xref: /dpdk/examples/ptpclient/ptpclient.c (revision 49781e37e78a1be538e498233b84a2b0e644b5eb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015 Intel Corporation
3  */
4 
5 /*
6  * This application is a simple Layer 2 PTP v2 client. It shows delta values
7  * which are used to synchronize the PHC clock. if the "-T 1" parameter is
8  * passed to the application the Linux kernel clock is also synchronized.
9  */
10 
11 #include <stdint.h>
12 #include <inttypes.h>
13 #include <rte_eal.h>
14 #include <rte_ethdev.h>
15 #include <rte_cycles.h>
16 #include <rte_lcore.h>
17 #include <rte_mbuf.h>
18 #include <rte_ip.h>
19 #include <limits.h>
20 #include <sys/time.h>
21 #include <getopt.h>
22 
23 #define RX_RING_SIZE 1024
24 #define TX_RING_SIZE 1024
25 
26 #define NUM_MBUFS            8191
27 #define MBUF_CACHE_SIZE       250
28 
29 /* Values for the PTP messageType field. */
30 #define SYNC                  0x0
31 #define DELAY_REQ             0x1
32 #define PDELAY_REQ            0x2
33 #define PDELAY_RESP           0x3
34 #define FOLLOW_UP             0x8
35 #define DELAY_RESP            0x9
36 #define PDELAY_RESP_FOLLOW_UP 0xA
37 #define ANNOUNCE              0xB
38 #define SIGNALING             0xC
39 #define MANAGEMENT            0xD
40 
41 #define NSEC_PER_SEC        1000000000L
42 #define KERNEL_TIME_ADJUST_LIMIT  20000
43 #define PTP_PROTOCOL             0x88F7
44 
45 struct rte_mempool *mbuf_pool;
46 uint32_t ptp_enabled_port_mask;
47 uint8_t ptp_enabled_port_nb;
48 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS];
49 
50 static const struct rte_eth_conf port_conf_default = {
51 	.rxmode = {
52 		.max_rx_pkt_len = ETHER_MAX_LEN,
53 		.ignore_offload_bitfield = 1,
54 	},
55 };
56 
57 static const struct ether_addr ether_multicast = {
58 	.addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0}
59 };
60 
61 /* Structs used for PTP handling. */
62 struct tstamp {
63 	uint16_t   sec_msb;
64 	uint32_t   sec_lsb;
65 	uint32_t   ns;
66 }  __attribute__((packed));
67 
68 struct clock_id {
69 	uint8_t id[8];
70 };
71 
72 struct port_id {
73 	struct clock_id        clock_id;
74 	uint16_t               port_number;
75 }  __attribute__((packed));
76 
77 struct ptp_header {
78 	uint8_t              msg_type;
79 	uint8_t              ver;
80 	uint16_t             message_length;
81 	uint8_t              domain_number;
82 	uint8_t              reserved1;
83 	uint8_t              flag_field[2];
84 	int64_t              correction;
85 	uint32_t             reserved2;
86 	struct port_id       source_port_id;
87 	uint16_t             seq_id;
88 	uint8_t              control;
89 	int8_t               log_message_interval;
90 } __attribute__((packed));
91 
92 struct sync_msg {
93 	struct ptp_header   hdr;
94 	struct tstamp       origin_tstamp;
95 } __attribute__((packed));
96 
97 struct follow_up_msg {
98 	struct ptp_header   hdr;
99 	struct tstamp       precise_origin_tstamp;
100 	uint8_t             suffix[0];
101 } __attribute__((packed));
102 
103 struct delay_req_msg {
104 	struct ptp_header   hdr;
105 	struct tstamp       origin_tstamp;
106 } __attribute__((packed));
107 
108 struct delay_resp_msg {
109 	struct ptp_header    hdr;
110 	struct tstamp        rx_tstamp;
111 	struct port_id       req_port_id;
112 	uint8_t              suffix[0];
113 } __attribute__((packed));
114 
115 struct ptp_message {
116 	union {
117 		struct ptp_header          header;
118 		struct sync_msg            sync;
119 		struct delay_req_msg       delay_req;
