctophys_offset(c, o) \ 81 (rte_iova_t)((c)->phys_addr + (o)) 82 83 /** 84 * Crypto parameters range description 85 */ 86 struct rte_crypto_param_range { 87 uint16_t min; /**< minimum size */ 88 uint16_t max; /**< maximum size */ 89 uint16_t increment; 90 /**< if a range of sizes are supported, 91 * this parameter is used to indicate 92 * increments in byte size that are supported 93 * between the minimum and maximum 94 */ 95 }; 96 97 /** 98 * Data-unit supported lengths of cipher algorithms. 99 * A bit can represent any set of data-unit sizes 100 * (single size, multiple size, range, etc). 101 */ 102 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES RTE_BIT32(0) 103 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES RTE_BIT32(1) 104 #define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES RTE_BIT32(2) 105 106 /** 107 * Symmetric Crypto Capability 108 */ 109 struct rte_cryptodev_symmetric_capability { 110 enum rte_crypto_sym_xform_type xform_type; 111 /**< Transform type : Authentication / Cipher / AEAD */ 112 RTE_STD_C11 113 union { 114 struct { 115 enum rte_crypto_auth_algorithm algo; 116 /**< authentication algorithm */ 117 uint16_t block_size; 118 /**< algorithm block size */ 119 struct rte_crypto_param_range key_size; 120 /**< auth key size range */ 121 struct rte_crypto_param_range digest_size; 122 /**< digest size range */ 123 struct rte_crypto_param_range aad_size; 124 /**< Additional authentication data size range */ 125 struct rte_crypto_param_range iv_size; 126 /**< Initialisation vector data size range */ 127 } auth; 128 /**< Symmetric Authentication transform capabilities */ 129 struct { 130 enum rte_crypto_cipher_algorithm algo; 131 /**< cipher algorithm */ 132 uint16_t block_size; 133 /**< algorithm block size */ 134 struct rte_crypto_param_range key_size; 135 /**< cipher key size range */ 136 struct rte_crypto_param_range iv_size; 137 /**< Initialisation vector data size range */ 138 uint32_t dataunit_set; 139 /**< 140 * Supported data-unit lengths: 141 * RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_* bits 142 * or 0 for lengths defined in the algorithm standard. 143 */ 144 } cipher; 145 /**< Symmetric Cipher transform capabilities */ 146 struct { 147 enum rte_crypto_aead_algorithm algo; 148 /**< AEAD algorithm */ 149 uint16_t block_size; 150 /**< algorithm block size */ 151 struct rte_crypto_param_range key_size; 152 /**< AEAD key size range */ 153 struct rte_crypto_param_range digest_size; 154 /**< digest size range */ 155 struct rte_crypto_param_range aad_size; 156 /**< Additional authentication data size range */ 157 struct rte_crypto_param_range iv_size; 158 /**< Initialisation vector data size range */ 159 } aead; 160 }; 161 }; 162 163 /** 164 * Asymmetric Xform Crypto Capability 165 * 166 */ 167 struct rte_cryptodev_asymmetric_xform_capability { 168 enum rte_crypto_asym_xform_type xform_type; 169 /**< Transform type: RSA/MODEXP/DH/DSA/MODINV */ 170 171 uint32_t op_types; 172 /**< 173 * Bitmask for supported rte_crypto_asym_op_type or 174 * rte_crypto_asym_ke_type. Which enum is used is determined 175 * by the rte_crypto_asym_xform_type. For key exchange algorithms 176 * like Diffie-Hellman it is rte_crypto_asym_ke_type, for others 177 * it is rte_crypto_asym_op_type. 178 */ 179 180 __extension__ 181 union { 182 struct rte_crypto_param_range modlen; 183 /**< Range of modulus length supported by modulus based xform. 184 * Value 0 mean implementation default 185 */ 186 }; 187 }; 188 189 /** 190 * Asymmetric Crypto Capability 191 * 192 */ 193 struct rte_cryptodev_asymmetric_capability { 194 struct rte_cryptodev_asymmetric_xform_capability xform_capa; 195 }; 196 197 198 /** Structure used to capture a capability of a crypto device */ 199 struct rte_cryptodev_capabilities { 200 enum rte_crypto_op_type op; 201 /**< Operation type */ 202 203 RTE_STD_C11 204 union { 205 struct rte_cryptodev_symmetric_capability sym; 206 /**< Symmetric operation capability parameters */ 207 struct rte_cryptodev_asymmetric_capability asym; 208 /**< Asymmetric operation capability parameters */ 209 }; 210 }; 211 212 /** Structure used to describe crypto algorithms */ 213 struct rte_cryptodev_sym_capability_idx { 214 enum rte_crypto_sym_xform_type type; 215 union { 216 enum rte_crypto_cipher_algorithm cipher; 217 enum rte_crypto_auth_algorithm auth; 218 enum rte_crypto_aead_algorithm aead; 219 } algo; 220 }; 221 222 /** 223 * Structure used to describe asymmetric crypto xforms 224 * Each xform maps to one asym algorithm. 225 * 226 */ 227 struct rte_cryptodev_asym_capability_idx { 228 enum rte_crypto_asym_xform_type type; 229 /**< Asymmetric xform (algo) type */ 230 }; 231 232 /** 233 * Provide capabilities available for defined device and algorithm 234 * 235 * @param dev_id The identifier of the device. 236 * @param idx Description of crypto algorithms. 237 * 238 * @return 239 * - Return description of the symmetric crypto capability if exist. 240 * - Return NULL if the capability not exist. 241 */ 242 const struct rte_cryptodev_symmetric_capability * 243 rte_cryptodev_sym_capability_get(uint8_t dev_id, 244 const struct rte_cryptodev_sym_capability_idx *idx); 245 246 /** 247 * Provide capabilities available for defined device and xform 248 * 249 * @param dev_id The identifier of the device. 250 * @param idx Description of asym crypto xform. 251 * 252 * @return 253 * - Return description of the asymmetric crypto capability if exist. 254 * - Return NULL if the capability not exist. 255 */ 256 __rte_experimental 257 const struct rte_cryptodev_asymmetric_xform_capability * 258 rte_cryptodev_asym_capability_get(uint8_t dev_id, 259 const struct rte_cryptodev_asym_capability_idx *idx); 260 261 /** 262 * Check if key size and initial vector are supported 263 * in crypto cipher capability 264 * 265 * @param capability Description of the symmetric crypto capability. 266 * @param key_size Cipher key size. 267 * @param iv_size Cipher initial vector size. 268 * 269 * @return 270 * - Return 0 if the parameters are in range of the capability. 271 * - Return -1 if the parameters are out of range of the capability. 272 */ 273 int 274 rte_cryptodev_sym_capability_check_cipher( 275 const struct rte_cryptodev_symmetric_capability *capability, 276 uint16_t key_size, uint16_t iv_size); 277 278 /** 279 * Check if key size and initial vector are supported 280 * in crypto auth capability 281 * 282 * @param capability Description of the symmetric crypto capability. 283 * @param key_size Auth key size. 284 * @param digest_size Auth digest size. 285 * @param iv_size Auth initial vector size. 286 * 287 * @return 288 * - Return 0 if the parameters are in range of the capability. 289 * - Return -1 if the parameters are out of range of the capability. 290 */ 291 int 292 rte_cryptodev_sym_capability_check_auth( 293 const struct rte_cryptodev_symmetric_capability *capability, 294 uint16_t key_size, uint16_t digest_size, uint16_t iv_size); 295 296 /** 297 * Check if key, digest, AAD and initial vector sizes are supported 298 * in crypto AEAD capability 299 * 300 * @param capability Description of the symmetric crypto capability. 301 * @param key_size AEAD key size. 302 * @param digest_size AEAD digest size. 303 * @param aad_size AEAD AAD size. 304 * @param iv_size AEAD IV size. 305 * 306 * @return 307 * - Return 0 if the parameters are in range of the capability. 308 * - Return -1 if the parameters are out of range of the capability. 309 */ 310 int 311 rte_cryptodev_sym_capability_check_aead( 312 const struct rte_cryptodev_symmetric_capability *capability, 313 uint16_t key_size, uint16_t digest_size, uint16_t aad_size, 314 uint16_t iv_size); 315 316 /** 317 * Check if op type is supported 318 * 319 * @param capability Description of the asymmetric crypto capability. 320 * @param op_type op type 321 * 322 * @return 323 * - Return 1 if the op type is supported 324 * - Return 0 if unsupported 325 */ 326 __rte_experimental 327 int 328 rte_cryptodev_asym_xform_capability_check_optype( 329 const struct rte_cryptodev_asymmetric_xform_capability *capability, 330 enum rte_crypto_asym_op_type op_type); 331 332 /** 333 * Check if modulus length is in supported range 334 * 335 * @param capability Description of the asymmetric crypto capability. 336 * @param modlen modulus length. 