xref: /dpdk/examples/vhost/main.c (revision 03ab51eafda992874a48c392ca66ffb577fe2b71)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2017 Intel Corporation
3  */
4 
5 #include <arpa/inet.h>
6 #include <getopt.h>
7 #include <linux/if_ether.h>
8 #include <linux/if_vlan.h>
9 #include <linux/virtio_net.h>
10 #include <linux/virtio_ring.h>
11 #include <signal.h>
12 #include <stdint.h>
13 #include <sys/eventfd.h>
14 #include <sys/param.h>
15 #include <unistd.h>
16 
17 #include <rte_cycles.h>
18 #include <rte_ethdev.h>
19 #include <rte_log.h>
20 #include <rte_string_fns.h>
21 #include <rte_malloc.h>
22 #include <rte_net.h>
23 #include <rte_vhost.h>
24 #include <rte_ip.h>
25 #include <rte_tcp.h>
26 #include <rte_pause.h>
27 
28 #include "ioat.h"
29 #include "main.h"
30 
31 #ifndef MAX_QUEUES
32 #define MAX_QUEUES 128
33 #endif
34 
35 /* the maximum number of external ports supported */
36 #define MAX_SUP_PORTS 1
37 
38 #define MBUF_CACHE_SIZE	128
39 #define MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
40 
41 #define BURST_TX_DRAIN_US 100	/* TX drain every ~100us */
42 
43 #define BURST_RX_WAIT_US 15	/* Defines how long we wait between retries on RX */
44 #define BURST_RX_RETRIES 4		/* Number of retries on RX. */
45 
46 #define JUMBO_FRAME_MAX_SIZE    0x2600
47 
48 /* State of virtio device. */
49 #define DEVICE_MAC_LEARNING 0
50 #define DEVICE_RX			1
51 #define DEVICE_SAFE_REMOVE	2
52 
53 /* Configurable number of RX/TX ring descriptors */
54 #define RTE_TEST_RX_DESC_DEFAULT 1024
55 #define RTE_TEST_TX_DESC_DEFAULT 512
56 
57 #define INVALID_PORT_ID 0xFF
58 
59 /* mask of enabled ports */
60 static uint32_t enabled_port_mask = 0;
61 
62 /* Promiscuous mode */
63 static uint32_t promiscuous;
64 
65 /* number of devices/queues to support*/
66 static uint32_t num_queues = 0;
67 static uint32_t num_devices;
68 
69 static struct rte_mempool *mbuf_pool;
70 static int mergeable;
71 
72 /* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */
73 typedef enum {
74 	VM2VM_DISABLED = 0,
75 	VM2VM_SOFTWARE = 1,
76 	VM2VM_HARDWARE = 2,
77 	VM2VM_LAST
78 } vm2vm_type;
79 static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE;
80 
81 /* Enable stats. */
82 static uint32_t enable_stats = 0;
83 /* Enable retries on RX. */
84 static uint32_t enable_retry = 1;
85 
86 /* Disable TX checksum offload */
87 static uint32_t enable_tx_csum;
88 
89 /* Disable TSO offload */
90 static uint32_t enable_tso;
91 
92 static int client_mode;
93 
94 static int builtin_net_driver;
95 
96 static int async_vhost_driver;
97 
98 static char *dma_type;
99 
100 /* Specify timeout (in useconds) between retries on RX. */
101 static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
102 /* Specify the number of retries on RX. */
103 static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
104 
105 /* Socket file paths. Can be set by user */
106 static char *socket_files;
107 static int nb_sockets;
108 
109 /* empty vmdq configuration structure. Filled in programatically */
110 static struct rte_eth_conf vmdq_conf_default = {
111 	.rxmode = {
112 		.mq_mode        = ETH_MQ_RX_VMDQ_ONLY,
113 		.split_hdr_size = 0,
114 		/*
115 		 * VLAN strip is necessary for 1G NIC such as I350,
116 		 * this fixes bug of ipv4 forwarding in guest can't
117 		 * forward pakets from one virtio dev to another virtio dev.
118 		 */
119 		.offloads = DEV_RX_OFFLOAD_VLAN_STRIP,
120 	},
121 
122 	.txmode = {
123 		.mq_mode = ETH_MQ_TX_NONE,
124 		.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
125 			     DEV_TX_OFFLOAD_TCP_CKSUM |
126 			     DEV_TX_OFFLOAD_VLAN_INSERT |
127 			     DEV_TX_OFFLOAD_MULTI_SEGS |
128 			     DEV_TX_OFFLOAD_TCP_TSO),
129 	},
130 	.rx_adv_conf = {
131 		/*
132 		 * should be overridden separately in code with
133 		 * appropriate values
134 		 */
135 		.vmdq_rx_conf = {
136 			.nb_queue_pools = ETH_8_POOLS,
137 			.enable_default_pool = 0,
138 			.default_pool = 0,
139 			.nb_pool_maps = 0,
140 			.pool_map = {{0, 0},},
141 		},
142 	},
143 };
144 
145 
146 static unsigned lcore_ids[RTE_MAX_LCORE];
147 static uint16_t ports[RTE_MAX_ETHPORTS];
148 static unsigned num_ports = 0; /**< The number of ports specified in command line */
149 static uint16_t num_pf_queues, num_vmdq_queues;
150 static uint16_t vmdq_pool_base, vmdq_queue_base;
151 static uint16_t queues_per_pool;
152 
153 const uint16_t vlan_tags[] = {
154 	1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007,
155 	1008, 1009, 1010, 1011,	1012, 1013, 1014, 1015,
156 	1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023,
157 	1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031,
158 	1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039,
159 	1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047,
160 	1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055,
161 	1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
162 };
163 
164 /* ethernet addresses of ports */
165 static struct rte_ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS];
166 
167 static struct vhost_dev_tailq_list vhost_dev_list =
168 	TAILQ_HEAD_INITIALIZER(vhost_dev_list);
169 
170 static struct lcore_info lcore_info[RTE_MAX_LCORE];
171 
172 /* Used for queueing bursts of TX packets. */
173 struct mbuf_table {
174 	unsigned len;
175 	unsigned txq_id;
176 	struct rte_mbuf *m_table[MAX_PKT_BURST];
177 };
178 
179 struct vhost_bufftable {
180 	uint32_t len;
181 	uint64_t pre_tsc;
182 	struct rte_mbuf *m_table[MAX_PKT_BURST];
183 };
184 
185 /* TX queue for each data core. */
186 struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
187 
188 /*
189  * Vhost TX buffer for each data core.
190  * Every data core maintains a TX buffer for every vhost device,
191  * which is used for batch pkts enqueue for higher performance.
192  */
193 struct vhost_bufftable *vhost_txbuff[RTE_MAX_LCORE * MAX_VHOST_DEVICE];
194 
195 #define MBUF_TABLE_DRAIN_TSC	((rte_get_tsc_hz() + US_PER_S - 1) \
196 				 / US_PER_S * BURST_TX_DRAIN_US)
197 #define VLAN_HLEN       4
198 
199 static inline int
200 open_dma(const char *value)
201 {
202 	if (dma_type != NULL && strncmp(dma_type, "ioat", 4) == 0)
203 		return open_ioat(value);
204 
205 	return -1;
206 }
207 
208 /*
209  * Builds up the correct configuration for VMDQ VLAN pool map
210  * according to the pool & queue limits.
