xref: /dpdk/examples/ptpclient/ptpclient.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015 Intel Corporation
3  */
4 
5 /*
6  * This application is a simple Layer 2 PTP v2 client. It shows delta values
7  * which are used to synchronize the PHC clock. if the "-T 1" parameter is
8  * passed to the application the Linux kernel clock is also synchronized.
9  */
10 
11 #include <stdint.h>
12 #include <inttypes.h>
13 #include <rte_eal.h>
14 #include <rte_ethdev.h>
15 #include <rte_cycles.h>
16 #include <rte_lcore.h>
17 #include <rte_mbuf.h>
18 #include <rte_ip.h>
19 #include <limits.h>
20 #include <sys/time.h>
21 #include <getopt.h>
22 
23 #define RX_RING_SIZE 1024
24 #define TX_RING_SIZE 1024
25 
26 #define NUM_MBUFS            8191
27 #define MBUF_CACHE_SIZE       250
28 
29 /* Values for the PTP messageType field. */
30 #define SYNC                  0x0
31 #define DELAY_REQ             0x1
32 #define PDELAY_REQ            0x2
33 #define PDELAY_RESP           0x3
34 #define FOLLOW_UP             0x8
35 #define DELAY_RESP            0x9
36 #define PDELAY_RESP_FOLLOW_UP 0xA
37 #define ANNOUNCE              0xB
38 #define SIGNALING             0xC
39 #define MANAGEMENT            0xD
40 
41 #define NSEC_PER_SEC        1000000000L
42 #define KERNEL_TIME_ADJUST_LIMIT  20000
43 #define PTP_PROTOCOL             0x88F7
44 
45 struct rte_mempool *mbuf_pool;
46 uint32_t ptp_enabled_port_mask;
47 uint8_t ptp_enabled_port_nb;
48 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS];
49 
50 static const struct rte_ether_addr ether_multicast = {
51 	.addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0}
52 };
53 
54 /* Structs used for PTP handling. */
55 struct tstamp {
56 	uint16_t   sec_msb;
57 	uint32_t   sec_lsb;
58 	uint32_t   ns;
59 }  __rte_packed;
60 
61 struct clock_id {
62 	uint8_t id[8];
63 };
64 
65 struct port_id {
66 	struct clock_id        clock_id;
67 	uint16_t               port_number;
68 }  __rte_packed;
69 
70 struct ptp_header {
71 	uint8_t              msg_type;
72 	uint8_t              ver;
73 	uint16_t             message_length;
74 	uint8_t              domain_number;
75 	uint8_t              reserved1;
76 	uint8_t              flag_field[2];
77 	int64_t              correction;
78 	uint32_t             reserved2;
79 	struct port_id       source_port_id;
80 	uint16_t             seq_id;
81 	uint8_t              control;
82 	int8_t               log_message_interval;
83 } __rte_packed;
84 
85 struct sync_msg {
86 	struct ptp_header   hdr;
87 	struct tstamp       origin_tstamp;
88 } __rte_packed;
89 
90 struct follow_up_msg {
91 	struct ptp_header   hdr;
92 	struct tstamp       precise_origin_tstamp;
93 	uint8_t             suffix[0];
94 } __rte_packed;
95 
96 struct delay_req_msg {
97 	struct ptp_header   hdr;
98 	struct tstamp       origin_tstamp;
99 } __rte_packed;
100 
101 struct delay_resp_msg {
102 	struct ptp_header    hdr;
103 	struct tstamp        rx_tstamp;
104 	struct port_id       req_port_id;
105 	uint8_t              suffix[0];
106 } __rte_packed;
107 
108 struct ptp_message {
109 	union {
110 		struct ptp_header          header;
111 		struct sync_msg            sync;
112 		struct delay_req_msg       delay_req;
113 		struct follow_up_msg       follow_up;
114 		struct delay_resp_msg      delay_resp;
115 	} __rte_packed;
116 };
117 
118 struct ptpv2_data_slave_ordinary {