337 * 338 * @return 339 * - Return 0 if the parameters are in range of the capability. 340 * - Return -1 if the parameters are out of range of the capability. 341 */ 342 __rte_experimental 343 int 344 rte_cryptodev_asym_xform_capability_check_modlen( 345 const struct rte_cryptodev_asymmetric_xform_capability *capability, 346 uint16_t modlen); 347 348 /** 349 * Provide the cipher algorithm enum, given an algorithm string 350 * 351 * @param algo_enum A pointer to the cipher algorithm 352 * enum to be filled 353 * @param algo_string Authentication algo string 354 * 355 * @return 356 * - Return -1 if string is not valid 357 * - Return 0 is the string is valid 358 */ 359 int 360 rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum, 361 const char *algo_string); 362 363 /** 364 * Provide the authentication algorithm enum, given an algorithm string 365 * 366 * @param algo_enum A pointer to the authentication algorithm 367 * enum to be filled 368 * @param algo_string Authentication algo string 369 * 370 * @return 371 * - Return -1 if string is not valid 372 * - Return 0 is the string is valid 373 */ 374 int 375 rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum, 376 const char *algo_string); 377 378 /** 379 * Provide the AEAD algorithm enum, given an algorithm string 380 * 381 * @param algo_enum A pointer to the AEAD algorithm 382 * enum to be filled 383 * @param algo_string AEAD algorithm string 384 * 385 * @return 386 * - Return -1 if string is not valid 387 * - Return 0 is the string is valid 388 */ 389 int 390 rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum, 391 const char *algo_string); 392 393 /** 394 * Provide the Asymmetric xform enum, given an xform string 395 * 396 * @param xform_enum A pointer to the xform type 397 * enum to be filled 398 * @param xform_string xform string 399 * 400 * @return 401 * - Return -1 if string is not valid 402 * - Return 0 if the string is valid 403 */ 404 __rte_experimental 405 int 406 rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum, 407 const char *xform_string); 408 409 /** 410 * Provide the cipher algorithm string, given an algorithm enum. 411 * 412 * @param algo_enum cipher algorithm enum 413 * 414 * @return 415 * - Return NULL if enum is not valid 416 * - Return algo_string corresponding to enum 417 */ 418 __rte_experimental 419 const char * 420 rte_cryptodev_get_cipher_algo_string(enum rte_crypto_cipher_algorithm algo_enum); 421 422 /** 423 * Provide the authentication algorithm string, given an algorithm enum. 424 * 425 * @param algo_enum auth algorithm enum 426 * 427 * @return 428 * - Return NULL if enum is not valid 429 * - Return algo_string corresponding to enum 430 */ 431 __rte_experimental 432 const char * 433 rte_cryptodev_get_auth_algo_string(enum rte_crypto_auth_algorithm algo_enum); 434 435 /** 436 * Provide the AEAD algorithm string, given an algorithm enum. 437 * 438 * @param algo_enum AEAD algorithm enum 439 * 440 * @return 441 * - Return NULL if enum is not valid 442 * - Return algo_string corresponding to enum 443 */ 444 __rte_experimental 445 const char * 446 rte_cryptodev_get_aead_algo_string(enum rte_crypto_aead_algorithm algo_enum); 447 448 /** 449 * Provide the Asymmetric xform string, given an xform enum. 450 * 451 * @param xform_enum xform type enum 452 * 453 * @return 454 * - Return NULL, if enum is not valid. 455 * - Return xform string, for valid enum. 456 */ 457 __rte_experimental 458 const char * 459 rte_cryptodev_asym_get_xform_string(enum rte_crypto_asym_xform_type xform_enum); 460 461 462 /** Macro used at end of crypto PMD list */ 463 #define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \ 464 { RTE_CRYPTO_OP_TYPE_UNDEFINED } 465 466 467 /** 468 * Crypto device supported feature flags 469 * 470 * Note: 471 * New features flags should be added to the end of the list 472 * 473 * Keep these flags synchronised with rte_cryptodev_get_feature_name() 474 */ 475 #define RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO (1ULL << 0) 476 /**< Symmetric crypto operations are supported */ 477 #define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO (1ULL << 1) 478 /**< Asymmetric crypto operations are supported */ 479 #define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING (1ULL << 2) 480 /**< Chaining symmetric crypto operations are supported */ 481 #define RTE_CRYPTODEV_FF_CPU_SSE (1ULL << 3) 482 /**< Utilises CPU SIMD SSE instructions */ 483 #define RTE_CRYPTODEV_FF_CPU_AVX (1ULL << 4) 484 /**< Utilises CPU SIMD AVX instructions */ 485 #define RTE_CRYPTODEV_FF_CPU_AVX2 (1ULL << 5) 486 /**< Utilises CPU SIMD AVX2 instructions */ 487 #define RTE_CRYPTODEV_FF_CPU_AESNI (1ULL << 6) 488 /**< Utilises CPU AES-NI instructions */ 489 #define RTE_CRYPTODEV_FF_HW_ACCELERATED (1ULL << 7) 490 /**< Operations are off-loaded to an 491 * external hardware accelerator 492 */ 493 #define RTE_CRYPTODEV_FF_CPU_AVX512 (1ULL << 8) 494 /**< Utilises CPU SIMD AVX512 instructions */ 495 #define RTE_CRYPTODEV_FF_IN_PLACE_SGL (1ULL << 9) 496 /**< In-place Scatter-gather (SGL) buffers, with multiple segments, 497 * are supported 498 */ 499 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT (1ULL << 10) 500 /**< Out-of-place Scatter-gather (SGL) buffers are 501 * supported in input and output 502 */ 503 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT (1ULL << 11) 504 /**< Out-of-place Scatter-gather (SGL) buffers are supported 505 * in input, combined with linear buffers (LB), with a 506 * single segment in output 507 */ 508 #define RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT (1ULL << 12) 509 /**< Out-of-place Scatter-gather (SGL) buffers are supported 510 * in output, combined with linear buffers (LB) in input 511 */ 512 #define RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT (1ULL << 13) 513 /**< Out-of-place linear buffers (LB) are supported in input and output */ 514 #define RTE_CRYPTODEV_FF_CPU_NEON (1ULL << 14) 515 /**< Utilises CPU NEON instructions */ 516 #define RTE_CRYPTODEV_FF_CPU_ARM_CE (1ULL << 15) 517 /**< Utilises ARM CPU Cryptographic Extensions */ 518 #define RTE_CRYPTODEV_FF_SECURITY (1ULL << 16) 519 /**< Support Security Protocol Processing */ 520 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP (1ULL << 17) 521 /**< Support RSA Private Key OP with exponent */ 522 #define RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT (1ULL << 18) 523 /**< Support RSA Private Key OP with CRT (quintuple) Keys */ 524 #define RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED (1ULL << 19) 525 /**< Support encrypted-digest operations where digest is appended to data */ 526 #define RTE_CRYPTODEV_FF_ASYM_SESSIONLESS (1ULL << 20) 527 /**< Support asymmetric session-less operations */ 528 #define RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO (1ULL << 21) 529 /**< Support symmetric cpu-crypto processing */ 530 #define RTE_CRYPTODEV_FF_SYM_SESSIONLESS (1ULL << 22) 531 /**< Support symmetric session-less operations */ 532 #define RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA (1ULL << 23) 533 /**< Support operations on data which is not byte aligned */ 534 #define RTE_CRYPTODEV_FF_SYM_RAW_DP (1ULL << 24) 535 /**< Support accelerator specific symmetric raw data-path APIs */ 536 #define RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS (1ULL << 25) 537 /**< Support operations on multiple data-units message */ 538 #define RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY (1ULL << 26) 539 /**< Support wrapped key in cipher xform */ 540 #define RTE_CRYPTODEV_FF_SECURITY_INNER_CSUM (1ULL << 27) 541 /**< Support inner checksum computation/verification */ 542 543 /** 544 * Get the name of a crypto device feature flag 545 * 546 * @param flag The mask describing the flag. 547 * 548 * @return 549 * The name of this flag, or NULL if it's not a valid feature flag. 550 */ 551 552 extern const char * 553 rte_cryptodev_get_feature_name(uint64_t flag); 554 555 /** Crypto device information */ 556 struct rte_cryptodev_info { 557 const char *driver_name; /**< Driver name. */ 558 uint8_t driver_id; /**< Driver identifier */ 559 struct rte_device *device; /**< Generic device information. */ 560 561 uint64_t feature_flags; 562 /**< Feature flags exposes HW/SW features for the given device */ 563 564 const struct rte_cryptodev_capabilities *capabilities; 565 /**< Array of devices supported capabilities */ 566 567 unsigned max_nb_queue_pairs; 568 /**< Maximum number of queues pairs supported by device. */ 569 570 uint16_t min_mbuf_headroom_req; 571 /**< Minimum mbuf headroom required by device */ 572 573 uint16_t min_mbuf_tailroom_req; 574 /**< Minimum mbuf tailroom required by device */ 575 576 struct { 577 unsigned max_nb_sessions; 578 /**< Maximum number of sessions supported by device. 