1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2020 Intel Corporation 3 */ 4 5 #ifndef _RTE_CRYPTO_SYM_H_ 6 #define _RTE_CRYPTO_SYM_H_ 7 8 /** 9 * @file rte_crypto_sym.h 10 * 11 * RTE Definitions for Symmetric Cryptography 12 * 13 * Defines symmetric cipher and authentication algorithms and modes, as well 14 * as supported symmetric crypto operation combinations. 15 */ 16 17 #ifdef __cplusplus 18 extern "C" { 19 #endif 20 21 #include <string.h> 22 23 #include <rte_compat.h> 24 #include <rte_mbuf.h> 25 #include <rte_memory.h> 26 #include <rte_mempool.h> 27 #include <rte_common.h> 28 29 /** 30 * Crypto IO Vector (in analogy with struct iovec) 31 * Supposed be used to pass input/output data buffers for crypto data-path 32 * functions. 33 */ 34 struct rte_crypto_vec { 35 /** virtual address of the data buffer */ 36 void *base; 37 /** IOVA of the data buffer */ 38 rte_iova_t iova; 39 /** length of the data buffer */ 40 uint32_t len; 41 /** total buffer length */ 42 uint32_t tot_len; 43 }; 44 45 /** 46 * Crypto scatter-gather list descriptor. Consists of a pointer to an array 47 * of Crypto IO vectors with its size. 48 */ 49 struct rte_crypto_sgl { 50 /** start of an array of vectors */ 51 struct rte_crypto_vec *vec; 52 /** size of an array of vectors */ 53 uint32_t num; 54 }; 55 56 /** 57 * Crypto virtual and IOVA address descriptor, used to describe cryptographic 58 * data buffer without the length information. The length information is 59 * normally predefined during session creation. 60 */ 61 struct rte_crypto_va_iova_ptr { 62 void *va; 63 rte_iova_t iova; 64 }; 65 66 /** 67 * Raw data operation descriptor. 68 * Supposed to be used with synchronous CPU crypto API call or asynchronous 69 * RAW data path API call. 70 */ 71 struct rte_crypto_sym_vec { 72 /** number of operations to perform */ 73 uint32_t num; 74 /** array of SGL vectors */ 75 struct rte_crypto_sgl *src_sgl; 76 /** array of SGL vectors for OOP, keep it NULL for inplace*/ 77 struct rte_crypto_sgl *dest_sgl; 78 /** array of pointers to cipher IV */ 79 struct rte_crypto_va_iova_ptr *iv; 80 /** array of pointers to digest */ 81 struct rte_crypto_va_iova_ptr *digest; 82 83 __extension__ 84 union { 85 /** array of pointers to auth IV, used for chain operation */ 86 struct rte_crypto_va_iova_ptr *auth_iv; 87 /** array of pointers to AAD, used for AEAD operation */ 88 struct rte_crypto_va_iova_ptr *aad; 89 }; 90 91 /** 92 * array of statuses for each operation: 93 * - 0 on success 94 * - errno on error 95 */ 96 int32_t *status; 97 }; 98 99 /** 100 * used for cpu_crypto_process_bulk() to specify head/tail offsets 101 * for auth/cipher processing. 102 */ 103 union rte_crypto_sym_ofs { 104 uint64_t raw; 105 struct { 106 struct { 107 uint16_t head; 108 uint16_t tail; 109 } auth, cipher; 110 } ofs; 111 }; 112 113 /** Symmetric Cipher Algorithms 114 * 115 * Note, to avoid ABI breakage across releases 116 * - LIST_END should not be added to this enum 117 * - the order of enums should not be changed 118 * - new algorithms should only be added to the end 119 */ 120 enum rte_crypto_cipher_algorithm { 121 RTE_CRYPTO_CIPHER_NULL = 1, 122 /**< NULL cipher algorithm. No mode applies to the NULL algorithm. */ 123 124 RTE_CRYPTO_CIPHER_3DES_CBC, 125 /**< Triple DES algorithm in CBC mode */ 126 RTE_CRYPTO_CIPHER_3DES_CTR, 127 /**< Triple DES algorithm in CTR mode */ 128 RTE_CRYPTO_CIPHER_3DES_ECB, 129 /**< Triple DES algorithm in ECB mode */ 130 131 RTE_CRYPTO_CIPHER_AES_CBC, 132 /**< AES algorithm in CBC mode */ 133 RTE_CRYPTO_CIPHER_AES_CTR, 134 /**< AES algorithm in Counter mode */ 135 RTE_CRYPTO_CIPHER_AES_ECB, 136 /**< AES algorithm in ECB mode */ 137 RTE_CRYPTO_CIPHER_AES_F8, 138 /**< AES algorithm in F8 mode */ 139 RTE_CRYPTO_CIPHER_AES_XTS, 140 /**< AES algorithm in XTS mode */ 141 142 RTE_CRYPTO_CIPHER_ARC4, 143 /**< (A)RC4 cipher algorithm */ 144 145 RTE_CRYPTO_CIPHER_KASUMI_F8, 146 /**< KASUMI algorithm in F8 mode */ 147 148 RTE_CRYPTO_CIPHER_SNOW3G_UEA2, 149 /**< SNOW 3G algorithm in UEA2 mode */ 150 151 RTE_CRYPTO_CIPHER_ZUC_EEA3, 152 /**< ZUC algorithm in EEA3 mode */ 153 154 RTE_CRYPTO_CIPHER_DES_CBC, 155 /**< DES algorithm in CBC mode */ 156 157 RTE_CRYPTO_CIPHER_AES_DOCSISBPI, 158 /**< AES algorithm using modes