119 	struct rte_mbuf *m;
120 	struct timespec tstamp1;
121 	struct timespec tstamp2;
122 	struct timespec tstamp3;
123 	struct timespec tstamp4;
124 	struct clock_id client_clock_id;
125 	struct clock_id master_clock_id;
126 	struct timeval new_adj;
127 	int64_t delta;
128 	uint16_t portid;
129 	uint16_t seqID_SYNC;
130 	uint16_t seqID_FOLLOWUP;
131 	uint8_t ptpset;
132 	uint8_t kernel_time_set;
133 	uint16_t current_ptp_port;
134 };
135 
136 static struct ptpv2_data_slave_ordinary ptp_data;
137 
138 static inline uint64_t timespec64_to_ns(const struct timespec *ts)
139 {
140 	return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
141 }
142 
143 static struct timeval
144 ns_to_timeval(int64_t nsec)
145 {
146 	struct timespec t_spec = {0, 0};
147 	struct timeval t_eval = {0, 0};
148 	int32_t rem;
149 
150 	if (nsec == 0)
151 		return t_eval;
152 	rem = nsec % NSEC_PER_SEC;
153 	t_spec.tv_sec = nsec / NSEC_PER_SEC;
154 
155 	if (rem < 0) {
156 		t_spec.tv_sec--;
157 		rem += NSEC_PER_SEC;
158 	}
159 
160 	t_spec.tv_nsec = rem;
161 	t_eval.tv_sec = t_spec.tv_sec;
162 	t_eval.tv_usec = t_spec.tv_nsec / 1000;
163 
164 	return t_eval;
165 }
166 
167 /*
168  * Initializes a given port using global settings and with the RX buffers
169  * coming from the mbuf_pool passed as a parameter.
170  */
171 static inline int
172 port_init(uint16_t port, struct rte_mempool *mbuf_pool)
173 {
174 	struct rte_eth_dev_info dev_info;
175 	struct rte_eth_conf port_conf;
176 	const uint16_t rx_rings = 1;
177 	const uint16_t tx_rings = 1;
178 	int retval;
179 	uint16_t q;
180 	uint16_t nb_rxd = RX_RING_SIZE;
181 	uint16_t nb_txd = TX_RING_SIZE;
182 
183 	if (!rte_eth_dev_is_valid_port(port))
184 		return -1;
185 
186 	memset(&port_conf, 0, sizeof(struct rte_eth_conf));
187 
188 	retval = rte_eth_dev_info_get(port, &dev_info);
189 	if (retval != 0) {
190 		printf("Error during getting device (port %u) info: %s\n",
191 				port, strerror(-retval));
192 
193 		return retval;
194 	}
195 
196 	if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
197 		port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_TIMESTAMP;
198 
199 	if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
200 		port_conf.txmode.offloads |=
201 			RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
202 	/* Force full Tx path in the driver, required for IEEE1588 */
203 	port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
204 
205 	/* Configure the Ethernet device. */
206 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
207 	if (retval != 0)
208 		return retval;
209 
210 	retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
211 	if (retval != 0)
212 		return retval;
213 
214 	/* Allocate and set up 1 RX queue per Ethernet port. */
215 	for (q = 0; q < rx_rings; q++) {
216 		struct rte_eth_rxconf *rxconf;
217 
218 		rxconf = &dev_info.default_rxconf;
219 		rxconf->offloads = port_conf.rxmode.offloads;
220 
221 		retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
222 				rte_eth_dev_socket_id(port), rxconf, mbuf_pool);
223 
224 		if (retval < 0)
225 			return retval;
226 	}
227 
228 	/* Allocate and set up 1 TX queue per Ethernet port. */
229 	for (q = 0; q < tx_rings; q++) {
230 		struct rte_eth_txconf *txconf;
231 
232 		txconf = &dev_info.default_txconf;
233 		txconf->offloads = port_conf.txmode.offloads;
