xref: /dpdk/examples/ptpclient/ptpclient.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015 Intel Corporation
3  */
4 
5 /*
6  * This application is a simple Layer 2 PTP v2 client. It shows delta values
7  * which are used to synchronize the PHC clock. if the "-T 1" parameter is
8  * passed to the application the Linux kernel clock is also synchronized.
9  */
10 
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <inttypes.h>
14 #include <rte_eal.h>
15 #include <rte_ethdev.h>
16 #include <rte_cycles.h>
17 #include <rte_lcore.h>
18 #include <rte_mbuf.h>
19 #include <rte_ip.h>
20 #include <limits.h>
21 #include <sys/time.h>
22 #include <getopt.h>
23 
24 #define RX_RING_SIZE 1024
25 #define TX_RING_SIZE 1024
26 
27 #define NUM_MBUFS            8191
28 #define MBUF_CACHE_SIZE       250
29 
30 /* Values for the PTP messageType field. */
31 #define SYNC                  0x0
32 #define DELAY_REQ             0x1
33 #define PDELAY_REQ            0x2
34 #define PDELAY_RESP           0x3
35 #define FOLLOW_UP             0x8
36 #define DELAY_RESP            0x9
37 #define PDELAY_RESP_FOLLOW_UP 0xA
38 #define ANNOUNCE              0xB
39 #define SIGNALING             0xC
40 #define MANAGEMENT            0xD
41 
42 #define NSEC_PER_SEC        1000000000L
43 #define KERNEL_TIME_ADJUST_LIMIT  20000
44 #define PTP_PROTOCOL             0x88F7
45 
46 struct rte_mempool *mbuf_pool;
47 uint32_t ptp_enabled_port_mask;
48 uint8_t ptp_enabled_port_nb;
49 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS];
50 
51 static const struct rte_ether_addr ether_multicast = {
52 	.addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0}
53 };
54 
55 /* Structs used for PTP handling. */
56 struct tstamp {
57 	uint16_t   sec_msb;
58 	uint32_t   sec_lsb;
59 	uint32_t   ns;
60 }  __rte_packed;
61 
62 struct clock_id {
63 	uint8_t id[8];
64 };
65 
66 struct port_id {
67 	struct clock_id        clock_id;
68 	uint16_t               port_number;
69 }  __rte_packed;
70 
71 struct ptp_header {
72 	uint8_t              msg_type;
73 	uint8_t              ver;
74 	uint16_t             message_length;
75 	uint8_t              domain_number;
76 	uint8_t              reserved1;
77 	uint8_t              flag_field[2];
78 	int64_t              correction;
79 	uint32_t             reserved2;
80 	struct port_id       source_port_id;
81 	uint16_t             seq_id;
82 	uint8_t              control;
83 	int8_t               log_message_interval;
84 } __rte_packed;
85 
86 struct sync_msg {
87 	struct ptp_header   hdr;
88 	struct tstamp       origin_tstamp;
89 } __rte_packed;
90 
91 struct follow_up_msg {
92 	struct ptp_header   hdr;
93 	struct tstamp       precise_origin_tstamp;
94 	uint8_t             suffix[];
95 } __rte_packed;
96 
97 struct delay_req_msg {
98 	struct ptp_header   hdr;
99 	struct tstamp       origin_tstamp;
100 } __rte_packed;
101 
102 struct delay_resp_msg {
103 	struct ptp_header    hdr;
104 	struct tstamp        rx_tstamp;
105 	struct port_id       req_port_id;
106 	uint8_t              suffix[];
107 } __rte_packed;
108 
109 struct ptp_message {
110 	union {
111 		struct ptp_header          header;
112 		struct sync_msg            sync;
113 		struct delay_req_msg       delay_req;
114 		struct follow_up_msg       follow_up;
115 		struct delay_resp_msg      delay_resp;
116 	} __rte_packed;
117 };
118 
