xref: /dpdk/lib/bpf/bpf_jit_arm64.c (revision 3da59f30a23f2e795d2315f3d949e1b3e0ce0c3d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(C) 2019 Marvell International Ltd.
3  */
4 
5 #include <errno.h>
6 #include <stdbool.h>
7 #include <stdlib.h>
8 
9 #include <rte_common.h>
10 #include <rte_byteorder.h>
11 
12 #include "bpf_impl.h"
13 
14 #define A64_REG_MASK(r)		((r) & 0x1f)
15 #define A64_INVALID_OP_CODE	(0xffffffff)
16 
17 #define TMP_REG_1		(EBPF_REG_10 + 1)
18 #define TMP_REG_2		(EBPF_REG_10 + 2)
19 #define TMP_REG_3		(EBPF_REG_10 + 3)
20 
21 #define EBPF_FP			(EBPF_REG_10)
22 #define EBPF_OP_GET(op)		(BPF_OP(op) >> 4)
23 
24 #define A64_R(x)		x
25 #define A64_FP			29
26 #define A64_LR			30
27 #define A64_SP			31
28 #define A64_ZR			31
29 
30 #define check_imm(n, val) (((val) >= 0) ? !!((val) >> (n)) : !!((~val) >> (n)))
31 #define mask_imm(n, val) ((val) & ((1 << (n)) - 1))
32 
33 struct ebpf_a64_map {
34 	uint32_t off; /* eBPF to arm64 insn offset mapping for jump */
35 	uint8_t off_to_b; /* Offset to branch instruction delta */
36 };
37 
38 struct a64_jit_ctx {
39 	size_t stack_sz;          /* Stack size */
40 	uint32_t *ins;            /* ARM64 instructions. NULL if first pass */
41 	struct ebpf_a64_map *map; /* eBPF to arm64 insn mapping for jump */
42 	uint32_t idx;             /* Current instruction index */
43 	uint32_t program_start;   /* Program index, Just after prologue */
44 	uint32_t program_sz;      /* Program size. Found in first pass */
45 	uint8_t foundcall;        /* Found EBPF_CALL class code in eBPF pgm */
46 };
47 
48 static int
49 check_immr_imms(bool is64, uint8_t immr, uint8_t imms)
50 {
51 	const unsigned int width = is64 ? 64 : 32;
52 
53 	if (immr >= width || imms >= width)
54 		return 1;
55 
56 	return 0;
57 }
58 
59 static int
60 check_mov_hw(bool is64, const uint8_t val)
61 {
62 	if (val == 16 || val == 0)
63 		return 0;
64 	else if (is64 && val != 64 && val != 48 && val != 32)
65 		return 1;
66 
67 	return 0;
68 }
69 
70 static int
71 check_ls_sz(uint8_t sz)
72 {
73 	if (sz == BPF_B || sz == BPF_H || sz == BPF_W || sz == EBPF_DW)
74 		return 0;
75 
76 	return 1;
77 }
78 
79 static int
80 check_reg(uint8_t r)
81 {
82 	return (r > 31) ? 1 : 0;
83 }
84 
85 static int
86 is_first_pass(struct a64_jit_ctx *ctx)
87 {
88 	return (ctx->ins == NULL);
89 }
90 
91 static int
92 check_invalid_args(struct a64_jit_ctx *ctx, uint32_t limit)
93 {
94 	uint32_t idx;
95 
96 	if (is_first_pass(ctx))
97 		return 0;
98 
99 	for (idx = 0; idx < limit; idx++) {
100 		if (rte_le_to_cpu_32(ctx->ins[idx]) == A64_INVALID_OP_CODE) {
101 			RTE_BPF_LOG_LINE(ERR,
102 				"%s: invalid opcode at %u;", __func__, idx);
103 			return -EINVAL;
104 		}
105 	}
106 	return 0;
107 }
108 
109 static int
110 jump_offset_init(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
111 {
112 	uint32_t i;
113 
114 	ctx->map = malloc(bpf->prm.nb_ins * sizeof(ctx->map[0]));
115 	if (ctx->map == NULL)
116 		return -ENOMEM;
117 
118 	/* Fill with fake offsets */
119 	for (i = 0; i != bpf->prm.nb_ins; i++) {
120 		ctx->map[i].off = INT32_MAX;
121 		ctx->map[i].off_to_b = 0;
122 	}
123 	return 0;
124 }
125 
126 static void
127 jump_offset_fini(struct a64_jit_ctx *ctx)
128 {
129 	free(ctx->map);
130 }
131 
132 static void
133 jump_offset_update(struct a64_jit_ctx *ctx, uint32_t ebpf_idx)
134 {
135 	if (is_first_pass(ctx))
136 		ctx->map[ebpf_idx].off = ctx->idx;
137 }
138 
139 static void
140 jump_offset_to_branch_update(struct a64_jit_ctx *ctx, uint32_t ebpf_idx)
141 {
142 	if (is_first_pass(ctx))
143 		ctx->map[ebpf_idx].off_to_b = ctx->idx - ctx->map[ebpf_idx].off;
144 
145 }
146 
147 static int32_t
148 jump_offset_get(struct a64_jit_ctx *ctx, uint32_t from, int16_t offset)
149 {
150 	int32_t a64_from, a64_to;
151 
152 	a64_from = ctx->map[from].off +  ctx->map[from].off_to_b;
153 	a64_to = ctx->map[from + offset + 1].off;
154 
155 	if (a64_to == INT32_MAX)
156 		return a64_to;
157 
158 	return a64_to - a64_from;
159 }
160 
161 enum a64_cond_e {
162 	A64_EQ = 0x0, /* == */
163 	A64_NE = 0x1, /* != */
164 	A64_CS = 0x2, /* Unsigned >= */
165 	A64_CC = 0x3, /* Unsigned < */
166 	A64_MI = 0x4, /* < 0 */
167 	A64_PL = 0x5, /* >= 0 */
168 	A64_VS = 0x6, /* Overflow */
169 	A64_VC = 0x7, /* No overflow */
170 	A64_HI = 0x8, /* Unsigned > */
171 	A64_LS = 0x9, /* Unsigned <= */
172 	A64_GE = 0xa, /* Signed >= */
173 	A64_LT = 0xb, /* Signed < */
174 	A64_GT = 0xc, /* Signed > */
175 	A64_LE = 0xd, /* Signed <= */
176 	A64_AL = 0xe, /* Always */
177 };
178 
179 static int
180 check_cond(uint8_t cond)
181 {
182 	return (cond >= A64_AL) ? 1 : 0;
183 }
184 
185 static uint8_t
186 ebpf_to_a64_cond(uint8_t op)
187 {
188 	switch (BPF_OP(op)) {
189 	case BPF_JEQ:
190 		return A64_EQ;
191 	case BPF_JGT:
192 		return A64_HI;
193 	case EBPF_JLT:
194 		return A64_CC;
195 	case BPF_JGE:
196 		return A64_CS;
197 	case EBPF_JLE:
198 		return A64_LS;
199 	case BPF_JSET:
200 	case EBPF_JNE:
201 		return A64_NE;
202 	case EBPF_JSGT:
203 		return A64_GT;
204 	case EBPF_JSLT:
205 		return A64_LT;
206 	case EBPF_JSGE:
207 		return A64_GE;
208 	case EBPF_JSLE:
209 		return A64_LE;
210 	default:
211 		return UINT8_MAX;
212 	}
213 }
214 
215 /* Emit an instruction */
216 static inline void
217 emit_insn(struct a64_jit_ctx *ctx, uint32_t insn, int error)
218 {
219 	if (error)
220 		insn = A64_INVALID_OP_CODE;
221 
222 	if (ctx->ins)
223 		ctx->ins[ctx->idx] = rte_cpu_to_le_32(insn);
224 