234 
235 		retval = rte_eth_tx_queue_setup(port, q, nb_txd,
236 				rte_eth_dev_socket_id(port), txconf);
237 		if (retval < 0)
238 			return retval;
239 	}
240 
241 	/* Start the Ethernet port. */
242 	retval = rte_eth_dev_start(port);
243 	if (retval < 0)
244 		return retval;
245 
246 	/* Enable timesync timestamping for the Ethernet device */
247 	retval = rte_eth_timesync_enable(port);
248 	if (retval < 0) {
249 		printf("Timesync enable failed: %d\n", retval);
250 		return retval;
251 	}
252 
253 	/* Enable RX in promiscuous mode for the Ethernet device. */
254 	retval = rte_eth_promiscuous_enable(port);
255 	if (retval != 0) {
256 		printf("Promiscuous mode enable failed: %s\n",
257 			rte_strerror(-retval));
258 		return retval;
259 	}
260 
261 	return 0;
262 }
263 
264 static void
265 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data)
266 {
267 	int64_t nsec;
268 	struct timespec net_time, sys_time;
269 
270 	printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
271 		ptp_data->master_clock_id.id[0],
272 		ptp_data->master_clock_id.id[1],
273 		ptp_data->master_clock_id.id[2],
274 		ptp_data->master_clock_id.id[3],
275 		ptp_data->master_clock_id.id[4],
276 		ptp_data->master_clock_id.id[5],
277 		ptp_data->master_clock_id.id[6],
278 		ptp_data->master_clock_id.id[7]);
279 
280 	printf("\nT2 - Slave  Clock.  %lds %ldns",
281 			(ptp_data->tstamp2.tv_sec),
282 			(ptp_data->tstamp2.tv_nsec));
283 
284 	printf("\nT1 - Master Clock.  %lds %ldns ",
285 			ptp_data->tstamp1.tv_sec,
286 			(ptp_data->tstamp1.tv_nsec));
287 
288 	printf("\nT3 - Slave  Clock.  %lds %ldns",
289 			ptp_data->tstamp3.tv_sec,
290 			(ptp_data->tstamp3.tv_nsec));
291 
292 	printf("\nT4 - Master Clock.  %lds %ldns ",
293 			ptp_data->tstamp4.tv_sec,
294 			(ptp_data->tstamp4.tv_nsec));
295 
296 	printf("\nDelta between master and slave clocks:%"PRId64"ns\n",
297 			ptp_data->delta);
298 
299 	clock_gettime(CLOCK_REALTIME, &sys_time);
300 	rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time);
301 
302 	time_t ts = net_time.tv_sec;
303 
304 	printf("\n\nComparison between Linux kernel Time and PTP:");
305 
306 	printf("\nCurrent PTP Time: %.24s %.9ld ns",
307 			ctime(&ts), net_time.tv_nsec);
308 
309 	nsec = (int64_t)timespec64_to_ns(&net_time) -
310 			(int64_t)timespec64_to_ns(&sys_time);
311 	ptp_data->new_adj = ns_to_timeval(nsec);
312 
313 	gettimeofday(&ptp_data->new_adj, NULL);
314 
315 	time_t tp = ptp_data->new_adj.tv_sec;
316 
317 	printf("\nCurrent SYS Time: %.24s %.6ld ns",
318 				ctime(&tp), ptp_data->new_adj.tv_usec);
319 
320 	printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n",
321 				nsec);
322 
323 	printf("[Ctrl+C to quit]\n");
324 
325 	/* Clear screen and put cursor in column 1, row 1 */
326 	printf("\033[2J\033[1;1H");
327 }
328 
329 static int64_t
330 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data)
331 {
332 	int64_t delta;
333 	uint64_t t1 = 0;
334 	uint64_t t2 = 0;
335 	uint64_t t3 = 0;
336 	uint64_t t4 = 0;
337 
338 	t1 = timespec64_to_ns(&ptp_data->tstamp1);
339 	t2 = timespec64_to_ns(&ptp_data->tstamp2);
340 	t3 = timespec64_to_ns(&ptp_data->tstamp3);
341 	t4 = timespec64_to_ns(&ptp_data->tstamp4);
342 
343 	delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2;
344 
345 	return delta;
346 }
347 
348 /*
349  * Parse the PTP SYNC message.
