1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015 Intel Corporation 3 */ 4 5 /* 6 * This application is a simple Layer 2 PTP v2 client. It shows delta values 7 * which are used to synchronize the PHC clock. if the "-T 1" parameter is 8 * passed to the application the Linux kernel clock is also synchronized. 9 */ 10 11 #include <stdint.h> 12 #include <inttypes.h> 13 #include <rte_eal.h> 14 #include <rte_ethdev.h> 15 #include <rte_cycles.h> 16 #include <rte_lcore.h> 17 #include <rte_mbuf.h> 18 #include <rte_ip.h> 19 #include <limits.h> 20 #include <sys/time.h> 21 #include <getopt.h> 22 23 #define RX_RING_SIZE 128 24 #define TX_RING_SIZE 512 25 26 #define NUM_MBUFS 8191 27 #define MBUF_CACHE_SIZE 250 28 29 /* Values for the PTP messageType field. */ 30 #define SYNC 0x0 31 #define DELAY_REQ 0x1 32 #define PDELAY_REQ 0x2 33 #define PDELAY_RESP 0x3 34 #define FOLLOW_UP 0x8 35 #define DELAY_RESP 0x9 36 #define PDELAY_RESP_FOLLOW_UP 0xA 37 #define ANNOUNCE 0xB 38 #define SIGNALING 0xC 39 #define MANAGEMENT 0xD 40 41 #define NSEC_PER_SEC 1000000000L 42 #define KERNEL_TIME_ADJUST_LIMIT 20000 43 #define PTP_PROTOCOL 0x88F7 44 45 struct rte_mempool *mbuf_pool; 46 uint32_t ptp_enabled_port_mask; 47 uint8_t ptp_enabled_port_nb; 48 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS]; 49 50 static const struct rte_eth_conf port_conf_default = { 51 .rxmode = { 52 .max_rx_pkt_len = ETHER_MAX_LEN, 53 .ignore_offload_bitfield = 1, 54 }, 55 }; 56 57 static const struct ether_addr ether_multicast = { 58 .addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0} 59 }; 60 61 /* Structs used for PTP handling. */ 62 struct tstamp { 63 uint16_t sec_msb; 64 uint32_t sec_lsb; 65 uint32_t ns; 66 } __attribute__((packed)); 67 68 struct clock_id { 69 uint8_t id[8]; 70 }; 71 72 struct port_id { 73 struct clock_id clock_id; 74 uint16_t port_number; 75 } __attribute__((packed)); 76 77 struct ptp_header { 78 uint8_t msg_type; 79 uint8_t ver; 80 uint16_t message_length; 81 uint8_t domain_number; 82 uint8_t reserved1; 83 uint8_t flag_field[2]; 84 int64_t correction; 85 uint32_t reserved2; 86 struct port_id source_port_id; 87 uint16_t seq_id; 88 uint8_t control; 89 int8_t log_message_interval; 90 } __attribute__((packed)); 91 92 struct sync_msg { 93 struct ptp_header hdr; 94 struct tstamp origin_tstamp; 95 } __attribute__((packed)); 96 97 struct follow_up_msg { 98 struct ptp_header hdr; 99 struct tstamp precise_origin_tstamp; 100 uint8_t suffix[0]; 101 } __attribute__((packed)); 102 103 struct delay_req_msg { 104 struct ptp_header hdr; 105 struct tstamp origin_tstamp; 106 } __attribute__((packed)); 107 108 struct delay_resp_msg { 109 struct ptp_header hdr; 110 struct tstamp rx_tstamp; 111 struct port_id req_port_id; 112 uint8_t suffix[0]; 113 } __attribute__((packed)); 114 115 struct ptp_message { 116 union { 117 struct ptp_header header; 118 struct sync_msg sync; 119 struct delay_req_msg delay_req; 120 struct follow_up_msg follow_up; 121 struct delay_resp_msg delay_resp; 122 } __attribute__((packed)); 123 }; 124 125 struct ptpv2_data_slave_ordinary { 126 struct rte_mbuf *m; 127 struct timespec tstamp1; 128 struct timespec tstamp2; 129 struct timespec tstamp3; 130 struct timespec tstamp4; 131 struct clock_id client_clock_id; 132 struct clock_id master_clock_id; 133 struct timeval new_adj; 134 int64_t delta; 135 uint16_t portid; 136 uint16_t seqID_SYNC; 137 uint16_t seqID_FOLLOWUP; 138 uint8_t