120 		struct follow_up_msg       follow_up;
121 		struct delay_resp_msg      delay_resp;
122 	} __attribute__((packed));
123 };
124 
125 struct ptpv2_data_slave_ordinary {
126 	struct rte_mbuf *m;
127 	struct timespec tstamp1;
128 	struct timespec tstamp2;
129 	struct timespec tstamp3;
130 	struct timespec tstamp4;
131 	struct clock_id client_clock_id;
132 	struct clock_id master_clock_id;
133 	struct timeval new_adj;
134 	int64_t delta;
135 	uint16_t portid;
136 	uint16_t seqID_SYNC;
137 	uint16_t seqID_FOLLOWUP;
138 	uint8_t ptpset;
139 	uint8_t kernel_time_set;
140 	uint16_t current_ptp_port;
141 };
142 
143 static struct ptpv2_data_slave_ordinary ptp_data;
144 
145 static inline uint64_t timespec64_to_ns(const struct timespec *ts)
146 {
147 	return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
148 }
149 
150 static struct timeval
151 ns_to_timeval(int64_t nsec)
152 {
153 	struct timespec t_spec = {0, 0};
154 	struct timeval t_eval = {0, 0};
155 	int32_t rem;
156 
157 	if (nsec == 0)
158 		return t_eval;
159 	rem = nsec % NSEC_PER_SEC;
160 	t_spec.tv_sec = nsec / NSEC_PER_SEC;
161 
162 	if (rem < 0) {
163 		t_spec.tv_sec--;
164 		rem += NSEC_PER_SEC;
165 	}
166 
167 	t_spec.tv_nsec = rem;
168 	t_eval.tv_sec = t_spec.tv_sec;
169 	t_eval.tv_usec = t_spec.tv_nsec / 1000;
170 
171 	return t_eval;
172 }
173 
174 /*
175  * Initializes a given port using global settings and with the RX buffers
176  * coming from the mbuf_pool passed as a parameter.
177  */
178 static inline int
179 port_init(uint16_t port, struct rte_mempool *mbuf_pool)
180 {
181 	struct rte_eth_dev_info dev_info;
182 	struct rte_eth_conf port_conf = port_conf_default;
183 	const uint16_t rx_rings = 1;
184 	const uint16_t tx_rings = 1;
185 	int retval;
186 	uint16_t q;
187 	uint16_t nb_rxd = RX_RING_SIZE;
188 	uint16_t nb_txd = TX_RING_SIZE;
189 
190 	if (!rte_eth_dev_is_valid_port(port))
191 		return -1;
192 
193 	rte_eth_dev_info_get(port, &dev_info);
194 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
195 		port_conf.txmode.offloads |=
196 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
197 	/* Force full Tx path in the driver, required for IEEE1588 */
198 	port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
199 
200 	/* Configure the Ethernet device. */
201 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
202 	if (retval != 0)
203 		return retval;
204 
205 	retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
206 	if (retval != 0)
207 		return retval;
208 
209 	/* Allocate and set up 1 RX queue per Ethernet port. */
210 	for (q = 0; q < rx_rings; q++) {
211 		retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
212 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
213 
214 		if (retval < 0)
215 			return retval;
216 	}
217 
218 	/* Allocate and set up 1 TX queue per Ethernet port. */
219 	for (q = 0; q < tx_rings; q++) {
220 		/* Setup txq_flags */
221 		struct rte_eth_txconf *txconf;
222 
223 		txconf = &dev_info.default_txconf;
224 		txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE;
225 		txconf->offloads = port_conf.txmode.offloads;
226 
227 		retval = rte_eth_tx_queue_setup(port, q, nb_txd,
228 				rte_eth_dev_socket_id(port), txconf);
229 		if (retval < 0)
230 			return retval;
231 	}
232 
233 	/* Start the Ethernet port. */
234 	retval = rte_eth_dev_start(port);
235 	if (retval < 0)
236 		return retval;
237 
238 	/* Enable timesync timestamping for the Ethernet device */
239 	rte_eth_timesync_enable(port);
240 
241 	/* Enable RX in promiscuous mode for the Ethernet device. */