required by 159 * DOCSIS Baseline Privacy Plus Spec. 160 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next 161 * for m_src and m_dst in the rte_crypto_sym_op must be NULL. 162 */ 163 164 RTE_CRYPTO_CIPHER_DES_DOCSISBPI, 165 /**< DES algorithm using modes required by 166 * DOCSIS Baseline Privacy Plus Spec. 167 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next 168 * for m_src and m_dst in the rte_crypto_sym_op must be NULL. 169 */ 170 171 RTE_CRYPTO_CIPHER_SM4_ECB, 172 /**< ShangMi 4 (SM4) algorithm in ECB mode */ 173 RTE_CRYPTO_CIPHER_SM4_CBC, 174 /**< ShangMi 4 (SM4) algorithm in CBC mode */ 175 RTE_CRYPTO_CIPHER_SM4_CTR 176 /**< ShangMi 4 (SM4) algorithm in CTR mode */ 177 }; 178 179 /** Cipher algorithm name strings */ 180 __rte_deprecated 181 extern const char * 182 rte_crypto_cipher_algorithm_strings[]; 183 184 /** Symmetric Cipher Direction */ 185 enum rte_crypto_cipher_operation { 186 RTE_CRYPTO_CIPHER_OP_ENCRYPT, 187 /**< Encrypt cipher operation */ 188 RTE_CRYPTO_CIPHER_OP_DECRYPT 189 /**< Decrypt cipher operation */ 190 }; 191 192 /** Cipher operation name strings */ 193 extern const char * 194 rte_crypto_cipher_operation_strings[]; 195 196 /** 197 * Symmetric Cipher Setup Data. 198 * 199 * This structure contains data relating to Cipher (Encryption and Decryption) 200 * use to create a session. 201 */ 202 struct rte_crypto_cipher_xform { 203 enum rte_crypto_cipher_operation op; 204 /**< This parameter determines if the cipher operation is an encrypt or 205 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes, 206 * only encrypt operations are valid. 207 */ 208 enum rte_crypto_cipher_algorithm algo; 209 /**< Cipher algorithm */ 210 211 struct { 212 const uint8_t *data; /**< pointer to key data */ 213 uint16_t length; /**< key length in bytes */ 214 } key; 215 /**< Cipher key 216 * 217 * In case the PMD supports RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY, the 218 * original key data provided may be wrapped(encrypted) using key wrap 219 * algorithm such as AES key wrap (rfc3394) and hence length of the key 220 * may increase beyond the PMD advertised supported key size. 221 * PMD shall validate the key length and report EMSGSIZE error while 222 * configuring the session and application can skip checking the 223 * capability key length in such cases. 224 * 225 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will 226 * point to a concatenation of the AES encryption key followed by a 227 * keymask. As per RFC3711, the keymask should be padded with trailing 228 * bytes to match the length of the encryption key used. 229 * 230 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes), 231 * 192 bits (24 bytes) or 256 bits (32 bytes). 232 * 233 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length 234 * should be set to the combined length of the encryption key and the 235 * keymask. Since the keymask and the encryption key are the same size, 236 * key.length should be set to 2 x the AES encryption key length. 237 * 238 * For the AES-XTS mode of operation: 239 * - Two keys must be provided and key.length refers to total length of 240 * the two keys. 241 * - key.data must point to the two keys concatenated together 242 * (key1 || key2). 243 * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes). 244 * - Both keys must have the same size. 245 **/ 246 struct { 247 uint16_t offset; 248 /**< Starting point for Initialisation Vector or Counter, 249 * specified as number of bytes from start of crypto 250 * operation (rte_crypto_op). 251 * 252 * - For block ciphers in CBC or F8 mode, or for KASUMI 253 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the 254 * Initialisation Vector (IV) value. 255 * 256 * - For block ciphers in CTR mode, this is the counter. 257 * 258 * - For CCM mode, the first byte is reserved, and the 259 * nonce should be written starting at &iv[1] (to allow 260 * space for the implementation to write in the flags 261 * in the first byte). Note that a full 16 bytes should 262 * be allocated, even though the length field will 263 * have a value less than this. Note that the PMDs may 264 * modify the memory reserved (the first byte and the 265 * final padding) 266 * 267 * - For AES-XTS, this is the 128bit tweak, i, from 268 * IEEE Std 1619-2007. 