ptpset; 139 uint8_t kernel_time_set; 140 uint16_t current_ptp_port; 141 }; 142 143 static struct ptpv2_data_slave_ordinary ptp_data; 144 145 static inline uint64_t timespec64_to_ns(const struct timespec *ts) 146 { 147 return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; 148 } 149 150 static struct timeval 151 ns_to_timeval(int64_t nsec) 152 { 153 struct timespec t_spec = {0, 0}; 154 struct timeval t_eval = {0, 0}; 155 int32_t rem; 156 157 if (nsec == 0) 158 return t_eval; 159 rem = nsec % NSEC_PER_SEC; 160 t_spec.tv_sec = nsec / NSEC_PER_SEC; 161 162 if (rem < 0) { 163 t_spec.tv_sec--; 164 rem += NSEC_PER_SEC; 165 } 166 167 t_spec.tv_nsec = rem; 168 t_eval.tv_sec = t_spec.tv_sec; 169 t_eval.tv_usec = t_spec.tv_nsec / 1000; 170 171 return t_eval; 172 } 173 174 /* 175 * Initializes a given port using global settings and with the RX buffers 176 * coming from the mbuf_pool passed as a parameter. 177 */ 178 static inline int 179 port_init(uint16_t port, struct rte_mempool *mbuf_pool) 180 { 181 struct rte_eth_dev_info dev_info; 182 struct rte_eth_conf port_conf = port_conf_default; 183 const uint16_t rx_rings = 1; 184 const uint16_t tx_rings = 1; 185 int retval; 186 uint16_t q; 187 uint16_t nb_rxd = RX_RING_SIZE; 188 uint16_t nb_txd = TX_RING_SIZE; 189 190 if (port >= rte_eth_dev_count()) 191 return -1; 192 193 rte_eth_dev_info_get(port, &dev_info); 194 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 195 port_conf.txmode.offloads |= 196 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 197 198 /* Configure the Ethernet device. */ 199 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 200 if (retval != 0) 201 return retval; 202 203 retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd); 204 if (retval != 0) 205 return retval; 206 207 /* Allocate and set up 1 RX queue per Ethernet port. */ 208 for (q = 0; q < rx_rings; q++) { 209 retval = rte_eth_rx_queue_setup(port, q, nb_rxd, 210 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 211 212 if (retval < 0) 213 return retval; 214 } 215 216 /* Allocate and set up 1 TX queue per Ethernet port. */ 217 for (q = 0; q < tx_rings; q++) { 218 /* Setup txq_flags */ 219 struct rte_eth_txconf *txconf; 220 221 txconf = &dev_info.default_txconf; 222 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE; 223 txconf->offloads = port_conf.txmode.offloads; 224 225 retval = rte_eth_tx_queue_setup(port, q, nb_txd, 226 rte_eth_dev_socket_id(port), txconf); 227 if (retval < 0) 228 return retval; 229 } 230 231 /* Start the Ethernet port. */ 232 retval = rte_eth_dev_start(port); 233 if (retval < 0) 234 return retval; 235 236 /* Enable timesync timestamping for the Ethernet device */ 237 rte_eth_timesync_enable(port); 238 239 /* Enable RX in promiscuous mode for the Ethernet device. */ 240 rte_eth_promiscuous_enable(port); 241 242 return 0; 243 } 244 245 static void 246 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data) 247 { 248 int64_t nsec; 249 struct timespec net_time, sys_time; 250 251 printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", 252 ptp_data->master_clock_id.id[0], 253 ptp_data->master_clock_id.id[1], 254 ptp_data->master_clock_id.id[2], 255 ptp_data->master_clock_id.id[3], 256 ptp_data->master_clock_id.id[4], 257 ptp_data->master_clock_id.id[5], 258 ptp_data->master_clock_id.id[6], 259 ptp_data->master_clock_id.id[7]); 260 261 printf("\nT2 - Slave Clock. %lds %ldns", 262 (ptp_data->tstamp2.tv_sec), 