xref: /dpdk/examples/vhost/main.c (revision c9902a15bd005b6d4fe072cf7b60fe4ee679155f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2017 Intel Corporation
3  */
4 
5 #include <arpa/inet.h>
6 #include <getopt.h>
7 #include <linux/if_ether.h>
8 #include <linux/if_vlan.h>
9 #include <linux/virtio_net.h>
10 #include <linux/virtio_ring.h>
11 #include <signal.h>
12 #include <stdint.h>
13 #include <sys/eventfd.h>
14 #include <sys/param.h>
15 #include <unistd.h>
16 
17 #include <rte_cycles.h>
18 #include <rte_ethdev.h>
19 #include <rte_log.h>
20 #include <rte_string_fns.h>
21 #include <rte_malloc.h>
22 #include <rte_net.h>
23 #include <rte_vhost.h>
24 #include <rte_ip.h>
25 #include <rte_tcp.h>
26 #include <rte_pause.h>
27 
28 #include "ioat.h"
29 #include "main.h"
30 
31 #ifndef MAX_QUEUES
32 #define MAX_QUEUES 128
33 #endif
34 
35 /* the maximum number of external ports supported */
36 #define MAX_SUP_PORTS 1
37 
38 #define MBUF_CACHE_SIZE	128
39 #define MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
40 
41 #define BURST_TX_DRAIN_US 100	/* TX drain every ~100us */
42 
43 #define BURST_RX_WAIT_US 15	/* Defines how long we wait between retries on RX */
44 #define BURST_RX_RETRIES 4		/* Number of retries on RX. */
45 
46 #define JUMBO_FRAME_MAX_SIZE    0x2600
47 
48 /* State of virtio device. */
49 #define DEVICE_MAC_LEARNING 0
50 #define DEVICE_RX			1
51 #define DEVICE_SAFE_REMOVE	2
52 
53 /* Configurable number of RX/TX ring descriptors */
54 #define RTE_TEST_RX_DESC_DEFAULT 1024
55 #define RTE_TEST_TX_DESC_DEFAULT 512
56 
57 #define INVALID_PORT_ID 0xFF
58 
59 /* mask of enabled ports */
60 static uint32_t enabled_port_mask = 0;
61 
62 /* Promiscuous mode */
63 static uint32_t promiscuous;
64 
65 /* number of devices/queues to support*/
66 static uint32_t num_queues = 0;
67 static uint32_t num_devices;
68 
69 static struct rte_mempool *mbuf_pool;
70 static int mergeable;
71 
72 /* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */
73 typedef enum {
74 	VM2VM_DISABLED = 0,
75 	VM2VM_SOFTWARE = 1,
76 	VM2VM_HARDWARE = 2,
77 	VM2VM_LAST
78 } vm2vm_type;
79 static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE;
80 
81 /* Enable stats. */
82 static uint32_t enable_stats = 0;
83 /* Enable retries on RX. */
84 static uint32_t enable_retry = 1;
85 
86 /* Disable TX checksum offload */
87 static uint32_t enable_tx_csum;
88 
89 /* Disable TSO offload */
90 static uint32_t enable_tso;
91 
92 static int client_mode;
93 
94 static int builtin_net_driver;
95 
96 static int async_vhost_driver;
97 
98 static char *dma_type;
99 
100 /* Specify timeout (in useconds) between retries on RX. */
101 static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
102 /* Specify the number of retries on RX. */
103 static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
104 
105 /* Socket file paths. Can be set by user */
106 static char *socket_files;
107 static int nb_sockets;
108 
109 /* empty vmdq configuration structure. Filled in programatically */
110 static struct rte_eth_conf vmdq_conf_default = {
111 	.rxmode = {
112 		.mq_mode        = ETH_MQ_RX_VMDQ_ONLY,
113 		.split_hdr_size = 0,
114 		/*
115 		 * VLAN strip is necessary for 1G NIC such as I350,
116 		 * this fixes bug of ipv4 forwarding in guest can't
117 		 * forward pakets from one virtio dev to another virtio dev.
118 		 */
119 		.offloads = DEV_RX_OFFLOAD_VLAN_STRIP,
120 	},
121 
122 	.txmode = {
123 		.mq_mode = ETH_MQ_TX_NONE,
124 		.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
125 			     DEV_TX_OFFLOAD_TCP_CKSUM |
126 			     DEV_TX_OFFLOAD_VLAN_INSERT |
127 			     DEV_TX_OFFLOAD_MULTI_SEGS |
128 			     DEV_TX_OFFLOAD_TCP_TSO),
129 	},
130 	.rx_adv_conf = {
131 		/*
132 		 * should be overridden separately in code with
133 		 * appropriate values
134 		 */
135 		.vmdq_rx_conf = {
136 			.nb_queue_pools = ETH_8_POOLS,
137 			.enable_default_pool = 0,
138 			.default_pool = 0,
139 			.nb_pool_maps = 0,
140 			.pool_map = {{0, 0},},
141 		},
142 	},
143 };
144 
145 
146 static unsigned lcore_ids[RTE_MAX_LCORE];
147 static uint16_t ports[RTE_MAX_ETHPORTS];
148 static unsigned num_ports = 0; /**< The number of ports specified in command line */
149 static uint16_t num_pf_queues, num_vmdq_queues;
150 static uint16_t vmdq_pool_base, vmdq_queue_base;
151 static uint16_t queues_per_pool;
152 
153 const uint16_t vlan_tags[] = {
154 	1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007,
155 	1008, 1009, 1010, 1011,	1012, 1013, 1014, 1015,
156 	1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023,
157 	1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031,
158 	1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039,
159 	1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047,
160 	1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055,
161 	1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
162 };
163 
164 /* ethernet addresses of ports */
165 static struct rte_ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS];
166 
167 static struct vhost_dev_tailq_list vhost_dev_list =
168 	TAILQ_HEAD_INITIALIZER(vhost_dev_list);
169 
170 static struct lcore_info lcore_info[RTE_MAX_LCORE];
171 
172 /* Used for queueing bursts of TX packets. */
173 struct mbuf_table {
174 	unsigned len;
175 	unsigned txq_id;
176 	struct rte_mbuf *m_table[MAX_PKT_BURST];
177 };
178 
179 struct vhost_bufftable {
180 	uint32_t len;
181 	uint64_t pre_tsc;
182 	struct rte_mbuf *m_table[MAX_PKT_BURST];
183 };
184 
185 /* TX queue for each data core. */
186 struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
187 
188 /*
189  * Vhost TX buffer for each data core.
190  * Every data core maintains a TX buffer for every vhost device,
191  * which is used for batch pkts enqueue for higher performance.
192  */
193 struct vhost_bufftable *vhost_txbuff[RTE_MAX_LCORE * MAX_VHOST_DEVICE];
194 
195 #define MBUF_TABLE_DRAIN_TSC	((rte_get_tsc_hz() + US_PER_S - 1) \
196 				 / US_PER_S * BURST_TX_DRAIN_US)
197 #define VLAN_HLEN       4
198 
199 static inline int
200 open_dma(const char *value)
201 {
202 	if (dma_type != NULL && strncmp(dma_type, "ioat", 4) == 0)
203 		return open_ioat(value);
204 
205 	return -1;
206 }
207 
208 /*
209  * Builds up the correct configuration for VMDQ VLAN pool map
210  * according to the pool & queue limits.