579 * If 0, the device does not have any limitation in 580 * number of sessions that can be used. 581 */ 582 } sym; 583 }; 584 585 #define RTE_CRYPTODEV_DETACHED (0) 586 #define RTE_CRYPTODEV_ATTACHED (1) 587 588 /** Definitions of Crypto device event types */ 589 enum rte_cryptodev_event_type { 590 RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */ 591 RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */ 592 RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */ 593 }; 594 595 /** Crypto device queue pair configuration structure. */ 596 struct rte_cryptodev_qp_conf { 597 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */ 598 struct rte_mempool *mp_session; 599 /**< The mempool for creating session in sessionless mode */ 600 }; 601 602 /** 603 * Function type used for processing crypto ops when enqueue/dequeue burst is 604 * called. 605 * 606 * The callback function is called on enqueue/dequeue burst immediately. 607 * 608 * @param dev_id The identifier of the device. 609 * @param qp_id The index of the queue pair on which ops are 610 * enqueued/dequeued. The value must be in the 611 * range [0, nb_queue_pairs - 1] previously 612 * supplied to *rte_cryptodev_configure*. 613 * @param ops The address of an array of *nb_ops* pointers 614 * to *rte_crypto_op* structures which contain 615 * the crypto operations to be processed. 616 * @param nb_ops The number of operations to process. 617 * @param user_param The arbitrary user parameter passed in by the 618 * application when the callback was originally 619 * registered. 620 * @return The number of ops to be enqueued to the 621 * crypto device. 622 */ 623 typedef uint16_t (*rte_cryptodev_callback_fn)(uint16_t dev_id, uint16_t qp_id, 624 struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param); 625 626 /** 627 * Typedef for application callback function to be registered by application 628 * software for notification of device events 629 * 630 * @param dev_id Crypto device identifier 631 * @param event Crypto device event to register for notification of. 632 * @param cb_arg User specified parameter to be passed as to passed to 633 * users callback function. 634 */ 635 typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id, 636 enum rte_cryptodev_event_type event, void *cb_arg); 637 638 639 /** Crypto Device statistics */ 640 struct rte_cryptodev_stats { 641 uint64_t enqueued_count; 642 /**< Count of all operations enqueued */ 643 uint64_t dequeued_count; 644 /**< Count of all operations dequeued */ 645 646 uint64_t enqueue_err_count; 647 /**< Total error count on operations enqueued */ 648 uint64_t dequeue_err_count; 649 /**< Total error count on operations dequeued */ 650 }; 651 652 #define RTE_CRYPTODEV_NAME_MAX_LEN (64) 653 /**< Max length of name of crypto PMD */ 654 655 /** 656 * Get the device identifier for the named crypto device. 657 * 658 * @param name device name to select the device structure. 659 * 660 * @return 661 * - Returns crypto device identifier on success. 662 * - Return -1 on failure to find named crypto device. 663 */ 664 extern int 665 rte_cryptodev_get_dev_id(const char *name); 666 667 /** 668 * Get the crypto device name given a device identifier. 669 * 670 * @param dev_id 671 * The identifier of the device 672 * 673 * @return 674 * - Returns crypto device name. 675 * - Returns NULL if crypto device is not present. 676 */ 677 extern const char * 678 rte_cryptodev_name_get(uint8_t dev_id); 679 680 /** 681 * Get the total number of crypto devices that have been successfully 682 * initialised. 683 * 684 * @return 685 * - The total number of usable crypto devices. 686 */ 687 extern uint8_t 688 rte_cryptodev_count(void); 689 690 /** 691 * Get number of crypto device defined type. 692 * 693 * @param driver_id driver identifier. 694 * 695 * @return 696 * Returns number of crypto device. 697 */ 698 extern uint8_t 699 rte_cryptodev_device_count_by_driver(uint8_t driver_id); 700 701 /** 702 * Get number and identifiers of attached crypto devices that 703 * use the same crypto driver. 704 * 705 * @param driver_name driver name. 706 * @param devices output devices identifiers. 707 * @param nb_devices maximal number of devices. 708 * 709 * @return 710 * Returns number of attached crypto device. 711 */ 712 uint8_t 713 rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices, 714 uint8_t nb_devices); 715 /* 716 * Return the NUMA socket to which a device is connected 717 * 718 * @param dev_id 719 * The identifier of the device 720 * @return 721 * The NUMA socket id to which the device is connected or 722 * a default of zero if the socket could not be determined. 723 * -1 if returned is the dev_id value is out of range. 724 */ 725 extern int 726 rte_cryptodev_socket_id(uint8_t dev_id); 727 728 /** Crypto device configuration structure */ 729 struct rte_cryptodev_config { 730 int socket_id; /**< Socket to allocate resources on */ 731 uint16_t nb_queue_pairs; 732 /**< Number of queue pairs to configure on device */ 733 uint64_t ff_disable; 734 /**< Feature flags to be disabled. Only the following features are 735 * allowed to be disabled, 736 * - RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO 737 * - RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO 738 * - RTE_CRYTPODEV_FF_SECURITY 739 */ 740 }; 741 742 /** 743 * Configure a device. 744 * 745 * This function must be invoked first before any other function in the 746 * API. This function can also be re-invoked when a device is in the 747 * stopped state. 748 * 749 * @param dev_id The identifier of the device to configure. 750 * @param config The crypto device configuration structure. 751 * 752 * @return 753 * - 0: Success, device configured. 754 * - <0: Error code returned by the driver configuration function. 755 */ 756 extern int 757 rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config); 758 759 /** 760 * Start an device. 761 * 762 * The device start step is the last one and consists of setting the configured 763 * offload features and in starting the transmit and the receive units of the 764 * device. 765 * On success, all basic functions exported by the API (link status, 766 * receive/transmit, and so on) can be invoked. 767 * 768 * @param dev_id 769 * The identifier of the device. 770 * @return 771 * - 0: Success, device started. 772 * - <0: Error code of the driver device start function. 773 */ 774 extern int 775 rte_cryptodev_start(uint8_t dev_id); 776 777 /** 778 * Stop an device. The device can be restarted with a call to 779 * rte_cryptodev_start() 780 * 781 * @param dev_id The identifier of the device. 782 */ 783 extern void 784 rte_cryptodev_stop(uint8_t dev_id); 785 786 /** 787 * Close an device. The device cannot be restarted! 788 * 789 * @param dev_id The identifier of the device. 790 * 791 * @return 792 * - 0 on successfully closing device 793 * - <0 on failure to close device 794 */ 795 extern int 796 rte_cryptodev_close(uint8_t dev_id); 797 798 /** 799 * Allocate and set up a receive queue pair for a device. 800 * 801 * 802 * @param dev_id The identifier of the device. 803 * @param queue_pair_id The index of the queue pairs to set up. The 804 * value must be in the range [0, nb_queue_pair 805 * - 1] previously supplied to 806 * rte_cryptodev_configure(). 807 * @param qp_conf The pointer to the configuration data to be 808 * used for the queue pair. 809 * @param socket_id The *socket_id* argument is the socket 810 * identifier in case of NUMA. The value can be 811 * *SOCKET_ID_ANY* if there is no NUMA constraint 812 * for the DMA memory allocated for the receive 813 * queue pair. 814 * 815 * @return 816 * - 0: Success, queue pair correctly set up. 817 * - <0: Queue pair configuration failed 818 */ 819 extern int 820 rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 821 const struct rte_cryptodev_qp_conf *qp_conf, int socket_id); 822 823 /** 824 * Get the status of queue pairs setup on a specific crypto device 825 * 826 * @param dev_id Crypto device identifier. 