225 	ctx->idx++;
226 }
227 
228 static void
229 emit_ret(struct a64_jit_ctx *ctx)
230 {
231 	emit_insn(ctx, 0xd65f03c0, 0);
232 }
233 
234 static void
235 emit_add_sub_imm(struct a64_jit_ctx *ctx, bool is64, bool sub, uint8_t rd,
236 		 uint8_t rn, int16_t imm12)
237 {
238 	uint32_t insn, imm;
239 
240 	imm = mask_imm(12, imm12);
241 	insn = (!!is64) << 31;
242 	insn |= (!!sub) << 30;
243 	insn |= 0x11000000;
244 	insn |= rd;
245 	insn |= rn << 5;
246 	insn |= imm << 10;
247 
248 	emit_insn(ctx, insn,
249 		  check_reg(rd) || check_reg(rn) || check_imm(12, imm12));
250 }
251 
252 static void
253 emit_add_imm_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn, uint16_t imm12)
254 {
255 	emit_add_sub_imm(ctx, 1, 0, rd, rn, imm12);
256 }
257 
258 static void
259 emit_sub_imm_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn, uint16_t imm12)
260 {
261 	emit_add_sub_imm(ctx, 1, 1, rd, rn, imm12);
262 }
263 
264 static void
265 emit_mov(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn)
266 {
267 	emit_add_sub_imm(ctx, is64, 0, rd, rn, 0);
268 }
269 
270 static void
271 emit_mov_64(struct a64_jit_ctx *ctx, uint8_t rd, uint8_t rn)
272 {
273 	emit_mov(ctx, 1, rd, rn);
274 }
275 
276 static void
277 emit_ls_pair_64(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2, uint8_t rn,
278 		bool push, bool load, bool pre_index)
279 {
280 	uint32_t insn;
281 
282 	insn = (!!load) << 22;
283 	insn |= (!!pre_index) << 24;
284 	insn |= 0xa8800000;
285 	insn |= rt;
286 	insn |= rn << 5;
287 	insn |= rt2 << 10;
288 	if (push)
289 		insn |= 0x7e << 15; /* 0x7e means -2 with imm7 */
290 	else
291 		insn |= 0x2 << 15;
292 
293 	emit_insn(ctx, insn, check_reg(rn) || check_reg(rt) || check_reg(rt2));
294 
295 }
296 
297 /* Emit stp rt, rt2, [sp, #-16]! */
298 static void
299 emit_stack_push(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2)
300 {
301 	emit_ls_pair_64(ctx, rt, rt2, A64_SP, 1, 0, 1);
302 }
303 
304 /* Emit ldp rt, rt2, [sp, #16] */
305 static void
306 emit_stack_pop(struct a64_jit_ctx *ctx, uint8_t rt, uint8_t rt2)
307 {
308 	emit_ls_pair_64(ctx, rt, rt2, A64_SP, 0, 1, 0);
309 }
310 
311 #define A64_MOVN 0
312 #define A64_MOVZ 2
313 #define A64_MOVK 3
314 static void
315 mov_imm(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t type,
316 	uint16_t imm16, uint8_t shift)
317 {
318 	uint32_t insn;
319 
320 	insn = (!!is64) << 31;
321 	insn |= type << 29;
322 	insn |= 0x25 << 23;
323 	insn |= (shift/16) << 21;
324 	insn |= imm16 << 5;
325 	insn |= rd;
326 
327 	emit_insn(ctx, insn, check_reg(rd) || check_mov_hw(is64, shift));
328 }
329 
330 static void
331 emit_mov_imm32(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint32_t val)
332 {
333 	uint16_t upper = val >> 16;
334 	uint16_t lower = val & 0xffff;
335 
336 	/* Positive number */
337 	if ((val & 1UL << 31) == 0) {
338 		mov_imm(ctx, is64, rd, A64_MOVZ, lower, 0);
339 		if (upper)
340 			mov_imm(ctx, is64, rd, A64_MOVK, upper, 16);
341 	} else { /* Negative number */
342 		if (upper == 0xffff) {
343 			mov_imm(ctx, is64, rd, A64_MOVN, ~lower, 0);
344 		} else {
345 			mov_imm(ctx, is64, rd, A64_MOVN, ~upper, 16);
346 			if (lower != 0xffff)
347 				mov_imm(ctx, is64, rd, A64_MOVK, lower, 0);
348 		}
349 	}
350 }
351 
352 static int
353 u16_blocks_weight(const uint64_t val, bool one)
354 {
355 	return (((val >>  0) & 0xffff) == (one ? 0xffff : 0x0000)) +
356 	       (((val >> 16) & 0xffff) == (one ? 0xffff : 0x0000)) +
357 	       (((val >> 32) & 0xffff) == (one ? 0xffff : 0x0000)) +
358 	       (((val >> 48) & 0xffff) == (one ? 0xffff : 0x0000));
359 }
360 
361 static void
362 emit_mov_imm(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint64_t val)
363 {
364 	uint64_t nval = ~val;
365 	int movn, sr;
366 
367 	if (is64 == 0)
368 		return emit_mov_imm32(ctx, 0, rd, (uint32_t)(val & 0xffffffff));
369 
370 	/* Find MOVN or MOVZ first */
371 	movn = u16_blocks_weight(val, true) > u16_blocks_weight(val, false);
372 	/* Find shift right value */
373 	sr = movn ? rte_fls_u64(nval) - 1 : rte_fls_u64(val) - 1;
374 	sr = RTE_ALIGN_FLOOR(sr, 16);
375 	sr = RTE_MAX(sr, 0);
376 
377 	if (movn)
378 		mov_imm(ctx, 1, rd, A64_MOVN, (nval >> sr) & 0xffff, sr);
379 	else
380 		mov_imm(ctx, 1, rd, A64_MOVZ, (val >> sr) & 0xffff, sr);
381 
382 	sr -= 16;
383 	while (sr >= 0) {
384 		if (((val >> sr) & 0xffff) != (movn ? 0xffff : 0x0000))
385 			mov_imm(ctx, 1, rd, A64_MOVK, (val >> sr) & 0xffff, sr);
386 		sr -= 16;
387 	}
388 }
389 
390 static void
391 emit_ls(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn, uint8_t rm,
392 	bool load)
393 {
394 	uint32_t insn;
395 
396 	insn = 0x1c1 << 21;
397 	if (load)
398 		insn |= 1 << 22;
399 	if (sz == BPF_B)
400 		insn |= 0 << 30;
401 	else if (sz == BPF_H)
402 		insn |= 1 << 30;
403 	else if (sz == BPF_W)
404 		insn |= 2 << 30;
405 	else if (sz == EBPF_DW)
406 		insn |= 3 << 30;
407 
408 	insn |= rm << 16;
409 	insn |= 0x1a << 10; /* LSL and S = 0 */
410 	insn |= rn << 5;
411 	insn |= rt;
412 
413 	emit_insn(ctx, insn, check_reg(rt) || check_reg(rn) || check_reg(rm) ||
414 		  check_ls_sz(sz));
415 }
416 
417 static void
418 emit_str(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn,
419 	 uint8_t rm)
420 {
421 	emit_ls(ctx, sz, rt, rn, rm, 0);
422 }
423 
424 static void
425 emit_ldr(struct a64_jit_ctx *ctx, uint8_t sz, uint8_t rt, uint8_t rn,
426 	 uint8_t rm)
427 {
428 	emit_ls(ctx, sz, rt, rn, rm, 1);
429 }
430 
431 #define A64_ADD 0x58