263 (ptp_data->tstamp2.tv_nsec)); 264 265 printf("\nT1 - Master Clock. %lds %ldns ", 266 ptp_data->tstamp1.tv_sec, 267 (ptp_data->tstamp1.tv_nsec)); 268 269 printf("\nT3 - Slave Clock. %lds %ldns", 270 ptp_data->tstamp3.tv_sec, 271 (ptp_data->tstamp3.tv_nsec)); 272 273 printf("\nT4 - Master Clock. %lds %ldns ", 274 ptp_data->tstamp4.tv_sec, 275 (ptp_data->tstamp4.tv_nsec)); 276 277 printf("\nDelta between master and slave clocks:%"PRId64"ns\n", 278 ptp_data->delta); 279 280 clock_gettime(CLOCK_REALTIME, &sys_time); 281 rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time); 282 283 time_t ts = net_time.tv_sec; 284 285 printf("\n\nComparison between Linux kernel Time and PTP:"); 286 287 printf("\nCurrent PTP Time: %.24s %.9ld ns", 288 ctime(&ts), net_time.tv_nsec); 289 290 nsec = (int64_t)timespec64_to_ns(&net_time) - 291 (int64_t)timespec64_to_ns(&sys_time); 292 ptp_data->new_adj = ns_to_timeval(nsec); 293 294 gettimeofday(&ptp_data->new_adj, NULL); 295 296 time_t tp = ptp_data->new_adj.tv_sec; 297 298 printf("\nCurrent SYS Time: %.24s %.6ld ns", 299 ctime(&tp), ptp_data->new_adj.tv_usec); 300 301 printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n", 302 nsec); 303 304 printf("[Ctrl+C to quit]\n"); 305 306 /* Clear screen and put cursor in column 1, row 1 */ 307 printf("\033[2J\033[1;1H"); 308 } 309 310 static int64_t 311 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data) 312 { 313 int64_t delta; 314 uint64_t t1 = 0; 315 uint64_t t2 = 0; 316 uint64_t t3 = 0; 317 uint64_t t4 = 0; 318 319 t1 = timespec64_to_ns(&ptp_data->tstamp1); 320 t2 = timespec64_to_ns(&ptp_data->tstamp2); 321 t3 = timespec64_to_ns(&ptp_data->tstamp3); 322 t4 = timespec64_to_ns(&ptp_data->tstamp4); 323 324 delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2; 325 326 return delta; 327 } 328 329 /* 330 * Parse the PTP SYNC message. 331 */ 332 static void 333 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx) 334 { 335 struct ptp_header *ptp_hdr; 336 337 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *) 338 + sizeof(struct ether_hdr)); 339 ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id); 340 341 if (ptp_data->ptpset == 0) { 342 rte_memcpy(&ptp_data->master_clock_id, 343 &ptp_hdr->source_port_id.clock_id, 344 sizeof(struct clock_id)); 345 ptp_data->ptpset = 1; 346 } 347 348 if (memcmp(&ptp_hdr->source_port_id.clock_id, 349 &ptp_hdr->source_port_id.clock_id, 350 sizeof(struct clock_id)) == 0) { 351 352 if (ptp_data->ptpset == 1) 353 rte_eth_timesync_read_rx_timestamp(ptp_data->portid, 354 &ptp_data->tstamp2, rx_tstamp_idx); 355 } 356 357 } 358 359 /* 360 * Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock. 361 */ 362 static void 363 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data) 364 { 365 struct ether_hdr *eth_hdr; 366 struct ptp_header *ptp_hdr; 367 struct clock_id *client_clkid; 368 struct ptp_message *ptp_msg; 369 struct rte_mbuf *created_pkt; 370 struct tstamp *origin_tstamp; 371 struct ether_addr eth_multicast = ether_multicast; 372 size_t pkt_size; 373 int wait_us; 374 struct rte_mbuf *m = ptp_data->m; 375 376 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 377 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) 378 + sizeof(struct ether_hdr)); 379 if (memcmp(&ptp_data->master_clock_id, 380 &ptp_hdr->source_port_id.clock_id, 381 sizeof(struct clock_id)) != 0) 382 return; 383 384 ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id); 