211  */
212 static inline int
213 get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices)
214 {
215 	struct rte_eth_vmdq_rx_conf conf;
216 	struct rte_eth_vmdq_rx_conf *def_conf =
217 		&vmdq_conf_default.rx_adv_conf.vmdq_rx_conf;
218 	unsigned i;
219 
220 	memset(&conf, 0, sizeof(conf));
221 	conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices;
222 	conf.nb_pool_maps = num_devices;
223 	conf.enable_loop_back = def_conf->enable_loop_back;
224 	conf.rx_mode = def_conf->rx_mode;
225 
226 	for (i = 0; i < conf.nb_pool_maps; i++) {
227 		conf.pool_map[i].vlan_id = vlan_tags[ i ];
228 		conf.pool_map[i].pools = (1UL << i);
229 	}
230 
231 	(void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
232 	(void)(rte_memcpy(&eth_conf->rx_adv_conf.vmdq_rx_conf, &conf,
233 		   sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
234 	return 0;
235 }
236 
237 /*
238  * Initialises a given port using global settings and with the rx buffers
239  * coming from the mbuf_pool passed as parameter
240  */
241 static inline int
242 port_init(uint16_t port)
243 {
244 	struct rte_eth_dev_info dev_info;
245 	struct rte_eth_conf port_conf;
246 	struct rte_eth_rxconf *rxconf;
247 	struct rte_eth_txconf *txconf;
248 	int16_t rx_rings, tx_rings;
249 	uint16_t rx_ring_size, tx_ring_size;
250 	int retval;
251 	uint16_t q;
252 
253 	/* The max pool number from dev_info will be used to validate the pool number specified in cmd line */
254 	retval = rte_eth_dev_info_get(port, &dev_info);
255 	if (retval != 0) {
256 		RTE_LOG(ERR, VHOST_PORT,
257 			"Error during getting device (port %u) info: %s\n",
258 			port, strerror(-retval));
259 
260 		return retval;
261 	}
262 
263 	rxconf = &dev_info.default_rxconf;
264 	txconf = &dev_info.default_txconf;
265 	rxconf->rx_drop_en = 1;
266 
267 	/*configure the number of supported virtio devices based on VMDQ limits */
268 	num_devices = dev_info.max_vmdq_pools;
269 
270 	rx_ring_size = RTE_TEST_RX_DESC_DEFAULT;
271 	tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
272 
273 	tx_rings = (uint16_t)rte_lcore_count();
274 
275 	/* Get port configuration. */
276 	retval = get_eth_conf(&port_conf, num_devices);
277 	if (retval < 0)
278 		return retval;
279 	/* NIC queues are divided into pf queues and vmdq queues.  */
280 	num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num;
281 	queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools;
282 	num_vmdq_queues = num_devices * queues_per_pool;
283 	num_queues = num_pf_queues + num_vmdq_queues;
284 	vmdq_queue_base = dev_info.vmdq_queue_base;
285 	vmdq_pool_base  = dev_info.vmdq_pool_base;
286 	printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n",
287 		num_pf_queues, num_devices, queues_per_pool);
288 
289 	if (!rte_eth_dev_is_valid_port(port))
290 		return -1;
291 
292 	rx_rings = (uint16_t)dev_info.max_rx_queues;
293 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
294 		port_conf.txmode.offloads |=
295 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
296 	/* Configure ethernet device. */
297 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
298 	if (retval != 0) {
299 		RTE_LOG(ERR, VHOST_PORT, "Failed to configure port %u: %s.\n",
300 			port, strerror(-retval));
301 		return retval;
302 	}
303 
304 	retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size,
305 		&tx_ring_size);
306 	if (retval != 0) {
307 		RTE_LOG(ERR, VHOST_PORT, "Failed to adjust number of descriptors "
308 			"for port %u: %s.\n", port, strerror(-retval));
309 		return retval;
310 	}
311 	if (rx_ring_size > RTE_TEST_RX_DESC_DEFAULT) {
312 		RTE_LOG(ERR, VHOST_PORT, "Mbuf pool has an insufficient size "
313 			"for Rx queues on port %u.\n", port);
314 		return -1;
315 	}
316 
317 	/* Setup the queues. */
318 	rxconf->offloads = port_conf.rxmode.offloads;
319 	for (q = 0; q < rx_rings; q ++) {
320 		retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
321 						rte_eth_dev_socket_id(port),
322 						rxconf,
323 						mbuf_pool);
324 		if (retval < 0) {
325 			RTE_LOG(ERR, VHOST_PORT,
326 				"Failed to setup rx queue %u of port %u: %s.\n",
327 				q, port, strerror(-retval));
328 			return retval;
329 		}
330 	}
331 	txconf->offloads = port_conf.txmode.offloads;
332 	for (q = 0; q < tx_rings; q ++) {
333 		retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
334 						rte_eth_dev_socket_id(port),
335 						txconf);
336 		if (retval < 0) {
337 			RTE_LOG(ERR, VHOST_PORT,
338 				"Failed to setup tx queue %u of port %u: %s.\n",
339 				q, port, strerror(-retval));
340 			return retval;
341 		}
342 	}
343 
344 	/* Start the device. */
345 	retval  = rte_eth_dev_start(port);
346 	if (retval < 0) {
347 		RTE_LOG(ERR, VHOST_PORT, "Failed to start port %u: %s\n",
348 			port, strerror(-retval));
349 		return retval;
350 	}
351 
352 	if (promiscuous) {
353 		retval = rte_eth_promiscuous_enable(port);
354 		if (retval != 0) {
355 			RTE_LOG(ERR, VHOST_PORT,
356 				"Failed to enable promiscuous mode on port %u: %s\n",
357 				port, rte_strerror(-retval));
358 			return retval;
359 		}
360 	}
361 
362 	retval = rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]);
363 	if (retval < 0) {
364 		RTE_LOG(ERR, VHOST_PORT,
365 			"Failed to get MAC address on port %u: %s\n",
366 			port, rte_strerror(-retval));
367 		return retval;
368 	}
369 
370 	RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices);
371 	RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
372 		" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
373 		port, RTE_ETHER_ADDR_BYTES(&vmdq_ports_eth_addr[port]));
374 
375 	return 0;
376 }
377 
378 /*
379  * Set socket file path.
380  */
381 static int
382 us_vhost_parse_socket_path(const char *q_arg)
383 {
384 	char *old;
385 
386 	/* parse number string */
387 	if (strnlen(q_arg, PATH_MAX) == PATH_MAX)
388 		return -1;
389 
390 	old = socket_files;
391 	socket_files = realloc(socket_files, PATH_MAX * (nb_sockets + 1));
392 	if (socket_files == NULL) {
393 		free(old);
394 		return -1;
395 	}
396 
397 	strlcpy(socket_files + nb_sockets * PATH_MAX, q_arg, PATH_MAX);
398 	nb_sockets++;
399 
400 	return 0;
401 }
402 
403 /*
404  * Parse the portmask provided at run time.
405  */
406 static int
407 parse_portmask(const char *portmask)
408 {
409 	char *end = NULL;
410 	unsigned long pm;
411 
412 	errno = 0;
413 
414 	/* parse hexadecimal string */
415 	pm = strtoul(portmask, &end, 16);
416 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
417 		return 0;
418 
419 	return pm;
420 
421 }
422 
423 /*
424  * Parse num options at run time.
425  */
426 static int
427 parse_num_opt(const char *q_arg, uint32_t max_valid_value)
428 {
429 	char *end = NULL;
430 	unsigned long num;
431 
432 	errno = 0;
433 
434 	/* parse unsigned int string */
435 	num = strtoul(q_arg, &end, 10);
436 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
437 		return -1;
438 
439 	if (num > max_valid_value)
440 		return -1;
441 
442 	return num;
443 
444 }
445 
446 /*
447  * Display usage
448  */
449 static void
450 us_vhost_usage(const char *prgname)
451 {
452 	RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n"
453 	"		--vm2vm [0|1|2]\n"
454 	"		--rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n"
455 	"		--socket-file <path>\n"
456 	"		--nb-devices ND\n"
457 	"		-p PORTMASK: Set mask for ports to be used by application\n"
458 	"		--vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n"
459 	"		--rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n"
460 	"		--rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n"
461 	"		--rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n"
462 	"		--mergeable [0|1]: disable(default)/enable RX mergeable buffers\n"
463 	"		--stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
464 	"		--socket-file: The path of the socket file.\n"
465 	"		--tx-csum [0|1] disable/enable TX checksum offload.\n"
466 	"		--tso [0|1] disable/enable TCP segment offload.\n"
467 	"		--client register a vhost-user socket as client mode.\n"
468 	"		--dma-type register dma type for your vhost async driver. For example \"ioat\" for now.\n"
469 	"		--dmas register dma channel for specific vhost device.\n",
470 	       prgname);
471 }
472 
473 enum {
474 #define OPT_VM2VM               "vm2vm"
475 	OPT_VM2VM_NUM = 256,
476 #define OPT_RX_RETRY            "rx-retry"
477 	OPT_RX_RETRY_NUM,
478 #define OPT_RX_RETRY_DELAY      "rx-retry-delay"
479 	OPT_RX_RETRY_DELAY_NUM,
480 #define OPT_RX_RETRY_NUMB       "rx-retry-num"
481 	OPT_RX_RETRY_NUMB_NUM,
482 #define OPT_MERGEABLE           "mergeable"
483 	OPT_MERGEABLE_NUM,
484 #define OPT_STATS               "stats"
485 	OPT_STATS_NUM,
486 #define OPT_SOCKET_FILE         "socket-file"
487 	OPT_SOCKET_FILE_NUM,
488 #define OPT_TX_CSUM             "tx-csum"
489 	OPT_TX_CSUM_NUM,
490 #define OPT_TSO                 "tso"
491 	OPT_TSO_NUM,
492 #define OPT_CLIENT              "client"
493 	OPT_CLIENT_NUM,
494 #define OPT_BUILTIN_NET_DRIVER  "builtin-net-driver"
495 	OPT_BUILTIN_NET_DRIVER_NUM,
496 #define OPT_DMA_TYPE            "dma-type"
497 	OPT_DMA_TYPE_NUM,
498 #define OPT_DMAS                "dmas"
499 	OPT_DMAS_NUM,
500 };
501 
502 /*
503  * Parse the arguments given in the command line of the application.