119 struct ptpv2_data_slave_ordinary {
120 	struct rte_mbuf *m;
121 	struct timespec tstamp1;
122 	struct timespec tstamp2;
123 	struct timespec tstamp3;
124 	struct timespec tstamp4;
125 	struct clock_id client_clock_id;
126 	struct clock_id master_clock_id;
127 	struct timeval new_adj;
128 	int64_t delta;
129 	uint16_t portid;
130 	uint16_t seqID_SYNC;
131 	uint16_t seqID_FOLLOWUP;
132 	uint8_t ptpset;
133 	uint8_t kernel_time_set;
134 	uint16_t current_ptp_port;
135 };
136 
137 static struct ptpv2_data_slave_ordinary ptp_data;
138 
139 static inline uint64_t timespec64_to_ns(const struct timespec *ts)
140 {
141 	return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
142 }
143 
144 static struct timeval
145 ns_to_timeval(int64_t nsec)
146 {
147 	struct timespec t_spec = {0, 0};
148 	struct timeval t_eval = {0, 0};
149 	int32_t rem;
150 
151 	if (nsec == 0)
152 		return t_eval;
153 	rem = nsec % NSEC_PER_SEC;
154 	t_spec.tv_sec = nsec / NSEC_PER_SEC;
155 
156 	if (rem < 0) {
157 		t_spec.tv_sec--;
158 		rem += NSEC_PER_SEC;
159 	}
160 
161 	t_spec.tv_nsec = rem;
162 	t_eval.tv_sec = t_spec.tv_sec;
163 	t_eval.tv_usec = t_spec.tv_nsec / 1000;
164 
165 	return t_eval;
166 }
167 
168 /*
169  * Initializes a given port using global settings and with the RX buffers
170  * coming from the mbuf_pool passed as a parameter.
171  */
172 static inline int
173 port_init(uint16_t port, struct rte_mempool *mbuf_pool)
174 {
175 	struct rte_eth_dev_info dev_info;
176 	struct rte_eth_conf port_conf;
177 	const uint16_t rx_rings = 1;
178 	const uint16_t tx_rings = 1;
179 	int retval;
180 	uint16_t q;
181 	uint16_t nb_rxd = RX_RING_SIZE;
182 	uint16_t nb_txd = TX_RING_SIZE;
183 
184 	if (!rte_eth_dev_is_valid_port(port))
185 		return -1;
186 
187 	memset(&port_conf, 0, sizeof(struct rte_eth_conf));
188 
189 	retval = rte_eth_dev_info_get(port, &dev_info);
190 	if (retval != 0) {
191 		printf("Error during getting device (port %u) info: %s\n",
192 				port, strerror(-retval));
193 
194 		return retval;
195 	}
196 
197 	if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
198 		port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_TIMESTAMP;
199 
200 	if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
201 		port_conf.txmode.offloads |=
202 			RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
203 	/* Force full Tx path in the driver, required for IEEE1588 */
204 	port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
205 
206 	/* Configure the Ethernet device. */
207 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
208 	if (retval != 0)
209 		return retval;
210 
211 	retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
212 	if (retval != 0)
213 		return retval;
214 
215 	/* Allocate and set up 1 RX queue per Ethernet port. */
216 	for (q = 0; q < rx_rings; q++) {
217 		struct rte_eth_rxconf *rxconf;
218 
219 		rxconf = &dev_info.default_rxconf;
220 		rxconf->offloads = port_conf.rxmode.offloads;
221 
222 		retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
223 				rte_eth_dev_socket_id(port), rxconf, mbuf_pool);
224 
225 		if (retval < 0)
226 			return retval;
227 	}
228 
229 	/* Allocate and set up 1 TX queue per Ethernet port. */
230 	for (q = 0; q < tx_rings; q++) {
231 		struct rte_eth_txconf *txconf;
232 
233 		txconf = &dev_info.default_txconf;
234 		txconf->offloads = port_conf.txmode.offloads;