385 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + 386 sizeof(struct ether_hdr)); 387 388 origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp; 389 ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns); 390 ptp_data->tstamp1.tv_sec = 391 ((uint64_t)ntohl(origin_tstamp->sec_lsb)) | 392 (((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32); 393 394 if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) { 395 396 created_pkt = rte_pktmbuf_alloc(mbuf_pool); 397 pkt_size = sizeof(struct ether_hdr) + 398 sizeof(struct ptp_message); 399 created_pkt->data_len = pkt_size; 400 created_pkt->pkt_len = pkt_size; 401 eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *); 402 rte_eth_macaddr_get(ptp_data->portid, ð_hdr->s_addr); 403 404 /* Set multicast address 01-1B-19-00-00-00. */ 405 ether_addr_copy(ð_multicast, ð_hdr->d_addr); 406 407 eth_hdr->ether_type = htons(PTP_PROTOCOL); 408 ptp_msg = (struct ptp_message *) 409 (rte_pktmbuf_mtod(created_pkt, char *) + 410 sizeof(struct ether_hdr)); 411 412 ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC); 413 ptp_msg->delay_req.hdr.msg_type = DELAY_REQ; 414 ptp_msg->delay_req.hdr.ver = 2; 415 ptp_msg->delay_req.hdr.control = 1; 416 ptp_msg->delay_req.hdr.log_message_interval = 127; 417 418 /* Set up clock id. */ 419 client_clkid = 420 &ptp_msg->delay_req.hdr.source_port_id.clock_id; 421 422 client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0]; 423 client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1]; 424 client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2]; 425 client_clkid->id[3] = 0xFF; 426 client_clkid->id[4] = 0xFE; 427 client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3]; 428 client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4]; 429 client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5]; 430 431 rte_memcpy(&ptp_data->client_clock_id, 432 client_clkid, 433 sizeof(struct clock_id)); 434 435 /* Enable flag for hardware timestamping. */ 436 created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST; 437 438 /*Read value from NIC to prevent latching with old value. */ 439 rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 440 &ptp_data->tstamp3); 441 442 /* Transmit the packet. */ 443 rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1); 444 445 wait_us = 0; 446 ptp_data->tstamp3.tv_nsec = 0; 447 ptp_data->tstamp3.tv_sec = 0; 448 449 /* Wait at least 1 us to read TX timestamp. */ 450 while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 451 &ptp_data->tstamp3) < 0) && (wait_us < 1000)) { 452 rte_delay_us(1); 453 wait_us++; 454 } 455 } 456 } 457 458 /* 459 * Update the kernel time with the difference between it and the current NIC 460 * time. 461 */ 462 static inline void 463 update_kernel_time(void) 464 { 465 int64_t nsec; 466 struct timespec net_time, sys_time; 467 468 clock_gettime(CLOCK_REALTIME, &sys_time); 469 rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time); 470 471 nsec = (int64_t)timespec64_to_ns(&net_time) - 472 (int64_t)timespec64_to_ns(&sys_time); 473 474 ptp_data.new_adj = ns_to_timeval(nsec); 475 476 /* 477 * If difference between kernel time and system time in NIC is too big 478 * (more than +/- 20 microseconds), use clock_settime to set directly 479 * the kernel time, as adjtime is better for small adjustments (takes 480 * longer to adjust the time). 