827 * @param queue_pair_id The index of the queue pairs to set up. The 828 * value must be in the range [0, nb_queue_pair 829 * - 1] previously supplied to 830 * rte_cryptodev_configure(). 831 * @return 832 * - 0: qp was not configured 833 * - 1: qp was configured 834 * - -EINVAL: device was not configured 835 */ 836 __rte_experimental 837 int 838 rte_cryptodev_get_qp_status(uint8_t dev_id, uint16_t queue_pair_id); 839 840 /** 841 * Get the number of queue pairs on a specific crypto device 842 * 843 * @param dev_id Crypto device identifier. 844 * @return 845 * - The number of configured queue pairs. 846 */ 847 extern uint16_t 848 rte_cryptodev_queue_pair_count(uint8_t dev_id); 849 850 851 /** 852 * Retrieve the general I/O statistics of a device. 853 * 854 * @param dev_id The identifier of the device. 855 * @param stats A pointer to a structure of type 856 * *rte_cryptodev_stats* to be filled with the 857 * values of device counters. 858 * @return 859 * - Zero if successful. 860 * - Non-zero otherwise. 861 */ 862 extern int 863 rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats); 864 865 /** 866 * Reset the general I/O statistics of a device. 867 * 868 * @param dev_id The identifier of the device. 869 */ 870 extern void 871 rte_cryptodev_stats_reset(uint8_t dev_id); 872 873 /** 874 * Retrieve the contextual information of a device. 875 * 876 * @param dev_id The identifier of the device. 877 * @param dev_info A pointer to a structure of type 878 * *rte_cryptodev_info* to be filled with the 879 * contextual information of the device. 880 * 881 * @note The capabilities field of dev_info is set to point to the first 882 * element of an array of struct rte_cryptodev_capabilities. The element after 883 * the last valid element has it's op field set to 884 * RTE_CRYPTO_OP_TYPE_UNDEFINED. 885 */ 886 extern void 887 rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info); 888 889 890 /** 891 * Register a callback function for specific device id. 892 * 893 * @param dev_id Device id. 894 * @param event Event interested. 895 * @param cb_fn User supplied callback function to be called. 896 * @param cb_arg Pointer to the parameters for the registered 897 * callback. 898 * 899 * @return 900 * - On success, zero. 901 * - On failure, a negative value. 902 */ 903 extern int 904 rte_cryptodev_callback_register(uint8_t dev_id, 905 enum rte_cryptodev_event_type event, 906 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 907 908 /** 909 * Unregister a callback function for specific device id. 910 * 911 * @param dev_id The device identifier. 912 * @param event Event interested. 913 * @param cb_fn User supplied callback function to be called. 914 * @param cb_arg Pointer to the parameters for the registered 915 * callback. 916 * 917 * @return 918 * - On success, zero. 919 * - On failure, a negative value. 920 */ 921 extern int 922 rte_cryptodev_callback_unregister(uint8_t dev_id, 923 enum rte_cryptodev_event_type event, 924 rte_cryptodev_cb_fn cb_fn, void *cb_arg); 925 926 struct rte_cryptodev_callback; 927 928 /** Structure to keep track of registered callbacks */ 929 RTE_TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback); 930 931 /** 932 * Structure used to hold information about the callbacks to be called for a 933 * queue pair on enqueue/dequeue. 934 */ 935 struct rte_cryptodev_cb { 936 struct rte_cryptodev_cb *next; 937 /**< Pointer to next callback */ 938 rte_cryptodev_callback_fn fn; 939 /**< Pointer to callback function */ 940 void *arg; 941 /**< Pointer to argument */ 942 }; 943 944 /** 945 * @internal 946 * Structure used to hold information about the RCU for a queue pair. 947 */ 948 struct rte_cryptodev_cb_rcu { 949 struct rte_cryptodev_cb *next; 950 /**< Pointer to next callback */ 951 struct rte_rcu_qsbr *qsbr; 952 /**< RCU QSBR variable per queue pair */ 953 }; 954 955 void * 956 rte_cryptodev_get_sec_ctx(uint8_t dev_id); 957 958 /** 959 * Create a symmetric session mempool. 960 * 961 * @param name 962 * The unique mempool name. 963 * @param nb_elts 964 * The number of elements in the mempool. 965 * @param elt_size 966 * The size of the element. This value will be ignored if it is smaller than 967 * the minimum session header size required for the system. For the user who 968 * want to use the same mempool for sym session and session private data it 969 * can be the maximum value of all existing devices' private data and session 970 * header sizes. 971 * @param cache_size 972 * The number of per-lcore cache elements 973 * @param priv_size 974 * The private data size of each session. 975 * @param socket_id 976 * The *socket_id* argument is the socket identifier in the case of 977 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 978 * constraint for the reserved zone. 979 * 980 * @return 981 * - On success return size of the session 982 * - On failure returns 0 983 */ 984 __rte_experimental 985 struct rte_mempool * 986 rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, 987 uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, 988 int socket_id); 989 990 991 /** 992 * Create an asymmetric session mempool. 993 * 994 * @param name 995 * The unique mempool name. 996 * @param nb_elts 997 * The number of elements in the mempool. 998 * @param cache_size 999 * The number of per-lcore cache elements 1000 * @param user_data_size 1001 * The size of user data to be placed after session private data. 1002 * @param socket_id 1003 * The *socket_id* argument is the socket identifier in the case of 1004 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA 1005 * constraint for the reserved zone. 1006 * 1007 * @return 1008 * - On success return mempool 1009 * - On failure returns NULL 1010 */ 1011 __rte_experimental 1012 struct rte_mempool * 1013 rte_cryptodev_asym_session_pool_create(const char *name, uint32_t nb_elts, 1014 uint32_t cache_size, uint16_t user_data_size, int socket_id); 1015 1016 /** 1017 * Create symmetric crypto session and fill out private data for the device id, 1018 * based on its device type. 1019 * 1020 * @param dev_id ID of device that we want the session to be used on 1021 * @param xforms Symmetric crypto transform operations to apply on flow 1022 * processed with this session 1023 * @param mp Mempool where the private data is allocated. 1024 * 1025 * @return 1026 * - On success return pointer to sym-session. 1027 * - On failure returns NULL. 1028 */ 1029 void * 1030 rte_cryptodev_sym_session_create(uint8_t dev_id, 1031 struct rte_crypto_sym_xform *xforms, 1032 struct rte_mempool *mp); 1033 /** 1034 * Create and initialise an asymmetric crypto session structure. 1035 * Calls the PMD to configure the private session data. 1036 * 1037 * @param dev_id ID of device that we want the session to be used on 1038 * @param xforms Asymmetric crypto transform operations to apply on flow 1039 * processed with this session 1040 * @param mp mempool to allocate asymmetric session 1041 * objects from 1042 * @param session void ** for session to be used 1043 * 1044 * @return 1045 * - 0 on success. 1046 * - -EINVAL on invalid arguments. 1047 * - -ENOMEM on memory error for session allocation. 1048 * - -ENOTSUP if device doesn't support session configuration. 1049 */ 1050 __rte_experimental 1051 int 1052 rte_cryptodev_asym_session_create(uint8_t dev_id, 1053 struct rte_crypto_asym_xform *xforms, struct rte_mempool *mp, 1054 void **session); 1055 1056 /** 1057 * Frees session for the device id and returning it to its mempool. 1058 * It is the application's responsibility to ensure that the session 1059 * is not still in-flight operations using it. 1060 * 1061 * @param dev_id ID of device that uses the session. 1062 * @param sess Session header to be freed. 1063 * 1064 * @return 1065 * - 0 if successful. 1066 * - -EINVAL if session is NULL or the mismatched device ids. 1067 */ 1068 int 1069 rte_cryptodev_sym_session_free(uint8_t dev_id, 1070 void *sess); 1071 1072 /** 1073 * Clears and frees asymmetric crypto session header and private data, 1074 * returning it to its original mempool. 1075 * 1076 * @param dev_id ID of device that uses the asymmetric session. 1077 * @param sess Session header to be freed. 1078 * 1079 * @return 1080 * - 0 if successful. 