211  */
212 static inline int
213 get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices)
214 {
215 	struct rte_eth_vmdq_rx_conf conf;
216 	struct rte_eth_vmdq_rx_conf *def_conf =
217 		&vmdq_conf_default.rx_adv_conf.vmdq_rx_conf;
218 	unsigned i;
219 
220 	memset(&conf, 0, sizeof(conf));
221 	conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices;
222 	conf.nb_pool_maps = num_devices;
223 	conf.enable_loop_back = def_conf->enable_loop_back;
224 	conf.rx_mode = def_conf->rx_mode;
225 
226 	for (i = 0; i < conf.nb_pool_maps; i++) {
227 		conf.pool_map[i].vlan_id = vlan_tags[ i ];
228 		conf.pool_map[i].pools = (1UL << i);
229 	}
230 
231 	(void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
232 	(void)(rte_memcpy(&eth_conf->rx_adv_conf.vmdq_rx_conf, &conf,
233 		   sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
234 	return 0;
235 }
236 
237 /*
238  * Initialises a given port using global settings and with the rx buffers
239  * coming from the mbuf_pool passed as parameter
240  */
241 static inline int
242 port_init(uint16_t port)
243 {
244 	struct rte_eth_dev_info dev_info;
245 	struct rte_eth_conf port_conf;
246 	struct rte_eth_rxconf *rxconf;
247 	struct rte_eth_txconf *txconf;
248 	int16_t rx_rings, tx_rings;
249 	uint16_t rx_ring_size, tx_ring_size;
250 	int retval;
251 	uint16_t q;
252 
253 	/* The max pool number from dev_info will be used to validate the pool number specified in cmd line */
254 	retval = rte_eth_dev_info_get(port, &dev_info);
255 	if (retval != 0) {
256 		RTE_LOG(ERR, VHOST_PORT,
257 			"Error during getting device (port %u) info: %s\n",
258 			port, strerror(-retval));
259 
260 		return retval;
261 	}
262 
263 	rxconf = &dev_info.default_rxconf;
264 	txconf = &dev_info.default_txconf;
265 	rxconf->rx_drop_en = 1;
266 
267 	/*configure the number of supported virtio devices based on VMDQ limits */
268 	num_devices = dev_info.max_vmdq_pools;
269 
270 	rx_ring_size = RTE_TEST_RX_DESC_DEFAULT;
271 	tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
272 
273 	tx_rings = (uint16_t)rte_lcore_count();
274 
275 	/* Get port configuration. */
276 	retval = get_eth_conf(&port_conf, num_devices);
277 	if (retval < 0)
278 		return retval;
279 	/* NIC queues are divided into pf queues and vmdq queues.  */
280 	num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num;
281 	queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools;
282 	num_vmdq_queues = num_devices * queues_per_pool;
283 	num_queues = num_pf_queues + num_vmdq_queues;
284 	vmdq_queue_base = dev_info.vmdq_queue_base;
285 	vmdq_pool_base  = dev_info.vmdq_pool_base;
286 	printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n",
287 		num_pf_queues, num_devices, queues_per_pool);
288 
289 	if (!rte_eth_dev_is_valid_port(port))
290 		return -1;
291 
292 	rx_rings = (uint16_t)dev_info.max_rx_queues;
293 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
294 		port_conf.txmode.offloads |=
295 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
296 	/* Configure ethernet device. */
297 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
298 	if (retval != 0) {
299 		RTE_LOG(ERR, VHOST_PORT, "Failed to configure port %u: %s.\n",
300 			port, strerror(-retval));
301 		return retval;
302 	}
303 
304 	retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size,
305 		&tx_ring_size);
306 	if (retval != 0) {
307 		RTE_LOG(ERR, VHOST_PORT, "Failed to adjust number of descriptors "
308 			"for port %u: %s.\n", port, strerror(-retval));
309 		return retval;
310 	}
311 	if (rx_ring_size > RTE_TEST_RX_DESC_DEFAULT) {
312 		RTE_LOG(ERR, VHOST_PORT, "Mbuf pool has an insufficient size "
313 			"for Rx queues on port %u.\n", port);
314 		return -1;
315 	}
316 
317 	/* Setup the queues. */
318 	rxconf->offloads = port_conf.rxmode.offloads;
319 	for (q = 0; q < rx_rings; q ++) {
320 		retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
321 						rte_eth_dev_socket_id(port),
322 						rxconf,
323 						mbuf_pool);
324 		if (retval < 0) {
325 			RTE_LOG(ERR, VHOST_PORT,
326 				"Failed to setup rx queue %u of port %u: %s.\n",
327 				q, port, strerror(-retval));
328 			return retval;
329 		}
330 	}
331 	txconf->offloads = port_conf.txmode.offloads;
332 	for (q = 0; q < tx_rings; q ++) {
333 		retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
334 						rte_eth_dev_socket_id(port),
335 						txconf);
336 		if (retval < 0) {
337 			RTE_LOG(ERR, VHOST_PORT,
338 				"Failed to setup tx queue %u of port %u: %s.\n",
339 				q, port, strerror(-retval));
340 			return retval;
341 		}
342 	}
343 
344 	/* Start the device. */
345 	retval  = rte_eth_dev_start(port);
346 	if (retval < 0) {
347 		RTE_LOG(ERR, VHOST_PORT, "Failed to start port %u: %s\n",
348 			port, strerror(-retval));
349 		return retval;
350 	}
351 
352 	if (promiscuous) {
353 		retval = rte_eth_promiscuous_enable(port);
354 		if (retval != 0) {
355 			RTE_LOG(ERR, VHOST_PORT,
356 				"Failed to enable promiscuous mode on port %u: %s\n",
357 				port, rte_strerror(-retval));
358 			return retval;
359 		}
360 	}
361 
362 	retval = rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]);
363 	if (retval < 0) {
364 		RTE_LOG(ERR, VHOST_PORT,
365 			"Failed to get MAC address on port %u: %s\n",
366 			port, rte_strerror(-retval));
367 		return retval;
368 	}
369 
370 	RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices);
371 	RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
372 		" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
373 		port, RTE_ETHER_ADDR_BYTES(&vmdq_ports_eth_addr[port]));
374 
375 	return 0;
376 }
377 
378 /*
379  * Set socket file path.
380  */
381 static int
382 us_vhost_parse_socket_path(const char *q_arg)
383 {
384 	char *old;
385 
386 	/* parse number string */
387 	if (strnlen(q_arg, PATH_MAX) == PATH_MAX)
388 		return -1;
389 
390 	old = socket_files;
391 	socket_files = realloc(socket_files, PATH_MAX * (nb_sockets + 1));
392 	if (socket_files == NULL) {
393 		free(old);
394 		return -1;
395 	}
396 
397 	strlcpy(socket_files + nb_sockets * PATH_MAX, q_arg, PATH_MAX);
398 	nb_sockets++;
399 
400 	return 0;
401 }
402 
403 /*
404  * Parse the portmask provided at run time.
405  */
406 static int
407 parse_portmask(const char *portmask)
408 {
409 	char *end = NULL;
410 	unsigned long pm;
411 
412 	errno = 0;
413 
414 	/* parse hexadecimal string */
415 	pm = strtoul(portmask, &end, 16);
416 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
417 		return 0;
418 
419 	return pm;
420 
421 }
422 
423 /*
424  * Parse num options at run time.
425  */
426 static int
427 parse_num_opt(const char *q_arg, uint32_t max_valid_value)
428 {
429 	char *end = NULL;
430 	unsigned long num;
431 
432 	errno = 0;
433 
434 	/* parse unsigned int string */
435 	num = strtoul(q_arg, &end, 10);
436 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
437 		return -1;
438 
439 	if (num > max_valid_value)
440 		return -1;
441 
442 	return num;
443 
444 }
445 
446 /*
447  * Display usage
448  */
449 static void
450 us_vhost_usage(const char *prgname)
451 {
452 	RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n"
453 	"		--vm2vm [0|1|2]\n"
454 	"		--rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n"
455 	"		--socket-file <path>\n"
456 	"		--nb-devices ND\n"
457 	"		-p PORTMASK: Set mask for ports to be used by application\n"
458 	"		--vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n"
459 	"		--rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n"
460 	"		--rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n"
461 	"		--rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n"
462 	"		--mergeable [0|1]: disable(default)/enable RX mergeable buffers\n"
463 	"		--stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
464 	"		--socket-file: The path of the socket file.\n"
465 	"		--tx-csum [0|1] disable/enable TX checksum offload.\n"
466 	"		--tso [0|1] disable/enable TCP segment offload.\n"
467 	"		--client register a vhost-user socket as client mode.\n"
468 	"		--dma-type register dma type for your vhost async driver. For example \"ioat\" for now.\n"
469 	"		--dmas register dma channel for specific vhost device.\n",
470 	       prgname);
471 }
472 
473 enum {
474 #define OPT_VM2VM               "vm2vm"
475 	OPT_VM2VM_NUM = 256,
476 #define OPT_RX_RETRY            "rx-retry"
477 	OPT_RX_RETRY_NUM,
478 #define OPT_RX_RETRY_DELAY      "rx-retry-delay"
479 	OPT_RX_RETRY_DELAY_NUM,
480 #define OPT_RX_RETRY_NUMB       "rx-retry-num"
481 	OPT_RX_RETRY_NUMB_NUM,
482 #define OPT_MERGEABLE           "mergeable"
483 	OPT_MERGEABLE_NUM,
484 #define OPT_STATS               "stats"
485 	OPT_STATS_NUM,
486 #define OPT_SOCKET_FILE         "socket-file"
487 	OPT_SOCKET_FILE_NUM,
488 #define OPT_TX_CSUM             "tx-csum"
489 	OPT_TX_CSUM_NUM,
490 #define OPT_TSO                 "tso"
491 	OPT_TSO_NUM,
492 #define OPT_CLIENT              "client"
493 	OPT_CLIENT_NUM,
494 #define OPT_BUILTIN_NET_DRIVER  "builtin-net-driver"
495 	OPT_BUILTIN_NET_DRIVER_NUM,
496 #define OPT_DMA_TYPE            "dma-type"
497 	OPT_DMA_TYPE_NUM,
498 #define OPT_DMAS                "dmas"
499 	OPT_DMAS_NUM,
500 };
501 
502 /*
503  * Parse the arguments given in the command line of the application.