235 
236 		retval = rte_eth_tx_queue_setup(port, q, nb_txd,
237 				rte_eth_dev_socket_id(port), txconf);
238 		if (retval < 0)
239 			return retval;
240 	}
241 
242 	/* Start the Ethernet port. */
243 	retval = rte_eth_dev_start(port);
244 	if (retval < 0)
245 		return retval;
246 
247 	/* Enable timesync timestamping for the Ethernet device */
248 	retval = rte_eth_timesync_enable(port);
249 	if (retval < 0) {
250 		printf("Timesync enable failed: %d\n", retval);
251 		return retval;
252 	}
253 
254 	/* Enable RX in promiscuous mode for the Ethernet device. */
255 	retval = rte_eth_promiscuous_enable(port);
256 	if (retval != 0) {
257 		printf("Promiscuous mode enable failed: %s\n",
258 			rte_strerror(-retval));
259 		return retval;
260 	}
261 
262 	return 0;
263 }
264 
265 static void
266 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data)
267 {
268 	int64_t nsec;
269 	struct timespec net_time, sys_time;
270 
271 	printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
272 		ptp_data->master_clock_id.id[0],
273 		ptp_data->master_clock_id.id[1],
274 		ptp_data->master_clock_id.id[2],
275 		ptp_data->master_clock_id.id[3],
276 		ptp_data->master_clock_id.id[4],
277 		ptp_data->master_clock_id.id[5],
278 		ptp_data->master_clock_id.id[6],
279 		ptp_data->master_clock_id.id[7]);
280 
281 	printf("\nT2 - Slave  Clock.  %lds %ldns",
282 			(ptp_data->tstamp2.tv_sec),
283 			(ptp_data->tstamp2.tv_nsec));
284 
285 	printf("\nT1 - Master Clock.  %lds %ldns ",
286 			ptp_data->tstamp1.tv_sec,
287 			(ptp_data->tstamp1.tv_nsec));
288 
289 	printf("\nT3 - Slave  Clock.  %lds %ldns",
290 			ptp_data->tstamp3.tv_sec,
291 			(ptp_data->tstamp3.tv_nsec));
292 
293 	printf("\nT4 - Master Clock.  %lds %ldns ",
294 			ptp_data->tstamp4.tv_sec,
295 			(ptp_data->tstamp4.tv_nsec));
296 
297 	printf("\nDelta between master and slave clocks:%"PRId64"ns\n",
298 			ptp_data->delta);
299 
300 	clock_gettime(CLOCK_REALTIME, &sys_time);
301 	rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time);
302 
303 	time_t ts = net_time.tv_sec;
304 
305 	printf("\n\nComparison between Linux kernel Time and PTP:");
306 
307 	printf("\nCurrent PTP Time: %.24s %.9ld ns",
308 			ctime(&ts), net_time.tv_nsec);
309 
310 	nsec = (int64_t)timespec64_to_ns(&net_time) -
311 			(int64_t)timespec64_to_ns(&sys_time);
312 	ptp_data->new_adj = ns_to_timeval(nsec);
313 
314 	gettimeofday(&ptp_data->new_adj, NULL);
315 
316 	time_t tp = ptp_data->new_adj.tv_sec;
317 
318 	printf("\nCurrent SYS Time: %.24s %.6ld ns",
319 				ctime(&tp), ptp_data->new_adj.tv_usec);
320 
321 	printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n",
322 				nsec);
323 
324 	printf("[Ctrl+C to quit]\n");
325 
326 	/* Clear screen and put cursor in column 1, row 1 */
327 	printf("\033[2J\033[1;1H");
328 }
329 
330 static int64_t
331 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data)
332 {
333 	int64_t delta;
334 	uint64_t t1 = 0;
335 	uint64_t t2 = 0;
336 	uint64_t t3 = 0;
337 	uint64_t t4 = 0;
338 
339 	t1 = timespec64_to_ns(&ptp_data->tstamp1);
340 	t2 = timespec64_to_ns(&ptp_data->tstamp2);
341 	t3 = timespec64_to_ns(&ptp_data->tstamp3);
342 	t4 = timespec64_to_ns(&ptp_data->tstamp4);
343 
344 	delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2;
345 
346 	return delta;
347 }
348 
349 /*
350  * Parse the PTP SYNC message.