504  */
505 static int
506 us_vhost_parse_args(int argc, char **argv)
507 {
508 	int opt, ret;
509 	int option_index;
510 	unsigned i;
511 	const char *prgname = argv[0];
512 	static struct option long_option[] = {
513 		{OPT_VM2VM, required_argument,
514 				NULL, OPT_VM2VM_NUM},
515 		{OPT_RX_RETRY, required_argument,
516 				NULL, OPT_RX_RETRY_NUM},
517 		{OPT_RX_RETRY_DELAY, required_argument,
518 				NULL, OPT_RX_RETRY_DELAY_NUM},
519 		{OPT_RX_RETRY_NUMB, required_argument,
520 				NULL, OPT_RX_RETRY_NUMB_NUM},
521 		{OPT_MERGEABLE, required_argument,
522 				NULL, OPT_MERGEABLE_NUM},
523 		{OPT_STATS, required_argument,
524 				NULL, OPT_STATS_NUM},
525 		{OPT_SOCKET_FILE, required_argument,
526 				NULL, OPT_SOCKET_FILE_NUM},
527 		{OPT_TX_CSUM, required_argument,
528 				NULL, OPT_TX_CSUM_NUM},
529 		{OPT_TSO, required_argument,
530 				NULL, OPT_TSO_NUM},
531 		{OPT_CLIENT, no_argument,
532 				NULL, OPT_CLIENT_NUM},
533 		{OPT_BUILTIN_NET_DRIVER, no_argument,
534 				NULL, OPT_BUILTIN_NET_DRIVER_NUM},
535 		{OPT_DMA_TYPE, required_argument,
536 				NULL, OPT_DMA_TYPE_NUM},
537 		{OPT_DMAS, required_argument,
538 				NULL, OPT_DMAS_NUM},
539 		{NULL, 0, 0, 0},
540 	};
541 
542 	/* Parse command line */
543 	while ((opt = getopt_long(argc, argv, "p:P",
544 			long_option, &option_index)) != EOF) {
545 		switch (opt) {
546 		/* Portmask */
547 		case 'p':
548 			enabled_port_mask = parse_portmask(optarg);
549 			if (enabled_port_mask == 0) {
550 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n");
551 				us_vhost_usage(prgname);
552 				return -1;
553 			}
554 			break;
555 
556 		case 'P':
557 			promiscuous = 1;
558 			vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode =
559 				ETH_VMDQ_ACCEPT_BROADCAST |
560 				ETH_VMDQ_ACCEPT_MULTICAST;
561 			break;
562 
563 		case OPT_VM2VM_NUM:
564 			ret = parse_num_opt(optarg, (VM2VM_LAST - 1));
565 			if (ret == -1) {
566 				RTE_LOG(INFO, VHOST_CONFIG,
567 					"Invalid argument for "
568 					"vm2vm [0|1|2]\n");
569 				us_vhost_usage(prgname);
570 				return -1;
571 			}
572 			vm2vm_mode = (vm2vm_type)ret;
573 			break;
574 
575 		case OPT_RX_RETRY_NUM:
576 			ret = parse_num_opt(optarg, 1);
577 			if (ret == -1) {
578 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n");
579 				us_vhost_usage(prgname);
580 				return -1;
581 			}
582 			enable_retry = ret;
583 			break;
584 
585 		case OPT_TX_CSUM_NUM:
586 			ret = parse_num_opt(optarg, 1);
587 			if (ret == -1) {
588 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-csum [0|1]\n");
589 				us_vhost_usage(prgname);
590 				return -1;
591 			}
592 			enable_tx_csum = ret;
593 			break;
594 
595 		case OPT_TSO_NUM:
596 			ret = parse_num_opt(optarg, 1);
597 			if (ret == -1) {
598 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tso [0|1]\n");
599 				us_vhost_usage(prgname);
600 				return -1;
601 			}
602 			enable_tso = ret;
603 			break;
604 
605 		case OPT_RX_RETRY_DELAY_NUM:
606 			ret = parse_num_opt(optarg, INT32_MAX);
607 			if (ret == -1) {
608 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n");
609 				us_vhost_usage(prgname);
610 				return -1;
611 			}
612 			burst_rx_delay_time = ret;
613 			break;
614 
615 		case OPT_RX_RETRY_NUMB_NUM:
616 			ret = parse_num_opt(optarg, INT32_MAX);
617 			if (ret == -1) {
618 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n");
619 				us_vhost_usage(prgname);
620 				return -1;
621 			}
622 			burst_rx_retry_num = ret;
623 			break;
624 
625 		case OPT_MERGEABLE_NUM:
626 			ret = parse_num_opt(optarg, 1);
627 			if (ret == -1) {
628 				RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n");
629 				us_vhost_usage(prgname);
630 				return -1;
631 			}
632 			mergeable = !!ret;
633 			if (ret) {
634 				vmdq_conf_default.rxmode.offloads |=
635 					DEV_RX_OFFLOAD_JUMBO_FRAME;
636 				vmdq_conf_default.rxmode.max_rx_pkt_len
637 					= JUMBO_FRAME_MAX_SIZE;
638 			}
639 			break;
640 
641 		case OPT_STATS_NUM:
642 			ret = parse_num_opt(optarg, INT32_MAX);
643 			if (ret == -1) {
644 				RTE_LOG(INFO, VHOST_CONFIG,
645 					"Invalid argument for stats [0..N]\n");
646 				us_vhost_usage(prgname);
647 				return -1;
648 			}
649 			enable_stats = ret;
650 			break;
651 
652 		/* Set socket file path. */
653 		case OPT_SOCKET_FILE_NUM:
654 			if (us_vhost_parse_socket_path(optarg) == -1) {
655 				RTE_LOG(INFO, VHOST_CONFIG,
656 				"Invalid argument for socket name (Max %d characters)\n",
657 				PATH_MAX);
658 				us_vhost_usage(prgname);
659 				return -1;
660 			}
661 			break;
662 
663 		case OPT_DMA_TYPE_NUM:
664 			dma_type = optarg;
665 			break;
666 
667 		case OPT_DMAS_NUM:
668 			if (open_dma(optarg) == -1) {
669 				RTE_LOG(INFO, VHOST_CONFIG,
670 					"Wrong DMA args\n");
671 				us_vhost_usage(prgname);
672 				return -1;
673 			}
674 			async_vhost_driver = 1;
675 			break;
676 
677 		case OPT_CLIENT_NUM:
678 			client_mode = 1;
679 			break;
680 
681 		case OPT_BUILTIN_NET_DRIVER_NUM:
682 			builtin_net_driver = 1;
683 			break;
684 
685 		/* Invalid option - print options. */
686 		default:
687 			us_vhost_usage(prgname);
688 			return -1;
689 		}
690 	}
691 
692 	for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
693 		if (enabled_port_mask & (1 << i))
694 			ports[num_ports++] = i;
695 	}
696 
697 	if ((num_ports ==  0) || (num_ports > MAX_SUP_PORTS)) {
698 		RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
699 			"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
700 		return -1;
701 	}
702 
703 	return 0;
704 }
705 
706 /*
707  * Update the global var NUM_PORTS and array PORTS according to system ports number
708  * and return valid ports number
709  */
710 static unsigned check_ports_num(unsigned nb_ports)
711 {
712 	unsigned valid_num_ports = num_ports;
713 	unsigned portid;
714 
715 	if (num_ports > nb_ports) {
716 		RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n",
717 			num_ports, nb_ports);
718 		num_ports = nb_ports;
719 	}
720 
721 	for (portid = 0; portid < num_ports; portid ++) {
722 		if (!rte_eth_dev_is_valid_port(ports[portid])) {
723 			RTE_LOG(INFO, VHOST_PORT,
724 				"\nSpecified port ID(%u) is not valid\n",
725 				ports[portid]);
726 			ports[portid] = INVALID_PORT_ID;
727 			valid_num_ports--;
728 		}
729 	}
730 	return valid_num_ports;
731 }
732 
733 static __rte_always_inline struct vhost_dev *
734 find_vhost_dev(struct rte_ether_addr *mac)
735 {
736 	struct vhost_dev *vdev;
737 
738 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
739 		if (vdev->ready == DEVICE_RX &&
740 		    rte_is_same_ether_addr(mac, &vdev->mac_address))
741 			return vdev;
742 	}
743 
744 	return NULL;
745 }
746 
747 /*
748  * This function learns the MAC address of the device and registers this along with a
749  * vlan tag to a VMDQ.