269 * 270 * For optimum performance, the data pointed to SHOULD 271 * be 8-byte aligned. 272 */ 273 uint16_t length; 274 /**< Length of valid IV data. 275 * 276 * - For block ciphers in CBC or F8 mode, or for KASUMI 277 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the 278 * length of the IV (which must be the same as the 279 * block length of the cipher). 280 * 281 * - For block ciphers in CTR mode, this is the length 282 * of the counter (which must be the same as the block 283 * length of the cipher). 284 * 285 * - For CCM mode, this is the length of the nonce, 286 * which can be in the range 7 to 13 inclusive. 287 */ 288 } iv; /**< Initialisation vector parameters */ 289 290 uint32_t dataunit_len; 291 /**< When RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS is enabled, 292 * this is the data-unit length of the algorithm, 293 * otherwise or when the value is 0, use the operation length. 294 * The value should be in the range defined by the dataunit_set field 295 * in the cipher capability. 296 * 297 * - For AES-XTS it is the size of data-unit, from IEEE Std 1619-2007. 298 * For-each data-unit in the operation, the tweak (IV) value is 299 * assigned consecutively starting from the operation assigned IV. 300 */ 301 }; 302 303 /** Symmetric Authentication / Hash Algorithms 304 * 305 * Note, to avoid ABI breakage across releases 306 * - LIST_END should not be added to this enum 307 * - the order of enums should not be changed 308 * - new algorithms should only be added to the end 309 */ 310 enum rte_crypto_auth_algorithm { 311 RTE_CRYPTO_AUTH_NULL = 1, 312 /**< NULL hash algorithm. */ 313 314 RTE_CRYPTO_AUTH_AES_CBC_MAC, 315 /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */ 316 RTE_CRYPTO_AUTH_AES_CMAC, 317 /**< AES CMAC algorithm. */ 318 RTE_CRYPTO_AUTH_AES_GMAC, 319 /**< AES GMAC algorithm. */ 320 RTE_CRYPTO_AUTH_AES_XCBC_MAC, 321 /**< AES XCBC algorithm. */ 322 323 RTE_CRYPTO_AUTH_KASUMI_F9, 324 /**< KASUMI algorithm in F9 mode. */ 325 326 RTE_CRYPTO_AUTH_MD5, 327 /**< MD5 algorithm */ 328 RTE_CRYPTO_AUTH_MD5_HMAC, 329 /**< HMAC using MD5 algorithm */ 330 331 RTE_CRYPTO_AUTH_SHA1, 332 /**< 160 bit SHA algorithm. */ 333 RTE_CRYPTO_AUTH_SHA1_HMAC, 334 /**< HMAC using 160 bit SHA algorithm. 335 * HMAC-SHA-1-96 can be generated by setting 336 * digest_length to 12 bytes in auth/aead xforms. 337 */ 338 RTE_CRYPTO_AUTH_SHA224, 339 /**< 224 bit SHA algorithm. */ 340 RTE_CRYPTO_AUTH_SHA224_HMAC, 341 /**< HMAC using 224 bit SHA algorithm. */ 342 RTE_CRYPTO_AUTH_SHA256, 343 /**< 256 bit SHA algorithm. */ 344 RTE_CRYPTO_AUTH_SHA256_HMAC, 345 /**< HMAC using 256 bit SHA algorithm. */ 346 RTE_CRYPTO_AUTH_SHA384, 347 /**< 384 bit SHA algorithm. */ 348 RTE_CRYPTO_AUTH_SHA384_HMAC, 349 /**< HMAC using 384 bit SHA algorithm. */ 350 RTE_CRYPTO_AUTH_SHA512, 351 /**< 512 bit SHA algorithm. */ 352 RTE_CRYPTO_AUTH_SHA512_HMAC, 353 /**< HMAC using 512 bit SHA algorithm. */ 354 355 RTE_CRYPTO_AUTH_SNOW3G_UIA2, 356 /**< SNOW 3G algorithm in UIA2 mode. */ 357 358 RTE_CRYPTO_AUTH_ZUC_EIA3, 359 /**< ZUC algorithm in EIA3 mode */ 360 361 RTE_CRYPTO_AUTH_SHA3_224, 362 /**< 224 bit SHA3 algorithm. */ 363 RTE_CRYPTO_AUTH_SHA3_224_HMAC, 364 /**< HMAC using 224 bit SHA3 algorithm. */ 365 RTE_CRYPTO_AUTH_SHA3_256, 366 /**< 256 bit SHA3 algorithm. */ 367 RTE_CRYPTO_AUTH_SHA3_256_HMAC, 368 /**< HMAC using 256 bit SHA3 algorithm. */ 369 RTE_CRYPTO_AUTH_SHA3_384, 370 /**< 384 bit SHA3 algorithm. */ 371 RTE_CRYPTO_AUTH_SHA3_384_HMAC, 372 /**< HMAC using 384 bit SHA3 algorithm. */ 373 RTE_CRYPTO_AUTH_SHA3_512, 374 /**< 512 bit SHA3 algorithm. */ 375 RTE_CRYPTO_AUTH_SHA3_512_HMAC, 376 /**< HMAC using 512 bit SHA3 algorithm. */ 377 RTE_CRYPTO_AUTH_SM3, 378 /**< ShangMi 3 (SM3) algorithm */ 379 380 RTE_CRYPTO_AUTH_SHAKE_128, 381 /**< 128 bit SHAKE algorithm. */ 382 RTE_CRYPTO_AUTH_SHAKE_256, 383 /**< 256 bit SHAKE algorithm. */ 384 }; 385 386 /** Authentication algorithm name strings */ 387 __rte_deprecated 388 extern const char * 389 rte_crypto_auth_algorithm_strings[]; 390 391 /** Symmetric Authentication / Hash Operations */ 392 enum rte_crypto_auth_operation { 393 RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */ 394 RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */ 395 }; 396 397 /** Authentication operation name strings */ 398 extern const char * 399 rte_crypto_auth_operation_strings[]; 400 401 /** 402 * Authentication / Hash transform data. 403 * 404 * This structure contains data relating to an authentication/hash crypto 405 * transforms. The fields op, algo and digest_length are common to all 406 * authentication transforms and MUST be set. 407 */ 408 struct rte_crypto_auth_xform { 409 enum rte_crypto_auth_operation op; 410 /**< Authentication operation type */ 411 enum rte_crypto_auth_algorithm algo; 412 /**< Authentication algorithm selection */ 413 414 struct { 415 const uint8_t *data; /**< pointer to key data */ 416 uint16_t length; /**< key length in bytes */ 417 } key; 418 /**< Authentication key data. 419 * The authentication key length MUST be less than or equal to the 420 * block size of the algorithm. It is the callers responsibility to 421 * ensure that the key length is compliant with the standard being used 422 * (for example RFC 2104, FIPS 198a). 423 */ 424 425 struct { 426 uint16_t offset; 427 /**< Starting point for Initialisation Vector or Counter, 428 * specified as number of bytes from start of crypto 429 * operation (rte_crypto_op). 430 * 431 * - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode 432 * this is the authentication Initialisation Vector 433 * (IV) value. For AES-GMAC IV description please refer 434 * to the field `length` in iv struct. 435 * 436 * - For KASUMI in F9 mode and other authentication 437 * algorithms, this field is not used. 438 * 439 * For optimum performance, the data pointed to SHOULD 440 * be 8-byte aligned. 441 */ 442 uint16_t length; 443 /**< Length of valid IV data. 444 * 445 * - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and 446 * for AES-GMAC, this is the length of the IV. 447 * 448 * - For KASUMI in F9 mode and other authentication 449 * algorithms, this field is not used. 450 * 451 * - For GMAC mode, this is either: 452 * 1) Number greater or equal to one, which means that IV 453 * is used and J0 will be computed internally, a minimum 454 * of 16 bytes must be allocated. 455 * 2) Zero, in which case data points to J0. In this case 456 * 16 bytes of J0 should be passed where J0 is defined 457 * by NIST SP800-38D. 458 * 459 */ 460 } iv; /**< Initialisation vector parameters */ 461 462 uint16_t digest_length; 463 /**< Length of the digest to be returned. If the verify option is set, 464 * this specifies the length of the digest to be compared for the 465 * session. 466 * 467 * It is the caller's responsibility to ensure that the 468 * digest length is compliant with the hash algorithm being used. 469 * If the value is less than the maximum length allowed by the hash, 470 * the result shall be truncated. 471 */ 472 }; 473 474 475 /** Symmetric AEAD Algorithms 476 * 477 * Note, to avoid ABI breakage across releases 478 * - LIST_END should not be added to this enum 479 * - the order of enums should not be changed 480 * - new algorithms should only be added to the end 481 */ 482 enum rte_crypto_aead_algorithm { 483 RTE_CRYPTO_AEAD_AES_CCM = 1, 484 /**< AES algorithm in CCM mode. */ 485 RTE_CRYPTO_AEAD_AES_GCM, 486 /**< AES algorithm in GCM mode. */ 487 RTE_CRYPTO_AEAD_CHACHA20_POLY1305 488 /**< Chacha20 cipher with poly1305 authenticator */ 489 }; 490 491 /** AEAD algorithm name strings */ 492 __rte_deprecated 493 extern const char * 494 rte_crypto_aead_algorithm_strings[]; 495 496 /** Symmetric AEAD Operations */ 497 enum rte_crypto_aead_operation { 498 RTE_CRYPTO_AEAD_OP_ENCRYPT, 499 /**< Encrypt and generate digest */ 500 RTE_CRYPTO_AEAD_OP_DECRYPT 501 /**< Verify digest and decrypt */ 502 }; 503 504 /** Authentication operation name strings */ 505 extern const char * 506 rte_crypto_aead_operation_strings[]; 507 508 struct rte_crypto_aead_xform { 509 enum rte_crypto_aead_operation op; 510 /**< AEAD operation type */ 511 enum rte_crypto_aead_algorithm algo; 512 /**< AEAD algorithm selection */ 513 514 struct { 515 const uint8_t *data; /**< pointer to key data */ 516 uint16_t length; /**< key length in bytes */ 517 } key; 518 519 struct { 520 uint16_t offset; 521 /**< Starting point for Initialisation Vector or Counter, 522 * specified as number of bytes from start of crypto 523 * operation (rte_crypto_op). 