432 #define A64_SUB 0x258
433 static void
434 emit_add_sub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
435 	     uint8_t rm, uint16_t op)
436 {
437 	uint32_t insn;
438 
439 	insn = (!!is64) << 31;
440 	insn |= op << 21; /* shift == 0 */
441 	insn |= rm << 16;
442 	insn |= rn << 5;
443 	insn |= rd;
444 
445 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
446 }
447 
448 static void
449 emit_add(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
450 {
451 	emit_add_sub(ctx, is64, rd, rd, rm, A64_ADD);
452 }
453 
454 static void
455 emit_sub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
456 {
457 	emit_add_sub(ctx, is64, rd, rd, rm, A64_SUB);
458 }
459 
460 static void
461 emit_neg(struct a64_jit_ctx *ctx, bool is64, uint8_t rd)
462 {
463 	emit_add_sub(ctx, is64, rd, A64_ZR, rd, A64_SUB);
464 }
465 
466 static void
467 emit_mul(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
468 {
469 	uint32_t insn;
470 
471 	insn = (!!is64) << 31;
472 	insn |= 0xd8 << 21;
473 	insn |= rm << 16;
474 	insn |= A64_ZR << 10;
475 	insn |= rd << 5;
476 	insn |= rd;
477 
478 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
479 }
480 
481 #define A64_UDIV 0x2
482 #define A64_LSLV 0x8
483 #define A64_LSRV 0x9
484 #define A64_ASRV 0xA
485 static void
486 emit_data_process_two_src(struct a64_jit_ctx *ctx, bool is64, uint8_t rd,
487 			  uint8_t rn, uint8_t rm, uint16_t op)
488 
489 {
490 	uint32_t insn;
491 
492 	insn = (!!is64) << 31;
493 	insn |= 0xd6 << 21;
494 	insn |= rm << 16;
495 	insn |= op << 10;
496 	insn |= rn << 5;
497 	insn |= rd;
498 
499 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
500 }
501 
502 static void
503 emit_div(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
504 {
505 	emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_UDIV);
506 }
507 
508 static void
509 emit_lslv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
510 {
511 	emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_LSLV);
512 }
513 
514 static void
515 emit_lsrv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
516 {
517 	emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_LSRV);
518 }
519 
520 static void
521 emit_asrv(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
522 {
523 	emit_data_process_two_src(ctx, is64, rd, rd, rm, A64_ASRV);
524 }
525 
526 #define A64_UBFM 0x2
527 #define A64_SBFM 0x0
528 static void
529 emit_bitfield(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
530 	      uint8_t immr, uint8_t imms, uint16_t op)
531 
532 {
533 	uint32_t insn;
534 
535 	insn = (!!is64) << 31;
536 	if (insn)
537 		insn |= 1 << 22; /* Set N bit when is64 is set */
538 	insn |= op << 29;
539 	insn |= 0x26 << 23;
540 	insn |= immr << 16;
541 	insn |= imms << 10;
542 	insn |= rn << 5;
543 	insn |= rd;
544 
545 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rn) ||
546 		  check_immr_imms(is64, immr, imms));
547 }
548 static void
549 emit_lsl(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
550 {
551 	const unsigned int width = is64 ? 64 : 32;
552 	uint8_t imms, immr;
553 
554 	immr = (width - imm) & (width - 1);
555 	imms = width - 1 - imm;
556 
557 	emit_bitfield(ctx, is64, rd, rd, immr, imms, A64_UBFM);
558 }
559 
560 static void
561 emit_lsr(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
562 {
563 	emit_bitfield(ctx, is64, rd, rd, imm, is64 ? 63 : 31, A64_UBFM);
564 }
565 
566 static void
567 emit_asr(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t imm)
568 {
569 	emit_bitfield(ctx, is64, rd, rd, imm, is64 ? 63 : 31, A64_SBFM);
570 }
571 
572 #define A64_AND 0
573 #define A64_OR 1
574 #define A64_XOR 2
575 static void
576 emit_logical(struct a64_jit_ctx *ctx, bool is64, uint8_t rd,
577 	     uint8_t rm, uint16_t op)
578 {
579 	uint32_t insn;
580 
581 	insn = (!!is64) << 31;
582 	insn |= op << 29;
583 	insn |= 0x50 << 21;
584 	insn |= rm << 16;
585 	insn |= rd << 5;
586 	insn |= rd;
587 
588 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rm));
589 }
590 
591 static void
592 emit_or(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
593 {
594 	emit_logical(ctx, is64, rd, rm, A64_OR);
595 }
596 
597 static void
598 emit_and(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
599 {
600 	emit_logical(ctx, is64, rd, rm, A64_AND);
601 }
602 
603 static void
604 emit_xor(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rm)
605 {
606 	emit_logical(ctx, is64, rd, rm, A64_XOR);
607 }
608 
609 static void
610 emit_msub(struct a64_jit_ctx *ctx, bool is64, uint8_t rd, uint8_t rn,
611 	  uint8_t rm, uint8_t ra)
612 {
613 	uint32_t insn;
614 
615 	insn = (!!is64) << 31;
616 	insn |= 0xd8 << 21;
617 	insn |= rm << 16;
618 	insn |= 0x1 << 15;
619 	insn |= ra << 10;
620 	insn |= rn << 5;
621 	insn |= rd;
622 
623 	emit_insn(ctx, insn, check_reg(rd) || check_reg(rn) || check_reg(rm) ||
624 		  check_reg(ra));
625 }
626 
627 static void
628 emit_mod(struct a64_jit_ctx *ctx, bool is64, uint8_t tmp, uint8_t rd,
629 	 uint8_t rm)
630 {
631 	emit_data_process_two_src(ctx, is64, tmp, rd, rm, A64_UDIV);
632 	emit_msub(ctx, is64, rd, tmp, rm, rd);
633 }
634 
635 static void
636 emit_blr(struct a64_jit_ctx *ctx, uint8_t rn)
637 {
638 	uint32_t insn;
639 
640 	insn = 0xd63f0000;
641 	insn |= rn << 5;
642 
643 	emit_insn(ctx, insn, check_reg(rn));
644 }
645 
646 static void
647 emit_zero_extend(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
648 {
649 	switch (imm) {
650 	case 16:
651 		/* Zero-extend 16 bits into 64 bits */
652 		emit_bitfield(ctx, 1, rd, rd, 0, 15, A64_UBFM);
653 		break;
654 	case 32:
655 		/* Zero-extend 32 bits into 64 bits */
656 		emit_bitfield(ctx, 1, rd, rd, 0, 31, A64_UBFM);
657 		break;
658 	case 64:
659 		break;
660 	default:
661 		/* Generate error */
662 		emit_insn(ctx, 0, 1);
663 	}
664 }
665 
666 static void
667 emit_rev(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
668 {
669 	uint32_t insn;
670 
671 	insn = 0xdac00000;
672 	insn |= rd << 5;
673 	insn |= rd;
674 
675 	switch (imm) {
676 	case 16:
677 		insn |= 1 << 10;
678 		emit_insn(ctx, insn, check_reg(rd));
679 		emit_zero_extend(ctx, rd, 16);
680 		break;
681 	case 32:
682 		insn |= 2 << 10;
683 		emit_insn(ctx, insn, check_reg(rd));
684 		/* Upper 32 bits already cleared */
685 		break;
686 	case 64:
687 		insn |= 3 << 10;
688 		emit_insn(ctx, insn, check_reg(rd));
689 		break;
690 	default:
691 		/* Generate error */
692 		emit_insn(ctx, insn, 1);
693 	}
694 }
695 
696 static int
697 is_be(void)
698 {
699 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
700 	return 1;
701 #else
702 	return 0;
703 #endif
704 }
705 
706 static void
707 emit_be(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
708 {
709 	if (is_be())
710 		emit_zero_extend(ctx, rd, imm);
711 	else
712 		emit_rev(ctx, rd, imm);
713 }
714 
715 static void
716 emit_le(struct a64_jit_ctx *ctx, uint8_t rd, int32_t imm)
717 {
718 	if (is_be())
719 		emit_rev(ctx, rd, imm);
720 	else
721 		emit_zero_extend(ctx, rd, imm);
722 }
723 
724 static uint8_t
725 ebpf_to_a64_reg(struct a64_jit_ctx *ctx, uint8_t reg)
726 {
727 	const uint32_t ebpf2a64_has_call[] = {
728 		/* Map A64 R7 register as EBPF return register */
729 		[EBPF_REG_0] = A64_R(7),
730 		/* Map A64 arguments register as EBPF arguments register */
731 		[EBPF_REG_1] = A64_R(0),
732 		[EBPF_REG_2] = A64_R(1),
733 		[EBPF_REG_3] = A64_R(2),
734 		[EBPF_REG_4] = A64_R(3),
735 		[EBPF_REG_5] = A64_R(4),
736 		/* Map A64 callee save register as EBPF callee save register */
737 		[EBPF_REG_6] = A64_R(19),
738 		[EBPF_REG_7] = A64_R(20),
739 		[EBPF_REG_8] = A64_R(21),
740 		[EBPF_REG_9] = A64_R(22),
741 		[EBPF_FP]    = A64_R(25),
742 		/* Map A64 scratch registers as temporary storage */
743 		[TMP_REG_1] = A64_R(9),
744 		[TMP_REG_2] = A64_R(10),
745 		[TMP_REG_3] = A64_R(11),
746 	};
747 
748 	const uint32_t ebpf2a64_no_call[] = {
749 		/* Map A64 R7 register as EBPF return register */
750 		[EBPF_REG_0] = A64_R(7),
751 		/* Map A64 arguments register as EBPF arguments register */
752 		[EBPF_REG_1] = A64_R(0),
753 		[EBPF_REG_2] = A64_R(1),
754 		[EBPF_REG_3] = A64_R(2),
755 		[EBPF_REG_4] = A64_R(3),
756 		[EBPF_REG_5] = A64_R(4),
757 		/*
758 		 * EBPF program does not have EBPF_CALL op code,
759 		 * Map A64 scratch registers as EBPF callee save registers.
760 		 */
761 		[EBPF_REG_6] = A64_R(9),
762 		[EBPF_REG_7] = A64_R(10),
763 		[EBPF_REG_8] = A64_R(11),
764 		[EBPF_REG_9] = A64_R(12),
765 		/* Map A64 FP register as EBPF FP register */
766 		[EBPF_FP]    = A64_FP,
767 		/* Map remaining A64 scratch registers as temporary storage */
768 		[TMP_REG_1] = A64_R(13),
769 		[TMP_REG_2] = A64_R(14),
770 		[TMP_REG_3] = A64_R(15),
771 	};
772 
773 	if (ctx->foundcall)
774 		return ebpf2a64_has_call[reg];
775 	else
776 		return ebpf2a64_no_call[reg];
777 }
778 
779 /*
780  * Procedure call standard for the arm64
781  * -------------------------------------
782  * R0..R7  - Parameter/result registers
783  * R8      - Indirect result location register
784  * R9..R15 - Scratch registers
785  * R15     - Platform Register
786  * R16     - First intra-procedure-call scratch register
787  * R17     - Second intra-procedure-call temporary register
788  * R19-R28 - Callee saved registers
789  * R29     - Frame pointer
790  * R30     - Link register
791  * R31     - Stack pointer
792  */
793 static void
794 emit_prologue_has_call(struct a64_jit_ctx *ctx)
795 {
796 	uint8_t r6, r7, r8, r9, fp;
797 
798 	r6 = ebpf_to_a64_reg(ctx, EBPF_REG_6);
799 	r7 = ebpf_to_a64_reg(ctx, EBPF_REG_7);
800 	r8 = ebpf_to_a64_reg(ctx, EBPF_REG_8);
801 	r9 = ebpf_to_a64_reg(ctx, EBPF_REG_9);
802 	fp = ebpf_to_a64_reg(ctx, EBPF_FP);
803 
804 	/*
805 	 * eBPF prog stack layout
806 	 *
807 	 *                               high
808 	 *       eBPF prologue       0:+-----+ <= original A64_SP
809 	 *                             |FP/LR|
810 	 *                         -16:+-----+ <= current A64_FP
811 	 *    Callee saved registers   | ... |
812 	 *             EBPF_FP =>  -64:+-----+
813 	 *                             |     |
814 	 *       eBPF prog stack       | ... |
815 	 *                             |     |
816 	 * (EBPF_FP - bpf->stack_sz)=> +-----+
817 	 * Pad for A64_SP 16B alignment| PAD |
818 	 * (EBPF_FP - ctx->stack_sz)=> +-----+ <= current A64_SP
819 	 *                             |     |
820 	 *                             | ... | Function call stack
821 	 *                             |     |
822 	 *                             +-----+
823 	 *                              low
824 	 */
825 	emit_stack_push(ctx, A64_FP, A64_LR);
826 	emit_mov_64(ctx, A64_FP, A64_SP);
827 	emit_stack_push(ctx, r6, r7);
828 	emit_stack_push(ctx, r8, r9);
829 	/*
830 	 * There is no requirement to save A64_R(28) in stack. Doing it here,
831 	 * because, A64_SP needs be to 16B aligned and STR vs STP
832 	 * takes same number of cycles(typically).