750  */
751 static int
752 link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m)
753 {
754 	struct rte_ether_hdr *pkt_hdr;
755 	int i, ret;
756 
757 	/* Learn MAC address of guest device from packet */
758 	pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
759 
760 	if (find_vhost_dev(&pkt_hdr->src_addr)) {
761 		RTE_LOG(ERR, VHOST_DATA,
762 			"(%d) device is using a registered MAC!\n",
763 			vdev->vid);
764 		return -1;
765 	}
766 
767 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
768 		vdev->mac_address.addr_bytes[i] =
769 			pkt_hdr->src_addr.addr_bytes[i];
770 
771 	/* vlan_tag currently uses the device_id. */
772 	vdev->vlan_tag = vlan_tags[vdev->vid];
773 
774 	/* Print out VMDQ registration info. */
775 	RTE_LOG(INFO, VHOST_DATA,
776 		"(%d) mac " RTE_ETHER_ADDR_PRT_FMT " and vlan %d registered\n",
777 		vdev->vid, RTE_ETHER_ADDR_BYTES(&vdev->mac_address),
778 		vdev->vlan_tag);
779 
780 	/* Register the MAC address. */
781 	ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address,
782 				(uint32_t)vdev->vid + vmdq_pool_base);
783 	if (ret)
784 		RTE_LOG(ERR, VHOST_DATA,
785 			"(%d) failed to add device MAC address to VMDQ\n",
786 			vdev->vid);
787 
788 	rte_eth_dev_set_vlan_strip_on_queue(ports[0], vdev->vmdq_rx_q, 1);
789 
790 	/* Set device as ready for RX. */
791 	vdev->ready = DEVICE_RX;
792 
793 	return 0;
794 }
795 
796 /*
797  * Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX
798  * queue before disabling RX on the device.
799  */
800 static inline void
801 unlink_vmdq(struct vhost_dev *vdev)
802 {
803 	unsigned i = 0;
804 	unsigned rx_count;
805 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
806 
807 	if (vdev->ready == DEVICE_RX) {
808 		/*clear MAC and VLAN settings*/
809 		rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address);
810 		for (i = 0; i < 6; i++)
811 			vdev->mac_address.addr_bytes[i] = 0;
812 
813 		vdev->vlan_tag = 0;
814 
815 		/*Clear out the receive buffers*/
816 		rx_count = rte_eth_rx_burst(ports[0],
817 					(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
818 
819 		while (rx_count) {
820 			for (i = 0; i < rx_count; i++)
821 				rte_pktmbuf_free(pkts_burst[i]);
822 
823 			rx_count = rte_eth_rx_burst(ports[0],
824 					(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
825 		}
826 
827 		vdev->ready = DEVICE_MAC_LEARNING;
828 	}
829 }
830 
831 static inline void
832 free_pkts(struct rte_mbuf **pkts, uint16_t n)
833 {
834 	while (n--)
835 		rte_pktmbuf_free(pkts[n]);
836 }
837 
838 static __rte_always_inline void
839 complete_async_pkts(struct vhost_dev *vdev)
840 {
841 	struct rte_mbuf *p_cpl[MAX_PKT_BURST];
842 	uint16_t complete_count;
843 
844 	complete_count = rte_vhost_poll_enqueue_completed(vdev->vid,
845 					VIRTIO_RXQ, p_cpl, MAX_PKT_BURST);
846 	if (complete_count) {
847 		free_pkts(p_cpl, complete_count);
848 		__atomic_sub_fetch(&vdev->pkts_inflight, complete_count, __ATOMIC_SEQ_CST);
849 	}
850 
851 }
852 
853 static __rte_always_inline void
854 sync_virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev,
855 	    struct rte_mbuf *m)
856 {
857 	uint16_t ret;
858 
859 	if (builtin_net_driver) {
860 		ret = vs_enqueue_pkts(dst_vdev, VIRTIO_RXQ, &m, 1);
861 	} else {
862 		ret = rte_vhost_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ, &m, 1);
863 	}
864 
865 	if (enable_stats) {
866 		__atomic_add_fetch(&dst_vdev->stats.rx_total_atomic, 1,
867 				__ATOMIC_SEQ_CST);
868 		__atomic_add_fetch(&dst_vdev->stats.rx_atomic, ret,
869 				__ATOMIC_SEQ_CST);
870 		src_vdev->stats.tx_total++;
871 		src_vdev->stats.tx += ret;
872 	}
873 }
874 
875 static __rte_always_inline void
876 drain_vhost(struct vhost_dev *vdev)
877 {
878 	uint16_t ret;
879 	uint32_t buff_idx = rte_lcore_id() * MAX_VHOST_DEVICE + vdev->vid;
880 	uint16_t nr_xmit = vhost_txbuff[buff_idx]->len;
881 	struct rte_mbuf **m = vhost_txbuff[buff_idx]->m_table;
882 
883 	if (builtin_net_driver) {
884 		ret = vs_enqueue_pkts(vdev, VIRTIO_RXQ, m, nr_xmit);
885 	} else if (async_vhost_driver) {
886 		uint16_t enqueue_fail = 0;
887 
888 		complete_async_pkts(vdev);
889 		ret = rte_vhost_submit_enqueue_burst(vdev->vid, VIRTIO_RXQ, m, nr_xmit);
890 		__atomic_add_fetch(&vdev->pkts_inflight, ret, __ATOMIC_SEQ_CST);
891 
892 		enqueue_fail = nr_xmit - ret;
893 		if (enqueue_fail)
894 			free_pkts(&m[ret], nr_xmit - ret);
895 	} else {
896 		ret = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
897 						m, nr_xmit);
898 	}
899 
900 	if (enable_stats) {
901 		__atomic_add_fetch(&vdev->stats.rx_total_atomic, nr_xmit,
902 				__ATOMIC_SEQ_CST);
903 		__atomic_add_fetch(&vdev->stats.rx_atomic, ret,
904 				__ATOMIC_SEQ_CST);
905 	}
906 
907 	if (!async_vhost_driver)
908 		free_pkts(m, nr_xmit);
909 }
910 
911 static __rte_always_inline void
912 drain_vhost_table(void)
913 {
914 	uint16_t lcore_id = rte_lcore_id();
915 	struct vhost_bufftable *vhost_txq;
916 	struct vhost_dev *vdev;
917 	uint64_t cur_tsc;
918 
919 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
920 		vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE
921 						+ vdev->vid];
922 
923 		cur_tsc = rte_rdtsc();
924 		if (unlikely(cur_tsc - vhost_txq->pre_tsc
925 				> MBUF_TABLE_DRAIN_TSC)) {
926 			RTE_LOG_DP(DEBUG, VHOST_DATA,
927 				"Vhost TX queue drained after timeout with burst size %u\n",
928 				vhost_txq->len);
929 			drain_vhost(vdev);
930 			vhost_txq->len = 0;
931 			vhost_txq->pre_tsc = cur_tsc;
932 		}
933 	}
934 }
935 
936 /*
937  * Check if the packet destination MAC address is for a local device. If so then put
938  * the packet on that devices RX queue. If not then return.
