1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include "acl_run.h" 6 #include "acl_vect.h" 7 8 enum { 9 SHUFFLE32_SLOT1 = 0xe5, 10 SHUFFLE32_SLOT2 = 0xe6, 11 SHUFFLE32_SLOT3 = 0xe7, 12 SHUFFLE32_SWAP64 = 0x4e, 13 }; 14 15 static const rte_xmm_t xmm_shuffle_input = { 16 .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}, 17 }; 18 19 static const rte_xmm_t xmm_ones_16 = { 20 .u16 = {1, 1, 1, 1, 1, 1, 1, 1}, 21 }; 22 23 static const rte_xmm_t xmm_match_mask = { 24 .u32 = { 25 RTE_ACL_NODE_MATCH, 26 RTE_ACL_NODE_MATCH, 27 RTE_ACL_NODE_MATCH, 28 RTE_ACL_NODE_MATCH, 29 }, 30 }; 31 32 static const rte_xmm_t xmm_index_mask = { 33 .u32 = { 34 RTE_ACL_NODE_INDEX, 35 RTE_ACL_NODE_INDEX, 36 RTE_ACL_NODE_INDEX, 37 RTE_ACL_NODE_INDEX, 38 }, 39 }; 40 41 static const rte_xmm_t xmm_range_base = { 42 .u32 = { 43 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c, 44 }, 45 }; 46 47 /* 48 * Resolve priority for multiple results (sse version). 49 * This consists comparing the priority of the current traversal with the 50 * running set of results for the packet. 51 * For each result, keep a running array of the result (rule number) and 52 * its priority for each category. 53 */ 54 static inline void 55 resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx, 56 struct parms *parms, const struct rte_acl_match_results *p, 57 uint32_t categories) 58 { 59 uint32_t x; 60 xmm_t results, priority, results1, priority1, selector; 61 xmm_t *saved_results, *saved_priority; 62 63 for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { 64 65 saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); 66 saved_priority = 67 (xmm_t *)(&parms[n].cmplt->priority[x]); 68 69 /* get results and priorities for completed trie */ 70 results = _mm_loadu_si128( 71 (const xmm_t *)&p[transition].results[x]); 72 priority = _mm_loadu_si128( 73 (const xmm_t *)&p[transition].priority[x]); 74 75 /* if this is not the first completed trie */ 76 if (parms[n].cmplt->count != ctx->num_tries) { 77 78 /* get running best results and their priorities */ 79 results1 = _mm_loadu_si128(saved_results); 80 priority1 = _mm_loadu_si128(saved_priority); 81 82 /* select results that are highest priority */ 83 selector = _mm_cmpgt_epi32(priority1, priority); 84 results = _mm_blendv_epi8(results, results1, selector); 85 priority = _mm_blendv_epi8(priority, priority1, 86 selector); 87 } 88 89 /* save running best results and their priorities */ 90 _mm_storeu_si128(saved_results, results); 91 _mm_storeu_si128(saved_priority, priority); 92 } 93 } 94 95 /* 96 * Extract transitions from an XMM register and check for any matches 97 */ 98 static void 99 acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx, 100 struct parms *parms, struct acl_flow_data *flows) 101 { 102 uint64_t transition1, transition2; 103 104 /* extract transition from low 64 bits. */ 105 transition1 = _mm_cvtsi128_si64(*indices); 106 107 /* extract transition from high 64 bits. */ 108 *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64); 109 transition2 = _mm_cvtsi128_si64(*indices); 110 111 transition1 = acl_match_check(transition1, slot, ctx, 112 parms, flows, resolve_priority_sse); 113 transition2 = acl_match_check(transition2, slot + 1, ctx, 114 parms, flows, resolve_priority_sse); 115 116 /* update indices with new transitions. */ 117 *indices = _mm_set_epi64x(transition2, transition1); 118 } 119 120 /* 121 * Check for any match in 4 transitions (contained in 2 SSE registers) 122 */ 123 static __rte_always_inline void 124 acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, 125 struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2, 126 xmm_t match_mask) 127 { 128 xmm_t temp; 129 130 /* put low 32 bits of each transition into one register */ 131 temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2, 132 0x88); 133 /* test for match node */ 134 temp = _mm_and_si128(match_mask, temp); 135 136 while (!_mm_testz_si128(temp, temp)) { 137 acl_process_matches(indices1, slot, ctx, parms, flows); 138 acl_process_matches(indices2, slot + 2, ctx, parms, flows); 139 140 temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, 141 (__m128)*indices2, 142 0x88); 143 temp = _mm_and_si128(match_mask, temp); 144 } 145 } 146 147 /* 148 * Process 4 transitions (in 2 XMM registers) in parallel 149 */ 150 static __rte_always_inline xmm_t 151 transition4(xmm_t next_input, const uint64_t *trans, 152 xmm_t *indices1, xmm_t *indices2) 153 { 154 xmm_t addr, tr_lo, tr_hi; 155 uint64_t trans0, trans2; 156 157 /* Shuffle low 32 into tr_lo and high 32 into tr_hi */ 158 ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi); 159 160 /* Calculate the address (array index) for all 4 transitions. */ 161 ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input, 162 xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x, 163 tr_lo, tr_hi); 164 165 /* Gather 64 bit transitions and pack back into 2 registers. */ 166 167 trans0 = trans[_mm_cvtsi128_si32(addr)]; 168 169 /* get slot 2 */ 170 171 /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */ 172 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2); 173 trans2 = trans[_mm_cvtsi128_si32(addr)]; 174 175 /* get slot 1 */ 176 177 /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */ 178 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1); 179 *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0); 180 181 /* get slot 3 */ 182 183 /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */ 184 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3); 185 *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2); 186 187 return _mm_srli_epi32(next_input, CHAR_BIT); 188 } 189 190 /* 191 * Execute trie traversal with 8 traversals in parallel 192 */ 193 static inline int 194 search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data, 195 uint32_t *results, uint32_t total_packets, uint32_t categories) 196 { 197 int n; 198 struct acl_flow_data flows; 199 uint64_t index_array[MAX_SEARCHES_SSE8]; 200 struct completion cmplt[MAX_SEARCHES_SSE8]; 201 struct parms parms[MAX_SEARCHES_SSE8]; 202 xmm_t input0, input1; 203 xmm_t indices1, indices2, indices3, indices4; 204 205 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, 206 total_packets, categories, ctx->trans_table); 207 208 for (n = 0; n < MAX_SEARCHES_SSE8; n++) { 209 cmplt[n].count = 0; 210 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); 211 } 212 213 /* 214 * indices1 contains index_array[0,1] 215 * indices2 contains index_array[2,3] 216 * indices3 contains index_array[4,5] 217 * indices4 contains index_array[6,7] 218 */ 219 220 indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]); 221 indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]); 222 223 indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]); 224 indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]); 225 226 /* Check for any matches. */ 227 acl_match_check_x4(0, ctx, parms, &flows, 228 &indices1, &indices2, xmm_match_mask.x); 229 acl_match_check_x4(4, ctx, parms, &flows, 230 &indices3, &indices4, xmm_match_mask.x); 231 232 while (flows.started > 0) { 233 234 /* Gather 4 bytes of input data for each stream. */ 235 input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0)); 236 input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4)); 237 238 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1); 239 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1); 240 241 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2); 242 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2); 243 244 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3); 245 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3); 246 247 /* Process the 4 bytes of input on each stream. */ 248 249 input0 = transition4(input0, flows.trans, 250 &indices1, &indices2); 251 input1 = transition4(input1, flows.trans, 252 &indices3, &indices4); 253 254 input0 = transition4(input0, flows.trans, 255 &indices1, &indices2); 256 input1 = transition4(input1, flows.trans, 257 &indices3, &indices4); 258 259 input0 = transition4(input0, flows.trans, 260 &indices1, &indices2); 261 input1 = transition4(input1, flows.trans, 262 &indices3, &indices4); 263 264 input0 = transition4(input0, flows.trans, 265 &indices1, &indices2); 266 input1 = transition4(input1, flows.trans, 267 &indices3, &indices4); 268 269 /* Check for any matches. */ 270 acl_match_check_x4(0, ctx, parms, &flows, 271 &indices1, &indices2, xmm_match_mask.x); 272 acl_match_check_x4(4, ctx, parms, &flows, 273 &indices3, &indices4, xmm_match_mask.x); 274 } 275 276 return 0; 277 } 278 279 /* 280 * Execute trie traversal with 4 traversals in parallel 281 */ 282 static inline int 283 search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data, 284 uint32_t *results, int total_packets, uint32_t categories) 285 { 286 int n; 287 struct acl_flow_data flows; 288 uint64_t index_array[MAX_SEARCHES_SSE4]; 289 struct completion cmplt[MAX_SEARCHES_SSE4]; 290 struct parms parms[MAX_SEARCHES_SSE4]; 291 xmm_t input, indices1, indices2; 292 293 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, 294 total_packets, categories, ctx->trans_table); 295 296 for (n = 0; n < MAX_SEARCHES_SSE4; n++) { 297 cmplt[n].count = 0; 298 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); 299 } 300 301 indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]); 302 indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]); 303 304 /* Check for any matches. */ 305 acl_match_check_x4(0, ctx, parms, &flows, 306 &indices1, &indices2, xmm_match_mask.x); 307 308 while (flows.started > 0) { 309 310 /* Gather 4 bytes of input data for each stream. */ 311 input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0)); 312 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1); 313 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2); 314 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3); 315 316 /* Process the 4 bytes of input on each stream. */ 317 input = transition4(input, flows.trans, &indices1, &indices2); 318 input = transition4(input, flows.trans, &indices1, &indices2); 319 input = transition4(input, flows.trans, &indices1, &indices2); 320 input = transition4(input, flows.trans, &indices1, &indices2); 321 322 /* Check for any matches. */ 323 acl_match_check_x4(0, ctx, parms, &flows, 324 &indices1, &indices2, xmm_match_mask.x); 325 } 326 327 return 0; 328 } 329