351  */
352 static void
353 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx)
354 {
355 	struct ptp_header *ptp_hdr;
356 
357 	ptp_hdr = rte_pktmbuf_mtod_offset(ptp_data->m, struct ptp_header *,
358 					  sizeof(struct rte_ether_hdr));
359 	ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id);
360 
361 	if (ptp_data->ptpset == 0) {
362 		rte_memcpy(&ptp_data->master_clock_id,
363 				&ptp_hdr->source_port_id.clock_id,
364 				sizeof(struct clock_id));
365 		ptp_data->ptpset = 1;
366 	}
367 
368 	if (memcmp(&ptp_hdr->source_port_id.clock_id,
369 			&ptp_hdr->source_port_id.clock_id,
370 			sizeof(struct clock_id)) == 0) {
371 
372 		if (ptp_data->ptpset == 1)
373 			rte_eth_timesync_read_rx_timestamp(ptp_data->portid,
374 					&ptp_data->tstamp2, rx_tstamp_idx);
375 	}
376 
377 }
378 
379 /*
380  * Parse the PTP FOLLOWUP message and send DELAY_REQ to the main clock.
381  */
382 static void
383 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data)
384 {
385 	struct rte_ether_hdr *eth_hdr;
386 	struct rte_ether_addr eth_addr;
387 	struct ptp_header *ptp_hdr;
388 	struct clock_id *client_clkid;
389 	struct ptp_message *ptp_msg;
390 	struct delay_req_msg *req_msg;
391 	struct rte_mbuf *created_pkt;
392 	struct tstamp *origin_tstamp;
393 	struct rte_ether_addr eth_multicast = ether_multicast;
394 	size_t pkt_size;
395 	int wait_us;
396 	struct rte_mbuf *m = ptp_data->m;
397 	int ret;
398 
399 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
400 	ptp_hdr = rte_pktmbuf_mtod_offset(m, struct ptp_header *,
401 					  sizeof(struct rte_ether_hdr));
402 	if (memcmp(&ptp_data->master_clock_id,
403 			&ptp_hdr->source_port_id.clock_id,
404 			sizeof(struct clock_id)) != 0)
405 		return;
406 
407 	ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id);
408 	ptp_msg = rte_pktmbuf_mtod_offset(m, struct ptp_message *,
409 					  sizeof(struct rte_ether_hdr));
410 
411 	origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp;
412 	ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns);
413 	ptp_data->tstamp1.tv_sec =
414 		((uint64_t)ntohl(origin_tstamp->sec_lsb)) |
415 		(((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32);
416 
417 	if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) {
418 		ret = rte_eth_macaddr_get(ptp_data->portid, &eth_addr);
419 		if (ret != 0) {
420 			printf("\nCore %u: port %u failed to get MAC address: %s\n",
421 				rte_lcore_id(), ptp_data->portid,
422 				rte_strerror(-ret));
423 			return;
424 		}
425 
426 		created_pkt = rte_pktmbuf_alloc(mbuf_pool);
427 		pkt_size = sizeof(struct rte_ether_hdr) +
428 			sizeof(struct delay_req_msg);
429 
430 		if (rte_pktmbuf_append(created_pkt, pkt_size) == NULL) {
431 			rte_pktmbuf_free(created_pkt);
432 			return;
433 		}
434 		created_pkt->data_len = pkt_size;
435 		created_pkt->pkt_len = pkt_size;
436 		eth_hdr = rte_pktmbuf_mtod(created_pkt, struct rte_ether_hdr *);
437 		rte_ether_addr_copy(&eth_addr, &eth_hdr->src_addr);
438 