350  */
351 static void
352 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx)
353 {
354 	struct ptp_header *ptp_hdr;
355 
356 	ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *)
357 			+ sizeof(struct rte_ether_hdr));
358 	ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id);
359 
360 	if (ptp_data->ptpset == 0) {
361 		rte_memcpy(&ptp_data->master_clock_id,
362 				&ptp_hdr->source_port_id.clock_id,
363 				sizeof(struct clock_id));
364 		ptp_data->ptpset = 1;
365 	}
366 
367 	if (memcmp(&ptp_hdr->source_port_id.clock_id,
368 			&ptp_hdr->source_port_id.clock_id,
369 			sizeof(struct clock_id)) == 0) {
370 
371 		if (ptp_data->ptpset == 1)
372 			rte_eth_timesync_read_rx_timestamp(ptp_data->portid,
373 					&ptp_data->tstamp2, rx_tstamp_idx);
374 	}
375 
376 }
377 
378 /*
379  * Parse the PTP FOLLOWUP message and send DELAY_REQ to the main clock.
380  */
381 static void
382 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data)
383 {
384 	struct rte_ether_hdr *eth_hdr;
385 	struct rte_ether_addr eth_addr;
386 	struct ptp_header *ptp_hdr;
387 	struct clock_id *client_clkid;
388 	struct ptp_message *ptp_msg;
389 	struct delay_req_msg *req_msg;
390 	struct rte_mbuf *created_pkt;
391 	struct tstamp *origin_tstamp;
392 	struct rte_ether_addr eth_multicast = ether_multicast;
393 	size_t pkt_size;
394 	int wait_us;
395 	struct rte_mbuf *m = ptp_data->m;
396 	int ret;
397 
398 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
399 	ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
400 			+ sizeof(struct rte_ether_hdr));
401 	if (memcmp(&ptp_data->master_clock_id,
402 			&ptp_hdr->source_port_id.clock_id,
403 			sizeof(struct clock_id)) != 0)
404 		return;
405 
406 	ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id);
407 	ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
408 					  sizeof(struct rte_ether_hdr));
409 
410 	origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp;
411 	ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns);
412 	ptp_data->tstamp1.tv_sec =
413 		((uint64_t)ntohl(origin_tstamp->sec_lsb)) |
414 		(((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32);
415 
416 	if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) {
417 		ret = rte_eth_macaddr_get(ptp_data->portid, &eth_addr);
418 		if (ret != 0) {
419 			printf("\nCore %u: port %u failed to get MAC address: %s\n",
420 				rte_lcore_id(), ptp_data->portid,
421 				rte_strerror(-ret));
422 			return;
423 		}
424 
425 		created_pkt = rte_pktmbuf_alloc(mbuf_pool);
426 		pkt_size = sizeof(struct rte_ether_hdr) +
427 			sizeof(struct delay_req_msg);
428 
429 		if (rte_pktmbuf_append(created_pkt, pkt_size) == NULL) {
430 			rte_pktmbuf_free(created_pkt);
431 			return;
432 		}
433 		created_pkt->data_len = pkt_size;
434 		created_pkt->pkt_len = pkt_size;
435 		eth_hdr = rte_pktmbuf_mtod(created_pkt, struct rte_ether_hdr *);
436 		rte_ether_addr_copy(&eth_addr, &eth_hdr->src_addr);
437 
438 		/* Set multicast address 01-1B-19-00-00-00. */