242 	rte_eth_promiscuous_enable(port);
243 
244 	return 0;
245 }
246 
247 static void
248 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data)
249 {
250 	int64_t nsec;
251 	struct timespec net_time, sys_time;
252 
253 	printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
254 		ptp_data->master_clock_id.id[0],
255 		ptp_data->master_clock_id.id[1],
256 		ptp_data->master_clock_id.id[2],
257 		ptp_data->master_clock_id.id[3],
258 		ptp_data->master_clock_id.id[4],
259 		ptp_data->master_clock_id.id[5],
260 		ptp_data->master_clock_id.id[6],
261 		ptp_data->master_clock_id.id[7]);
262 
263 	printf("\nT2 - Slave  Clock.  %lds %ldns",
264 			(ptp_data->tstamp2.tv_sec),
265 			(ptp_data->tstamp2.tv_nsec));
266 
267 	printf("\nT1 - Master Clock.  %lds %ldns ",
268 			ptp_data->tstamp1.tv_sec,
269 			(ptp_data->tstamp1.tv_nsec));
270 
271 	printf("\nT3 - Slave  Clock.  %lds %ldns",
272 			ptp_data->tstamp3.tv_sec,
273 			(ptp_data->tstamp3.tv_nsec));
274 
275 	printf("\nT4 - Master Clock.  %lds %ldns ",
276 			ptp_data->tstamp4.tv_sec,
277 			(ptp_data->tstamp4.tv_nsec));
278 
279 	printf("\nDelta between master and slave clocks:%"PRId64"ns\n",
280 			ptp_data->delta);
281 
282 	clock_gettime(CLOCK_REALTIME, &sys_time);
283 	rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time);
284 
285 	time_t ts = net_time.tv_sec;
286 
287 	printf("\n\nComparison between Linux kernel Time and PTP:");
288 
289 	printf("\nCurrent PTP Time: %.24s %.9ld ns",
290 			ctime(&ts), net_time.tv_nsec);
291 
292 	nsec = (int64_t)timespec64_to_ns(&net_time) -
293 			(int64_t)timespec64_to_ns(&sys_time);
294 	ptp_data->new_adj = ns_to_timeval(nsec);
295 
296 	gettimeofday(&ptp_data->new_adj, NULL);
297 
298 	time_t tp = ptp_data->new_adj.tv_sec;
299 
300 	printf("\nCurrent SYS Time: %.24s %.6ld ns",
301 				ctime(&tp), ptp_data->new_adj.tv_usec);
302 
303 	printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n",
304 				nsec);
305 
306 	printf("[Ctrl+C to quit]\n");
307 
308 	/* Clear screen and put cursor in column 1, row 1 */
309 	printf("\033[2J\033[1;1H");
310 }
311 
312 static int64_t
313 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data)
314 {
315 	int64_t delta;
316 	uint64_t t1 = 0;
317 	uint64_t t2 = 0;
318 	uint64_t t3 = 0;
319 	uint64_t t4 = 0;
320 
321 	t1 = timespec64_to_ns(&ptp_data->tstamp1);
322 	t2 = timespec64_to_ns(&ptp_data->tstamp2);
323 	t3 = timespec64_to_ns(&ptp_data->tstamp3);
324 	t4 = timespec64_to_ns(&ptp_data->tstamp4);
325 
326 	delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2;
327 
328 	return delta;
329 }
330 
331 /*
332  * Parse the PTP SYNC message.
333  */
334 static void
335 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx)
336 {
337 	struct ptp_header *ptp_hdr;
338 
339 	ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *)
340 			+ sizeof(struct ether_hdr));
341 	ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id);
342 
343 	if (ptp_data->ptpset == 0) {
344 		rte_memcpy(&ptp_data->master_clock_id,
345 				&ptp_hdr->source_port_id.clock_id,
346 				sizeof(struct clock_id));
347 		ptp_data->ptpset = 1;
348 	}
349 
350 	if (memcmp(&ptp_hdr->source_port_id.clock_id,
351 			&ptp_hdr->source_port_id.clock_id,
352 			sizeof(struct clock_id)) == 0) {
353 
354 		if (ptp_data->ptpset == 1)
355 			rte_eth_timesync_read_rx_timestamp(ptp_data->portid,
356 					&ptp_data->tstamp2, rx_tstamp_idx);
357 	}
358 
359 }
360 
361 /*
362  * Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock.