1081 * - -EINVAL if device is invalid or session is NULL. 1082 */ 1083 __rte_experimental 1084 int 1085 rte_cryptodev_asym_session_free(uint8_t dev_id, void *sess); 1086 1087 /** 1088 * Get the size of the asymmetric session header. 1089 * 1090 * @return 1091 * Size of the asymmetric header session. 1092 */ 1093 __rte_experimental 1094 unsigned int 1095 rte_cryptodev_asym_get_header_session_size(void); 1096 1097 /** 1098 * Get the size of the private symmetric session data 1099 * for a device. 1100 * 1101 * @param dev_id The device identifier. 1102 * 1103 * @return 1104 * - Size of the private data, if successful 1105 * - 0 if device is invalid or does not have private 1106 * symmetric session 1107 */ 1108 unsigned int 1109 rte_cryptodev_sym_get_private_session_size(uint8_t dev_id); 1110 1111 /** 1112 * Get the size of the private data for asymmetric session 1113 * on device 1114 * 1115 * @param dev_id The device identifier. 1116 * 1117 * @return 1118 * - Size of the asymmetric private data, if successful 1119 * - 0 if device is invalid or does not have private session 1120 */ 1121 __rte_experimental 1122 unsigned int 1123 rte_cryptodev_asym_get_private_session_size(uint8_t dev_id); 1124 1125 /** 1126 * Validate if the crypto device index is valid attached crypto device. 1127 * 1128 * @param dev_id Crypto device index. 1129 * 1130 * @return 1131 * - If the device index is valid (1) or not (0). 1132 */ 1133 unsigned int 1134 rte_cryptodev_is_valid_dev(uint8_t dev_id); 1135 1136 /** 1137 * Provide driver identifier. 1138 * 1139 * @param name 1140 * The pointer to a driver name. 1141 * @return 1142 * The driver type identifier or -1 if no driver found 1143 */ 1144 int rte_cryptodev_driver_id_get(const char *name); 1145 1146 /** 1147 * Provide driver name. 1148 * 1149 * @param driver_id 1150 * The driver identifier. 1151 * @return 1152 * The driver name or null if no driver found 1153 */ 1154 const char *rte_cryptodev_driver_name_get(uint8_t driver_id); 1155 1156 /** 1157 * Store user data in a session. 1158 * 1159 * @param sess Session pointer allocated by 1160 * *rte_cryptodev_sym_session_create*. 1161 * @param data Pointer to the user data. 1162 * @param size Size of the user data. 1163 * 1164 * @return 1165 * - On success, zero. 1166 * - On failure, a negative value. 1167 */ 1168 __rte_experimental 1169 int 1170 rte_cryptodev_sym_session_set_user_data(void *sess, 1171 void *data, 1172 uint16_t size); 1173 1174 #define CRYPTO_SESS_OPAQUE_DATA_OFF 0 1175 /** 1176 * Get opaque data from session handle 1177 */ 1178 static inline uint64_t 1179 rte_cryptodev_sym_session_opaque_data_get(void *sess) 1180 { 1181 return *((uint64_t *)sess + CRYPTO_SESS_OPAQUE_DATA_OFF); 1182 } 1183 1184 /** 1185 * Set opaque data in session handle 1186 */ 1187 static inline void 1188 rte_cryptodev_sym_session_opaque_data_set(void *sess, uint64_t opaque) 1189 { 1190 uint64_t *data; 1191 data = (((uint64_t *)sess) + CRYPTO_SESS_OPAQUE_DATA_OFF); 1192 *data = opaque; 1193 } 1194 1195 /** 1196 * Get user data stored in a session. 1197 * 1198 * @param sess Session pointer allocated by 1199 * *rte_cryptodev_sym_session_create*. 1200 * 1201 * @return 1202 * - On success return pointer to user data. 1203 * - On failure returns NULL. 1204 */ 1205 __rte_experimental 1206 void * 1207 rte_cryptodev_sym_session_get_user_data(void *sess); 1208 1209 /** 1210 * Store user data in an asymmetric session. 1211 * 1212 * @param sess Session pointer allocated by 1213 * *rte_cryptodev_asym_session_create*. 1214 * @param data Pointer to the user data. 1215 * @param size Size of the user data. 1216 * 1217 * @return 1218 * - On success, zero. 1219 * - -EINVAL if the session pointer is invalid. 1220 * - -ENOMEM if the available user data size is smaller than the size parameter. 1221 */ 1222 __rte_experimental 1223 int 1224 rte_cryptodev_asym_session_set_user_data(void *sess, void *data, uint16_t size); 1225 1226 /** 1227 * Get user data stored in an asymmetric session. 1228 * 1229 * @param sess Session pointer allocated by 1230 * *rte_cryptodev_asym_session_create*. 1231 * 1232 * @return 1233 * - On success return pointer to user data. 1234 * - On failure returns NULL. 1235 */ 1236 __rte_experimental 1237 void * 1238 rte_cryptodev_asym_session_get_user_data(void *sess); 1239 1240 /** 1241 * Perform actual crypto processing (encrypt/digest or auth/decrypt) 1242 * on user provided data. 1243 * 1244 * @param dev_id The device identifier. 1245 * @param sess Cryptodev session structure 1246 * @param ofs Start and stop offsets for auth and cipher operations 1247 * @param vec Vectorized operation descriptor 1248 * 1249 * @return 1250 * - Returns number of successfully processed packets. 1251 */ 1252 __rte_experimental 1253 uint32_t 1254 rte_cryptodev_sym_cpu_crypto_process(uint8_t dev_id, 1255 void *sess, union rte_crypto_sym_ofs ofs, 1256 struct rte_crypto_sym_vec *vec); 1257 1258 /** 1259 * Get the size of the raw data-path context buffer. 1260 * 1261 * @param dev_id The device identifier. 1262 * 1263 * @return 1264 * - If the device supports raw data-path APIs, return the context size. 1265 * - If the device does not support the APIs, return -1. 1266 */ 1267 __rte_experimental 1268 int 1269 rte_cryptodev_get_raw_dp_ctx_size(uint8_t dev_id); 1270 1271 /** 1272 * Set session event meta data 1273 * 1274 * @param dev_id The device identifier. 1275 * @param sess Crypto or security session. 1276 * @param op_type Operation type. 1277 * @param sess_type Session type. 1278 * @param ev_mdata Pointer to the event crypto meta data 1279 * (aka *union rte_event_crypto_metadata*) 1280 * @param size Size of ev_mdata. 1281 * 1282 * @return 1283 * - On success, zero. 1284 * - On failure, a negative value. 1285 */ 1286 __rte_experimental 1287 int 1288 rte_cryptodev_session_event_mdata_set(uint8_t dev_id, void *sess, 1289 enum rte_crypto_op_type op_type, 1290 enum rte_crypto_op_sess_type sess_type, 1291 void *ev_mdata, uint16_t size); 1292 1293 /** 1294 * Union of different crypto session types, including session-less xform 1295 * pointer. 1296 */ 1297 union rte_cryptodev_session_ctx {void *crypto_sess; 1298 struct rte_crypto_sym_xform *xform; 1299 struct rte_security_session *sec_sess; 1300 }; 1301 1302 /** 1303 * Enqueue a vectorized operation descriptor into the device queue but the 1304 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1305 * is called. 1306 * 1307 * @param qp Driver specific queue pair data. 1308 * @param drv_ctx Driver specific context data. 1309 * @param vec Vectorized operation descriptor. 1310 * @param ofs Start and stop offsets for auth and cipher 1311 * operations. 1312 * @param user_data The array of user data for dequeue later. 1313 * @param enqueue_status Driver written value to specify the 1314 * enqueue status. Possible values: 1315 * - 1: The number of operations returned are 1316 * enqueued successfully. 1317 * - 0: The number of operations returned are 1318 * cached into the queue but are not processed 1319 * until rte_cryptodev_raw_enqueue_done() is 1320 * called. 1321 * - negative integer: Error occurred. 1322 * @return 1323 * - The number of operations in the descriptor successfully enqueued or 1324 * cached into the queue but not enqueued yet, depends on the 1325 * "enqueue_status" value. 1326 */ 1327 typedef uint32_t (*cryptodev_sym_raw_enqueue_burst_t)( 1328 void *qp, uint8_t *drv_ctx, struct rte_crypto_sym_vec *vec, 1329 union rte_crypto_sym_ofs ofs, void *user_data[], int *enqueue_status); 1330 1331 /** 1332 * Enqueue single raw data vector into the device queue but the driver may or 1333 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1334 * 1335 * @param qp Driver specific queue pair data. 1336 * @param drv_ctx Driver specific context data. 1337 * @param data_vec The buffer data vector. 1338 * @param n_data_vecs Number of buffer data vectors. 1339 * @param ofs Start and stop offsets for auth and cipher 1340 * operations. 1341 * @param iv IV virtual and IOVA addresses 1342 * @param digest digest virtual and IOVA addresses 1343 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1344 * depends on the algorithm used. 1345 * @param user_data The user data. 1346 * @return 1347 * - 1: The data vector is enqueued successfully. 