439 		rte_ether_addr_copy(&eth_multicast, &eth_hdr->dst_addr);
440 
441 		eth_hdr->ether_type = htons(PTP_PROTOCOL);
442 		req_msg = rte_pktmbuf_mtod_offset(created_pkt,
443 			struct delay_req_msg *, sizeof(struct
444 			rte_ether_hdr));
445 
446 		req_msg->hdr.seq_id = htons(ptp_data->seqID_SYNC);
447 		req_msg->hdr.msg_type = DELAY_REQ;
448 		req_msg->hdr.ver = 2;
449 		req_msg->hdr.control = 1;
450 		req_msg->hdr.log_message_interval = 127;
451 		req_msg->hdr.message_length =
452 			htons(sizeof(struct delay_req_msg));
453 		req_msg->hdr.domain_number = ptp_hdr->domain_number;
454 
455 		/* Set up clock id. */
456 		client_clkid =
457 			&req_msg->hdr.source_port_id.clock_id;
458 
459 		client_clkid->id[0] = eth_hdr->src_addr.addr_bytes[0];
460 		client_clkid->id[1] = eth_hdr->src_addr.addr_bytes[1];
461 		client_clkid->id[2] = eth_hdr->src_addr.addr_bytes[2];
462 		client_clkid->id[3] = 0xFF;
463 		client_clkid->id[4] = 0xFE;
464 		client_clkid->id[5] = eth_hdr->src_addr.addr_bytes[3];
465 		client_clkid->id[6] = eth_hdr->src_addr.addr_bytes[4];
466 		client_clkid->id[7] = eth_hdr->src_addr.addr_bytes[5];
467 
468 		rte_memcpy(&ptp_data->client_clock_id,
469 			   client_clkid,
470 			   sizeof(struct clock_id));
471 
472 		/* Enable flag for hardware timestamping. */
473 		created_pkt->ol_flags |= RTE_MBUF_F_TX_IEEE1588_TMST;
474 
475 		/*Read value from NIC to prevent latching with old value. */
476 		rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
477 				&ptp_data->tstamp3);
478 
479 		/* Transmit the packet. */
480 		rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1);
481 
482 		wait_us = 0;
483 		ptp_data->tstamp3.tv_nsec = 0;
484 		ptp_data->tstamp3.tv_sec = 0;
485 
486 		/* Wait at least 1 us to read TX timestamp. */
487 		while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
488 				&ptp_data->tstamp3) < 0) && (wait_us < 1000)) {
489 			rte_delay_us(1);
490 			wait_us++;
491 		}
492 	}
493 }
494 
495 /*
496  * Update the kernel time with the difference between it and the current NIC
497  * time.
498  */
499 static inline void
500 update_kernel_time(void)
501 {
502 	int64_t nsec;
503 	struct timespec net_time, sys_time;
504 
505 	clock_gettime(CLOCK_REALTIME, &sys_time);
506 	rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time);
507 
508 	nsec = (int64_t)timespec64_to_ns(&net_time) -
509 	       (int64_t)timespec64_to_ns(&sys_time);
510 
511 	ptp_data.new_adj = ns_to_timeval(nsec);
512 
513 	/*
514 	 * If difference between kernel time and system time in NIC is too big
515 	 * (more than +/- 20 microseconds), use clock_settime to set directly
516 	 * the kernel time, as adjtime is better for small adjustments (takes
517 	 * longer to adjust the time).
518 	 */
519 
520 	if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT)
521 		clock_settime(CLOCK_REALTIME, &net_time);
522 	else
523 		adjtime(&ptp_data.new_adj, 0);
524 
525 
526 }
527 
528 /*
529  * Parse the DELAY_RESP message.