939  */
940 static __rte_always_inline int
941 virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
942 {
943 	struct rte_ether_hdr *pkt_hdr;
944 	struct vhost_dev *dst_vdev;
945 	struct vhost_bufftable *vhost_txq;
946 	uint16_t lcore_id = rte_lcore_id();
947 	pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
948 
949 	dst_vdev = find_vhost_dev(&pkt_hdr->dst_addr);
950 	if (!dst_vdev)
951 		return -1;
952 
953 	if (vdev->vid == dst_vdev->vid) {
954 		RTE_LOG_DP(DEBUG, VHOST_DATA,
955 			"(%d) TX: src and dst MAC is same. Dropping packet.\n",
956 			vdev->vid);
957 		return 0;
958 	}
959 
960 	RTE_LOG_DP(DEBUG, VHOST_DATA,
961 		"(%d) TX: MAC address is local\n", dst_vdev->vid);
962 
963 	if (unlikely(dst_vdev->remove)) {
964 		RTE_LOG_DP(DEBUG, VHOST_DATA,
965 			"(%d) device is marked for removal\n", dst_vdev->vid);
966 		return 0;
967 	}
968 
969 	vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE + dst_vdev->vid];
970 	vhost_txq->m_table[vhost_txq->len++] = m;
971 
972 	if (enable_stats) {
973 		vdev->stats.tx_total++;
974 		vdev->stats.tx++;
975 	}
976 
977 	if (unlikely(vhost_txq->len == MAX_PKT_BURST)) {
978 		drain_vhost(dst_vdev);
979 		vhost_txq->len = 0;
980 		vhost_txq->pre_tsc = rte_rdtsc();
981 	}
982 	return 0;
983 }
984 
985 /*
986  * Check if the destination MAC of a packet is one local VM,
987  * and get its vlan tag, and offset if it is.
988  */
989 static __rte_always_inline int
990 find_local_dest(struct vhost_dev *vdev, struct rte_mbuf *m,
991 	uint32_t *offset, uint16_t *vlan_tag)
992 {
993 	struct vhost_dev *dst_vdev;
994 	struct rte_ether_hdr *pkt_hdr =
995 		rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
996 
997 	dst_vdev = find_vhost_dev(&pkt_hdr->dst_addr);
998 	if (!dst_vdev)
999 		return 0;
1000 
1001 	if (vdev->vid == dst_vdev->vid) {
1002 		RTE_LOG_DP(DEBUG, VHOST_DATA,
1003 			"(%d) TX: src and dst MAC is same. Dropping packet.\n",
1004 			vdev->vid);
1005 		return -1;
1006 	}
1007 
1008 	/*
1009 	 * HW vlan strip will reduce the packet length
1010 	 * by minus length of vlan tag, so need restore
1011 	 * the packet length by plus it.
1012 	 */
1013 	*offset  = VLAN_HLEN;
1014 	*vlan_tag = vlan_tags[vdev->vid];
1015 
1016 	RTE_LOG_DP(DEBUG, VHOST_DATA,
1017 		"(%d) TX: pkt to local VM device id: (%d), vlan tag: %u.\n",
1018 		vdev->vid, dst_vdev->vid, *vlan_tag);
1019 
1020 	return 0;
1021 }
1022 
1023 static void virtio_tx_offload(struct rte_mbuf *m)
1024 {
1025 	struct rte_net_hdr_lens hdr_lens;
1026 	struct rte_ipv4_hdr *ipv4_hdr;
1027 	struct rte_tcp_hdr *tcp_hdr;
1028 	uint32_t ptype;
1029 	void *l3_hdr;
1030 
1031 	ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK);
1032 	m->l2_len = hdr_lens.l2_len;
1033 	m->l3_len = hdr_lens.l3_len;
1034 	m->l4_len = hdr_lens.l4_len;
1035 
1036 	l3_hdr = rte_pktmbuf_mtod_offset(m, void *, m->l2_len);
1037 	tcp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_tcp_hdr *,
1038 		m->l2_len + m->l3_len);
1039 
1040 	m->ol_flags |= PKT_TX_TCP_SEG;
1041 	if ((ptype & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4) {
1042 		m->ol_flags |= PKT_TX_IPV4;
1043 		m->ol_flags |= PKT_TX_IP_CKSUM;
1044 		ipv4_hdr = l3_hdr;
1045 		ipv4_hdr->hdr_checksum = 0;
1046 		tcp_hdr->cksum = rte_ipv4_phdr_cksum(l3_hdr, m->ol_flags);
1047 	} else { /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
1048 		m->ol_flags |= PKT_TX_IPV6;
1049 		tcp_hdr->cksum = rte_ipv6_phdr_cksum(l3_hdr, m->ol_flags);
1050 	}
1051 }
1052 
1053 static __rte_always_inline void
1054 do_drain_mbuf_table(struct mbuf_table *tx_q)
1055 {
1056 	uint16_t count;
1057 
1058 	count = rte_eth_tx_burst(ports[0], tx_q->txq_id,
1059 				 tx_q->m_table, tx_q->len);
1060 	if (unlikely(count < tx_q->len))
1061 		free_pkts(&tx_q->m_table[count], tx_q->len - count);
1062 
1063 	tx_q->len = 0;
1064 }
1065 
1066 /*
1067  * This function routes the TX packet to the correct interface. This
1068  * may be a local device or the physical port.
1069  */
1070 static __rte_always_inline void
1071 virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
1072 {
1073 	struct mbuf_table *tx_q;
1074 	unsigned offset = 0;
1075 	const uint16_t lcore_id = rte_lcore_id();
1076 	struct rte_ether_hdr *nh;
1077 
1078 
1079 	nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1080 	if (unlikely(rte_is_broadcast_ether_addr(&nh->dst_addr))) {
1081 		struct vhost_dev *vdev2;
1082 
1083 		TAILQ_FOREACH(vdev2, &vhost_dev_list, global_vdev_entry) {
1084 			if (vdev2 != vdev)
1085 				sync_virtio_xmit(vdev2, vdev, m);
1086 		}
1087 		goto queue2nic;
1088 	}
1089 
1090 	/*check if destination is local VM*/
1091 	if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0))
1092 		return;
1093 
1094 	if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
1095 		if (unlikely(find_local_dest(vdev, m, &offset,
1096 					     &vlan_tag) != 0)) {
1097 			rte_pktmbuf_free(m);
1098 			return;
1099 		}
1100 	}
1101 
1102 	RTE_LOG_DP(DEBUG, VHOST_DATA,
1103 		"(%d) TX: MAC address is external\n", vdev->vid);
1104 
1105 queue2nic:
1106 
1107 	/*Add packet to the port tx queue*/
1108 	tx_q = &lcore_tx_queue[lcore_id];
1109 
1110 	nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1111 	if (unlikely(nh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))) {
1112 		/* Guest has inserted the vlan tag. */
1113 		struct rte_vlan_hdr *vh = (struct rte_vlan_hdr *) (nh + 1);
1114 		uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag);
1115 		if ((vm2vm_mode == VM2VM_HARDWARE) &&
1116 			(vh->vlan_tci != vlan_tag_be))
1117 			vh->vlan_tci = vlan_tag_be;
1118 	} else {
1119 		m->ol_flags |= PKT_TX_VLAN_PKT;
1120 
1121 		/*
1122 		 * Find the right seg to adjust the data len when offset is
1123 		 * bigger than tail room size.
1124 		 */
1125 		if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
1126 			if (likely(offset <= rte_pktmbuf_tailroom(m)))
1127 				m->data_len += offset;
1128 			else {
1129 				struct rte_mbuf *seg = m;
1130 
1131 				while ((seg->next != NULL) &&
1132 					(offset > rte_pktmbuf_tailroom(seg)))
1133 					seg = seg->next;
1134 
1135 				seg->data_len += offset;
1136 			}
1137 			m->pkt_len += offset;
1138 		}
1139 
1140 		m->vlan_tci = vlan_tag;
1141 	}
1142 
1143 	if (m->ol_flags & PKT_RX_LRO)
1144 		virtio_tx_offload(m);
1145 
1146 	tx_q->m_table[tx_q->len++] = m;
1147 	if (enable_stats) {
1148 		vdev->stats.tx_total++;
1149 		vdev->stats.tx++;
1150 	}
1151 
1152 	if (unlikely(tx_q->len == MAX_PKT_BURST))
1153 		do_drain_mbuf_table(tx_q);
1154 }
1155 
1156 
1157 static __rte_always_inline void
1158 drain_mbuf_table(struct mbuf_table *tx_q)
1159 {
1160 	static uint64_t prev_tsc;
1161 	uint64_t cur_tsc;
1162 
1163 	if (tx_q->len == 0)
1164 		return;
1165 
1166 	cur_tsc = rte_rdtsc();
1167 	if (unlikely(cur_tsc - prev_tsc > MBUF_TABLE_DRAIN_TSC)) {
1168 		prev_tsc = cur_tsc;
1169 
1170 		RTE_LOG_DP(DEBUG, VHOST_DATA,
1171 			"TX queue drained after timeout with burst size %u\n",
1172 			tx_q->len);
1173 		do_drain_mbuf_table(tx_q);
1174 	}
1175 }
1176 
1177 static __rte_always_inline void
1178 drain_eth_rx(struct vhost_dev *vdev)
1179 {
1180 	uint16_t rx_count, enqueue_count;
1181 	struct rte_mbuf *pkts[MAX_PKT_BURST];
1182 
1183 	rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q,
1184 				    pkts, MAX_PKT_BURST);
1185 
1186 	if (!rx_count)
1187 		return;
1188 
1189 	/*
1190 	 * When "enable_retry" is set, here we wait and retry when there
1191 	 * is no enough free slots in the queue to hold @rx_count packets,
1192 	 * to diminish packet loss.