439 		/* Set multicast address 01-1B-19-00-00-00. */
440 		rte_ether_addr_copy(&eth_multicast, &eth_hdr->dst_addr);
441 
442 		eth_hdr->ether_type = htons(PTP_PROTOCOL);
443 		req_msg = rte_pktmbuf_mtod_offset(created_pkt,
444 			struct delay_req_msg *, sizeof(struct
445 			rte_ether_hdr));
446 
447 		req_msg->hdr.seq_id = htons(ptp_data->seqID_SYNC);
448 		req_msg->hdr.msg_type = DELAY_REQ;
449 		req_msg->hdr.ver = 2;
450 		req_msg->hdr.control = 1;
451 		req_msg->hdr.log_message_interval = 127;
452 		req_msg->hdr.message_length =
453 			htons(sizeof(struct delay_req_msg));
454 		req_msg->hdr.domain_number = ptp_hdr->domain_number;
455 
456 		/* Set up clock id. */
457 		client_clkid =
458 			&req_msg->hdr.source_port_id.clock_id;
459 
460 		client_clkid->id[0] = eth_hdr->src_addr.addr_bytes[0];
461 		client_clkid->id[1] = eth_hdr->src_addr.addr_bytes[1];
462 		client_clkid->id[2] = eth_hdr->src_addr.addr_bytes[2];
463 		client_clkid->id[3] = 0xFF;
464 		client_clkid->id[4] = 0xFE;
465 		client_clkid->id[5] = eth_hdr->src_addr.addr_bytes[3];
466 		client_clkid->id[6] = eth_hdr->src_addr.addr_bytes[4];
467 		client_clkid->id[7] = eth_hdr->src_addr.addr_bytes[5];
468 
469 		rte_memcpy(&ptp_data->client_clock_id,
470 			   client_clkid,
471 			   sizeof(struct clock_id));
472 
473 		/* Enable flag for hardware timestamping. */
474 		created_pkt->ol_flags |= RTE_MBUF_F_TX_IEEE1588_TMST;
475 
476 		/*Read value from NIC to prevent latching with old value. */
477 		rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
478 				&ptp_data->tstamp3);
479 
480 		/* Transmit the packet. */
481 		rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1);
482 
483 		wait_us = 0;
484 		ptp_data->tstamp3.tv_nsec = 0;
485 		ptp_data->tstamp3.tv_sec = 0;
486 
487 		/* Wait at least 1 us to read TX timestamp. */
488 		while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
489 				&ptp_data->tstamp3) < 0) && (wait_us < 1000)) {
490 			rte_delay_us(1);
491 			wait_us++;
492 		}
493 	}
494 }
495 
496 /*
497  * Update the kernel time with the difference between it and the current NIC
498  * time.
499  */
500 static inline void
501 update_kernel_time(void)
502 {
503 	int64_t nsec;
504 	struct timespec net_time, sys_time;
505 
506 	clock_gettime(CLOCK_REALTIME, &sys_time);
507 	rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time);
508 
509 	nsec = (int64_t)timespec64_to_ns(&net_time) -
510 	       (int64_t)timespec64_to_ns(&sys_time);
511 
512 	ptp_data.new_adj = ns_to_timeval(nsec);
513 
514 	/*
515 	 * If difference between kernel time and system time in NIC is too big
516 	 * (more than +/- 20 microseconds), use clock_settime to set directly
517 	 * the kernel time, as adjtime is better for small adjustments (takes
518 	 * longer to adjust the time).
519 	 */
520 
521 	if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT)
522 		clock_settime(CLOCK_REALTIME, &net_time);
523 	else
524 		adjtime(&ptp_data.new_adj, 0);
525 
526 
527 }
528 
529 /*
530  * Parse the DELAY_RESP message.
