xref: /dpdk/examples/vm_power_manager/power_manager.c (revision bb44fb6fe7713ddcd023d5b9bacadf074d68092e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/un.h>
10 #include <fcntl.h>
11 #include <unistd.h>
12 #include <dirent.h>
13 #include <errno.h>
14 
15 #include <sys/sysinfo.h>
16 #include <sys/types.h>
17 
18 #include <rte_log.h>
19 #include <rte_power.h>
20 #include <rte_spinlock.h>
21 
22 #include "channel_manager.h"
23 #include "power_manager.h"
24 #include "oob_monitor.h"
25 
26 #define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
27 	if (core_num >= ci.core_count) \
28 		return -1; \
29 	if (!(ci.cd[core_num].global_enabled_cpus)) \
30 		return -1; \
31 	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
32 	ret = rte_power_freq_##DIRECTION(core_num); \
33 	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
34 } while (0)
35 
36 #define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
37 	int i; \
38 	for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
39 		if ((core_mask >> i) & 1) { \
40 			if (!(ci.cd[i].global_enabled_cpus)) \
41 				continue; \
42 			rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
43 			if (rte_power_freq_##DIRECTION(i) != 1) \
44 				ret = -1; \
45 			rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
46 		} \
47 	} \
48 } while (0)
49 
50 struct freq_info {
51 	rte_spinlock_t power_sl;
52 	uint32_t freqs[RTE_MAX_LCORE_FREQS];
53 	unsigned num_freqs;
54 } __rte_cache_aligned;
55 
56 static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];
57 
58 struct core_info ci;
59 
60 #define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
61 
62 struct core_info *
63 get_core_info(void)
64 {
65 	return &ci;
66 }
67 
68 int
69 core_info_init(void)
70 {
71 	struct core_info *ci;
72 	int i;
73 
74 	ci = get_core_info();
75 
76 	ci->core_count = get_nprocs_conf();
77 	ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
78 	ci->cd = malloc(ci->core_count * sizeof(struct core_details));
79 	if (!ci->cd) {
80 		RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
81 		return -1;
82 	}
83 	for (i = 0; i < ci->core_count; i++) {
84 		ci->cd[i].global_enabled_cpus = 1;
85 		ci->cd[i].oob_enabled = 0;
86 		ci->cd[i].msr_fd = 0;
87 	}
88 	printf("%d cores in system\n", ci->core_count);
89 	return 0;
90 }
91 
92 int
93 power_manager_init(void)
94 {
95 	unsigned int i, num_cpus = 0, num_freqs = 0;
96 	int ret = 0;
97 	struct core_info *ci;
98 
99 	rte_power_set_env(PM_ENV_ACPI_CPUFREQ);
100 
101 	ci = get_core_info();
102 	if (!ci) {
103 		RTE_LOG(ERR, POWER_MANAGER,
104 				"Failed to get core info!\n");
105 		return -1;
106 	}
107 
108 	for (i = 0; i < ci->core_count; i++) {
109 		if (ci->cd[i].global_enabled_cpus) {
110 			if (rte_power_init(i) < 0)
111 				RTE_LOG(ERR, POWER_MANAGER,
112 						"Unable to initialize power manager "
113 						"for core %u\n", i);
114 			num_cpus++;
115 			num_freqs = rte_power_freqs(i,
116 					global_core_freq_info[i].freqs,
117 					RTE_MAX_LCORE_FREQS);
118 			if (num_freqs == 0) {
119 				RTE_LOG(ERR, POWER_MANAGER,
120 					"Unable to get frequency list for core %u\n",
121 					i);
122 				ci->cd[i].oob_enabled = 0;
123 				ret = -1;
124 			}
125 			global_core_freq_info[i].num_freqs = num_freqs;
126 
127 			rte_spinlock_init(&global_core_freq_info[i].power_sl);
128 		}
129 		if (ci->cd[i].oob_enabled)
130 			add_core_to_monitor(i);
131 	}
132 	RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
133 			num_cpus, ci->core_count);
134 	return ret;
135 
136 }
137 
138 uint32_t
139 power_manager_get_current_frequency(unsigned core_num)
140 {
141 	uint32_t freq, index;
142 
143 	if (core_num >= POWER_MGR_MAX_CPUS) {