1193 	 */
1194 	if (enable_retry &&
1195 	    unlikely(rx_count > rte_vhost_avail_entries(vdev->vid,
1196 			VIRTIO_RXQ))) {
1197 		uint32_t retry;
1198 
1199 		for (retry = 0; retry < burst_rx_retry_num; retry++) {
1200 			rte_delay_us(burst_rx_delay_time);
1201 			if (rx_count <= rte_vhost_avail_entries(vdev->vid,
1202 					VIRTIO_RXQ))
1203 				break;
1204 		}
1205 	}
1206 
1207 	if (builtin_net_driver) {
1208 		enqueue_count = vs_enqueue_pkts(vdev, VIRTIO_RXQ,
1209 						pkts, rx_count);
1210 	} else if (async_vhost_driver) {
1211 		uint16_t enqueue_fail = 0;
1212 
1213 		complete_async_pkts(vdev);
1214 		enqueue_count = rte_vhost_submit_enqueue_burst(vdev->vid,
1215 					VIRTIO_RXQ, pkts, rx_count);
1216 		__atomic_add_fetch(&vdev->pkts_inflight, enqueue_count, __ATOMIC_SEQ_CST);
1217 
1218 		enqueue_fail = rx_count - enqueue_count;
1219 		if (enqueue_fail)
1220 			free_pkts(&pkts[enqueue_count], enqueue_fail);
1221 
1222 	} else {
1223 		enqueue_count = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
1224 						pkts, rx_count);
1225 	}
1226 
1227 	if (enable_stats) {
1228 		__atomic_add_fetch(&vdev->stats.rx_total_atomic, rx_count,
1229 				__ATOMIC_SEQ_CST);
1230 		__atomic_add_fetch(&vdev->stats.rx_atomic, enqueue_count,
1231 				__ATOMIC_SEQ_CST);
1232 	}
1233 
1234 	if (!async_vhost_driver)
1235 		free_pkts(pkts, rx_count);
1236 }
1237 
1238 static __rte_always_inline void
1239 drain_virtio_tx(struct vhost_dev *vdev)
1240 {
1241 	struct rte_mbuf *pkts[MAX_PKT_BURST];
1242 	uint16_t count;
1243 	uint16_t i;
1244 
1245 	if (builtin_net_driver) {
1246 		count = vs_dequeue_pkts(vdev, VIRTIO_TXQ, mbuf_pool,
1247 					pkts, MAX_PKT_BURST);
1248 	} else {
1249 		count = rte_vhost_dequeue_burst(vdev->vid, VIRTIO_TXQ,
1250 					mbuf_pool, pkts, MAX_PKT_BURST);
1251 	}
1252 
1253 	/* setup VMDq for the first packet */
1254 	if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && count) {
1255 		if (vdev->remove || link_vmdq(vdev, pkts[0]) == -1)
1256 			free_pkts(pkts, count);
1257 	}
1258 
1259 	for (i = 0; i < count; ++i)
1260 		virtio_tx_route(vdev, pkts[i], vlan_tags[vdev->vid]);
1261 }
1262 
1263 /*
1264  * Main function of vhost-switch. It basically does:
1265  *
1266  * for each vhost device {
1267  *    - drain_eth_rx()
1268  *
1269  *      Which drains the host eth Rx queue linked to the vhost device,
1270  *      and deliver all of them to guest virito Rx ring associated with
1271  *      this vhost device.
1272  *
1273  *    - drain_virtio_tx()
1274  *
1275  *      Which drains the guest virtio Tx queue and deliver all of them
1276  *      to the target, which could be another vhost device, or the
1277  *      physical eth dev. The route is done in function "virtio_tx_route".
1278  * }
1279  */
1280 static int
1281 switch_worker(void *arg __rte_unused)
1282 {
1283 	unsigned i;
1284 	unsigned lcore_id = rte_lcore_id();
1285 	struct vhost_dev *vdev;
1286 	struct mbuf_table *tx_q;
1287 
1288 	RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
1289 
1290 	tx_q = &lcore_tx_queue[lcore_id];
1291 	for (i = 0; i < rte_lcore_count(); i++) {
1292 		if (lcore_ids[i] == lcore_id) {
1293 			tx_q->txq_id = i;
1294 			break;
1295 		}
1296 	}
1297 
1298 	while(1) {
1299 		drain_mbuf_table(tx_q);
1300 		drain_vhost_table();
1301 		/*
1302 		 * Inform the configuration core that we have exited the
1303 		 * linked list and that no devices are in use if requested.
1304 		 */
1305 		if (lcore_info[lcore_id].dev_removal_flag == REQUEST_DEV_REMOVAL)
1306 			lcore_info[lcore_id].dev_removal_flag = ACK_DEV_REMOVAL;
1307 
1308 		/*
1309 		 * Process vhost devices
1310 		 */
1311 		TAILQ_FOREACH(vdev, &lcore_info[lcore_id].vdev_list,
1312 			      lcore_vdev_entry) {
1313 			if (unlikely(vdev->remove)) {
1314 				unlink_vmdq(vdev);
1315 				vdev->ready = DEVICE_SAFE_REMOVE;
1316 				continue;
1317 			}
1318 
1319 			if (likely(vdev->ready == DEVICE_RX))
1320 				drain_eth_rx(vdev);
1321 
1322 			if (likely(!vdev->remove))
1323 				drain_virtio_tx(vdev);
1324 		}
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Remove a device from the specific data core linked list and from the
1332  * main linked list. Synchonization  occurs through the use of the
1333  * lcore dev_removal_flag. Device is made volatile here to avoid re-ordering
1334  * of dev->remove=1 which can cause an infinite loop in the rte_pause loop.
1335  */
1336 static void
1337 destroy_device(int vid)
1338 {
1339 	struct vhost_dev *vdev = NULL;
1340 	int lcore;
1341 	uint16_t i;
1342 
1343 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1344 		if (vdev->vid == vid)
1345 			break;
1346 	}
1347 	if (!vdev)
1348 		return;
1349 	/*set the remove flag. */
1350 	vdev->remove = 1;
1351 	while(vdev->ready != DEVICE_SAFE_REMOVE) {
1352 		rte_pause();
1353 	}
1354 
1355 	for (i = 0; i < RTE_MAX_LCORE; i++)
1356 		rte_free(vhost_txbuff[i * MAX_VHOST_DEVICE + vid]);
1357 
1358 	if (builtin_net_driver)
1359 		vs_vhost_net_remove(vdev);
1360 
1361 	TAILQ_REMOVE(&lcore_info[vdev->coreid].vdev_list, vdev,
1362 		     lcore_vdev_entry);
1363 	TAILQ_REMOVE(&vhost_dev_list, vdev, global_vdev_entry);
1364 
1365 
1366 	/* Set the dev_removal_flag on each lcore. */
1367 	RTE_LCORE_FOREACH_WORKER(lcore)
1368 		lcore_info[lcore].dev_removal_flag = REQUEST_DEV_REMOVAL;
1369 
1370 	/*
1371 	 * Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL
1372 	 * we can be sure that they can no longer access the device removed
1373 	 * from the linked lists and that the devices are no longer in use.
1374 	 */
1375 	RTE_LCORE_FOREACH_WORKER(lcore) {
1376 		while (lcore_info[lcore].dev_removal_flag != ACK_DEV_REMOVAL)
1377 			rte_pause();
1378 	}
1379 
1380 	lcore_info[vdev->coreid].device_num--;
1381 
1382 	RTE_LOG(INFO, VHOST_DATA,
1383 		"(%d) device has been removed from data core\n",
1384 		vdev->vid);
1385 
1386 	if (async_vhost_driver) {
1387 		uint16_t n_pkt = 0;
1388 		struct rte_mbuf *m_cpl[vdev->pkts_inflight];
1389 
1390 		while (vdev->pkts_inflight) {
1391 			n_pkt = rte_vhost_clear_queue_thread_unsafe(vid, VIRTIO_RXQ,
1392 						m_cpl, vdev->pkts_inflight);
1393 			free_pkts(m_cpl, n_pkt);
1394 			__atomic_sub_fetch(&vdev->pkts_inflight, n_pkt, __ATOMIC_SEQ_CST);
1395 		}
1396 
1397 		rte_vhost_async_channel_unregister(vid, VIRTIO_RXQ);
1398 	}
1399 
1400 	rte_free(vdev);
1401 }
1402 
1403 /*
1404  * A new device is added to a data core. First the device is added to the main linked list
1405  * and then allocated to a specific data core.