833 	 */
834 	emit_stack_push(ctx, fp, A64_R(28));
835 	emit_mov_64(ctx, fp, A64_SP);
836 	if (ctx->stack_sz)
837 		emit_sub_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
838 }
839 
840 static void
841 emit_epilogue_has_call(struct a64_jit_ctx *ctx)
842 {
843 	uint8_t r6, r7, r8, r9, fp, r0;
844 
845 	r6 = ebpf_to_a64_reg(ctx, EBPF_REG_6);
846 	r7 = ebpf_to_a64_reg(ctx, EBPF_REG_7);
847 	r8 = ebpf_to_a64_reg(ctx, EBPF_REG_8);
848 	r9 = ebpf_to_a64_reg(ctx, EBPF_REG_9);
849 	fp = ebpf_to_a64_reg(ctx, EBPF_FP);
850 	r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
851 
852 	if (ctx->stack_sz)
853 		emit_add_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
854 	emit_stack_pop(ctx, fp, A64_R(28));
855 	emit_stack_pop(ctx, r8, r9);
856 	emit_stack_pop(ctx, r6, r7);
857 	emit_stack_pop(ctx, A64_FP, A64_LR);
858 	emit_mov_64(ctx, A64_R(0), r0);
859 	emit_ret(ctx);
860 }
861 
862 static void
863 emit_prologue_no_call(struct a64_jit_ctx *ctx)
864 {
865 	/*
866 	 * eBPF prog stack layout without EBPF_CALL opcode
867 	 *
868 	 *                               high
869 	 *    eBPF prologue(EBPF_FP) 0:+-----+ <= original A64_SP/current A64_FP
870 	 *                             |     |
871 	 *                             | ... |
872 	 *            eBPF prog stack  |     |
873 	 *                             |     |
874 	 * (EBPF_FP - bpf->stack_sz)=> +-----+
875 	 * Pad for A64_SP 16B alignment| PAD |
876 	 * (EBPF_FP - ctx->stack_sz)=> +-----+ <= current A64_SP
877 	 *                             |     |
878 	 *                             | ... | Function call stack
879 	 *                             |     |
880 	 *                             +-----+
881 	 *                              low
882 	 */
883 	if (ctx->stack_sz) {
884 		emit_mov_64(ctx, A64_FP, A64_SP);
885 		emit_sub_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
886 	}
887 }
888 
889 static void
890 emit_epilogue_no_call(struct a64_jit_ctx *ctx)
891 {
892 	if (ctx->stack_sz)
893 		emit_add_imm_64(ctx, A64_SP, A64_SP, ctx->stack_sz);
894 	emit_mov_64(ctx, A64_R(0), ebpf_to_a64_reg(ctx, EBPF_REG_0));
895 	emit_ret(ctx);
896 }
897 
898 static void
899 emit_prologue(struct a64_jit_ctx *ctx)
900 {
901 	if (ctx->foundcall)
902 		emit_prologue_has_call(ctx);
903 	else
904 		emit_prologue_no_call(ctx);
905 
906 	ctx->program_start = ctx->idx;
907 }
908 
909 static void
910 emit_epilogue(struct a64_jit_ctx *ctx)
911 {
912 	ctx->program_sz = ctx->idx - ctx->program_start;
913 
914 	if (ctx->foundcall)
915 		emit_epilogue_has_call(ctx);
916 	else
917 		emit_epilogue_no_call(ctx);
918 }
919 
920 static void
921 emit_call(struct a64_jit_ctx *ctx, uint8_t tmp, void *func)
922 {
923 	uint8_t r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
924 
925 	emit_mov_imm(ctx, 1, tmp, (uint64_t)func);
926 	emit_blr(ctx, tmp);
927 	emit_mov_64(ctx, r0, A64_R(0));
928 }
929 
930 static void
931 emit_cbnz(struct a64_jit_ctx *ctx, bool is64, uint8_t rt, int32_t imm19)
932 {
933 	uint32_t insn, imm;
934 
935 	imm = mask_imm(19, imm19);
936 	insn = (!!is64) << 31;
937 	insn |= 0x35 << 24;
938 	insn |= imm << 5;
939 	insn |= rt;
940 
941 	emit_insn(ctx, insn, check_reg(rt) || check_imm(19, imm19));
942 }
943 
944 static void
945 emit_b(struct a64_jit_ctx *ctx, int32_t imm26)
946 {
947 	uint32_t insn, imm;
948 
949 	imm = mask_imm(26, imm26);
950 	insn = 0x5 << 26;
951 	insn |= imm;
952 
953 	emit_insn(ctx, insn, check_imm(26, imm26));
954 }
955 
956 static void
957 emit_return_zero_if_src_zero(struct a64_jit_ctx *ctx, bool is64, uint8_t src)
958 {
959 	uint8_t r0 = ebpf_to_a64_reg(ctx, EBPF_REG_0);
960 	uint16_t jump_to_epilogue;
961 
962 	emit_cbnz(ctx, is64, src, 3);
963 	emit_mov_imm(ctx, is64, r0, 0);
964 	jump_to_epilogue = (ctx->program_start + ctx->program_sz) - ctx->idx;
965 	emit_b(ctx, jump_to_epilogue);
966 }
967 
968 static void
969 emit_stadd(struct a64_jit_ctx *ctx, bool is64, uint8_t rs, uint8_t rn)
970 {
971 	uint32_t insn;
972 
973 	insn = 0xb820001f;
974 	insn |= (!!is64) << 30;
975 	insn |= rs << 16;
976 	insn |= rn << 5;
977 
978 	emit_insn(ctx, insn, check_reg(rs) || check_reg(rn));
979 }
980 
981 static void
982 emit_ldxr(struct a64_jit_ctx *ctx, bool is64, uint8_t rt, uint8_t rn)
983 {
984 	uint32_t insn;
985 
986 	insn = 0x885f7c00;
987 	insn |= (!!is64) << 30;
988 	insn |= rn << 5;
989 	insn |= rt;
990 
991 	emit_insn(ctx, insn, check_reg(rt) || check_reg(rn));
992 }
993 
994 static void
995 emit_stxr(struct a64_jit_ctx *ctx, bool is64, uint8_t rs, uint8_t rt,
996 	  uint8_t rn)
997 {