531  */
532 static void
533 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data)
534 {
535 	struct rte_mbuf *m = ptp_data->m;
536 	struct ptp_message *ptp_msg;
537 	struct tstamp *rx_tstamp;
538 	uint16_t seq_id;
539 
540 	ptp_msg = rte_pktmbuf_mtod_offset(m, struct ptp_message *,
541 					  sizeof(struct rte_ether_hdr));
542 	seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id);
543 	if (memcmp(&ptp_data->client_clock_id,
544 		   &ptp_msg->delay_resp.req_port_id.clock_id,
545 		   sizeof(struct clock_id)) == 0) {
546 		if (seq_id == ptp_data->seqID_FOLLOWUP) {
547 			rx_tstamp = &ptp_msg->delay_resp.rx_tstamp;
548 			ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns);
549 			ptp_data->tstamp4.tv_sec =
550 				((uint64_t)ntohl(rx_tstamp->sec_lsb)) |
551 				(((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32);
552 
553 			/* Evaluate the delta for adjustment. */
554 			ptp_data->delta = delta_eval(ptp_data);
555 
556 			rte_eth_timesync_adjust_time(ptp_data->portid,
557 						     ptp_data->delta);
558 
559 			ptp_data->current_ptp_port = ptp_data->portid;
560 
561 			/* Update kernel time if enabled in app parameters. */
562 			if (ptp_data->kernel_time_set == 1)
563 				update_kernel_time();
564 
565 
566 
567 		}
568 	}
569 }
570 
571 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2
572  * functionality.
573  */
574 
575 /* Parse ptp frames. 8< */
576 static void
577 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
578 	struct ptp_header *ptp_hdr;
579 	struct rte_ether_hdr *eth_hdr;
580 	uint16_t eth_type;
581 
582 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
583 	eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
584 
585 	if (eth_type == PTP_PROTOCOL) {
586 		ptp_data.m = m;
587 		ptp_data.portid = portid;
588 		ptp_hdr = rte_pktmbuf_mtod_offset(m, struct ptp_header *,
589 						  sizeof(struct rte_ether_hdr));
590 
591 		switch (ptp_hdr->msg_type) {
592 		case SYNC:
593 			parse_sync(&ptp_data, m->timesync);
594 			break;
595 		case FOLLOW_UP:
596 			parse_fup(&ptp_data);
597 			break;
598 		case DELAY_RESP:
599 			parse_drsp(&ptp_data);
600 			print_clock_info(&ptp_data);
601 			break;
602 		default:
603 			break;
604 		}
605 	}
606 }
607 /* >8 End of function processes PTP packets. */
608 
609 /*
610  * The lcore main. This is the main thread that does the work, reading from an
611  * input port and writing to an output port.
612  */
613 static __rte_noreturn void
614 lcore_main(void)
615 {
616 	uint16_t portid;
617 	unsigned nb_rx;
618 	struct rte_mbuf *m;
619 
620 	printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n",
621 			rte_lcore_id());
622 
623 	/* Run until the application is quit or killed. */
624 
625 	while (1) {
626 		/* Read packet from RX queues. 8< */
627 		for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
628 
629 			portid = ptp_enabled_ports[portid];
630 			nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
631 
632 			if (likely(nb_rx == 0))
633 				continue;
634 
635 			/* Packet is parsed to determine which type. 8< */
636 			if (m->ol_flags & RTE_MBUF_F_RX_IEEE1588_PTP)
637 				parse_ptp_frames(portid, m);
638 			/* >8 End of packet is parsed to determine which type. */
639 
640 			rte_pktmbuf_free(m);
641 		}
642 		/* >8 End of read packets from RX queues. */
643 	}
644 }
645 
646 static void
647 print_usage(const char *prgname)
648 {
649 	printf("%s [EAL options] -- -p PORTMASK -T VALUE\n"
650 		" -T VALUE: 0 - Disable, 1 - Enable Linux Clock"
651 		" Synchronization (0 default)\n"
652 		" -p PORTMASK: hexadecimal bitmask of ports to configure\n",
653 		prgname);
654 }
655 
656 static int
657 ptp_parse_portmask(const char *portmask)
658 {
659 	char *end = NULL;
660 	unsigned long pm;
661 