1406  */
1407 static int
1408 new_device(int vid)
1409 {
1410 	int lcore, core_add = 0;
1411 	uint16_t i;
1412 	uint32_t device_num_min = num_devices;
1413 	struct vhost_dev *vdev;
1414 	vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
1415 	if (vdev == NULL) {
1416 		RTE_LOG(INFO, VHOST_DATA,
1417 			"(%d) couldn't allocate memory for vhost dev\n",
1418 			vid);
1419 		return -1;
1420 	}
1421 	vdev->vid = vid;
1422 
1423 	for (i = 0; i < RTE_MAX_LCORE; i++) {
1424 		vhost_txbuff[i * MAX_VHOST_DEVICE + vid]
1425 			= rte_zmalloc("vhost bufftable",
1426 				sizeof(struct vhost_bufftable),
1427 				RTE_CACHE_LINE_SIZE);
1428 
1429 		if (vhost_txbuff[i * MAX_VHOST_DEVICE + vid] == NULL) {
1430 			RTE_LOG(INFO, VHOST_DATA,
1431 			  "(%d) couldn't allocate memory for vhost TX\n", vid);
1432 			return -1;
1433 		}
1434 	}
1435 
1436 	if (builtin_net_driver)
1437 		vs_vhost_net_setup(vdev);
1438 
1439 	TAILQ_INSERT_TAIL(&vhost_dev_list, vdev, global_vdev_entry);
1440 	vdev->vmdq_rx_q = vid * queues_per_pool + vmdq_queue_base;
1441 
1442 	/*reset ready flag*/
1443 	vdev->ready = DEVICE_MAC_LEARNING;
1444 	vdev->remove = 0;
1445 
1446 	/* Find a suitable lcore to add the device. */
1447 	RTE_LCORE_FOREACH_WORKER(lcore) {
1448 		if (lcore_info[lcore].device_num < device_num_min) {
1449 			device_num_min = lcore_info[lcore].device_num;
1450 			core_add = lcore;
1451 		}
1452 	}
1453 	vdev->coreid = core_add;
1454 
1455 	TAILQ_INSERT_TAIL(&lcore_info[vdev->coreid].vdev_list, vdev,
1456 			  lcore_vdev_entry);
1457 	lcore_info[vdev->coreid].device_num++;
1458 
1459 	/* Disable notifications. */
1460 	rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0);
1461 	rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0);
1462 
1463 	RTE_LOG(INFO, VHOST_DATA,
1464 		"(%d) device has been added to data core %d\n",
1465 		vid, vdev->coreid);
1466 
1467 	if (async_vhost_driver) {
1468 		struct rte_vhost_async_config config = {0};
1469 		struct rte_vhost_async_channel_ops channel_ops;
1470 
1471 		if (dma_type != NULL && strncmp(dma_type, "ioat", 4) == 0) {
1472 			channel_ops.transfer_data = ioat_transfer_data_cb;
1473 			channel_ops.check_completed_copies =
1474 				ioat_check_completed_copies_cb;
1475 
1476 			config.features = RTE_VHOST_ASYNC_INORDER;
1477 
1478 			return rte_vhost_async_channel_register(vid, VIRTIO_RXQ,
1479 				config, &channel_ops);
1480 		}
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static int
1487 vring_state_changed(int vid, uint16_t queue_id, int enable)
1488 {
1489 	struct vhost_dev *vdev = NULL;
1490 
1491 	TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1492 		if (vdev->vid == vid)
1493 			break;
1494 	}
1495 	if (!vdev)
1496 		return -1;
1497 
1498 	if (queue_id != VIRTIO_RXQ)
1499 		return 0;
1500 
1501 	if (async_vhost_driver) {
1502 		if (!enable) {
1503 			uint16_t n_pkt = 0;
1504 			struct rte_mbuf *m_cpl[vdev->pkts_inflight];
1505 
1506 			while (vdev->pkts_inflight) {
1507 				n_pkt = rte_vhost_clear_queue_thread_unsafe(vid, queue_id,
1508 							m_cpl, vdev->pkts_inflight);
1509 				free_pkts(m_cpl, n_pkt);
1510 				__atomic_sub_fetch(&vdev->pkts_inflight, n_pkt, __ATOMIC_SEQ_CST);
1511 			}
1512 		}
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /*
1519  * These callback allow devices to be added to the data core when configuration
1520  * has been fully complete.
1521  */
1522 static const struct vhost_device_ops virtio_net_device_ops =
1523 {
1524 	.new_device =  new_device,
1525 	.destroy_device = destroy_device,
1526 	.vring_state_changed = vring_state_changed,
1527 };
1528 
1529 /*
1530  * This is a thread will wake up after a period to print stats if the user has
1531  * enabled them.
1532  */
1533 static void *
1534 print_stats(__rte_unused void *arg)
1535 {
1536 	struct vhost_dev *vdev;
1537 	uint64_t tx_dropped, rx_dropped;
1538 	uint64_t tx, tx_total, rx, rx_total;
1539 	const char clr[] = { 27, '[', '2', 'J', '\0' };
1540 	const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' };
1541 
1542 	while(1) {
1543 		sleep(enable_stats);
1544 
1545 		/* Clear screen and move to top left */
1546 		printf("%s%s\n", clr, top_left);
1547 		printf("Device statistics =================================\n");
1548 
1549 		TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
1550 			tx_total   = vdev->stats.tx_total;
1551 			tx         = vdev->stats.tx;
1552 			tx_dropped = tx_total - tx;
1553 
1554 			rx_total = __atomic_load_n(&vdev->stats.rx_total_atomic,
1555 				__ATOMIC_SEQ_CST);
1556 			rx         = __atomic_load_n(&vdev->stats.rx_atomic,
1557 				__ATOMIC_SEQ_CST);
1558 			rx_dropped = rx_total - rx;
1559 
1560 			printf("Statistics for device %d\n"
1561 				"-----------------------\n"
1562 				"TX total:              %" PRIu64 "\n"
1563 				"TX dropped:            %" PRIu64 "\n"
1564 				"TX successful:         %" PRIu64 "\n"
1565 				"RX total:              %" PRIu64 "\n"
1566 				"RX dropped:            %" PRIu64 "\n"
1567 				"RX successful:         %" PRIu64 "\n",
1568 				vdev->vid,
1569 				tx_total, tx_dropped, tx,
1570 				rx_total, rx_dropped, rx);
1571 		}
1572 
1573 		printf("===================================================\n");
1574 
1575 		fflush(stdout);
1576 	}
1577 
1578 	return NULL;
1579 }
1580 
1581 static void
1582 unregister_drivers(int socket_num)
1583 {
1584 	int i, ret;
1585 
1586 	for (i = 0; i < socket_num; i++) {
1587 		ret = rte_vhost_driver_unregister(socket_files + i * PATH_MAX);
1588 		if (ret != 0)
1589 			RTE_LOG(ERR, VHOST_CONFIG,
1590 				"Fail to unregister vhost driver for %s.\n",
1591 				socket_files + i * PATH_MAX);
1592 	}
1593 }
1594 
1595 /* When we receive a INT signal, unregister vhost driver */
1596 static void
1597 sigint_handler(__rte_unused int signum)
1598 {
1599 	/* Unregister vhost driver. */
1600 	unregister_drivers(nb_sockets);
1601 
1602 	exit(0);
1603 }
1604 
1605 /*
1606  * While creating an mbuf pool, one key thing is to figure out how
1607  * many mbuf entries is enough for our use. FYI, here are some
1608  * guidelines:
1609  *
1610  * - Each rx queue would reserve @nr_rx_desc mbufs at queue setup stage
1611  *
1612  * - For each switch core (A CPU core does the packet switch), we need
1613  *   also make some reservation for receiving the packets from virtio
1614  *   Tx queue. How many is enough depends on the usage. It's normally
1615  *   a simple calculation like following:
1616  *
1617  *       MAX_PKT_BURST * max packet size / mbuf size
1618  *
1619  *   So, we definitely need allocate more mbufs when TSO is enabled.