363  */
364 static void
365 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data)
366 {
367 	struct ether_hdr *eth_hdr;
368 	struct ptp_header *ptp_hdr;
369 	struct clock_id *client_clkid;
370 	struct ptp_message *ptp_msg;
371 	struct rte_mbuf *created_pkt;
372 	struct tstamp *origin_tstamp;
373 	struct ether_addr eth_multicast = ether_multicast;
374 	size_t pkt_size;
375 	int wait_us;
376 	struct rte_mbuf *m = ptp_data->m;
377 
378 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
379 	ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
380 			+ sizeof(struct ether_hdr));
381 	if (memcmp(&ptp_data->master_clock_id,
382 			&ptp_hdr->source_port_id.clock_id,
383 			sizeof(struct clock_id)) != 0)
384 		return;
385 
386 	ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id);
387 	ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
388 					  sizeof(struct ether_hdr));
389 
390 	origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp;
391 	ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns);
392 	ptp_data->tstamp1.tv_sec =
393 		((uint64_t)ntohl(origin_tstamp->sec_lsb)) |
394 		(((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32);
395 
396 	if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) {
397 
398 		created_pkt = rte_pktmbuf_alloc(mbuf_pool);
399 		pkt_size = sizeof(struct ether_hdr) +
400 			sizeof(struct ptp_message);
401 		created_pkt->data_len = pkt_size;
402 		created_pkt->pkt_len = pkt_size;
403 		eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *);
404 		rte_eth_macaddr_get(ptp_data->portid, &eth_hdr->s_addr);
405 
406 		/* Set multicast address 01-1B-19-00-00-00. */
407 		ether_addr_copy(&eth_multicast, &eth_hdr->d_addr);
408 
409 		eth_hdr->ether_type = htons(PTP_PROTOCOL);
410 		ptp_msg = (struct ptp_message *)
411 			(rte_pktmbuf_mtod(created_pkt, char *) +
412 			sizeof(struct ether_hdr));
413 
414 		ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC);
415 		ptp_msg->delay_req.hdr.msg_type = DELAY_REQ;
416 		ptp_msg->delay_req.hdr.ver = 2;
417 		ptp_msg->delay_req.hdr.control = 1;
418 		ptp_msg->delay_req.hdr.log_message_interval = 127;
419 
420 		/* Set up clock id. */
421 		client_clkid =
422 			&ptp_msg->delay_req.hdr.source_port_id.clock_id;
423 
424 		client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0];
425 		client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1];
426 		client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2];
427 		client_clkid->id[3] = 0xFF;
428 		client_clkid->id[4] = 0xFE;
429 		client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3];
430 		client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4];
431 		client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5];
432 
433 		rte_memcpy(&ptp_data->client_clock_id,
434 			   client_clkid,
435 			   sizeof(struct clock_id));
436 
437 		/* Enable flag for hardware timestamping. */
438 		created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST;
439 
440 		/*Read value from NIC to prevent latching with old value. */
441 		rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
442 				&ptp_data->tstamp3);
443 
444 		/* Transmit the packet. */
445 		rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1);
446 
447 		wait_us = 0;
448 		ptp_data->tstamp3.tv_nsec = 0;
449 		ptp_data->tstamp3.tv_sec = 0;
450 
451 		/* Wait at least 1 us to read TX timestamp. */
452 		while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
453 				&ptp_data->tstamp3) < 0) && (wait_us < 1000)) {
454 			rte_delay_us(1);
455 			wait_us++;
456 		}
457 	}
458 }
459 
460 /*
461  * Update the kernel time with the difference between it and the current NIC
462  * time.
463  */
464 static inline void
465 update_kernel_time(void)
466 {
467 	int64_t nsec;
468 	struct timespec net_time, sys_time;
469 
470 	clock_gettime(CLOCK_REALTIME, &sys_time);
471 	rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time);
472 
473 	nsec = (int64_t)timespec64_to_ns(&net_time) -
474 	       (int64_t)timespec64_to_ns(&sys_time);
475 
476 	ptp_data.new_adj = ns_to_timeval(nsec);
477 
478 	/*
479 	 * If difference between kernel time and system time in NIC is too big
480 	 * (more than +/- 20 microseconds), use clock_settime to set directly
481 	 * the kernel time, as adjtime is better for small adjustments (takes
482 	 * longer to adjust the time).