1348 * - 0: The data vector is cached into the queue but is not processed 1349 * until rte_cryptodev_raw_enqueue_done() is called. 1350 * - negative integer: failure. 1351 */ 1352 typedef int (*cryptodev_sym_raw_enqueue_t)( 1353 void *qp, uint8_t *drv_ctx, struct rte_crypto_vec *data_vec, 1354 uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs, 1355 struct rte_crypto_va_iova_ptr *iv, 1356 struct rte_crypto_va_iova_ptr *digest, 1357 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1358 void *user_data); 1359 1360 /** 1361 * Inform the cryptodev queue pair to start processing or finish dequeuing all 1362 * enqueued/dequeued operations. 1363 * 1364 * @param qp Driver specific queue pair data. 1365 * @param drv_ctx Driver specific context data. 1366 * @param n The total number of processed operations. 1367 * @return 1368 * - On success return 0. 1369 * - On failure return negative integer. 1370 */ 1371 typedef int (*cryptodev_sym_raw_operation_done_t)(void *qp, uint8_t *drv_ctx, 1372 uint32_t n); 1373 1374 /** 1375 * Typedef that the user provided for the driver to get the dequeue count. 1376 * The function may return a fixed number or the number parsed from the user 1377 * data stored in the first processed operation. 1378 * 1379 * @param user_data Dequeued user data. 1380 * @return 1381 * - The number of operations to be dequeued. 1382 **/ 1383 typedef uint32_t (*rte_cryptodev_raw_get_dequeue_count_t)(void *user_data); 1384 1385 /** 1386 * Typedef that the user provided to deal with post dequeue operation, such 1387 * as filling status. 1388 * 1389 * @param user_data Dequeued user data. 1390 * @param index Index number of the processed descriptor. 1391 * @param is_op_success Operation status provided by the driver. 1392 **/ 1393 typedef void (*rte_cryptodev_raw_post_dequeue_t)(void *user_data, 1394 uint32_t index, uint8_t is_op_success); 1395 1396 /** 1397 * Dequeue a burst of symmetric crypto processing. 1398 * 1399 * @param qp Driver specific queue pair data. 1400 * @param drv_ctx Driver specific context data. 1401 * @param get_dequeue_count User provided callback function to 1402 * obtain dequeue operation count. 1403 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1404 * value is used to pass the maximum 1405 * number of operations to be dequeued. 1406 * @param post_dequeue User provided callback function to 1407 * post-process a dequeued operation. 1408 * @param out_user_data User data pointer array to be retrieve 1409 * from device queue. In case of 1410 * *is_user_data_array* is set there 1411 * should be enough room to store all 1412 * user data. 1413 * @param is_user_data_array Set 1 if every dequeued user data will 1414 * be written into out_user_data array. 1415 * Set 0 if only the first user data will 1416 * be written into out_user_data array. 1417 * @param n_success Driver written value to specific the 1418 * total successful operations count. 1419 * @param dequeue_status Driver written value to specify the 1420 * dequeue status. Possible values: 1421 * - 1: Successfully dequeued the number 1422 * of operations returned. The user 1423 * data previously set during enqueue 1424 * is stored in the "out_user_data". 1425 * - 0: The number of operations returned 1426 * are completed and the user data is 1427 * stored in the "out_user_data", but 1428 * they are not freed from the queue 1429 * until 1430 * rte_cryptodev_raw_dequeue_done() 1431 * is called. 1432 * - negative integer: Error occurred. 1433 * @return 1434 * - The number of operations dequeued or completed but not freed from the 1435 * queue, depends on "dequeue_status" value. 1436 */ 1437 typedef uint32_t (*cryptodev_sym_raw_dequeue_burst_t)(void *qp, 1438 uint8_t *drv_ctx, 1439 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1440 uint32_t max_nb_to_dequeue, 1441 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1442 void **out_user_data, uint8_t is_user_data_array, 1443 uint32_t *n_success, int *dequeue_status); 1444 1445 /** 1446 * Dequeue a symmetric crypto processing. 1447 * 1448 * @param qp Driver specific queue pair data. 1449 * @param drv_ctx Driver specific context data. 1450 * @param dequeue_status Driver written value to specify the 1451 * dequeue status. Possible values: 1452 * - 1: Successfully dequeued a operation. 1453 * The user data is returned. 1454 * - 0: The first operation in the queue 1455 * is completed and the user data 1456 * previously set during enqueue is 1457 * returned, but it is not freed from 1458 * the queue until 1459 * rte_cryptodev_raw_dequeue_done() is 1460 * called. 1461 * - negative integer: Error occurred. 1462 * @param op_status Driver written value to specify 1463 * operation status. 1464 * @return 1465 * - The user data pointer retrieved from device queue or NULL if no 1466 * operation is ready for dequeue. 1467 */ 1468 typedef void * (*cryptodev_sym_raw_dequeue_t)( 1469 void *qp, uint8_t *drv_ctx, int *dequeue_status, 1470 enum rte_crypto_op_status *op_status); 1471 1472 /** 1473 * Context data for raw data-path API crypto process. The buffer of this 1474 * structure is to be allocated by the user application with the size equal 1475 * or bigger than rte_cryptodev_get_raw_dp_ctx_size() returned value. 1476 */ 1477 struct rte_crypto_raw_dp_ctx { 1478 void *qp_data; 1479 1480 cryptodev_sym_raw_enqueue_t enqueue; 1481 cryptodev_sym_raw_enqueue_burst_t enqueue_burst; 1482 cryptodev_sym_raw_operation_done_t enqueue_done; 1483 cryptodev_sym_raw_dequeue_t dequeue; 1484 cryptodev_sym_raw_dequeue_burst_t dequeue_burst; 1485 cryptodev_sym_raw_operation_done_t dequeue_done; 1486 1487 /* Driver specific context data */ 1488 __extension__ uint8_t drv_ctx_data[]; 1489 }; 1490 1491 /** 1492 * Configure raw data-path context data. 1493 * 1494 * NOTE: 1495 * After the context data is configured, the user should call 1496 * rte_cryptodev_raw_attach_session() before using it in 1497 * rte_cryptodev_raw_enqueue/dequeue function call. 1498 * 1499 * @param dev_id The device identifier. 1500 * @param qp_id The index of the queue pair from which to 1501 * retrieve processed packets. The value must be 1502 * in the range [0, nb_queue_pair - 1] previously 1503 * supplied to rte_cryptodev_configure(). 1504 * @param ctx The raw data-path context data. 1505 * @param sess_type session type. 1506 * @param session_ctx Session context data. 1507 * @param is_update Set 0 if it is to initialize the ctx. 1508 * Set 1 if ctx is initialized and only to update 1509 * session context data. 1510 * @return 1511 * - On success return 0. 1512 * - On failure return negative integer. 1513 */ 1514 __rte_experimental 1515 int 1516 rte_cryptodev_configure_raw_dp_ctx(uint8_t dev_id, uint16_t qp_id, 1517 struct rte_crypto_raw_dp_ctx *ctx, 1518 enum rte_crypto_op_sess_type sess_type, 1519 union rte_cryptodev_session_ctx session_ctx, 1520 uint8_t is_update); 1521 1522 /** 1523 * Enqueue a vectorized operation descriptor into the device queue but the 1524 * driver may or may not start processing until rte_cryptodev_raw_enqueue_done() 1525 * is called. 1526 * 1527 * @param ctx The initialized raw data-path context data. 1528 * @param vec Vectorized operation descriptor. 1529 * @param ofs Start and stop offsets for auth and cipher 1530 * operations. 1531 * @param user_data The array of user data for dequeue later. 1532 * @param enqueue_status Driver written value to specify the 1533 * enqueue status. Possible values: 1534 * - 1: The number of operations returned are 1535 * enqueued successfully. 1536 * - 0: The number of operations returned are 1537 * cached into the queue but are not processed 1538 * until rte_cryptodev_raw_enqueue_done() is 1539 * called. 1540 * - negative integer: Error occurred. 1541 * @return 1542 * - The number of operations in the descriptor successfully enqueued or 1543 * cached into the queue but not enqueued yet, depends on the 1544 * "enqueue_status" value. 1545 */ 1546 __rte_experimental 1547 uint32_t 1548 rte_cryptodev_raw_enqueue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1549 struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs, 1550 void **user_data, int *enqueue_status); 1551 1552 /** 1553 * Enqueue single raw data vector into the device queue but the driver may or 1554 * may not start processing until rte_cryptodev_raw_enqueue_done() is called. 1555 * 1556 * @param ctx The initialized raw data-path context data. 1557 * @param data_vec The buffer data vector. 