998 	uint32_t insn;
999 
1000 	insn = 0x88007c00;
1001 	insn |= (!!is64) << 30;
1002 	insn |= rs << 16;
1003 	insn |= rn << 5;
1004 	insn |= rt;
1005 
1006 	emit_insn(ctx, insn, check_reg(rs) || check_reg(rt) || check_reg(rn));
1007 }
1008 
1009 static int
1010 has_atomics(void)
1011 {
1012 	int rc = 0;
1013 
1014 #if defined(__ARM_FEATURE_ATOMICS) || defined(RTE_ARM_FEATURE_ATOMICS)
1015 	rc = 1;
1016 #endif
1017 	return rc;
1018 }
1019 
1020 static void
1021 emit_xadd(struct a64_jit_ctx *ctx, uint8_t op, uint8_t tmp1, uint8_t tmp2,
1022 	  uint8_t tmp3, uint8_t dst, int16_t off, uint8_t src)
1023 {
1024 	bool is64 = (BPF_SIZE(op) == EBPF_DW);
1025 	uint8_t rn;
1026 
1027 	if (off) {
1028 		emit_mov_imm(ctx, 1, tmp1, off);
1029 		emit_add(ctx, 1, tmp1, dst);
1030 		rn = tmp1;
1031 	} else {
1032 		rn = dst;
1033 	}
1034 
1035 	if (has_atomics()) {
1036 		emit_stadd(ctx, is64, src, rn);
1037 	} else {
1038 		emit_ldxr(ctx, is64, tmp2, rn);
1039 		emit_add(ctx, is64, tmp2, src);
1040 		emit_stxr(ctx, is64, tmp3, tmp2, rn);
1041 		emit_cbnz(ctx, is64, tmp3, -3);
1042 	}
1043 }
1044 
1045 #define A64_CMP 0x6b00000f
1046 #define A64_TST 0x6a00000f
1047 static void
1048 emit_cmp_tst(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm,
1049 	     uint32_t opc)
1050 {
1051 	uint32_t insn;
1052 
1053 	insn = opc;
1054 	insn |= (!!is64) << 31;
1055 	insn |= rm << 16;
1056 	insn |= rn << 5;
1057 
1058 	emit_insn(ctx, insn, check_reg(rn) || check_reg(rm));
1059 }
1060 
1061 static void
1062 emit_cmp(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm)
1063 {
1064 	emit_cmp_tst(ctx, is64, rn, rm, A64_CMP);
1065 }
1066 
1067 static void
1068 emit_tst(struct a64_jit_ctx *ctx, bool is64, uint8_t rn, uint8_t rm)
1069 {
1070 	emit_cmp_tst(ctx, is64, rn, rm, A64_TST);
1071 }
1072 
1073 static void
1074 emit_b_cond(struct a64_jit_ctx *ctx, uint8_t cond, int32_t imm19)
1075 {
1076 	uint32_t insn, imm;
1077 
1078 	imm = mask_imm(19, imm19);
1079 	insn = 0x15 << 26;
1080 	insn |= imm << 5;
1081 	insn |= cond;
1082 
1083 	emit_insn(ctx, insn, check_cond(cond) || check_imm(19, imm19));
1084 }
1085 
1086 static void
1087 emit_branch(struct a64_jit_ctx *ctx, uint8_t op, uint32_t i, int16_t off)
1088 {
1089 	jump_offset_to_branch_update(ctx, i);
1090 	emit_b_cond(ctx, ebpf_to_a64_cond(op), jump_offset_get(ctx, i, off));
1091 }
1092 
1093 static void
1094 check_program_has_call(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
1095 {
1096 	const struct ebpf_insn *ins;
1097 	uint8_t op;
1098 	uint32_t i;
1099 
1100 	for (i = 0; i != bpf->prm.nb_ins; i++) {
1101 		ins = bpf->prm.ins + i;
1102 		op = ins->code;
1103 
1104 		switch (op) {
1105 		/* Call imm */
1106 		case (BPF_JMP | EBPF_CALL):
1107 			ctx->foundcall = 1;
1108 			return;
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Walk through eBPF code and translate them to arm64 one.
1115  */
1116 static int
1117 emit(struct a64_jit_ctx *ctx, struct rte_bpf *bpf)
1118 {
1119 	uint8_t op, dst, src, tmp1, tmp2, tmp3;
1120 	const struct ebpf_insn *ins;
1121 	uint64_t u64;
1122 	int16_t off;
1123 	int32_t imm;
1124 	uint32_t i;
1125 	bool is64;
1126 	int rc;
1127 
1128 	/* Reset context fields */
1129 	ctx->idx = 0;
1130 	/* arm64 SP must be aligned to 16 */
1131 	ctx->stack_sz = RTE_ALIGN_MUL_CEIL(bpf->stack_sz, 16);
1132 	tmp1 = ebpf_to_a64_reg(ctx, TMP_REG_1);
1133 	tmp2 = ebpf_to_a64_reg(ctx, TMP_REG_2);
1134 	tmp3 = ebpf_to_a64_reg(ctx, TMP_REG_3);
1135 
1136 	emit_prologue(ctx);
1137 
1138 	for (i = 0; i != bpf->prm.nb_ins; i++) {
1139 
1140 		jump_offset_update(ctx, i);
1141 		ins = bpf->prm.ins + i;
1142 		op = ins->code;
1143 		off = ins->off;
1144 		imm = ins->imm;
1145 
1146 		dst = ebpf_to_a64_reg(ctx, ins->dst_reg);
1147 		src = ebpf_to_a64_reg(ctx, ins->src_reg);
1148 		is64 = (BPF_CLASS(op) == EBPF_ALU64);
1149 
1150 		switch (op) {
1151 		/* dst = src */
1152 		case (BPF_ALU | EBPF_MOV | BPF_X):
1153 		case (EBPF_ALU64 | EBPF_MOV | BPF_X):
1154 			emit_mov(ctx, is64, dst, src);
1155 			break;
1156 		/* dst = imm */
1157 		case (BPF_ALU | EBPF_MOV | BPF_K):
1158 		case (EBPF_ALU64 | EBPF_MOV | BPF_K):
1159 			emit_mov_imm(ctx, is64, dst, imm);
1160 			break;
1161 		/* dst += src */
1162 		case (BPF_ALU | BPF_ADD | BPF_X):
1163 		case (EBPF_ALU64 | BPF_ADD | BPF_X):
1164 			emit_add(ctx, is64, dst, src);
1165 			break;
1166 		/* dst += imm */
1167 		case (BPF_ALU | BPF_ADD | BPF_K):
1168 		case (EBPF_ALU64 | BPF_ADD | BPF_K):
1169 			emit_mov_imm(ctx, is64, tmp1, imm);
1170 			emit_add(ctx, is64, dst, tmp1);
1171 			break;