144 		RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
145 				core_num, POWER_MGR_MAX_CPUS-1);
146 		return -1;
147 	}
148 	if (!(ci.cd[core_num].global_enabled_cpus))
149 		return 0;
150 
151 	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
152 	index = rte_power_get_freq(core_num);
153 	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
154 	if (index >= POWER_MGR_MAX_CPUS)
155 		freq = 0;
156 	else
157 		freq = global_core_freq_info[core_num].freqs[index];
158 
159 	return freq;
160 }
161 
162 int
163 power_manager_exit(void)
164 {
165 	unsigned int i;
166 	int ret = 0;
167 	struct core_info *ci;
168 
169 	ci = get_core_info();
170 	if (!ci) {
171 		RTE_LOG(ERR, POWER_MANAGER,
172 				"Failed to get core info!\n");
173 		return -1;
174 	}
175 
176 	for (i = 0; i < ci->core_count; i++) {
177 		if (ci->cd[i].global_enabled_cpus) {
178 			if (rte_power_exit(i) < 0) {
179 				RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
180 						"for core %u\n", i);
181 				ret = -1;
182 			}
183 			ci->cd[i].global_enabled_cpus = 0;
184 		}
185 		remove_core_from_monitor(i);
186 	}
187 	return ret;
188 }
189 
190 int
191 power_manager_scale_mask_up(uint64_t core_mask)
192 {
193 	int ret = 0;
194 
195 	POWER_SCALE_MASK(up, core_mask, ret);
196 	return ret;
197 }
198 
199 int
200 power_manager_scale_mask_down(uint64_t core_mask)
201 {
202 	int ret = 0;
203 
204 	POWER_SCALE_MASK(down, core_mask, ret);
205 	return ret;
206 }
207 
208 int
209 power_manager_scale_mask_min(uint64_t core_mask)
210 {
211 	int ret = 0;
212 
213 	POWER_SCALE_MASK(min, core_mask, ret);
214 	return ret;
215 }
216 
217 int
218 power_manager_scale_mask_max(uint64_t core_mask)
219 {
220 	int ret = 0;
221 
222 	POWER_SCALE_MASK(max, core_mask, ret);
223 	return ret;
224 }
225 
226 int
227 power_manager_enable_turbo_mask(uint64_t core_mask)
228 {
229 	int ret = 0;
230 
231 	POWER_SCALE_MASK(enable_turbo, core_mask, ret);
232 	return ret;
233 }
234 
235 int
236 power_manager_disable_turbo_mask(uint64_t core_mask)
237 {
238 	int ret = 0;
239 
240 	POWER_SCALE_MASK(disable_turbo, core_mask, ret);
241 	return ret;
242 }
243 
244 int
245 power_manager_scale_core_up(unsigned core_num)
246 {
247 	int ret = 0;
248 
249 	POWER_SCALE_CORE(up, core_num, ret);
250 	return ret;
251 }
252 
253 int
254 power_manager_scale_core_down(unsigned core_num)
255 {
256 	int ret = 0;
257 
258 	POWER_SCALE_CORE(down, core_num, ret);
259 	return ret;
260 }
261 
262 int
263 power_manager_scale_core_min(unsigned core_num)
264 {
265 	int ret = 0;
266 
267 	POWER_SCALE_CORE(min, core_num, ret);
268 	return ret;
269 }
270 
271 int
272 power_manager_scale_core_max(unsigned core_num)
273 {
274 	int ret = 0;
275 
276 	POWER_SCALE_CORE(max, core_num, ret);
277 	return ret;
278 }
279 
280 int
281 power_manager_enable_turbo_core(unsigned int core_num)
282 {
283 	int ret = 0;
284 
285 	POWER_SCALE_CORE(enable_turbo, core_num, ret);
286 	return ret;
287 }
288 
289 int
290 power_manager_disable_turbo_core(unsigned int core_num)
291 {
292 	int ret = 0;
293 
294 	POWER_SCALE_CORE(disable_turbo, core_num, ret);
295 	return ret;
296 }
297 
298 int
299 power_manager_scale_core_med(unsigned int core_num)
300 {
301 	int ret = 0;
302 	struct core_info *ci;
303 
304 	ci = get_core_info();
305 	if (core_num >= POWER_MGR_MAX_CPUS)
306 		return -1;
307 	if (!(ci->cd[core_num].global_enabled_cpus))
308 		return -1;
309 	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
310 	ret = rte_power_set_freq(core_num,
311 				global_core_freq_info[core_num].num_freqs / 2);
312 	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
313 	return ret;
314 }
315