524 * 525 * - For CCM mode, the first byte is reserved, and the 526 * nonce should be written starting at &iv[1] (to allow 527 * space for the implementation to write in the flags 528 * in the first byte). Note that a full 16 bytes should 529 * be allocated, even though the length field will 530 * have a value less than this. 531 * 532 * - For Chacha20-Poly1305 it is 96-bit nonce. 533 * PMD sets initial counter for Poly1305 key generation 534 * part to 0 and for Chacha20 encryption to 1 as per 535 * rfc8439 2.8. AEAD construction. 536 * 537 * For optimum performance, the data pointed to SHOULD 538 * be 8-byte aligned. 539 */ 540 uint16_t length; 541 /**< Length of valid IV data. 542 * 543 * - For GCM mode, this is either: 544 * 1) Number greater or equal to one, which means that IV 545 * is used and J0 will be computed internally, a minimum 546 * of 16 bytes must be allocated. 547 * 2) Zero, in which case data points to J0. In this case 548 * 16 bytes of J0 should be passed where J0 is defined 549 * by NIST SP800-38D. 550 * 551 * - For CCM mode, this is the length of the nonce, 552 * which can be in the range 7 to 13 inclusive. 553 * 554 * - For Chacha20-Poly1305 this field is always 12. 555 */ 556 } iv; /**< Initialisation vector parameters */ 557 558 uint16_t digest_length; 559 560 uint16_t aad_length; 561 /**< The length of the additional authenticated data (AAD) in bytes. 562 * For CCM mode, this is the length of the actual AAD, even though 563 * it is required to reserve 18 bytes before the AAD and padding 564 * at the end of it, so a multiple of 16 bytes is allocated. 565 */ 566 }; 567 568 /** Crypto transformation types */ 569 enum rte_crypto_sym_xform_type { 570 RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */ 571 RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */ 572 RTE_CRYPTO_SYM_XFORM_CIPHER, /**< Cipher xform */ 573 RTE_CRYPTO_SYM_XFORM_AEAD /**< AEAD xform */ 574 }; 575 576 /** 577 * Symmetric crypto transform structure. 578 * 579 * This is used to specify the crypto transforms required, multiple transforms 580 * can be chained together to specify a chain transforms such as authentication 581 * then cipher, or cipher then authentication. Each transform structure can 582 * hold a single transform, the type field is used to specify which transform 583 * is contained within the union 584 */ 585 struct rte_crypto_sym_xform { 586 struct rte_crypto_sym_xform *next; 587 /**< next xform in chain */ 588 enum rte_crypto_sym_xform_type type 589 ; /**< xform type */ 590 RTE_STD_C11 591 union { 592 struct rte_crypto_auth_xform auth; 593 /**< Authentication / hash xform */ 594 struct rte_crypto_cipher_xform cipher; 595 /**< Cipher xform */ 596 struct rte_crypto_aead_xform aead; 597 /**< AEAD xform */ 598 }; 599 }; 600 601 /** 602 * Symmetric Cryptographic Operation. 603 * 604 * This structure contains data relating to performing symmetric cryptographic 605 * processing on a referenced mbuf data buffer. 606 * 607 * When a symmetric crypto operation is enqueued with the device for processing 608 * it must have a valid *rte_mbuf* structure attached, via m_src parameter, 609 * which contains the source data which the crypto operation is to be performed 610 * on. 611 * While the mbuf is in use by a crypto operation no part of the mbuf should be 612 * changed by the application as the device may read or write to any part of the 613 * mbuf. In the case of hardware crypto devices some or all of the mbuf 614 * may be DMAed in and out of the device, so writing over the original data, 615 * though only the part specified by the rte_crypto_sym_op for transformation 616 * will be changed. 617 * Out-of-place (OOP) operation, where the source mbuf is different to the 618 * destination mbuf, is a special case. Data will be copied from m_src to m_dst. 619 * The part copied includes all the parts of the source mbuf that will be 620 * operated on, based on the cipher.data.offset+cipher.data.length and 621 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part 622 * indicated by the cipher parameters will be transformed, any extra data around 623 * this indicated by the auth parameters will be copied unchanged from source to 624 * destination mbuf. 625 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to 626 * both source and destination mbufs. As these offsets are relative to the 627 * data_off parameter in each mbuf this can result in the data written to the 628 * destination buffer being at a different alignment, relative to buffer start, 629 * to the data in the source buffer. 