1172 		/* dst -= src */
1173 		case (BPF_ALU | BPF_SUB | BPF_X):
1174 		case (EBPF_ALU64 | BPF_SUB | BPF_X):
1175 			emit_sub(ctx, is64, dst, src);
1176 			break;
1177 		/* dst -= imm */
1178 		case (BPF_ALU | BPF_SUB | BPF_K):
1179 		case (EBPF_ALU64 | BPF_SUB | BPF_K):
1180 			emit_mov_imm(ctx, is64, tmp1, imm);
1181 			emit_sub(ctx, is64, dst, tmp1);
1182 			break;
1183 		/* dst *= src */
1184 		case (BPF_ALU | BPF_MUL | BPF_X):
1185 		case (EBPF_ALU64 | BPF_MUL | BPF_X):
1186 			emit_mul(ctx, is64, dst, src);
1187 			break;
1188 		/* dst *= imm */
1189 		case (BPF_ALU | BPF_MUL | BPF_K):
1190 		case (EBPF_ALU64 | BPF_MUL | BPF_K):
1191 			emit_mov_imm(ctx, is64, tmp1, imm);
1192 			emit_mul(ctx, is64, dst, tmp1);
1193 			break;
1194 		/* dst /= src */
1195 		case (BPF_ALU | BPF_DIV | BPF_X):
1196 		case (EBPF_ALU64 | BPF_DIV | BPF_X):
1197 			emit_return_zero_if_src_zero(ctx, is64, src);
1198 			emit_div(ctx, is64, dst, src);
1199 			break;
1200 		/* dst /= imm */
1201 		case (BPF_ALU | BPF_DIV | BPF_K):
1202 		case (EBPF_ALU64 | BPF_DIV | BPF_K):
1203 			emit_mov_imm(ctx, is64, tmp1, imm);
1204 			emit_div(ctx, is64, dst, tmp1);
1205 			break;
1206 		/* dst %= src */
1207 		case (BPF_ALU | BPF_MOD | BPF_X):
1208 		case (EBPF_ALU64 | BPF_MOD | BPF_X):
1209 			emit_return_zero_if_src_zero(ctx, is64, src);
1210 			emit_mod(ctx, is64, tmp1, dst, src);
1211 			break;
1212 		/* dst %= imm */
1213 		case (BPF_ALU | BPF_MOD | BPF_K):
1214 		case (EBPF_ALU64 | BPF_MOD | BPF_K):
1215 			emit_mov_imm(ctx, is64, tmp1, imm);
1216 			emit_mod(ctx, is64, tmp2, dst, tmp1);
1217 			break;
1218 		/* dst |= src */
1219 		case (BPF_ALU | BPF_OR | BPF_X):
1220 		case (EBPF_ALU64 | BPF_OR | BPF_X):
1221 			emit_or(ctx, is64, dst, src);
1222 			break;
1223 		/* dst |= imm */
1224 		case (BPF_ALU | BPF_OR | BPF_K):
1225 		case (EBPF_ALU64 | BPF_OR | BPF_K):
1226 			emit_mov_imm(ctx, is64, tmp1, imm);
1227 			emit_or(ctx, is64, dst, tmp1);
1228 			break;
1229 		/* dst &= src */
1230 		case (BPF_ALU | BPF_AND | BPF_X):
1231 		case (EBPF_ALU64 | BPF_AND | BPF_X):
1232 			emit_and(ctx, is64, dst, src);
1233 			break;
1234 		/* dst &= imm */
1235 		case (BPF_ALU | BPF_AND | BPF_K):
1236 		case (EBPF_ALU64 | BPF_AND | BPF_K):
1237 			emit_mov_imm(ctx, is64, tmp1, imm);
1238 			emit_and(ctx, is64, dst, tmp1);
1239 			break;
1240 		/* dst ^= src */
1241 		case (BPF_ALU | BPF_XOR | BPF_X):
1242 		case (EBPF_ALU64 | BPF_XOR | BPF_X):
1243 			emit_xor(ctx, is64, dst, src);
1244 			break;
1245 		/* dst ^= imm */
1246 		case (BPF_ALU | BPF_XOR | BPF_K):
1247 		case (EBPF_ALU64 | BPF_XOR | BPF_K):
1248 			emit_mov_imm(ctx, is64, tmp1, imm);
1249 			emit_xor(ctx, is64, dst, tmp1);
1250 			break;
1251 		/* dst = -dst */
1252 		case (BPF_ALU | BPF_NEG):
1253 		case (EBPF_ALU64 | BPF_NEG):
1254 			emit_neg(ctx, is64, dst);
1255 			break;
1256 		/* dst <<= src */
1257 		case BPF_ALU | BPF_LSH | BPF_X:
1258 		case EBPF_ALU64 | BPF_LSH | BPF_X:
1259 			emit_lslv(ctx, is64, dst, src);
1260 			break;
1261 		/* dst <<= imm */
1262 		case BPF_ALU | BPF_LSH | BPF_K:
1263 		case EBPF_ALU64 | BPF_LSH | BPF_K:
1264 			emit_lsl(ctx, is64, dst, imm);
1265 			break;
1266 		/* dst >>= src */
1267 		case BPF_ALU | BPF_RSH | BPF_X:
1268 		case EBPF_ALU64 | BPF_RSH | BPF_X:
1269 			emit_lsrv(ctx, is64, dst, src);
1270 			break;
1271 		/* dst >>= imm */
1272 		case BPF_ALU | BPF_RSH | BPF_K:
1273 		case EBPF_ALU64 | BPF_RSH | BPF_K:
1274 			emit_lsr(ctx, is64, dst, imm);
1275 			break;
1276 		/* dst >>= src (arithmetic) */
1277 		case BPF_ALU | EBPF_ARSH | BPF_X:
1278 		case EBPF_ALU64 | EBPF_ARSH | BPF_X:
1279 			emit_asrv(ctx, is64, dst, src);
1280 			break;
1281 		/* dst >>= imm (arithmetic) */
1282 		case BPF_ALU | EBPF_ARSH | BPF_K:
1283 		case EBPF_ALU64 | EBPF_ARSH | BPF_K:
1284 			emit_asr(ctx, is64, dst, imm);
1285 			break;
1286 		/* dst = be##imm(dst) */
1287 		case (BPF_ALU | EBPF_END | EBPF_TO_BE):
1288 			emit_be(ctx, dst, imm);
1289 			break;
1290 		/* dst = le##imm(dst) */
1291 		case (BPF_ALU | EBPF_END | EBPF_TO_LE):
1292 			emit_le(ctx, dst, imm);
1293 			break;
1294 		/* dst = *(size *) (src + off) */
1295 		case (BPF_LDX | BPF_MEM | BPF_B):
1296 		case (BPF_LDX | BPF_MEM | BPF_H):
1297 		case (BPF_LDX | BPF_MEM | BPF_W):
1298 		case (BPF_LDX | BPF_MEM | EBPF_DW):
1299 			emit_mov_imm(ctx, 1, tmp1, off);
1300 			emit_ldr(ctx, BPF_SIZE(op), dst, src, tmp1);
1301 			break;
1302 		/* dst = imm64 */
1303 		case (BPF_LD | BPF_IMM | EBPF_DW):
1304 			u64 = ((uint64_t)ins[1].imm << 32) | (uint32_t)imm;