1558 * @param n_data_vecs Number of buffer data vectors. 1559 * @param ofs Start and stop offsets for auth and cipher 1560 * operations. 1561 * @param iv IV virtual and IOVA addresses 1562 * @param digest digest virtual and IOVA addresses 1563 * @param aad_or_auth_iv AAD or auth IV virtual and IOVA addresses, 1564 * depends on the algorithm used. 1565 * @param user_data The user data. 1566 * @return 1567 * - 1: The data vector is enqueued successfully. 1568 * - 0: The data vector is cached into the queue but is not processed 1569 * until rte_cryptodev_raw_enqueue_done() is called. 1570 * - negative integer: failure. 1571 */ 1572 __rte_experimental 1573 static __rte_always_inline int 1574 rte_cryptodev_raw_enqueue(struct rte_crypto_raw_dp_ctx *ctx, 1575 struct rte_crypto_vec *data_vec, uint16_t n_data_vecs, 1576 union rte_crypto_sym_ofs ofs, 1577 struct rte_crypto_va_iova_ptr *iv, 1578 struct rte_crypto_va_iova_ptr *digest, 1579 struct rte_crypto_va_iova_ptr *aad_or_auth_iv, 1580 void *user_data) 1581 { 1582 return (*ctx->enqueue)(ctx->qp_data, ctx->drv_ctx_data, data_vec, 1583 n_data_vecs, ofs, iv, digest, aad_or_auth_iv, user_data); 1584 } 1585 1586 /** 1587 * Start processing all enqueued operations from last 1588 * rte_cryptodev_configure_raw_dp_ctx() call. 1589 * 1590 * @param ctx The initialized raw data-path context data. 1591 * @param n The number of operations cached. 1592 * @return 1593 * - On success return 0. 1594 * - On failure return negative integer. 1595 */ 1596 __rte_experimental 1597 int 1598 rte_cryptodev_raw_enqueue_done(struct rte_crypto_raw_dp_ctx *ctx, 1599 uint32_t n); 1600 1601 /** 1602 * Dequeue a burst of symmetric crypto processing. 1603 * 1604 * @param ctx The initialized raw data-path context 1605 * data. 1606 * @param get_dequeue_count User provided callback function to 1607 * obtain dequeue operation count. 1608 * @param max_nb_to_dequeue When get_dequeue_count is NULL this 1609 * value is used to pass the maximum 1610 * number of operations to be dequeued. 1611 * @param post_dequeue User provided callback function to 1612 * post-process a dequeued operation. 1613 * @param out_user_data User data pointer array to be retrieve 1614 * from device queue. In case of 1615 * *is_user_data_array* is set there 1616 * should be enough room to store all 1617 * user data. 1618 * @param is_user_data_array Set 1 if every dequeued user data will 1619 * be written into out_user_data array. 1620 * Set 0 if only the first user data will 1621 * be written into out_user_data array. 1622 * @param n_success Driver written value to specific the 1623 * total successful operations count. 1624 * @param dequeue_status Driver written value to specify the 1625 * dequeue status. Possible values: 1626 * - 1: Successfully dequeued the number 1627 * of operations returned. The user 1628 * data previously set during enqueue 1629 * is stored in the "out_user_data". 1630 * - 0: The number of operations returned 1631 * are completed and the user data is 1632 * stored in the "out_user_data", but 1633 * they are not freed from the queue 1634 * until 1635 * rte_cryptodev_raw_dequeue_done() 1636 * is called. 1637 * - negative integer: Error occurred. 1638 * @return 1639 * - The number of operations dequeued or completed but not freed from the 1640 * queue, depends on "dequeue_status" value. 1641 */ 1642 __rte_experimental 1643 uint32_t 1644 rte_cryptodev_raw_dequeue_burst(struct rte_crypto_raw_dp_ctx *ctx, 1645 rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count, 1646 uint32_t max_nb_to_dequeue, 1647 rte_cryptodev_raw_post_dequeue_t post_dequeue, 1648 void **out_user_data, uint8_t is_user_data_array, 1649 uint32_t *n_success, int *dequeue_status); 1650 1651 /** 1652 * Dequeue a symmetric crypto processing. 1653 * 1654 * @param ctx The initialized raw data-path context 1655 * data. 1656 * @param dequeue_status Driver written value to specify the 1657 * dequeue status. Possible values: 1658 * - 1: Successfully dequeued a operation. 1659 * The user data is returned. 1660 * - 0: The first operation in the queue 1661 * is completed and the user data 1662 * previously set during enqueue is 1663 * returned, but it is not freed from 1664 * the queue until 1665 * rte_cryptodev_raw_dequeue_done() is 1666 * called. 1667 * - negative integer: Error occurred. 1668 * @param op_status Driver written value to specify 1669 * operation status. 1670 * @return 1671 * - The user data pointer retrieved from device queue or NULL if no 1672 * operation is ready for dequeue. 1673 */ 1674 __rte_experimental 1675 static __rte_always_inline void * 1676 rte_cryptodev_raw_dequeue(struct rte_crypto_raw_dp_ctx *ctx, 1677 int *dequeue_status, enum rte_crypto_op_status *op_status) 1678 { 1679 return (*ctx->dequeue)(ctx->qp_data, ctx->drv_ctx_data, dequeue_status, 1680 op_status); 1681 } 1682 1683 /** 1684 * Inform the queue pair dequeue operations is finished. 1685 * 1686 * @param ctx The initialized raw data-path context data. 1687 * @param n The number of operations. 1688 * @return 1689 * - On success return 0. 1690 * - On failure return negative integer. 1691 */ 1692 __rte_experimental 1693 int 1694 rte_cryptodev_raw_dequeue_done(struct rte_crypto_raw_dp_ctx *ctx, 1695 uint32_t n); 1696 1697 /** 1698 * Add a user callback for a given crypto device and queue pair which will be 1699 * called on crypto ops enqueue. 1700 * 1701 * This API configures a function to be called for each burst of crypto ops 1702 * received on a given crypto device queue pair. The return value is a pointer 1703 * that can be used later to remove the callback using 1704 * rte_cryptodev_remove_enq_callback(). 1705 * 1706 * Callbacks registered by application would not survive 1707 * rte_cryptodev_configure() as it reinitializes the callback list. 1708 * It is user responsibility to remove all installed callbacks before 1709 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1710 * Application is expected to call add API after rte_cryptodev_configure(). 1711 * 1712 * Multiple functions can be registered per queue pair & they are called 1713 * in the order they were added. The API does not restrict on maximum number 1714 * of callbacks. 1715 * 1716 * @param dev_id The identifier of the device. 1717 * @param qp_id The index of the queue pair on which ops are 1718 * to be enqueued for processing. The value 1719 * must be in the range [0, nb_queue_pairs - 1] 1720 * previously supplied to 1721 * *rte_cryptodev_configure*. 1722 * @param cb_fn The callback function 1723 * @param cb_arg A generic pointer parameter which will be passed 1724 * to each invocation of the callback function on 1725 * this crypto device and queue pair. 1726 * 1727 * @return 1728 * - NULL on error & rte_errno will contain the error code. 1729 * - On success, a pointer value which can later be used to remove the 1730 * callback. 1731 */ 1732 1733 __rte_experimental 1734 struct rte_cryptodev_cb * 1735 rte_cryptodev_add_enq_callback(uint8_t dev_id, 1736 uint16_t qp_id, 1737 rte_cryptodev_callback_fn cb_fn, 1738 void *cb_arg); 1739 1740 /** 1741 * Remove a user callback function for given crypto device and queue pair. 1742 * 1743 * This function is used to remove enqueue callbacks that were added to a 1744 * crypto device queue pair using rte_cryptodev_add_enq_callback(). 1745 * 1746 * 1747 * 1748 * @param dev_id The identifier of the device. 1749 * @param qp_id The index of the queue pair on which ops are 1750 * to be enqueued. The value must be in the 1751 * range [0, nb_queue_pairs - 1] previously 1752 * supplied to *rte_cryptodev_configure*. 1753 * @param cb Pointer to user supplied callback created via 1754 * rte_cryptodev_add_enq_callback(). 1755 * 1756 * @return 1757 * - 0: Success. Callback was removed. 1758 * - <0: The dev_id or the qp_id is out of range, or the callback 1759 * is NULL or not found for the crypto device queue pair. 1760 */ 1761 1762 __rte_experimental 1763 int rte_cryptodev_remove_enq_callback(uint8_t dev_id, 1764 uint16_t qp_id, 1765 struct rte_cryptodev_cb *cb); 1766 1767 /** 1768 * Add a user callback for a given crypto device and queue pair which will be 1769 * called on crypto ops dequeue. 