504  */
505 static int
506 us_vhost_parse_args(int argc, char **argv)
507 {
508 	int opt, ret;
509 	int option_index;
510 	unsigned i;
511 	const char *prgname = argv[0];
512 	static struct option long_option[] = {
513 		{OPT_VM2VM, required_argument,
514 				NULL, OPT_VM2VM_NUM},
515 		{OPT_RX_RETRY, required_argument,
516 				NULL, OPT_RX_RETRY_NUM},
517 		{OPT_RX_RETRY_DELAY, required_argument,
518 				NULL, OPT_RX_RETRY_DELAY_NUM},
519 		{OPT_RX_RETRY_NUMB, required_argument,
520 				NULL, OPT_RX_RETRY_NUMB_NUM},
521 		{OPT_MERGEABLE, required_argument,
522 				NULL, OPT_MERGEABLE_NUM},
523 		{OPT_STATS, required_argument,
524 				NULL, OPT_STATS_NUM},
525 		{OPT_SOCKET_FILE, required_argument,
526 				NULL, OPT_SOCKET_FILE_NUM},
527 		{OPT_TX_CSUM, required_argument,
528 				NULL, OPT_TX_CSUM_NUM},
529 		{OPT_TSO, required_argument,
530 				NULL, OPT_TSO_NUM},
531 		{OPT_CLIENT, no_argument,
532 				NULL, OPT_CLIENT_NUM},
533 		{OPT_BUILTIN_NET_DRIVER, no_argument,
534 				NULL, OPT_BUILTIN_NET_DRIVER_NUM},
535 		{OPT_DMA_TYPE, required_argument,
536 				NULL, OPT_DMA_TYPE_NUM},
537 		{OPT_DMAS, required_argument,
538 				NULL, OPT_DMAS_NUM},
539 		{NULL, 0, 0, 0},
540 	};
541 
542 	/* Parse command line */
543 	while ((opt = getopt_long(argc, argv, "p:P",
544 			long_option, &option_index)) != EOF) {
545 		switch (opt) {
546 		/* Portmask */
547 		case 'p':
548 			enabled_port_mask = parse_portmask(optarg);
549 			if (enabled_port_mask == 0) {
550 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n");
551 				us_vhost_usage(prgname);
552 				return -1;
553 			}
554 			break;
555 
556 		case 'P':
557 			promiscuous = 1;
558 			vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode =
559 				ETH_VMDQ_ACCEPT_BROADCAST |
560 				ETH_VMDQ_ACCEPT_MULTICAST;
561 			break;
562 
563 		case OPT_VM2VM_NUM:
564 			ret = parse_num_opt(optarg, (VM2VM_LAST - 1));
565 			if (ret == -1) {
566 				RTE_LOG(INFO, VHOST_CONFIG,
567 					"Invalid argument for "
568 					"vm2vm [0|1|2]\n");
569 				us_vhost_usage(prgname);
570 				return -1;
571 			}
572 			vm2vm_mode = (vm2vm_type)ret;
573 			break;
574 
575 		case OPT_RX_RETRY_NUM:
576 			ret = parse_num_opt(optarg, 1);
577 			if (ret == -1) {
578 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n");
579 				us_vhost_usage(prgname);
580 				return -1;
581 			}
582 			enable_retry = ret;
583 			break;
584 
585 		case OPT_TX_CSUM_NUM:
586 			ret = parse_num_opt(optarg, 1);
587 			if (ret == -1) {
588 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-csum [0|1]\n");
589 				us_vhost_usage(prgname);
590 				return -1;
591 			}
592 			enable_tx_csum = ret;
593 			break;
594 
595 		case OPT_TSO_NUM:
596 			ret = parse_num_opt(optarg, 1);
597 			if (ret == -1) {
598 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tso [0|1]\n");
599 				us_vhost_usage(prgname);
600 				return -1;
601 			}
602 			enable_tso = ret;
603 			break;
604 
605 		case OPT_RX_RETRY_DELAY_NUM:
606 			ret = parse_num_opt(optarg, INT32_MAX);
607 			if (ret == -1) {
608 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n");
609 				us_vhost_usage(prgname);
610 				return -1;
611 			}
612 			burst_rx_delay_time = ret;
613 			break;
614 
615 		case OPT_RX_RETRY_NUMB_NUM:
616 			ret = parse_num_opt(optarg, INT32_MAX);
617 			if (ret == -1) {
618 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n");
619 				us_vhost_usage(prgname);
620 				return -1;
621 			}
622 			burst_rx_retry_num = ret;
623 			break;
624 
625 		case OPT_MERGEABLE_NUM:
626 			ret = parse_num_opt(optarg, 1);
627 			if (ret == -1) {
628 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n");
629 				us_vhost_usage(prgname);
630 				return -1;
631 			}
632 			mergeable = !!ret;
633 			if (ret) {
634 				vmdq_conf_default.rxmode.offloads |=
635 					DEV_RX_OFFLOAD_JUMBO_FRAME;
636 				vmdq_conf_default.rxmode.max_rx_pkt_len
637 					= JUMBO_FRAME_MAX_SIZE;
638 			}
639 			break;
640 
641 		case OPT_STATS_NUM:
642 			ret = parse_num_opt(optarg, INT32_MAX);
643 			if (ret == -1) {
644 				RTE_LOG(INFO, VHOST_CONFIG,
645 					"Invalid argument for stats [0..N]\n");
646 				us_vhost_usage(prgname);
647 				return -1;
648 			}
649 			enable_stats = ret;
650 			break;
651 
652 		/* Set socket file path. */
653 		case OPT_SOCKET_FILE_NUM:
654 			if (us_vhost_parse_socket_path(optarg) == -1) {
655 				RTE_LOG(INFO, VHOST_CONFIG,
656 				"Invalid argument for socket name (Max %d characters)\n",
657 				PATH_MAX);
658 				us_vhost_usage(prgname);
659 				return -1;
660 			}
661 			break;
662 
663 		case OPT_DMA_TYPE_NUM:
664 			dma_type = optarg;
665 			break;
666 
667 		case OPT_DMAS_NUM:
668 			if (open_dma(optarg) == -1) {
669 				RTE_LOG(INFO, VHOST_CONFIG,
670 					"Wrong DMA args\n");
671 				us_vhost_usage(prgname);
672 				return -1;
673 			}
674 			async_vhost_driver = 1;
675 			break;
676 
677 		case OPT_CLIENT_NUM:
678 			client_mode = 1;
679 			break;
680 
681 		case OPT_BUILTIN_NET_DRIVER_NUM:
682 			builtin_net_driver = 1;
683 			break;
684 
685 		/* Invalid option - print options. */
686 		default:
687 			us_vhost_usage(prgname);
688 			return -1;
689 		}
690 	}
691 
692 	for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
693 		if (enabled_port_mask & (1 << i))
694 			ports[num_ports++] = i;
695 	}
696 
697 	if ((num_ports ==  0) || (num_ports > MAX_SUP_PORTS)) {
698 		RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
699 			"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
700 		return -1;
701 	}
702 
703 	return 0;
704 }
705 
706 /*
707  * Update the global var NUM_PORTS and array PORTS according to system ports number
708  * and return valid ports number
709  */
710 static unsigned check_ports_num(unsigned nb_ports)
711 {
712 	unsigned valid_num_ports = num_ports;
713 	unsigned portid;
714 
715 	if (num_ports > nb_ports) {
716 		RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n",
717 			num_ports, nb_ports);
718 		num_ports = nb_ports;
719 	}
720 
721 	for (portid = 0; portid < num_ports; portid ++) {
722 		if (!rte_eth_dev_is_valid_port(ports[portid])) {
723 			RTE_LOG(INFO, VHOST_PORT,
724 				"\nSpecified port ID(%u) is not valid\n",
725 				ports[portid]);
726 			ports[portid] = INVALID_PORT_ID;
727 			valid_num_ports--;
728 		}
729 	}
730 	return valid_num_ports;
731 }
732 
733 static __rte_always_inline struct vhost_dev *
734 find_vhost_dev(struct rte_ether_addr *mac)
735 {
736 	struct vhost_dev *vdev;
737 
738 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
739 		if (vdev->ready == DEVICE_RX &&
740 		    rte_is_same_ether_addr(mac, &vdev->mac_address))
741 			return vdev;
742 	}
743 
744 	return NULL;
745 }
746 
747 /*
748  * This function learns the MAC address of the device and registers this along with a
749  * vlan tag to a VMDQ.