1620  *
1621  * - Similarly, for each switching core, we should serve @nr_rx_desc
1622  *   mbufs for receiving the packets from physical NIC device.
1623  *
1624  * - We also need make sure, for each switch core, we have allocated
1625  *   enough mbufs to fill up the mbuf cache.
1626  */
1627 static void
1628 create_mbuf_pool(uint16_t nr_port, uint32_t nr_switch_core, uint32_t mbuf_size,
1629 	uint32_t nr_queues, uint32_t nr_rx_desc, uint32_t nr_mbuf_cache)
1630 {
1631 	uint32_t nr_mbufs;
1632 	uint32_t nr_mbufs_per_core;
1633 	uint32_t mtu = 1500;
1634 
1635 	if (mergeable)
1636 		mtu = 9000;
1637 	if (enable_tso)
1638 		mtu = 64 * 1024;
1639 
1640 	nr_mbufs_per_core  = (mtu + mbuf_size) * MAX_PKT_BURST /
1641 			(mbuf_size - RTE_PKTMBUF_HEADROOM);
1642 	nr_mbufs_per_core += nr_rx_desc;
1643 	nr_mbufs_per_core  = RTE_MAX(nr_mbufs_per_core, nr_mbuf_cache);
1644 
1645 	nr_mbufs  = nr_queues * nr_rx_desc;
1646 	nr_mbufs += nr_mbufs_per_core * nr_switch_core;
1647 	nr_mbufs *= nr_port;
1648 
1649 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", nr_mbufs,
1650 					    nr_mbuf_cache, 0, mbuf_size,
1651 					    rte_socket_id());
1652 	if (mbuf_pool == NULL)
1653 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1654 }
1655 
1656 /*
1657  * Main function, does initialisation and calls the per-lcore functions.
1658  */
1659 int
1660 main(int argc, char *argv[])
1661 {
1662 	unsigned lcore_id, core_id = 0;
1663 	unsigned nb_ports, valid_num_ports;
1664 	int ret, i;
1665 	uint16_t portid;
1666 	static pthread_t tid;
1667 	uint64_t flags = RTE_VHOST_USER_NET_COMPLIANT_OL_FLAGS;
1668 
1669 	signal(SIGINT, sigint_handler);
1670 
1671 	/* init EAL */
1672 	ret = rte_eal_init(argc, argv);
1673 	if (ret < 0)
1674 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
1675 	argc -= ret;
1676 	argv += ret;
1677 
1678 	/* parse app arguments */
1679 	ret = us_vhost_parse_args(argc, argv);
1680 	if (ret < 0)
1681 		rte_exit(EXIT_FAILURE, "Invalid argument\n");
1682 
1683 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1684 		TAILQ_INIT(&lcore_info[lcore_id].vdev_list);
1685 
1686 		if (rte_lcore_is_enabled(lcore_id))
1687 			lcore_ids[core_id++] = lcore_id;
1688 	}
1689 
1690 	if (rte_lcore_count() > RTE_MAX_LCORE)
1691 		rte_exit(EXIT_FAILURE,"Not enough cores\n");
1692 
1693 	/* Get the number of physical ports. */
1694 	nb_ports = rte_eth_dev_count_avail();
1695 
1696 	/*
1697 	 * Update the global var NUM_PORTS and global array PORTS
1698 	 * and get value of var VALID_NUM_PORTS according to system ports number
1699 	 */
1700 	valid_num_ports = check_ports_num(nb_ports);
1701 
1702 	if ((valid_num_ports ==  0) || (valid_num_ports > MAX_SUP_PORTS)) {
1703 		RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
1704 			"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
1705 		return -1;
1706 	}
1707 
1708 	/*
1709 	 * FIXME: here we are trying to allocate mbufs big enough for
1710 	 * @MAX_QUEUES, but the truth is we're never going to use that
1711 	 * many queues here. We probably should only do allocation for
1712 	 * those queues we are going to use.
1713 	 */
1714 	create_mbuf_pool(valid_num_ports, rte_lcore_count() - 1, MBUF_DATA_SIZE,
1715 			 MAX_QUEUES, RTE_TEST_RX_DESC_DEFAULT, MBUF_CACHE_SIZE);
1716 
1717 	if (vm2vm_mode == VM2VM_HARDWARE) {
1718 		/* Enable VT loop back to let L2 switch to do it. */
1719 		vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1;
1720 		RTE_LOG(DEBUG, VHOST_CONFIG,
1721 			"Enable loop back for L2 switch in vmdq.\n");
1722 	}
1723 
1724 	/* initialize all ports */
1725 	RTE_ETH_FOREACH_DEV(portid) {
1726 		/* skip ports that are not enabled */
1727 		if ((enabled_port_mask & (1 << portid)) == 0) {
1728 			RTE_LOG(INFO, VHOST_PORT,
1729 				"Skipping disabled port %d\n", portid);
1730 			continue;
1731 		}
1732 		if (port_init(portid) != 0)
1733 			rte_exit(EXIT_FAILURE,
1734 				"Cannot initialize network ports\n");
1735 	}
1736 
1737 	/* Enable stats if the user option is set. */
1738 	if (enable_stats) {
1739 		ret = rte_ctrl_thread_create(&tid, "print-stats", NULL,
1740 					print_stats, NULL);
1741 		if (ret < 0)
1742 			rte_exit(EXIT_FAILURE,
1743 				"Cannot create print-stats thread\n");
1744 	}
1745 
1746 	/* Launch all data cores. */
1747 	RTE_LCORE_FOREACH_WORKER(lcore_id)
1748 		rte_eal_remote_launch(switch_worker, NULL, lcore_id);
1749 
1750 	if (client_mode)
1751 		flags |= RTE_VHOST_USER_CLIENT;
1752 
1753 	/* Register vhost user driver to handle vhost messages. */
1754 	for (i = 0; i < nb_sockets; i++) {
1755 		char *file = socket_files + i * PATH_MAX;
1756 
1757 		if (async_vhost_driver)
1758 			flags = flags | RTE_VHOST_USER_ASYNC_COPY;
1759 
1760 		ret = rte_vhost_driver_register(file, flags);
1761 		if (ret != 0) {
1762 			unregister_drivers(i);
1763 			rte_exit(EXIT_FAILURE,
1764 				"vhost driver register failure.\n");
1765 		}
1766 
1767 		if (builtin_net_driver)
1768 			rte_vhost_driver_set_features(file, VIRTIO_NET_FEATURES);
1769 
1770 		if (mergeable == 0) {
1771 			rte_vhost_driver_disable_features(file,
1772 				1ULL << VIRTIO_NET_F_MRG_RXBUF);
1773 		}
1774 
1775 		if (enable_tx_csum == 0) {
1776 			rte_vhost_driver_disable_features(file,
1777 				1ULL << VIRTIO_NET_F_CSUM);
1778 		}
1779 
1780 		if (enable_tso == 0) {
1781 			rte_vhost_driver_disable_features(file,
1782 				1ULL << VIRTIO_NET_F_HOST_TSO4);
1783 			rte_vhost_driver_disable_features(file,
1784 				1ULL << VIRTIO_NET_F_HOST_TSO6);
1785 			rte_vhost_driver_disable_features(file,
1786 				1ULL << VIRTIO_NET_F_GUEST_TSO4);
1787 			rte_vhost_driver_disable_features(file,
1788 				1ULL << VIRTIO_NET_F_GUEST_TSO6);
1789 		}
1790 
1791 		if (promiscuous) {
1792 			rte_vhost_driver_enable_features(file,
1793 				1ULL << VIRTIO_NET_F_CTRL_RX);
1794 		}
1795 
1796 		ret = rte_vhost_driver_callback_register(file,
1797 			&virtio_net_device_ops);
1798 		if (ret != 0) {
1799 			rte_exit(EXIT_FAILURE,
1800 				"failed to register vhost driver callbacks.\n");
1801 		}
1802 
1803 		if (rte_vhost_driver_start(file) < 0) {
1804 			rte_exit(EXIT_FAILURE,
1805 				"failed to start vhost driver.\n");
1806 		}
1807 	}
1808 
1809 	RTE_LCORE_FOREACH_WORKER(lcore_id)
1810 		rte_eal_wait_lcore(lcore_id);
1811 
1812 	/* clean up the EAL */
1813 	rte_eal_cleanup();
1814 
1815 	return 0;
1816 }
1817