481 */ 482 483 if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT) 484 clock_settime(CLOCK_REALTIME, &net_time); 485 else 486 adjtime(&ptp_data.new_adj, 0); 487 488 489 } 490 491 /* 492 * Parse the DELAY_RESP message. 493 */ 494 static void 495 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data) 496 { 497 struct rte_mbuf *m = ptp_data->m; 498 struct ptp_message *ptp_msg; 499 struct tstamp *rx_tstamp; 500 uint16_t seq_id; 501 502 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + 503 sizeof(struct ether_hdr)); 504 seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id); 505 if (memcmp(&ptp_data->client_clock_id, 506 &ptp_msg->delay_resp.req_port_id.clock_id, 507 sizeof(struct clock_id)) == 0) { 508 if (seq_id == ptp_data->seqID_FOLLOWUP) { 509 rx_tstamp = &ptp_msg->delay_resp.rx_tstamp; 510 ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns); 511 ptp_data->tstamp4.tv_sec = 512 ((uint64_t)ntohl(rx_tstamp->sec_lsb)) | 513 (((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32); 514 515 /* Evaluate the delta for adjustment. */ 516 ptp_data->delta = delta_eval(ptp_data); 517 518 rte_eth_timesync_adjust_time(ptp_data->portid, 519 ptp_data->delta); 520 521 ptp_data->current_ptp_port = ptp_data->portid; 522 523 /* Update kernel time if enabled in app parameters. */ 524 if (ptp_data->kernel_time_set == 1) 525 update_kernel_time(); 526 527 528 529 } 530 } 531 } 532 533 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2 534 * functionality. 535 */ 536 static void 537 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) { 538 struct ptp_header *ptp_hdr; 539 struct ether_hdr *eth_hdr; 540 uint16_t eth_type; 541 542 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 543 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type); 544 545 if (eth_type == PTP_PROTOCOL) { 546 ptp_data.m = m; 547 ptp_data.portid = portid; 548 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) 549 + sizeof(struct ether_hdr)); 550 551 switch (ptp_hdr->msg_type) { 552 case SYNC: 553 parse_sync(&ptp_data, m->timesync); 554 break; 555 case FOLLOW_UP: 556 parse_fup(&ptp_data); 557 break; 558 case DELAY_RESP: 559 parse_drsp(&ptp_data); 560 print_clock_info(&ptp_data); 561 break; 562 default: 563 break; 564 } 565 } 566 } 567 568 /* 569 * The lcore main. This is the main thread that does the work, reading from an 570 * input port and writing to an output port. 571 */ 572 static __attribute__((noreturn)) void 573 lcore_main(void) 574 { 575 uint16_t portid; 576 unsigned nb_rx; 577 struct rte_mbuf *m; 578 579 /* 580 * Check that the port is on the same NUMA node as the polling thread 581 * for best performance. 582 */ 583 printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n", 584 rte_lcore_id()); 585 586 /* Run until the application is quit or killed. */ 587 588 while (1) { 589 /* Read packet from RX queues. */ 590 for (portid = 0; portid < ptp_enabled_port_nb; portid++) { 591 592 portid = ptp_enabled_ports[portid]; 593 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1); 594 595 if (likely(nb_rx == 0)) 596 continue; 597 598 if (m->ol_flags & PKT_RX_IEEE1588_PTP) 599 parse_ptp_frames(portid, m); 600 601 rte_pktmbuf_free(m); 602 } 603 } 604 } 605 606 static void 607 print_usage(const char *prgname) 608 { 609 printf("%s [EAL options] -- -p PORTMASK -T VALUE\n" 610 " -T VALUE: 0 - Disable, 1 - Enable Linux Clock" 611 " Synchronization (0 default)\n" 612 " -p PORTMASK: hexadecimal bitmask of ports to configure\n", 613 prgname); 