750  */
751 static int
752 link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m)
753 {
754 	struct rte_ether_hdr *pkt_hdr;
755 	int i, ret;
756 
757 	/* Learn MAC address of guest device from packet */
758 	pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
759 
760 	if (find_vhost_dev(&pkt_hdr->s_addr)) {
761 		RTE_LOG(ERR, VHOST_DATA,
762 			"(%d) device is using a registered MAC!\n",
763 			vdev->vid);
764 		return -1;
765 	}
766 
767 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
768 		vdev->mac_address.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i];
769 
770 	/* vlan_tag currently uses the device_id. */
771 	vdev->vlan_tag = vlan_tags[vdev->vid];
772 
773 	/* Print out VMDQ registration info. */
774 	RTE_LOG(INFO, VHOST_DATA,
775 		"(%d) mac " RTE_ETHER_ADDR_PRT_FMT " and vlan %d registered\n",
776 		vdev->vid, RTE_ETHER_ADDR_BYTES(&vdev->mac_address),
777 		vdev->vlan_tag);
778 
779 	/* Register the MAC address. */
780 	ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address,
781 				(uint32_t)vdev->vid + vmdq_pool_base);
782 	if (ret)
783 		RTE_LOG(ERR, VHOST_DATA,
784 			"(%d) failed to add device MAC address to VMDQ\n",
785 			vdev->vid);
786 
787 	rte_eth_dev_set_vlan_strip_on_queue(ports[0], vdev->vmdq_rx_q, 1);
788 
789 	/* Set device as ready for RX. */
790 	vdev->ready = DEVICE_RX;
791 
792 	return 0;
793 }
794 
795 /*
796  * Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX
797  * queue before disabling RX on the device.
798  */
799 static inline void
800 unlink_vmdq(struct vhost_dev *vdev)
801 {
802 	unsigned i = 0;
803 	unsigned rx_count;
804 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
805 
806 	if (vdev->ready == DEVICE_RX) {
807 		/*clear MAC and VLAN settings*/
808 		rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address);
809 		for (i = 0; i < 6; i++)
810 			vdev->mac_address.addr_bytes[i] = 0;
811 
812 		vdev->vlan_tag = 0;
813 
814 		/*Clear out the receive buffers*/
815 		rx_count = rte_eth_rx_burst(ports[0],
816 					(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
817 
818 		while (rx_count) {
819 			for (i = 0; i < rx_count; i++)
820 				rte_pktmbuf_free(pkts_burst[i]);
821 
822 			rx_count = rte_eth_rx_burst(ports[0],
823 					(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
824 		}
825 
826 		vdev->ready = DEVICE_MAC_LEARNING;
827 	}
828 }
829 
830 static inline void
831 free_pkts(struct rte_mbuf **pkts, uint16_t n)
832 {
833 	while (n--)
834 		rte_pktmbuf_free(pkts[n]);
835 }
836 
837 static __rte_always_inline void
838 complete_async_pkts(struct vhost_dev *vdev)
839 {
840 	struct rte_mbuf *p_cpl[MAX_PKT_BURST];
841 	uint16_t complete_count;
842 
843 	complete_count = rte_vhost_poll_enqueue_completed(vdev->vid,
844 					VIRTIO_RXQ, p_cpl, MAX_PKT_BURST);
845 	if (complete_count) {
846 		free_pkts(p_cpl, complete_count);
847 		__atomic_sub_fetch(&vdev->pkts_inflight, complete_count, __ATOMIC_SEQ_CST);
848 	}
849 
850 }
851 
852 static __rte_always_inline void
853 sync_virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev,
854 	    struct rte_mbuf *m)
855 {
856 	uint16_t ret;
857 
858 	if (builtin_net_driver) {
859 		ret = vs_enqueue_pkts(dst_vdev, VIRTIO_RXQ, &m, 1);
860 	} else {
861 		ret = rte_vhost_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ, &m, 1);
862 	}
863 
864 	if (enable_stats) {
865 		__atomic_add_fetch(&dst_vdev->stats.rx_total_atomic, 1,
866 				__ATOMIC_SEQ_CST);
867 		__atomic_add_fetch(&dst_vdev->stats.rx_atomic, ret,
868 				__ATOMIC_SEQ_CST);
869 		src_vdev->stats.tx_total++;
870 		src_vdev->stats.tx += ret;
871 	}
872 }
873 
874 static __rte_always_inline void
875 drain_vhost(struct vhost_dev *vdev)
876 {
877 	uint16_t ret;
878 	uint32_t buff_idx = rte_lcore_id() * MAX_VHOST_DEVICE + vdev->vid;
879 	uint16_t nr_xmit = vhost_txbuff[buff_idx]->len;
880 	struct rte_mbuf **m = vhost_txbuff[buff_idx]->m_table;
881 
882 	if (builtin_net_driver) {
883 		ret = vs_enqueue_pkts(vdev, VIRTIO_RXQ, m, nr_xmit);
884 	} else if (async_vhost_driver) {
885 		uint16_t enqueue_fail = 0;
886 
887 		complete_async_pkts(vdev);
888 		ret = rte_vhost_submit_enqueue_burst(vdev->vid, VIRTIO_RXQ, m, nr_xmit);
889 		__atomic_add_fetch(&vdev->pkts_inflight, ret, __ATOMIC_SEQ_CST);
890 
891 		enqueue_fail = nr_xmit - ret;
892 		if (enqueue_fail)
893 			free_pkts(&m[ret], nr_xmit - ret);
894 	} else {
895 		ret = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
896 						m, nr_xmit);
897 	}
898 
899 	if (enable_stats) {
900 		__atomic_add_fetch(&vdev->stats.rx_total_atomic, nr_xmit,
901 				__ATOMIC_SEQ_CST);
902 		__atomic_add_fetch(&vdev->stats.rx_atomic, ret,
903 				__ATOMIC_SEQ_CST);
904 	}
905 
906 	if (!async_vhost_driver)
907 		free_pkts(m, nr_xmit);
908 }
909 
910 static __rte_always_inline void
911 drain_vhost_table(void)
912 {
913 	uint16_t lcore_id = rte_lcore_id();
914 	struct vhost_bufftable *vhost_txq;
915 	struct vhost_dev *vdev;
916 	uint64_t cur_tsc;
917 
918 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
919 		vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE
920 						+ vdev->vid];
921 
922 		cur_tsc = rte_rdtsc();
923 		if (unlikely(cur_tsc - vhost_txq->pre_tsc
924 				> MBUF_TABLE_DRAIN_TSC)) {
925 			RTE_LOG_DP(DEBUG, VHOST_DATA,
926 				"Vhost TX queue drained after timeout with burst size %u\n",
927 				vhost_txq->len);
928 			drain_vhost(vdev);
929 			vhost_txq->len = 0;
930 			vhost_txq->pre_tsc = cur_tsc;
931 		}
932 	}
933 }
934 
935 /*
936  * Check if the packet destination MAC address is for a local device. If so then put
937  * the packet on that devices RX queue. If not then return.