1305 			emit_mov_imm(ctx, 1, dst, u64);
1306 			i++;
1307 			break;
1308 		/* *(size *)(dst + off) = src */
1309 		case (BPF_STX | BPF_MEM | BPF_B):
1310 		case (BPF_STX | BPF_MEM | BPF_H):
1311 		case (BPF_STX | BPF_MEM | BPF_W):
1312 		case (BPF_STX | BPF_MEM | EBPF_DW):
1313 			emit_mov_imm(ctx, 1, tmp1, off);
1314 			emit_str(ctx, BPF_SIZE(op), src, dst, tmp1);
1315 			break;
1316 		/* *(size *)(dst + off) = imm */
1317 		case (BPF_ST | BPF_MEM | BPF_B):
1318 		case (BPF_ST | BPF_MEM | BPF_H):
1319 		case (BPF_ST | BPF_MEM | BPF_W):
1320 		case (BPF_ST | BPF_MEM | EBPF_DW):
1321 			emit_mov_imm(ctx, 1, tmp1, imm);
1322 			emit_mov_imm(ctx, 1, tmp2, off);
1323 			emit_str(ctx, BPF_SIZE(op), tmp1, dst, tmp2);
1324 			break;
1325 		/* STX XADD: lock *(size *)(dst + off) += src */
1326 		case (BPF_STX | EBPF_XADD | BPF_W):
1327 		case (BPF_STX | EBPF_XADD | EBPF_DW):
1328 			emit_xadd(ctx, op, tmp1, tmp2, tmp3, dst, off, src);
1329 			break;
1330 		/* PC += off */
1331 		case (BPF_JMP | BPF_JA):
1332 			emit_b(ctx, jump_offset_get(ctx, i, off));
1333 			break;
1334 		/* PC += off if dst COND imm */
1335 		case (BPF_JMP | BPF_JEQ | BPF_K):
1336 		case (BPF_JMP | EBPF_JNE | BPF_K):
1337 		case (BPF_JMP | BPF_JGT | BPF_K):
1338 		case (BPF_JMP | EBPF_JLT | BPF_K):
1339 		case (BPF_JMP | BPF_JGE | BPF_K):
1340 		case (BPF_JMP | EBPF_JLE | BPF_K):
1341 		case (BPF_JMP | EBPF_JSGT | BPF_K):
1342 		case (BPF_JMP | EBPF_JSLT | BPF_K):
1343 		case (BPF_JMP | EBPF_JSGE | BPF_K):
1344 		case (BPF_JMP | EBPF_JSLE | BPF_K):
1345 			emit_mov_imm(ctx, 1, tmp1, imm);
1346 			emit_cmp(ctx, 1, dst, tmp1);
1347 			emit_branch(ctx, op, i, off);
1348 			break;
1349 		case (BPF_JMP | BPF_JSET | BPF_K):
1350 			emit_mov_imm(ctx, 1, tmp1, imm);
1351 			emit_tst(ctx, 1, dst, tmp1);
1352 			emit_branch(ctx, op, i, off);
1353 			break;
1354 		/* PC += off if dst COND src */
1355 		case (BPF_JMP | BPF_JEQ | BPF_X):
1356 		case (BPF_JMP | EBPF_JNE | BPF_X):
1357 		case (BPF_JMP | BPF_JGT | BPF_X):
1358 		case (BPF_JMP | EBPF_JLT | BPF_X):
1359 		case (BPF_JMP | BPF_JGE | BPF_X):
1360 		case (BPF_JMP | EBPF_JLE | BPF_X):
1361 		case (BPF_JMP | EBPF_JSGT | BPF_X):
1362 		case (BPF_JMP | EBPF_JSLT | BPF_X):
1363 		case (BPF_JMP | EBPF_JSGE | BPF_X):
1364 		case (BPF_JMP | EBPF_JSLE | BPF_X):
1365 			emit_cmp(ctx, 1, dst, src);
1366 			emit_branch(ctx, op, i, off);
1367 			break;
1368 		case (BPF_JMP | BPF_JSET | BPF_X):
1369 			emit_tst(ctx, 1, dst, src);
1370 			emit_branch(ctx, op, i, off);
1371 			break;
1372 		/* Call imm */
1373 		case (BPF_JMP | EBPF_CALL):
1374 			emit_call(ctx, tmp1, bpf->prm.xsym[ins->imm].func.val);
1375 			break;
1376 		/* Return r0 */
1377 		case (BPF_JMP | EBPF_EXIT):
1378 			emit_epilogue(ctx);
1379 			break;
1380 		default:
1381 			RTE_BPF_LOG_LINE(ERR,
1382 				"%s(%p): invalid opcode %#x at pc: %u;",
1383 				__func__, bpf, ins->code, i);
1384 			return -EINVAL;
1385 		}
1386 	}
1387 	rc = check_invalid_args(ctx, ctx->idx);
1388 
1389 	return rc;
1390 }
1391 
1392 /*
1393  * Produce a native ISA version of the given BPF code.
1394  */
1395 int
1396 __rte_bpf_jit_arm64(struct rte_bpf *bpf)
1397 {
1398 	struct a64_jit_ctx ctx;
1399 	size_t size;
1400 	int rc;
1401 
1402 	/* Init JIT context */
1403 	memset(&ctx, 0, sizeof(ctx));
1404 
1405 	/* Initialize the memory for eBPF to a64 insn offset map for jump */
1406 	rc = jump_offset_init(&ctx, bpf);
1407 	if (rc)
1408 		goto error;
1409 
1410 	/* Find eBPF program has call class or not */
1411 	check_program_has_call(&ctx, bpf);
1412 
1413 	/* First pass to calculate total code size and valid jump offsets */
1414 	rc = emit(&ctx, bpf);
1415 	if (rc)
1416 		goto finish;
1417 
1418 	size = ctx.idx * sizeof(uint32_t);
1419 	/* Allocate JIT program memory */
1420 	ctx.ins = mmap(NULL, size, PROT_READ | PROT_WRITE,
1421 			       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1422 	if (ctx.ins == MAP_FAILED) {
1423 		rc = -ENOMEM;
1424 		goto finish;
1425 	}
1426 
1427 	/* Second pass to generate code */
1428 	rc = emit(&ctx, bpf);
1429 	if (rc)
1430 		goto munmap;
1431 
1432 	rc = mprotect(ctx.ins, size, PROT_READ | PROT_EXEC) != 0;
1433 	if (rc) {
1434 		rc = -errno;
1435 		goto munmap;
1436 	}
1437 
1438 	/* Flush the icache */
1439 	__builtin___clear_cache((char *)ctx.ins, (char *)(ctx.ins + ctx.idx));
1440 
1441 	bpf->jit.func = (void *)ctx.ins;
1442 	bpf->jit.sz = size;
1443 
1444 	goto finish;
1445 
1446 munmap:
1447 	munmap(ctx.ins, size);
1448 finish:
1449 	jump_offset_fini(&ctx);
1450 error:
1451 	return rc;
1452 }
1453