614 } 615 616 static int 617 ptp_parse_portmask(const char *portmask) 618 { 619 char *end = NULL; 620 unsigned long pm; 621 622 /* Parse the hexadecimal string. */ 623 pm = strtoul(portmask, &end, 16); 624 625 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 626 return -1; 627 628 if (pm == 0) 629 return -1; 630 631 return pm; 632 } 633 634 static int 635 parse_ptp_kernel(const char *param) 636 { 637 char *end = NULL; 638 unsigned long pm; 639 640 /* Parse the hexadecimal string. */ 641 pm = strtoul(param, &end, 16); 642 643 if ((param[0] == '\0') || (end == NULL) || (*end != '\0')) 644 return -1; 645 if (pm == 0) 646 return 0; 647 648 return 1; 649 } 650 651 /* Parse the commandline arguments. */ 652 static int 653 ptp_parse_args(int argc, char **argv) 654 { 655 int opt, ret; 656 char **argvopt; 657 int option_index; 658 char *prgname = argv[0]; 659 static struct option lgopts[] = { {NULL, 0, 0, 0} }; 660 661 argvopt = argv; 662 663 while ((opt = getopt_long(argc, argvopt, "p:T:", 664 lgopts, &option_index)) != EOF) { 665 666 switch (opt) { 667 668 /* Portmask. */ 669 case 'p': 670 ptp_enabled_port_mask = ptp_parse_portmask(optarg); 671 if (ptp_enabled_port_mask == 0) { 672 printf("invalid portmask\n"); 673 print_usage(prgname); 674 return -1; 675 } 676 break; 677 /* Time synchronization. */ 678 case 'T': 679 ret = parse_ptp_kernel(optarg); 680 if (ret < 0) { 681 print_usage(prgname); 682 return -1; 683 } 684 685 ptp_data.kernel_time_set = ret; 686 break; 687 688 default: 689 print_usage(prgname); 690 return -1; 691 } 692 } 693 694 argv[optind-1] = prgname; 695 696 optind = 1; /* Reset getopt lib. */ 697 698 return 0; 699 } 700 701 /* 702 * The main function, which does initialization and calls the per-lcore 703 * functions. 704 */ 705 int 706 main(int argc, char *argv[]) 707 { 708 unsigned nb_ports; 709 710 uint16_t portid; 711 712 /* Initialize the Environment Abstraction Layer (EAL). */ 713 int ret = rte_eal_init(argc, argv); 714 715 if (ret < 0) 716 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 717 718 memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary)); 719 720 argc -= ret; 721 argv += ret; 722 723 ret = ptp_parse_args(argc, argv); 724 if (ret < 0) 725 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n"); 726 727 /* Check that there is an even number of ports to send/receive on. */ 728 nb_ports = rte_eth_dev_count(); 729 730 /* Creates a new mempool in memory to hold the mbufs. */ 731 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 732 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 733 734 if (mbuf_pool == NULL) 735 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 736 737 /* Initialize all ports. */ 738 for (portid = 0; portid < nb_ports; portid++) { 739 if ((ptp_enabled_port_mask & (1 << portid)) != 0) { 740 if (port_init(portid, mbuf_pool) == 0) { 741 ptp_enabled_ports[ptp_enabled_port_nb] = portid; 742 ptp_enabled_port_nb++; 743 } else { 744 rte_exit(EXIT_FAILURE, 745 "Cannot init port %"PRIu8 "\n", 746 portid); 747 } 748 } else 749 printf("Skipping disabled port %u\n", portid); 750 } 751 752 if (ptp_enabled_port_nb == 0) { 753 rte_exit(EXIT_FAILURE, 754 "All available ports are disabled." 755 " Please set portmask.\n"); 756 } 757 758 if (rte_lcore_count() > 1) 759 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 760 761 /* Call lcore_main on the master core only. */ 762 lcore_main(); 763 764 return 0; 765 } 766