938  */
939 static __rte_always_inline int
940 virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
941 {
942 	struct rte_ether_hdr *pkt_hdr;
943 	struct vhost_dev *dst_vdev;
944 	struct vhost_bufftable *vhost_txq;
945 	uint16_t lcore_id = rte_lcore_id();
946 	pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
947 
948 	dst_vdev = find_vhost_dev(&pkt_hdr->d_addr);
949 	if (!dst_vdev)
950 		return -1;
951 
952 	if (vdev->vid == dst_vdev->vid) {
953 		RTE_LOG_DP(DEBUG, VHOST_DATA,
954 			"(%d) TX: src and dst MAC is same. Dropping packet.\n",
955 			vdev->vid);
956 		return 0;
957 	}
958 
959 	RTE_LOG_DP(DEBUG, VHOST_DATA,
960 		"(%d) TX: MAC address is local\n", dst_vdev->vid);
961 
962 	if (unlikely(dst_vdev->remove)) {
963 		RTE_LOG_DP(DEBUG, VHOST_DATA,
964 			"(%d) device is marked for removal\n", dst_vdev->vid);
965 		return 0;
966 	}
967 
968 	vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE + dst_vdev->vid];
969 	vhost_txq->m_table[vhost_txq->len++] = m;
970 
971 	if (enable_stats) {
972 		vdev->stats.tx_total++;
973 		vdev->stats.tx++;
974 	}
975 
976 	if (unlikely(vhost_txq->len == MAX_PKT_BURST)) {
977 		drain_vhost(dst_vdev);
978 		vhost_txq->len = 0;
979 		vhost_txq->pre_tsc = rte_rdtsc();
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Check if the destination MAC of a packet is one local VM,
986  * and get its vlan tag, and offset if it is.
987  */
988 static __rte_always_inline int
989 find_local_dest(struct vhost_dev *vdev, struct rte_mbuf *m,
990 	uint32_t *offset, uint16_t *vlan_tag)
991 {
992 	struct vhost_dev *dst_vdev;
993 	struct rte_ether_hdr *pkt_hdr =
994 		rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
995 
996 	dst_vdev = find_vhost_dev(&pkt_hdr->d_addr);
997 	if (!dst_vdev)
998 		return 0;
999 
1000 	if (vdev->vid == dst_vdev->vid) {
1001 		RTE_LOG_DP(DEBUG, VHOST_DATA,
1002 			"(%d) TX: src and dst MAC is same. Dropping packet.\n",
1003 			vdev->vid);
1004 		return -1;
1005 	}
1006 
1007 	/*
1008 	 * HW vlan strip will reduce the packet length
1009 	 * by minus length of vlan tag, so need restore
1010 	 * the packet length by plus it.
1011 	 */
1012 	*offset  = VLAN_HLEN;
1013 	*vlan_tag = vlan_tags[vdev->vid];
1014 
1015 	RTE_LOG_DP(DEBUG, VHOST_DATA,
1016 		"(%d) TX: pkt to local VM device id: (%d), vlan tag: %u.\n",
1017 		vdev->vid, dst_vdev->vid, *vlan_tag);
1018 
1019 	return 0;
1020 }
1021 
1022 static void virtio_tx_offload(struct rte_mbuf *m)
1023 {
1024 	struct rte_net_hdr_lens hdr_lens;
1025 	struct rte_ipv4_hdr *ipv4_hdr;
1026 	struct rte_tcp_hdr *tcp_hdr;
1027 	uint32_t ptype;
1028 	void *l3_hdr;
1029 
1030 	ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK);
1031 	m->l2_len = hdr_lens.l2_len;
1032 	m->l3_len = hdr_lens.l3_len;
1033 	m->l4_len = hdr_lens.l4_len;
1034 
1035 	l3_hdr = rte_pktmbuf_mtod_offset(m, void *, m->l2_len);
1036 	tcp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_tcp_hdr *,
1037 		m->l2_len + m->l3_len);
1038 
1039 	m->ol_flags |= PKT_TX_TCP_SEG;
1040 	if ((ptype & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4) {
1041 		m->ol_flags |= PKT_TX_IPV4;
1042 		m->ol_flags |= PKT_TX_IP_CKSUM;
1043 		ipv4_hdr = l3_hdr;
1044 		ipv4_hdr->hdr_checksum = 0;
1045 		tcp_hdr->cksum = rte_ipv4_phdr_cksum(l3_hdr, m->ol_flags);
1046 	} else { /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
1047 		m->ol_flags |= PKT_TX_IPV6;
1048 		tcp_hdr->cksum = rte_ipv6_phdr_cksum(l3_hdr, m->ol_flags);
1049 	}
1050 }
1051 
1052 static __rte_always_inline void
1053 do_drain_mbuf_table(struct mbuf_table *tx_q)
1054 {
1055 	uint16_t count;
1056 
1057 	count = rte_eth_tx_burst(ports[0], tx_q->txq_id,
1058 				 tx_q->m_table, tx_q->len);
1059 	if (unlikely(count < tx_q->len))
1060 		free_pkts(&tx_q->m_table[count], tx_q->len - count);
1061 
1062 	tx_q->len = 0;
1063 }
1064 
1065 /*
1066  * This function routes the TX packet to the correct interface. This
1067  * may be a local device or the physical port.
1068  */
1069 static __rte_always_inline void
1070 virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
1071 {
1072 	struct mbuf_table *tx_q;
1073 	unsigned offset = 0;
1074 	const uint16_t lcore_id = rte_lcore_id();
1075 	struct rte_ether_hdr *nh;
1076 
1077 
1078 	nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1079 	if (unlikely(rte_is_broadcast_ether_addr(&nh->d_addr))) {
1080 		struct vhost_dev *vdev2;
1081 
1082 		TAILQ_FOREACH(vdev2, &vhost_dev_list, global_vdev_entry) {
1083 			if (vdev2 != vdev)
1084 				sync_virtio_xmit(vdev2, vdev, m);
1085 		}
1086 		goto queue2nic;
1087 	}
1088 
1089 	/*check if destination is local VM*/
1090 	if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0))
1091 		return;
1092 
1093 	if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
1094 		if (unlikely(find_local_dest(vdev, m, &offset,
1095 					     &vlan_tag) != 0)) {
1096 			rte_pktmbuf_free(m);
1097 			return;
1098 		}
1099 	}
1100 
1101 	RTE_LOG_DP(DEBUG, VHOST_DATA,
1102 		"(%d) TX: MAC address is external\n", vdev->vid);
1103 
1104 queue2nic:
1105 
1106 	/*Add packet to the port tx queue*/
1107 	tx_q = &lcore_tx_queue[lcore_id];
1108 
1109 	nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1110 	if (unlikely(nh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))) {
1111 		/* Guest has inserted the vlan tag. */
1112 		struct rte_vlan_hdr *vh = (struct rte_vlan_hdr *) (nh + 1);
1113 		uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag);
1114 		if ((vm2vm_mode == VM2VM_HARDWARE) &&
1115 			(vh->vlan_tci != vlan_tag_be))
1116 			vh->vlan_tci = vlan_tag_be;
1117 	} else {
1118 		m->ol_flags |= PKT_TX_VLAN_PKT;
1119 
1120 		/*
1121 		 * Find the right seg to adjust the data len when offset is
1122 		 * bigger than tail room size.
1123 		 */
1124 		if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
1125 			if (likely(offset <= rte_pktmbuf_tailroom(m)))
1126 				m->data_len += offset;
1127 			else {
1128 				struct rte_mbuf *seg = m;
1129 
1130 				while ((seg->next != NULL) &&
1131 					(offset > rte_pktmbuf_tailroom(seg)))
1132 					seg = seg->next;
1133 
1134 				seg->data_len += offset;
1135 			}
1136 			m->pkt_len += offset;
1137 		}
1138 
1139 		m->vlan_tci = vlan_tag;
1140 	}
1141 
1142 	if (m->ol_flags & PKT_RX_LRO)
1143 		virtio_tx_offload(m);
1144 
1145 	tx_q->m_table[tx_q->len++] = m;
1146 	if (enable_stats) {
1147 		vdev->stats.tx_total++;
1148 		vdev->stats.tx++;
1149 	}
1150 
1151 	if (unlikely(tx_q->len == MAX_PKT_BURST))
1152 		do_drain_mbuf_table(tx_q);
1153 }
1154 
1155 
1156 static __rte_always_inline void
1157 drain_mbuf_table(struct mbuf_table *tx_q)
1158 {
1159 	static uint64_t prev_tsc;
1160 	uint64_t cur_tsc;
1161 
1162 	if (tx_q->len == 0)
1163 		return;
1164 
1165 	cur_tsc = rte_rdtsc();
1166 	if (unlikely(cur_tsc - prev_tsc > MBUF_TABLE_DRAIN_TSC)) {
1167 		prev_tsc = cur_tsc;
1168 
1169 		RTE_LOG_DP(DEBUG, VHOST_DATA,
1170 			"TX queue drained after timeout with burst size %u\n",
1171 			tx_q->len);
1172 		do_drain_mbuf_table(tx_q);
1173 	}
1174 }
1175 
1176 static __rte_always_inline void
1177 drain_eth_rx(struct vhost_dev *vdev)
1178 {
1179 	uint16_t rx_count, enqueue_count;
1180 	struct rte_mbuf *pkts[MAX_PKT_BURST];
1181 
1182 	rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q,
1183 				    pkts, MAX_PKT_BURST);
1184 
1185 	if (!rx_count)
1186 		return;
1187 
1188 	/*
1189 	 * When "enable_retry" is set, here we wait and retry when there
1190 	 * is no enough free slots in the queue to hold @rx_count packets,
1191 	 * to diminish packet loss.