662 	/* Parse the hexadecimal string. */
663 	pm = strtoul(portmask, &end, 16);
664 
665 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
666 		return 0;
667 
668 	return pm;
669 }
670 
671 static int
672 parse_ptp_kernel(const char *param)
673 {
674 	char *end = NULL;
675 	unsigned long pm;
676 
677 	/* Parse the hexadecimal string. */
678 	pm = strtoul(param, &end, 16);
679 
680 	if ((param[0] == '\0') || (end == NULL) || (*end != '\0'))
681 		return -1;
682 	if (pm == 0)
683 		return 0;
684 
685 	return 1;
686 }
687 
688 /* Parse the commandline arguments. */
689 static int
690 ptp_parse_args(int argc, char **argv)
691 {
692 	int opt, ret;
693 	char **argvopt;
694 	int option_index;
695 	char *prgname = argv[0];
696 	static struct option lgopts[] = { {NULL, 0, 0, 0} };
697 
698 	argvopt = argv;
699 
700 	while ((opt = getopt_long(argc, argvopt, "p:T:",
701 				  lgopts, &option_index)) != EOF) {
702 
703 		switch (opt) {
704 
705 		/* Portmask. */
706 		case 'p':
707 			ptp_enabled_port_mask = ptp_parse_portmask(optarg);
708 			if (ptp_enabled_port_mask == 0) {
709 				printf("invalid portmask\n");
710 				print_usage(prgname);
711 				return -1;
712 			}
713 			break;
714 		/* Time synchronization. */
715 		case 'T':
716 			ret = parse_ptp_kernel(optarg);
717 			if (ret < 0) {
718 				print_usage(prgname);
719 				return -1;
720 			}
721 
722 			ptp_data.kernel_time_set = ret;
723 			break;
724 
725 		default:
726 			print_usage(prgname);
727 			return -1;
728 		}
729 	}
730 
731 	argv[optind-1] = prgname;
732 
733 	optind = 1; /* Reset getopt lib. */
734 
735 	return 0;
736 }
737 
738 /*
739  * The main function, which does initialization and calls the per-lcore
740  * functions.
741  */
742 int
743 main(int argc, char *argv[])
744 {
745 	unsigned nb_ports;
746 
747 	uint16_t portid;
748 
749 	/* Initialize the Environment Abstraction Layer (EAL). 8< */
750 	int ret = rte_eal_init(argc, argv);
751 
752 	if (ret < 0)
753 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
754 	/* >8 End of initialization of EAL. */
755 
756 	memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary));
757 
758 	/* Parse specific arguments. 8< */
759 	argc -= ret;
760 	argv += ret;
761 
762 	ret = ptp_parse_args(argc, argv);
763 	if (ret < 0)
764 		rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
765 	/* >8 End of parsing specific arguments. */
766 
767 	/* Check that there is an even number of ports to send/receive on. */
768 	nb_ports = rte_eth_dev_count_avail();
769 
770 	/* Creates a new mempool in memory to hold the mbufs. 8< */
771 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
772 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
773 	/* >8 End of a new mempool in memory to hold the mbufs. */
774 
775 	if (mbuf_pool == NULL)
776 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
777 
778 	/* Initialize all ports. 8< */
779 	RTE_ETH_FOREACH_DEV(portid) {
780 		if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
781 			if (port_init(portid, mbuf_pool) == 0) {
782 				ptp_enabled_ports[ptp_enabled_port_nb] = portid;
783 				ptp_enabled_port_nb++;
784 			} else {
785 				rte_exit(EXIT_FAILURE,
786 					 "Cannot init port %"PRIu8 "\n",
787 					 portid);
788 			}
789 		} else
790 			printf("Skipping disabled port %u\n", portid);
791 	}
792 	/* >8 End of initialization of all ports. */
793 
794 	if (ptp_enabled_port_nb == 0) {
795 		rte_exit(EXIT_FAILURE,
796 			"All available ports are disabled."
797 			" Please set portmask.\n");
798 	}
799 
800 	if (rte_lcore_count() > 1)
801 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
802 
803 	/* Call lcore_main on the main core only. */
804 	lcore_main();
805 
806 	/* clean up the EAL */
807 	rte_eal_cleanup();
808 
809 	return 0;
810 }
811