630 */ 631 struct rte_crypto_sym_op { 632 struct rte_mbuf *m_src; /**< source mbuf */ 633 struct rte_mbuf *m_dst; /**< destination mbuf */ 634 635 RTE_STD_C11 636 union { 637 void *session; 638 /**< Handle for the initialised crypto/security session context */ 639 struct rte_crypto_sym_xform *xform; 640 /**< Session-less API crypto operation parameters */ 641 }; 642 643 RTE_STD_C11 644 union { 645 struct { 646 struct { 647 uint32_t offset; 648 /**< Starting point for AEAD processing, specified as 649 * number of bytes from start of packet in source 650 * buffer. 651 */ 652 uint32_t length; 653 /**< The message length, in bytes, of the source buffer 654 * on which the cryptographic operation will be 655 * computed. This must be a multiple of the block size 656 */ 657 } data; /**< Data offsets and length for AEAD */ 658 struct { 659 uint8_t *data; 660 /**< This points to the location where the digest result 661 * should be inserted (in the case of digest generation) 662 * or where the purported digest exists (in the case of 663 * digest verification). 664 * 665 * At session creation time, the client specified the 666 * digest result length with the digest_length member 667 * of the @ref rte_crypto_auth_xform structure. For 668 * physical crypto devices the caller must allocate at 669 * least digest_length of physically contiguous memory 670 * at this location. 671 * 672 * For digest generation, the digest result will 673 * overwrite any data at this location. 674 * 675 * @note 676 * For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for 677 * "digest result" read "authentication tag T". 678 */ 679 rte_iova_t phys_addr; 680 /**< Physical address of digest */ 681 } digest; /**< Digest parameters */ 682 struct { 683 uint8_t *data; 684 /**< Pointer to Additional Authenticated Data (AAD) 685 * needed for authenticated cipher mechanisms (CCM and 686 * GCM) 687 * 688 * Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM), 689 * the caller should setup this field as follows: 690 * 691 * - the additional authentication data itself should 692 * be written starting at an offset of 18 bytes into 693 * the array, leaving room for the first block (16 bytes) 694 * and the length encoding in the first two bytes of the 695 * second block. 696 * 697 * - the array should be big enough to hold the above 698 * fields, plus any padding to round this up to the 699 * nearest multiple of the block size (16 bytes). 700 * Padding will be added by the implementation. 701 * 702 * - Note that PMDs may modify the memory reserved 703 * (first 18 bytes and the final padding). 704 * 705 * Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the 706 * caller should setup this field as follows: 707 * 708 * - the AAD is written in starting at byte 0 709 * - the array must be big enough to hold the AAD, plus 710 * any space to round this up to the nearest multiple 711 * of the block size (16 bytes). 712 * 713 */ 714 rte_iova_t phys_addr; /**< physical address */ 715 } aad; 716 /**< Additional authentication parameters */ 717 } aead; 718 719 struct { 720 struct { 721 struct { 722 uint32_t offset; 723 /**< Starting point for cipher processing, 724 * specified as number of bytes from start 725 * of data in the source buffer. 726 * The result of the cipher operation will be 727 * written back into the output buffer 728 * starting at this location. 729 * 730 * @note 731 * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2, 732 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 733 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, 734 * this field should be in bits. For 735 * digest-encrypted cases this must be 736 * an 8-bit multiple. 737 */ 738 uint32_t length; 739 /**< The message length, in bytes, of the 740 * source buffer on which the cryptographic 741 * operation will be computed. 742 * This is also the same as the result length. 