483 	 */
484 
485 	if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT)
486 		clock_settime(CLOCK_REALTIME, &net_time);
487 	else
488 		adjtime(&ptp_data.new_adj, 0);
489 
490 
491 }
492 
493 /*
494  * Parse the DELAY_RESP message.
495  */
496 static void
497 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data)
498 {
499 	struct rte_mbuf *m = ptp_data->m;
500 	struct ptp_message *ptp_msg;
501 	struct tstamp *rx_tstamp;
502 	uint16_t seq_id;
503 
504 	ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
505 					sizeof(struct ether_hdr));
506 	seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id);
507 	if (memcmp(&ptp_data->client_clock_id,
508 		   &ptp_msg->delay_resp.req_port_id.clock_id,
509 		   sizeof(struct clock_id)) == 0) {
510 		if (seq_id == ptp_data->seqID_FOLLOWUP) {
511 			rx_tstamp = &ptp_msg->delay_resp.rx_tstamp;
512 			ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns);
513 			ptp_data->tstamp4.tv_sec =
514 				((uint64_t)ntohl(rx_tstamp->sec_lsb)) |
515 				(((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32);
516 
517 			/* Evaluate the delta for adjustment. */
518 			ptp_data->delta = delta_eval(ptp_data);
519 
520 			rte_eth_timesync_adjust_time(ptp_data->portid,
521 						     ptp_data->delta);
522 
523 			ptp_data->current_ptp_port = ptp_data->portid;
524 
525 			/* Update kernel time if enabled in app parameters. */
526 			if (ptp_data->kernel_time_set == 1)
527 				update_kernel_time();
528 
529 
530 
531 		}
532 	}
533 }
534 
535 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2
536  * functionality.
537  */
538 static void
539 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
540 	struct ptp_header *ptp_hdr;
541 	struct ether_hdr *eth_hdr;
542 	uint16_t eth_type;
543 
544 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
545 	eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
546 
547 	if (eth_type == PTP_PROTOCOL) {
548 		ptp_data.m = m;
549 		ptp_data.portid = portid;
550 		ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
551 					+ sizeof(struct ether_hdr));
552 
553 		switch (ptp_hdr->msg_type) {
554 		case SYNC:
555 			parse_sync(&ptp_data, m->timesync);
556 			break;
557 		case FOLLOW_UP:
558 			parse_fup(&ptp_data);
559 			break;
560 		case DELAY_RESP:
561 			parse_drsp(&ptp_data);
562 			print_clock_info(&ptp_data);
563 			break;
564 		default:
565 			break;
566 		}
567 	}
568 }
569 
570 /*
571  * The lcore main. This is the main thread that does the work, reading from an
572  * input port and writing to an output port.
573  */
574 static __attribute__((noreturn)) void
575 lcore_main(void)
576 {
577 	uint16_t portid;
578 	unsigned nb_rx;
579 	struct rte_mbuf *m;
580 
581 	/*
582 	 * Check that the port is on the same NUMA node as the polling thread
583 	 * for best performance.