1192 	 */
1193 	if (enable_retry &&
1194 	    unlikely(rx_count > rte_vhost_avail_entries(vdev->vid,
1195 			VIRTIO_RXQ))) {
1196 		uint32_t retry;
1197 
1198 		for (retry = 0; retry < burst_rx_retry_num; retry++) {
1199 			rte_delay_us(burst_rx_delay_time);
1200 			if (rx_count <= rte_vhost_avail_entries(vdev->vid,
1201 					VIRTIO_RXQ))
1202 				break;
1203 		}
1204 	}
1205 
1206 	if (builtin_net_driver) {
1207 		enqueue_count = vs_enqueue_pkts(vdev, VIRTIO_RXQ,
1208 						pkts, rx_count);
1209 	} else if (async_vhost_driver) {
1210 		uint16_t enqueue_fail = 0;
1211 
1212 		complete_async_pkts(vdev);
1213 		enqueue_count = rte_vhost_submit_enqueue_burst(vdev->vid,
1214 					VIRTIO_RXQ, pkts, rx_count);
1215 		__atomic_add_fetch(&vdev->pkts_inflight, enqueue_count, __ATOMIC_SEQ_CST);
1216 
1217 		enqueue_fail = rx_count - enqueue_count;
1218 		if (enqueue_fail)
1219 			free_pkts(&pkts[enqueue_count], enqueue_fail);
1220 
1221 	} else {
1222 		enqueue_count = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
1223 						pkts, rx_count);
1224 	}
1225 
1226 	if (enable_stats) {
1227 		__atomic_add_fetch(&vdev->stats.rx_total_atomic, rx_count,
1228 				__ATOMIC_SEQ_CST);
1229 		__atomic_add_fetch(&vdev->stats.rx_atomic, enqueue_count,
1230 				__ATOMIC_SEQ_CST);
1231 	}
1232 
1233 	if (!async_vhost_driver)
1234 		free_pkts(pkts, rx_count);
1235 }
1236 
1237 static __rte_always_inline void
1238 drain_virtio_tx(struct vhost_dev *vdev)
1239 {
1240 	struct rte_mbuf *pkts[MAX_PKT_BURST];
1241 	uint16_t count;
1242 	uint16_t i;
1243 
1244 	if (builtin_net_driver) {
1245 		count = vs_dequeue_pkts(vdev, VIRTIO_TXQ, mbuf_pool,
1246 					pkts, MAX_PKT_BURST);
1247 	} else {
1248 		count = rte_vhost_dequeue_burst(vdev->vid, VIRTIO_TXQ,
1249 					mbuf_pool, pkts, MAX_PKT_BURST);
1250 	}
1251 
1252 	/* setup VMDq for the first packet */
1253 	if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && count) {
1254 		if (vdev->remove || link_vmdq(vdev, pkts[0]) == -1)
1255 			free_pkts(pkts, count);
1256 	}
1257 
1258 	for (i = 0; i < count; ++i)
1259 		virtio_tx_route(vdev, pkts[i], vlan_tags[vdev->vid]);
1260 }
1261 
1262 /*
1263  * Main function of vhost-switch. It basically does:
1264  *
1265  * for each vhost device {
1266  *    - drain_eth_rx()
1267  *
1268  *      Which drains the host eth Rx queue linked to the vhost device,
1269  *      and deliver all of them to guest virito Rx ring associated with
1270  *      this vhost device.
1271  *
1272  *    - drain_virtio_tx()
1273  *
1274  *      Which drains the guest virtio Tx queue and deliver all of them
1275  *      to the target, which could be another vhost device, or the
1276  *      physical eth dev. The route is done in function "virtio_tx_route".
1277  * }
1278  */
1279 static int
1280 switch_worker(void *arg __rte_unused)
1281 {
1282 	unsigned i;
1283 	unsigned lcore_id = rte_lcore_id();
1284 	struct vhost_dev *vdev;
1285 	struct mbuf_table *tx_q;
1286 
1287 	RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
1288 
1289 	tx_q = &lcore_tx_queue[lcore_id];
1290 	for (i = 0; i < rte_lcore_count(); i++) {
1291 		if (lcore_ids[i] == lcore_id) {
1292 			tx_q->txq_id = i;
1293 			break;
1294 		}
1295 	}
1296 
1297 	while(1) {
1298 		drain_mbuf_table(tx_q);
1299 		drain_vhost_table();
1300 		/*
1301 		 * Inform the configuration core that we have exited the
1302 		 * linked list and that no devices are in use if requested.
1303 		 */
1304 		if (lcore_info[lcore_id].dev_removal_flag == REQUEST_DEV_REMOVAL)
1305 			lcore_info[lcore_id].dev_removal_flag = ACK_DEV_REMOVAL;
1306 
1307 		/*
1308 		 * Process vhost devices
1309 		 */
1310 		TAILQ_FOREACH(vdev, &lcore_info[lcore_id].vdev_list,
1311 			      lcore_vdev_entry) {
1312 			if (unlikely(vdev->remove)) {
1313 				unlink_vmdq(vdev);
1314 				vdev->ready = DEVICE_SAFE_REMOVE;
1315 				continue;
1316 			}
1317 
1318 			if (likely(vdev->ready == DEVICE_RX))
1319 				drain_eth_rx(vdev);
1320 
1321 			if (likely(!vdev->remove))
1322 				drain_virtio_tx(vdev);
1323 		}
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Remove a device from the specific data core linked list and from the
1331  * main linked list. Synchonization  occurs through the use of the
1332  * lcore dev_removal_flag. Device is made volatile here to avoid re-ordering
1333  * of dev->remove=1 which can cause an infinite loop in the rte_pause loop.
1334  */
1335 static void
1336 destroy_device(int vid)
1337 {
1338 	struct vhost_dev *vdev = NULL;
1339 	int lcore;
1340 	uint16_t i;
1341 
1342 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1343 		if (vdev->vid == vid)
1344 			break;
1345 	}
1346 	if (!vdev)
1347 		return;
1348 	/*set the remove flag. */
1349 	vdev->remove = 1;
1350 	while(vdev->ready != DEVICE_SAFE_REMOVE) {
1351 		rte_pause();
1352 	}
1353 
1354 	for (i = 0; i < RTE_MAX_LCORE; i++)
1355 		rte_free(vhost_txbuff[i * MAX_VHOST_DEVICE + vid]);
1356 
1357 	if (builtin_net_driver)
1358 		vs_vhost_net_remove(vdev);
1359 
1360 	TAILQ_REMOVE(&lcore_info[vdev->coreid].vdev_list, vdev,
1361 		     lcore_vdev_entry);
1362 	TAILQ_REMOVE(&vhost_dev_list, vdev, global_vdev_entry);
1363 
1364 
1365 	/* Set the dev_removal_flag on each lcore. */
1366 	RTE_LCORE_FOREACH_WORKER(lcore)
1367 		lcore_info[lcore].dev_removal_flag = REQUEST_DEV_REMOVAL;
1368 
1369 	/*
1370 	 * Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL
1371 	 * we can be sure that they can no longer access the device removed
1372 	 * from the linked lists and that the devices are no longer in use.
1373 	 */
1374 	RTE_LCORE_FOREACH_WORKER(lcore) {
1375 		while (lcore_info[lcore].dev_removal_flag != ACK_DEV_REMOVAL)
1376 			rte_pause();
1377 	}
1378 
1379 	lcore_info[vdev->coreid].device_num--;
1380 
1381 	RTE_LOG(INFO, VHOST_DATA,
1382 		"(%d) device has been removed from data core\n",
1383 		vdev->vid);
1384 
1385 	if (async_vhost_driver) {
1386 		uint16_t n_pkt = 0;
1387 		struct rte_mbuf *m_cpl[vdev->pkts_inflight];
1388 
1389 		while (vdev->pkts_inflight) {
1390 			n_pkt = rte_vhost_clear_queue_thread_unsafe(vid, VIRTIO_RXQ,
1391 						m_cpl, vdev->pkts_inflight);
1392 			free_pkts(m_cpl, n_pkt);
1393 			__atomic_sub_fetch(&vdev->pkts_inflight, n_pkt, __ATOMIC_SEQ_CST);
1394 		}
1395 
1396 		rte_vhost_async_channel_unregister(vid, VIRTIO_RXQ);
1397 	}
1398 
1399 	rte_free(vdev);
1400 }
1401 
1402 /*
1403  * A new device is added to a data core. First the device is added to the main linked list
1404  * and then allocated to a specific data core.