743 * This must be a multiple of the block size 744 * or a multiple of data-unit length 745 * as described in xform. 746 * 747 * @note 748 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2, 749 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 750 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, 751 * this field should be in bits. For 752 * digest-encrypted cases this must be 753 * an 8-bit multiple. 754 */ 755 } data; /**< Data offsets and length for ciphering */ 756 } cipher; 757 758 struct { 759 struct { 760 uint32_t offset; 761 /**< Starting point for hash processing, 762 * specified as number of bytes from start of 763 * packet in source buffer. 764 * 765 * @note 766 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, 767 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 768 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, 769 * this field should be in bits. For 770 * digest-encrypted cases this must be 771 * an 8-bit multiple. 772 * 773 * @note 774 * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, 775 * this offset should be such that 776 * data to authenticate starts at COUNT. 777 * 778 * @note 779 * For DOCSIS security protocol, this 780 * offset is the DOCSIS header length 781 * and, therefore, also the CRC offset 782 * i.e. the number of bytes into the 783 * packet at which CRC calculation 784 * should begin. 785 */ 786 uint32_t length; 787 /**< The message length, in bytes, of the source 788 * buffer that the hash will be computed on. 789 * 790 * @note 791 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, 792 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 793 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, 794 * this field should be in bits. For 795 * digest-encrypted cases this must be 796 * an 8-bit multiple. 797 * 798 * @note 799 * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, 800 * the length should include the COUNT, 801 * FRESH, message, direction bit and padding 802 * (to be multiple of 8 bits). 803 * 804 * @note 805 * For DOCSIS security protocol, this 806 * is the CRC length i.e. the number of 807 * bytes in the packet over which the 808 * CRC should be calculated 809 */ 810 } data; 811 /**< Data offsets and length for authentication */ 812 813 struct { 814 uint8_t *data; 815 /**< This points to the location where 816 * the digest result should be inserted 817 * (in the case of digest generation) 818 * or where the purported digest exists 819 * (in the case of digest verification). 820 * 821 * At session creation time, the client 822 * specified the digest result length with 823 * the digest_length member of the 824 * @ref rte_crypto_auth_xform structure. 825 * For physical crypto devices the caller 826 * must allocate at least digest_length of 827 * physically contiguous memory at this 828 * location. 829 * 830 * For digest generation, the digest result 831 * will overwrite any data at this location. 832 * 833 * @note 834 * Digest-encrypted case. 835 * Digest can be generated, appended to 836 * the end of raw data and encrypted 837 * together using chained digest 838 * generation 839 * (@ref RTE_CRYPTO_AUTH_OP_GENERATE) 840 * and encryption 841 * (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT) 842 * xforms. Similarly, authentication 843 * of the raw data against appended, 844 * decrypted digest, can be performed 845 * using decryption 846 * (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT) 847 * and digest verification 848 * (@ref RTE_CRYPTO_AUTH_OP_VERIFY) 849 * chained xforms. 850 * To perform those operations, a few 851 * additional conditions must be met: 852 * - caller must allocate at least 853 * digest_length of memory at the end of 854 * source and (in case of out-of-place 855 * operations) destination buffer; those 856 * buffers can be linear or split using 857 * scatter-gather lists, 858 * - digest data pointer must point to 859 * the end of source or (in case of 860 * out-of-place operations) destination 861 * data, which is pointer to the 862 * data buffer + auth.data.offset + 863 * auth.data.length, 864 * - cipher.data.offset + 865 * cipher.data.length must be greater 866 * than auth.data.offset + 867 * auth.data.length and is typically 868 * equal to auth.data.offset + 869 * auth.data.length + digest_length. 