584 	 */
585 	printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n",
586 			rte_lcore_id());
587 
588 	/* Run until the application is quit or killed. */
589 
590 	while (1) {
591 		/* Read packet from RX queues. */
592 		for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
593 
594 			portid = ptp_enabled_ports[portid];
595 			nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
596 
597 			if (likely(nb_rx == 0))
598 				continue;
599 
600 			if (m->ol_flags & PKT_RX_IEEE1588_PTP)
601 				parse_ptp_frames(portid, m);
602 
603 			rte_pktmbuf_free(m);
604 		}
605 	}
606 }
607 
608 static void
609 print_usage(const char *prgname)
610 {
611 	printf("%s [EAL options] -- -p PORTMASK -T VALUE\n"
612 		" -T VALUE: 0 - Disable, 1 - Enable Linux Clock"
613 		" Synchronization (0 default)\n"
614 		" -p PORTMASK: hexadecimal bitmask of ports to configure\n",
615 		prgname);
616 }
617 
618 static int
619 ptp_parse_portmask(const char *portmask)
620 {
621 	char *end = NULL;
622 	unsigned long pm;
623 
624 	/* Parse the hexadecimal string. */
625 	pm = strtoul(portmask, &end, 16);
626 
627 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
628 		return -1;
629 
630 	if (pm == 0)
631 		return -1;
632 
633 	return pm;
634 }
635 
636 static int
637 parse_ptp_kernel(const char *param)
638 {
639 	char *end = NULL;
640 	unsigned long pm;
641 
642 	/* Parse the hexadecimal string. */
643 	pm = strtoul(param, &end, 16);
644 
645 	if ((param[0] == '\0') || (end == NULL) || (*end != '\0'))
646 		return -1;
647 	if (pm == 0)
648 		return 0;
649 
650 	return 1;
651 }
652 
653 /* Parse the commandline arguments. */
654 static int
655 ptp_parse_args(int argc, char **argv)
656 {
657 	int opt, ret;
658 	char **argvopt;
659 	int option_index;
660 	char *prgname = argv[0];
661 	static struct option lgopts[] = { {NULL, 0, 0, 0} };
662 
663 	argvopt = argv;
664 
665 	while ((opt = getopt_long(argc, argvopt, "p:T:",
666 				  lgopts, &option_index)) != EOF) {
667 
668 		switch (opt) {
669 
670 		/* Portmask. */
671 		case 'p':
672 			ptp_enabled_port_mask = ptp_parse_portmask(optarg);
673 			if (ptp_enabled_port_mask == 0) {
674 				printf("invalid portmask\n");
675 				print_usage(prgname);
676 				return -1;
677 			}
678 			break;
679 		/* Time synchronization. */
680 		case 'T':
681 			ret = parse_ptp_kernel(optarg);
682 			if (ret < 0) {
683 				print_usage(prgname);
684 				return -1;
685 			}
686 
687 			ptp_data.kernel_time_set = ret;
688 			break;
689 
690 		default:
691 			print_usage(prgname);
692 			return -1;
693 		}
694 	}
695 
696 	argv[optind-1] = prgname;
697 
698 	optind = 1; /* Reset getopt lib. */
699 
700 	return 0;
701 }
702 
703 /*
704  * The main function, which does initialization and calls the per-lcore
705  * functions.
706  */
707 int
708 main(int argc, char *argv[])
709 {
710 	unsigned nb_ports;
711 
712 	uint16_t portid;
713 
714 	/* Initialize the Environment Abstraction Layer (EAL). */
715 	int ret = rte_eal_init(argc, argv);
716 
717 	if (ret < 0)
718 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
719 
720 	memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary));
721 
722 	argc -= ret;
723 	argv += ret;
724 
725 	ret = ptp_parse_args(argc, argv);
726 	if (ret < 0)
727 		rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
728 
729 	/* Check that there is an even number of ports to send/receive on. */
730 	nb_ports = rte_eth_dev_count_avail();
731 
732 	/* Creates a new mempool in memory to hold the mbufs. */
733 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
734 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
735 
736 	if (mbuf_pool == NULL)
737 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
738 
739 	/* Initialize all ports. */
740 	RTE_ETH_FOREACH_DEV(portid) {
741 		if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
742 			if (port_init(portid, mbuf_pool) == 0) {
743 				ptp_enabled_ports[ptp_enabled_port_nb] = portid;
744 				ptp_enabled_port_nb++;
745 			} else {
746 				rte_exit(EXIT_FAILURE,
747 					 "Cannot init port %"PRIu8 "\n",
748 					 portid);
749 			}
750 		} else
751 			printf("Skipping disabled port %u\n", portid);
752 	}
753 
754 	if (ptp_enabled_port_nb == 0) {
755 		rte_exit(EXIT_FAILURE,
756 			"All available ports are disabled."
757 			" Please set portmask.\n");
758 	}
759 
760 	if (rte_lcore_count() > 1)
761 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
762 
763 	/* Call lcore_main on the master core only. */
764 	lcore_main();
765 
766 	return 0;
767 }
768