1770 * 1771 * This API configures a function to be called for each burst of crypto ops 1772 * received on a given crypto device queue pair. The return value is a pointer 1773 * that can be used later to remove the callback using 1774 * rte_cryptodev_remove_deq_callback(). 1775 * 1776 * Callbacks registered by application would not survive 1777 * rte_cryptodev_configure() as it reinitializes the callback list. 1778 * It is user responsibility to remove all installed callbacks before 1779 * calling rte_cryptodev_configure() to avoid possible memory leakage. 1780 * Application is expected to call add API after rte_cryptodev_configure(). 1781 * 1782 * Multiple functions can be registered per queue pair & they are called 1783 * in the order they were added. The API does not restrict on maximum number 1784 * of callbacks. 1785 * 1786 * @param dev_id The identifier of the device. 1787 * @param qp_id The index of the queue pair on which ops are 1788 * to be dequeued. The value must be in the 1789 * range [0, nb_queue_pairs - 1] previously 1790 * supplied to *rte_cryptodev_configure*. 1791 * @param cb_fn The callback function 1792 * @param cb_arg A generic pointer parameter which will be passed 1793 * to each invocation of the callback function on 1794 * this crypto device and queue pair. 1795 * 1796 * @return 1797 * - NULL on error & rte_errno will contain the error code. 1798 * - On success, a pointer value which can later be used to remove the 1799 * callback. 1800 */ 1801 1802 __rte_experimental 1803 struct rte_cryptodev_cb * 1804 rte_cryptodev_add_deq_callback(uint8_t dev_id, 1805 uint16_t qp_id, 1806 rte_cryptodev_callback_fn cb_fn, 1807 void *cb_arg); 1808 1809 /** 1810 * Remove a user callback function for given crypto device and queue pair. 1811 * 1812 * This function is used to remove dequeue callbacks that were added to a 1813 * crypto device queue pair using rte_cryptodev_add_deq_callback(). 1814 * 1815 * 1816 * 1817 * @param dev_id The identifier of the device. 1818 * @param qp_id The index of the queue pair on which ops are 1819 * to be dequeued. The value must be in the 1820 * range [0, nb_queue_pairs - 1] previously 1821 * supplied to *rte_cryptodev_configure*. 1822 * @param cb Pointer to user supplied callback created via 1823 * rte_cryptodev_add_deq_callback(). 1824 * 1825 * @return 1826 * - 0: Success. Callback was removed. 1827 * - <0: The dev_id or the qp_id is out of range, or the callback 1828 * is NULL or not found for the crypto device queue pair. 1829 */ 1830 __rte_experimental 1831 int rte_cryptodev_remove_deq_callback(uint8_t dev_id, 1832 uint16_t qp_id, 1833 struct rte_cryptodev_cb *cb); 1834 1835 #include <rte_cryptodev_core.h> 1836 /** 1837 * 1838 * Dequeue a burst of processed crypto operations from a queue on the crypto 1839 * device. The dequeued operation are stored in *rte_crypto_op* structures 1840 * whose pointers are supplied in the *ops* array. 1841 * 1842 * The rte_cryptodev_dequeue_burst() function returns the number of ops 1843 * actually dequeued, which is the number of *rte_crypto_op* data structures 1844 * effectively supplied into the *ops* array. 1845 * 1846 * A return value equal to *nb_ops* indicates that the queue contained 1847 * at least *nb_ops* operations, and this is likely to signify that other 1848 * processed operations remain in the devices output queue. Applications 1849 * implementing a "retrieve as many processed operations as possible" policy 1850 * can check this specific case and keep invoking the 1851 * rte_cryptodev_dequeue_burst() function until a value less than 1852 * *nb_ops* is returned. 1853 * 1854 * The rte_cryptodev_dequeue_burst() function does not provide any error 1855 * notification to avoid the corresponding overhead. 1856 * 1857 * @param dev_id The symmetric crypto device identifier 1858 * @param qp_id The index of the queue pair from which to 1859 * retrieve processed packets. The value must be 1860 * in the range [0, nb_queue_pair - 1] previously 1861 * supplied to rte_cryptodev_configure(). 1862 * @param ops The address of an array of pointers to 1863 * *rte_crypto_op* structures that must be 1864 * large enough to store *nb_ops* pointers in it. 1865 * @param nb_ops The maximum number of operations to dequeue. 1866 * 1867 * @return 1868 * - The number of operations actually dequeued, which is the number 1869 * of pointers to *rte_crypto_op* structures effectively supplied to the 1870 * *ops* array. 1871 */ 1872 static inline uint16_t 1873 rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, 1874 struct rte_crypto_op **ops, uint16_t nb_ops) 1875 { 1876 const struct rte_crypto_fp_ops *fp_ops; 1877 void *qp; 1878 1879 rte_cryptodev_trace_dequeue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1880 1881 fp_ops = &rte_crypto_fp_ops[dev_id]; 1882 qp = fp_ops->qp.data[qp_id]; 1883 1884 nb_ops = fp_ops->dequeue_burst(qp, ops, nb_ops); 1885 1886 #ifdef RTE_CRYPTO_CALLBACKS 1887 if (unlikely(fp_ops->qp.deq_cb != NULL)) { 1888 struct rte_cryptodev_cb_rcu *list; 1889 struct rte_cryptodev_cb *cb; 1890 1891 /* __ATOMIC_RELEASE memory order was used when the 1892 * call back was inserted into the list. 1893 * Since there is a clear dependency between loading 1894 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1895 * not required. 1896 */ 1897 list = &fp_ops->qp.deq_cb[qp_id]; 1898 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1899 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1900 1901 while (cb != NULL) { 1902 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1903 cb->arg); 1904 cb = cb->next; 1905 }; 1906 1907 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1908 } 1909 #endif 1910 return nb_ops; 1911 } 1912 1913 /** 1914 * Enqueue a burst of operations for processing on a crypto device. 1915 * 1916 * The rte_cryptodev_enqueue_burst() function is invoked to place 1917 * crypto operations on the queue *qp_id* of the device designated by 1918 * its *dev_id*. 1919 * 1920 * The *nb_ops* parameter is the number of operations to process which are 1921 * supplied in the *ops* array of *rte_crypto_op* structures. 1922 * 1923 * The rte_cryptodev_enqueue_burst() function returns the number of 1924 * operations it actually enqueued for processing. A return value equal to 1925 * *nb_ops* means that all packets have been enqueued. 1926 * 1927 * @param dev_id The identifier of the device. 1928 * @param qp_id The index of the queue pair which packets are 1929 * to be enqueued for processing. The value 1930 * must be in the range [0, nb_queue_pairs - 1] 1931 * previously supplied to 1932 * *rte_cryptodev_configure*. 1933 * @param ops The address of an array of *nb_ops* pointers 1934 * to *rte_crypto_op* structures which contain 1935 * the crypto operations to be processed. 1936 * @param nb_ops The number of operations to process. 1937 * 1938 * @return 1939 * The number of operations actually enqueued on the crypto device. The return 1940 * value can be less than the value of the *nb_ops* parameter when the 1941 * crypto devices queue is full or if invalid parameters are specified in 1942 * a *rte_crypto_op*. 1943 */ 1944 static inline uint16_t 1945 rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, 1946 struct rte_crypto_op **ops, uint16_t nb_ops) 1947 { 1948 const struct rte_crypto_fp_ops *fp_ops; 1949 void *qp; 1950 1951 fp_ops = &rte_crypto_fp_ops[dev_id]; 1952 qp = fp_ops->qp.data[qp_id]; 1953 #ifdef RTE_CRYPTO_CALLBACKS 1954 if (unlikely(fp_ops->qp.enq_cb != NULL)) { 1955 struct rte_cryptodev_cb_rcu *list; 1956 struct rte_cryptodev_cb *cb; 1957 1958 /* __ATOMIC_RELEASE memory order was used when the 1959 * call back was inserted into the list. 1960 * Since there is a clear dependency between loading 1961 * cb and cb->fn/cb->next, __ATOMIC_ACQUIRE memory order is 1962 * not required. 1963 */ 1964 list = &fp_ops->qp.enq_cb[qp_id]; 1965 rte_rcu_qsbr_thread_online(list->qsbr, 0); 1966 cb = __atomic_load_n(&list->next, __ATOMIC_RELAXED); 1967 1968 while (cb != NULL) { 1969 nb_ops = cb->fn(dev_id, qp_id, ops, nb_ops, 1970 cb->arg); 1971 cb = cb->next; 1972 }; 1973 1974 rte_rcu_qsbr_thread_offline(list->qsbr, 0); 1975 } 1976 #endif 1977 1978 rte_cryptodev_trace_enqueue_burst(dev_id, qp_id, (void **)ops, nb_ops); 1979 return fp_ops->enqueue_burst(qp, ops, nb_ops); 1980 } 1981 1982 1983 1984 #ifdef __cplusplus 1985 } 1986 #endif 1987 1988 #endif /* _RTE_CRYPTODEV_H_ */ 1989