530  */
531 static void
532 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data)
533 {
534 	struct rte_mbuf *m = ptp_data->m;
535 	struct ptp_message *ptp_msg;
536 	struct tstamp *rx_tstamp;
537 	uint16_t seq_id;
538 
539 	ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
540 					sizeof(struct rte_ether_hdr));
541 	seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id);
542 	if (memcmp(&ptp_data->client_clock_id,
543 		   &ptp_msg->delay_resp.req_port_id.clock_id,
544 		   sizeof(struct clock_id)) == 0) {
545 		if (seq_id == ptp_data->seqID_FOLLOWUP) {
546 			rx_tstamp = &ptp_msg->delay_resp.rx_tstamp;
547 			ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns);
548 			ptp_data->tstamp4.tv_sec =
549 				((uint64_t)ntohl(rx_tstamp->sec_lsb)) |
550 				(((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32);
551 
552 			/* Evaluate the delta for adjustment. */
553 			ptp_data->delta = delta_eval(ptp_data);
554 
555 			rte_eth_timesync_adjust_time(ptp_data->portid,
556 						     ptp_data->delta);
557 
558 			ptp_data->current_ptp_port = ptp_data->portid;
559 
560 			/* Update kernel time if enabled in app parameters. */
561 			if (ptp_data->kernel_time_set == 1)
562 				update_kernel_time();
563 
564 
565 
566 		}
567 	}
568 }
569 
570 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2
571  * functionality.
572  */
573 
574 /* Parse ptp frames. 8< */
575 static void
576 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
577 	struct ptp_header *ptp_hdr;
578 	struct rte_ether_hdr *eth_hdr;
579 	uint16_t eth_type;
580 
581 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
582 	eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
583 
584 	if (eth_type == PTP_PROTOCOL) {
585 		ptp_data.m = m;
586 		ptp_data.portid = portid;
587 		ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
588 					+ sizeof(struct rte_ether_hdr));
589 
590 		switch (ptp_hdr->msg_type) {
591 		case SYNC:
592 			parse_sync(&ptp_data, m->timesync);
593 			break;
594 		case FOLLOW_UP:
595 			parse_fup(&ptp_data);
596 			break;
597 		case DELAY_RESP:
598 			parse_drsp(&ptp_data);
599 			print_clock_info(&ptp_data);
600 			break;
601 		default:
602 			break;
603 		}
604 	}
605 }
606 /* >8 End of function processes PTP packets. */
607 
608 /*
609  * The lcore main. This is the main thread that does the work, reading from an
610  * input port and writing to an output port.
611  */
612 static __rte_noreturn void
613 lcore_main(void)
614 {
615 	uint16_t portid;
616 	unsigned nb_rx;
617 	struct rte_mbuf *m;
618 
619 	printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n",
620 			rte_lcore_id());
621 
622 	/* Run until the application is quit or killed. */
623 
624 	while (1) {
625 		/* Read packet from RX queues. 8< */
626 		for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
627 
628 			portid = ptp_enabled_ports[portid];
629 			nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
630 
631 			if (likely(nb_rx == 0))
632 				continue;
633 
634 			/* Packet is parsed to determine which type. 8< */
635 			if (m->ol_flags & RTE_MBUF_F_RX_IEEE1588_PTP)
636 				parse_ptp_frames(portid, m);
637 			/* >8 End of packet is parsed to determine which type. */
638 
639 			rte_pktmbuf_free(m);
640 		}
641 		/* >8 End of read packets from RX queues. */
642 	}
643 }
644 
645 static void
646 print_usage(const char *prgname)
647 {
648 	printf("%s [EAL options] -- -p PORTMASK -T VALUE\n"
649 		" -T VALUE: 0 - Disable, 1 - Enable Linux Clock"
650 		" Synchronization (0 default)\n"
651 		" -p PORTMASK: hexadecimal bitmask of ports to configure\n",
652 		prgname);
653 }
654 
655 static int
656 ptp_parse_portmask(const char *portmask)
657 {
658 	char *end = NULL;
659 	unsigned long pm;
660 