1405  */
1406 static int
1407 new_device(int vid)
1408 {
1409 	int lcore, core_add = 0;
1410 	uint16_t i;
1411 	uint32_t device_num_min = num_devices;
1412 	struct vhost_dev *vdev;
1413 	vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
1414 	if (vdev == NULL) {
1415 		RTE_LOG(INFO, VHOST_DATA,
1416 			"(%d) couldn't allocate memory for vhost dev\n",
1417 			vid);
1418 		return -1;
1419 	}
1420 	vdev->vid = vid;
1421 
1422 	for (i = 0; i < RTE_MAX_LCORE; i++) {
1423 		vhost_txbuff[i * MAX_VHOST_DEVICE + vid]
1424 			= rte_zmalloc("vhost bufftable",
1425 				sizeof(struct vhost_bufftable),
1426 				RTE_CACHE_LINE_SIZE);
1427 
1428 		if (vhost_txbuff[i * MAX_VHOST_DEVICE + vid] == NULL) {
1429 			RTE_LOG(INFO, VHOST_DATA,
1430 			  "(%d) couldn't allocate memory for vhost TX\n", vid);
1431 			return -1;
1432 		}
1433 	}
1434 
1435 	if (builtin_net_driver)
1436 		vs_vhost_net_setup(vdev);
1437 
1438 	TAILQ_INSERT_TAIL(&vhost_dev_list, vdev, global_vdev_entry);
1439 	vdev->vmdq_rx_q = vid * queues_per_pool + vmdq_queue_base;
1440 
1441 	/*reset ready flag*/
1442 	vdev->ready = DEVICE_MAC_LEARNING;
1443 	vdev->remove = 0;
1444 
1445 	/* Find a suitable lcore to add the device. */
1446 	RTE_LCORE_FOREACH_WORKER(lcore) {
1447 		if (lcore_info[lcore].device_num < device_num_min) {
1448 			device_num_min = lcore_info[lcore].device_num;
1449 			core_add = lcore;
1450 		}
1451 	}
1452 	vdev->coreid = core_add;
1453 
1454 	TAILQ_INSERT_TAIL(&lcore_info[vdev->coreid].vdev_list, vdev,
1455 			  lcore_vdev_entry);
1456 	lcore_info[vdev->coreid].device_num++;
1457 
1458 	/* Disable notifications. */
1459 	rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0);
1460 	rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0);
1461 
1462 	RTE_LOG(INFO, VHOST_DATA,
1463 		"(%d) device has been added to data core %d\n",
1464 		vid, vdev->coreid);
1465 
1466 	if (async_vhost_driver) {
1467 		struct rte_vhost_async_config config = {0};
1468 		struct rte_vhost_async_channel_ops channel_ops;
1469 
1470 		if (dma_type != NULL && strncmp(dma_type, "ioat", 4) == 0) {
1471 			channel_ops.transfer_data = ioat_transfer_data_cb;
1472 			channel_ops.check_completed_copies =
1473 				ioat_check_completed_copies_cb;
1474 
1475 			config.features = RTE_VHOST_ASYNC_INORDER;
1476 
1477 			return rte_vhost_async_channel_register(vid, VIRTIO_RXQ,
1478 				config, &channel_ops);
1479 		}
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static int
1486 vring_state_changed(int vid, uint16_t queue_id, int enable)
1487 {
1488 	struct vhost_dev *vdev = NULL;
1489 
1490 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1491 		if (vdev->vid == vid)
1492 			break;
1493 	}
1494 	if (!vdev)
1495 		return -1;
1496 
1497 	if (queue_id != VIRTIO_RXQ)
1498 		return 0;
1499 
1500 	if (async_vhost_driver) {
1501 		if (!enable) {
1502 			uint16_t n_pkt = 0;
1503 			struct rte_mbuf *m_cpl[vdev->pkts_inflight];
1504 
1505 			while (vdev->pkts_inflight) {
1506 				n_pkt = rte_vhost_clear_queue_thread_unsafe(vid, queue_id,
1507 							m_cpl, vdev->pkts_inflight);
1508 				free_pkts(m_cpl, n_pkt);
1509 				__atomic_sub_fetch(&vdev->pkts_inflight, n_pkt, __ATOMIC_SEQ_CST);
1510 			}
1511 		}
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /*
1518  * These callback allow devices to be added to the data core when configuration
1519  * has been fully complete.
1520  */
1521 static const struct vhost_device_ops virtio_net_device_ops =
1522 {
1523 	.new_device =  new_device,
1524 	.destroy_device = destroy_device,
1525 	.vring_state_changed = vring_state_changed,
1526 };
1527 
1528 /*
1529  * This is a thread will wake up after a period to print stats if the user has
1530  * enabled them.
1531  */
1532 static void *
1533 print_stats(__rte_unused void *arg)
1534 {
1535 	struct vhost_dev *vdev;
1536 	uint64_t tx_dropped, rx_dropped;
1537 	uint64_t tx, tx_total, rx, rx_total;
1538 	const char clr[] = { 27, '[', '2', 'J', '\0' };
1539 	const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' };
1540 
1541 	while(1) {
1542 		sleep(enable_stats);
1543 
1544 		/* Clear screen and move to top left */
1545 		printf("%s%s\n", clr, top_left);
1546 		printf("Device statistics =================================\n");
1547 
1548 		TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1549 			tx_total   = vdev->stats.tx_total;
1550 			tx         = vdev->stats.tx;
1551 			tx_dropped = tx_total - tx;
1552 
1553 			rx_total = __atomic_load_n(&vdev->stats.rx_total_atomic,
1554 				__ATOMIC_SEQ_CST);
1555 			rx         = __atomic_load_n(&vdev->stats.rx_atomic,
1556 				__ATOMIC_SEQ_CST);
1557 			rx_dropped = rx_total - rx;
1558 
1559 			printf("Statistics for device %d\n"
1560 				"-----------------------\n"
1561 				"TX total:              %" PRIu64 "\n"
1562 				"TX dropped:            %" PRIu64 "\n"
1563 				"TX successful:         %" PRIu64 "\n"
1564 				"RX total:              %" PRIu64 "\n"
1565 				"RX dropped:            %" PRIu64 "\n"
1566 				"RX successful:         %" PRIu64 "\n",
1567 				vdev->vid,
1568 				tx_total, tx_dropped, tx,
1569 				rx_total, rx_dropped, rx);
1570 		}
1571 
1572 		printf("===================================================\n");
1573 
1574 		fflush(stdout);
1575 	}
1576 
1577 	return NULL;
1578 }
1579 
1580 static void
1581 unregister_drivers(int socket_num)
1582 {
1583 	int i, ret;
1584 
1585 	for (i = 0; i < socket_num; i++) {
1586 		ret = rte_vhost_driver_unregister(socket_files + i * PATH_MAX);
1587 		if (ret != 0)
1588 			RTE_LOG(ERR, VHOST_CONFIG,
1589 				"Fail to unregister vhost driver for %s.\n",
1590 				socket_files + i * PATH_MAX);
1591 	}
1592 }
1593 
1594 /* When we receive a INT signal, unregister vhost driver */
1595 static void
1596 sigint_handler(__rte_unused int signum)
1597 {
1598 	/* Unregister vhost driver. */
1599 	unregister_drivers(nb_sockets);
1600 
1601 	exit(0);
1602 }
1603 
1604 /*
1605  * While creating an mbuf pool, one key thing is to figure out how
1606  * many mbuf entries is enough for our use. FYI, here are some
1607  * guidelines:
1608  *
1609  * - Each rx queue would reserve @nr_rx_desc mbufs at queue setup stage
1610  *
1611  * - For each switch core (A CPU core does the packet switch), we need
1612  *   also make some reservation for receiving the packets from virtio
1613  *   Tx queue. How many is enough depends on the usage. It's normally
1614  *   a simple calculation like following:
1615  *
1616  *       MAX_PKT_BURST * max packet size / mbuf size
1617  *
1618  *   So, we definitely need allocate more mbufs when TSO is enabled.