870 * - for wireless algorithms, i.e. 871 * SNOW 3G, KASUMI and ZUC, as the 872 * cipher.data.length, 873 * cipher.data.offset, 874 * auth.data.length and 875 * auth.data.offset are in bits, they 876 * must be 8-bit multiples. 877 * 878 * Note, that for security reasons, it 879 * is PMDs' responsibility to not 880 * leave an unencrypted digest in any 881 * buffer after performing auth-cipher 882 * operations. 883 * 884 */ 885 rte_iova_t phys_addr; 886 /**< Physical address of digest */ 887 } digest; /**< Digest parameters */ 888 } auth; 889 }; 890 }; 891 }; 892 893 894 /** 895 * Reset the fields of a symmetric operation to their default values. 896 * 897 * @param op The crypto operation to be reset. 898 */ 899 static inline void 900 __rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op) 901 { 902 memset(op, 0, sizeof(*op)); 903 } 904 905 906 /** 907 * Allocate space for symmetric crypto xforms in the private data space of the 908 * crypto operation. This also defaults the crypto xform type to 909 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms 910 * in the crypto operation 911 * 912 * @return 913 * - On success returns pointer to first crypto xform in crypto operations chain 914 * - On failure returns NULL 915 */ 916 static inline struct rte_crypto_sym_xform * 917 __rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op, 918 void *priv_data, uint8_t nb_xforms) 919 { 920 struct rte_crypto_sym_xform *xform; 921 922 sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data; 923 924 do { 925 xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED; 926 xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL; 927 } while (xform); 928 929 return sym_op->xform; 930 } 931 932 933 /** 934 * Attach a session to a symmetric crypto operation 935 * 936 * @param sym_op crypto operation 937 * @param sess cryptodev session 938 */ 939 static inline int 940 __rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op, void *sess) 941 { 942 sym_op->session = sess; 943 944 return 0; 945 } 946 947 /** 948 * Converts portion of mbuf data into a vector representation. 949 * Each segment will be represented as a separate entry in *vec* array. 950 * Expects that provided *ofs* + *len* not to exceed mbuf's *pkt_len*. 951 * @param mb 952 * Pointer to the *rte_mbuf* object. 953 * @param ofs 954 * Offset within mbuf data to start with. 955 * @param len 956 * Length of data to represent. 957 * @param vec 958 * Pointer to an output array of IO vectors. 959 * @param num 960 * Size of an output array. 961 * @return 962 * - number of successfully filled entries in *vec* array. 963 * - negative number of elements in *vec* array required. 964 */ 965 __rte_experimental 966 static inline int 967 rte_crypto_mbuf_to_vec(const struct rte_mbuf *mb, uint32_t ofs, uint32_t len, 968 struct rte_crypto_vec vec[], uint32_t num) 969 { 970 uint32_t i; 971 struct rte_mbuf *nseg; 972 uint32_t left; 973 uint32_t seglen; 974 975 /* assuming that requested data starts in the first segment */ 976 RTE_ASSERT(mb->data_len > ofs); 977 978 if (mb->nb_segs > num) 979 return -mb->nb_segs; 980 981 vec[0].base = rte_pktmbuf_mtod_offset(mb, void *, ofs); 982 vec[0].iova = rte_pktmbuf_iova_offset(mb, ofs); 983 vec[0].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs; 984 985 /* whole data lies in the first segment */ 986 seglen = mb->data_len - ofs; 987 if (len <= seglen) { 988 vec[0].len = len; 989 return 1; 990 } 991 992 /* data spread across segments */ 993 vec[0].len = seglen; 994 left = len - seglen; 995 for (i = 1, nseg = mb->next; nseg != NULL; nseg = nseg->next, i++) { 996 997 vec[i].base = rte_pktmbuf_mtod(nseg, void *); 998 vec[i].iova = rte_pktmbuf_iova(nseg); 999 vec[i].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs; 1000 1001 seglen = nseg->data_len; 1002 if (left <= seglen) { 1003 /* whole requested data is completed */ 1004 vec[i].len = left; 1005 left = 0; 1006 i++; 1007 break; 1008 } 1009 1010 /* use whole segment */ 1011 vec[i].len = seglen; 1012 left -= seglen; 1013 } 1014 1015 RTE_ASSERT(left == 0); 1016 return i; 1017 } 1018 1019 1020 #ifdef __cplusplus 1021 } 1022 #endif 1023 1024 #endif /* _RTE_CRYPTO_SYM_H_ */ 1025