661 	/* Parse the hexadecimal string. */
662 	pm = strtoul(portmask, &end, 16);
663 
664 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
665 		return 0;
666 
667 	return pm;
668 }
669 
670 static int
671 parse_ptp_kernel(const char *param)
672 {
673 	char *end = NULL;
674 	unsigned long pm;
675 
676 	/* Parse the hexadecimal string. */
677 	pm = strtoul(param, &end, 16);
678 
679 	if ((param[0] == '\0') || (end == NULL) || (*end != '\0'))
680 		return -1;
681 	if (pm == 0)
682 		return 0;
683 
684 	return 1;
685 }
686 
687 /* Parse the commandline arguments. */
688 static int
689 ptp_parse_args(int argc, char **argv)
690 {
691 	int opt, ret;
692 	char **argvopt;
693 	int option_index;
694 	char *prgname = argv[0];
695 	static struct option lgopts[] = { {NULL, 0, 0, 0} };
696 
697 	argvopt = argv;
698 
699 	while ((opt = getopt_long(argc, argvopt, "p:T:",
700 				  lgopts, &option_index)) != EOF) {
701 
702 		switch (opt) {
703 
704 		/* Portmask. */
705 		case 'p':
706 			ptp_enabled_port_mask = ptp_parse_portmask(optarg);
707 			if (ptp_enabled_port_mask == 0) {
708 				printf("invalid portmask\n");
709 				print_usage(prgname);
710 				return -1;
711 			}
712 			break;
713 		/* Time synchronization. */
714 		case 'T':
715 			ret = parse_ptp_kernel(optarg);
716 			if (ret < 0) {
717 				print_usage(prgname);
718 				return -1;
719 			}
720 
721 			ptp_data.kernel_time_set = ret;
722 			break;
723 
724 		default:
725 			print_usage(prgname);
726 			return -1;
727 		}
728 	}
729 
730 	argv[optind-1] = prgname;
731 
732 	optind = 1; /* Reset getopt lib. */
733 
734 	return 0;
735 }
736 
737 /*
738  * The main function, which does initialization and calls the per-lcore
739  * functions.
740  */
741 int
742 main(int argc, char *argv[])
743 {
744 	unsigned nb_ports;
745 
746 	uint16_t portid;
747 
748 	/* Initialize the Environment Abstraction Layer (EAL). 8< */
749 	int ret = rte_eal_init(argc, argv);
750 
751 	if (ret < 0)
752 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
753 	/* >8 End of initialization of EAL. */
754 
755 	memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary));
756 
757 	/* Parse specific arguments. 8< */
758 	argc -= ret;
759 	argv += ret;
760 
761 	ret = ptp_parse_args(argc, argv);
762 	if (ret < 0)
763 		rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
764 	/* >8 End of parsing specific arguments. */
765 
766 	/* Check that there is an even number of ports to send/receive on. */
767 	nb_ports = rte_eth_dev_count_avail();
768 
769 	/* Creates a new mempool in memory to hold the mbufs. 8< */
770 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
771 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
772 	/* >8 End of a new mempool in memory to hold the mbufs. */
773 
774 	if (mbuf_pool == NULL)
775 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
776 
777 	/* Initialize all ports. 8< */
778 	RTE_ETH_FOREACH_DEV(portid) {
779 		if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
780 			if (port_init(portid, mbuf_pool) == 0) {
781 				ptp_enabled_ports[ptp_enabled_port_nb] = portid;
782 				ptp_enabled_port_nb++;
783 			} else {
784 				rte_exit(EXIT_FAILURE,
785 					 "Cannot init port %"PRIu8 "\n",
786 					 portid);
787 			}
788 		} else
789 			printf("Skipping disabled port %u\n", portid);
790 	}
791 	/* >8 End of initialization of all ports. */
792 
793 	if (ptp_enabled_port_nb == 0) {
794 		rte_exit(EXIT_FAILURE,
795 			"All available ports are disabled."
796 			" Please set portmask.\n");
797 	}
798 
799 	if (rte_lcore_count() > 1)
800 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
801 
802 	/* Call lcore_main on the main core only. */
803 	lcore_main();
804 
805 	/* clean up the EAL */
806 	rte_eal_cleanup();
807 
808 	return 0;
809 }
810