1619  *
1620  * - Similarly, for each switching core, we should serve @nr_rx_desc
1621  *   mbufs for receiving the packets from physical NIC device.
1622  *
1623  * - We also need make sure, for each switch core, we have allocated
1624  *   enough mbufs to fill up the mbuf cache.
1625  */
1626 static void
1627 create_mbuf_pool(uint16_t nr_port, uint32_t nr_switch_core, uint32_t mbuf_size,
1628 	uint32_t nr_queues, uint32_t nr_rx_desc, uint32_t nr_mbuf_cache)
1629 {
1630 	uint32_t nr_mbufs;
1631 	uint32_t nr_mbufs_per_core;
1632 	uint32_t mtu = 1500;
1633 
1634 	if (mergeable)
1635 		mtu = 9000;
1636 	if (enable_tso)
1637 		mtu = 64 * 1024;
1638 
1639 	nr_mbufs_per_core  = (mtu + mbuf_size) * MAX_PKT_BURST /
1640 			(mbuf_size - RTE_PKTMBUF_HEADROOM);
1641 	nr_mbufs_per_core += nr_rx_desc;
1642 	nr_mbufs_per_core  = RTE_MAX(nr_mbufs_per_core, nr_mbuf_cache);
1643 
1644 	nr_mbufs  = nr_queues * nr_rx_desc;
1645 	nr_mbufs += nr_mbufs_per_core * nr_switch_core;
1646 	nr_mbufs *= nr_port;
1647 
1648 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", nr_mbufs,
1649 					    nr_mbuf_cache, 0, mbuf_size,
1650 					    rte_socket_id());
1651 	if (mbuf_pool == NULL)
1652 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1653 }
1654 
1655 /*
1656  * Main function, does initialisation and calls the per-lcore functions.
1657  */
1658 int
1659 main(int argc, char *argv[])
1660 {
1661 	unsigned lcore_id, core_id = 0;
1662 	unsigned nb_ports, valid_num_ports;
1663 	int ret, i;
1664 	uint16_t portid;
1665 	static pthread_t tid;
1666 	uint64_t flags = RTE_VHOST_USER_NET_COMPLIANT_OL_FLAGS;
1667 
1668 	signal(SIGINT, sigint_handler);
1669 
1670 	/* init EAL */
1671 	ret = rte_eal_init(argc, argv);
1672 	if (ret < 0)
1673 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
1674 	argc -= ret;
1675 	argv += ret;
1676 
1677 	/* parse app arguments */
1678 	ret = us_vhost_parse_args(argc, argv);
1679 	if (ret < 0)
1680 		rte_exit(EXIT_FAILURE, "Invalid argument\n");
1681 
1682 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1683 		TAILQ_INIT(&lcore_info[lcore_id].vdev_list);
1684 
1685 		if (rte_lcore_is_enabled(lcore_id))
1686 			lcore_ids[core_id++] = lcore_id;
1687 	}
1688 
1689 	if (rte_lcore_count() > RTE_MAX_LCORE)
1690 		rte_exit(EXIT_FAILURE,"Not enough cores\n");
1691 
1692 	/* Get the number of physical ports. */
1693 	nb_ports = rte_eth_dev_count_avail();
1694 
1695 	/*
1696 	 * Update the global var NUM_PORTS and global array PORTS
1697 	 * and get value of var VALID_NUM_PORTS according to system ports number
1698 	 */
1699 	valid_num_ports = check_ports_num(nb_ports);
1700 
1701 	if ((valid_num_ports ==  0) || (valid_num_ports > MAX_SUP_PORTS)) {
1702 		RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
1703 			"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
1704 		return -1;
1705 	}
1706 
1707 	/*
1708 	 * FIXME: here we are trying to allocate mbufs big enough for
1709 	 * @MAX_QUEUES, but the truth is we're never going to use that
1710 	 * many queues here. We probably should only do allocation for
1711 	 * those queues we are going to use.
1712 	 */
1713 	create_mbuf_pool(valid_num_ports, rte_lcore_count() - 1, MBUF_DATA_SIZE,
1714 			 MAX_QUEUES, RTE_TEST_RX_DESC_DEFAULT, MBUF_CACHE_SIZE);
1715 
1716 	if (vm2vm_mode == VM2VM_HARDWARE) {
1717 		/* Enable VT loop back to let L2 switch to do it. */
1718 		vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1;
1719 		RTE_LOG(DEBUG, VHOST_CONFIG,
1720 			"Enable loop back for L2 switch in vmdq.\n");
1721 	}
1722 
1723 	/* initialize all ports */
1724 	RTE_ETH_FOREACH_DEV(portid) {
1725 		/* skip ports that are not enabled */
1726 		if ((enabled_port_mask & (1 << portid)) == 0) {
1727 			RTE_LOG(INFO, VHOST_PORT,
1728 				"Skipping disabled port %d\n", portid);
1729 			continue;
1730 		}
1731 		if (port_init(portid) != 0)
1732 			rte_exit(EXIT_FAILURE,
1733 				"Cannot initialize network ports\n");
1734 	}
1735 
1736 	/* Enable stats if the user option is set. */
1737 	if (enable_stats) {
1738 		ret = rte_ctrl_thread_create(&tid, "print-stats", NULL,
1739 					print_stats, NULL);
1740 		if (ret < 0)
1741 			rte_exit(EXIT_FAILURE,
1742 				"Cannot create print-stats thread\n");
1743 	}
1744 
1745 	/* Launch all data cores. */
1746 	RTE_LCORE_FOREACH_WORKER(lcore_id)
1747 		rte_eal_remote_launch(switch_worker, NULL, lcore_id);
1748 
1749 	if (client_mode)
1750 		flags |= RTE_VHOST_USER_CLIENT;
1751 
1752 	/* Register vhost user driver to handle vhost messages. */
1753 	for (i = 0; i < nb_sockets; i++) {
1754 		char *file = socket_files + i * PATH_MAX;
1755 
1756 		if (async_vhost_driver)
1757 			flags = flags | RTE_VHOST_USER_ASYNC_COPY;
1758 
1759 		ret = rte_vhost_driver_register(file, flags);
1760 		if (ret != 0) {
1761 			unregister_drivers(i);
1762 			rte_exit(EXIT_FAILURE,
1763 				"vhost driver register failure.\n");
1764 		}
1765 
1766 		if (builtin_net_driver)
1767 			rte_vhost_driver_set_features(file, VIRTIO_NET_FEATURES);
1768 
1769 		if (mergeable == 0) {
1770 			rte_vhost_driver_disable_features(file,
1771 				1ULL << VIRTIO_NET_F_MRG_RXBUF);
1772 		}
1773 
1774 		if (enable_tx_csum == 0) {
1775 			rte_vhost_driver_disable_features(file,
1776 				1ULL << VIRTIO_NET_F_CSUM);
1777 		}
1778 
1779 		if (enable_tso == 0) {
1780 			rte_vhost_driver_disable_features(file,
1781 				1ULL << VIRTIO_NET_F_HOST_TSO4);
1782 			rte_vhost_driver_disable_features(file,
1783 				1ULL << VIRTIO_NET_F_HOST_TSO6);
1784 			rte_vhost_driver_disable_features(file,
1785 				1ULL << VIRTIO_NET_F_GUEST_TSO4);
1786 			rte_vhost_driver_disable_features(file,
1787 				1ULL << VIRTIO_NET_F_GUEST_TSO6);
1788 		}
1789 
1790 		if (promiscuous) {
1791 			rte_vhost_driver_enable_features(file,
1792 				1ULL << VIRTIO_NET_F_CTRL_RX);
1793 		}
1794 
1795 		ret = rte_vhost_driver_callback_register(file,
1796 			&virtio_net_device_ops);
1797 		if (ret != 0) {
1798 			rte_exit(EXIT_FAILURE,
1799 				"failed to register vhost driver callbacks.\n");
1800 		}
1801 
1802 		if (rte_vhost_driver_start(file) < 0) {
1803 			rte_exit(EXIT_FAILURE,
1804 				"failed to start vhost driver.\n");
1805 		}
1806 	}
1807 
1808 	RTE_LCORE_FOREACH_WORKER(lcore_id)
1809 		rte_eal_wait_lcore(lcore_id);
1810 
1811 	/* clean up the EAL */
1812 	rte_eal_cleanup();
1813 
1814 	return 0;
1815 }
1816