1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015 Intel Corporation 3 */ 4 5 /* 6 * This application is a simple Layer 2 PTP v2 client. It shows delta values 7 * which are used to synchronize the PHC clock. if the "-T 1" parameter is 8 * passed to the application the Linux kernel clock is also synchronized. 9 */ 10 11 #include <stdint.h> 12 #include <stdlib.h> 13 #include <inttypes.h> 14 #include <rte_eal.h> 15 #include <rte_ethdev.h> 16 #include <rte_cycles.h> 17 #include <rte_lcore.h> 18 #include <rte_mbuf.h> 19 #include <rte_ip.h> 20 #include <limits.h> 21 #include <sys/time.h> 22 #include <getopt.h> 23 #include <signal.h> 24 25 static volatile bool force_quit; 26 27 #define RX_RING_SIZE 1024 28 #define TX_RING_SIZE 1024 29 30 #define NUM_MBUFS 8191 31 #define MBUF_CACHE_SIZE 250 32 33 /* Values for the PTP messageType field. */ 34 #define SYNC 0x0 35 #define DELAY_REQ 0x1 36 #define PDELAY_REQ 0x2 37 #define PDELAY_RESP 0x3 38 #define FOLLOW_UP 0x8 39 #define DELAY_RESP 0x9 40 #define PDELAY_RESP_FOLLOW_UP 0xA 41 #define ANNOUNCE 0xB 42 #define SIGNALING 0xC 43 #define MANAGEMENT 0xD 44 45 #define NSEC_PER_SEC 1000000000L 46 #define KERNEL_TIME_ADJUST_LIMIT 20000 47 #define PTP_PROTOCOL 0x88F7 48 49 #define KP 0.7 50 #define KI 0.3 51 #define FREQ_EST_MARGIN 0.001 52 53 enum servo_state { 54 SERVO_UNLOCKED, 55 SERVO_JUMP, 56 SERVO_LOCKED, 57 }; 58 59 struct pi_servo { 60 double offset[2]; 61 double local[2]; 62 double drift; 63 double last_freq; 64 int count; 65 66 double max_frequency; 67 double step_threshold; 68 double first_step_threshold; 69 int first_update; 70 }; 71 72 enum controller_mode { 73 MODE_NONE, 74 MODE_PI, 75 MAX_ALL 76 } mode = MODE_NONE; 77 78 struct rte_mempool *mbuf_pool; 79 uint32_t ptp_enabled_port_mask; 80 uint8_t ptp_enabled_port_nb; 81 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS]; 82 83 static const struct rte_ether_addr ether_multicast = { 84 .addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0} 85 }; 86 87 /* Structs used for PTP handling. */ 88 struct tstamp { 89 uint16_t sec_msb; 90 uint32_t sec_lsb; 91 uint32_t ns; 92 } __rte_packed; 93 94 struct clock_id { 95 uint8_t id[8]; 96 }; 97 98 struct port_id { 99 struct clock_id clock_id; 100 uint16_t port_number; 101 } __rte_packed; 102 103 struct ptp_header { 104 uint8_t msg_type; 105 uint8_t ver; 106 uint16_t message_length; 107 uint8_t domain_number; 108 uint8_t reserved1; 109 uint8_t flag_field[2]; 110 int64_t correction; 111 uint32_t reserved2; 112 struct port_id source_port_id; 113 uint16_t seq_id; 114 uint8_t control; 115 int8_t log_message_interval; 116 } __rte_packed; 117 118 struct sync_msg { 119 struct ptp_header hdr; 120 struct tstamp origin_tstamp; 121 } __rte_packed; 122 123 struct follow_up_msg { 124 struct ptp_header hdr; 125 struct tstamp precise_origin_tstamp; 126 uint8_t suffix[]; 127 } __rte_packed; 128 129 struct delay_req_msg { 130 struct ptp_header hdr; 131 struct tstamp origin_tstamp; 132 } __rte_packed; 133 134 struct delay_resp_msg { 135 struct ptp_header hdr; 136 struct tstamp rx_tstamp; 137 struct port_id req_port_id; 138 uint8_t suffix[]; 139 } __rte_packed; 140 141 struct ptp_message { 142 union { 143 struct ptp_header header; 144 struct sync_msg sync; 145 struct delay_req_msg delay_req; 146 struct follow_up_msg follow_up; 147 struct delay_resp_msg delay_resp; 148 } __rte_packed; 149 }; 150 151 struct ptpv2_time_receiver_ordinary { 152 struct rte_mbuf *m; 153 struct timespec tstamp1; 154 struct timespec tstamp2; 155 struct timespec tstamp3; 156 struct timespec tstamp4; 157 struct clock_id client_clock_id; 158 struct clock_id transmitter_clock_id; 159 struct timeval new_adj; 160 int64_t delta; 161 uint16_t portid; 162 uint16_t seqID_SYNC; 163 uint16_t seqID_FOLLOWUP; 164 uint8_t ptpset; 165 uint8_t kernel_time_set; 166 uint16_t current_ptp_port; 167 int64_t master_offset; 168 int64_t path_delay; 169 struct pi_servo *servo; 170 }; 171 172 static struct ptpv2_time_receiver_ordinary ptp_data; 173 174 static inline uint64_t timespec64_to_ns(const struct timespec *ts) 175 { 176 return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; 177 } 178 179 static struct timeval 180 ns_to_timeval(int64_t nsec) 181 { 182 struct timespec t_spec = {0, 0}; 183 struct timeval t_eval = {0, 0}; 184 int32_t rem; 185 186 if (nsec == 0) 187 return t_eval; 188 rem = nsec % NSEC_PER_SEC; 189 t_spec.tv_sec = nsec / NSEC_PER_SEC; 190 191 if (rem < 0) { 192 t_spec.tv_sec--; 193 rem += NSEC_PER_SEC; 194 } 195 196 t_spec.tv_nsec = rem; 197 t_eval.tv_sec = t_spec.tv_sec; 198 t_eval.tv_usec = t_spec.tv_nsec / 1000; 199 200 return t_eval; 201 } 202 203 /* 204 * Initializes a given port using global settings and with the RX buffers 205 * coming from the mbuf_pool passed as a parameter. 206 */ 207 static inline int 208 port_init(uint16_t port, struct rte_mempool *mbuf_pool) 209 { 210 struct rte_eth_dev_info dev_info; 211 struct rte_eth_conf port_conf; 212 const uint16_t rx_rings = 1; 213 const uint16_t tx_rings = 1; 214 int retval; 215 uint16_t q; 216 uint16_t nb_rxd = RX_RING_SIZE; 217 uint16_t nb_txd = TX_RING_SIZE; 218 219 if (!rte_eth_dev_is_valid_port(port)) 220 return -1; 221 222 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 223 224 retval = rte_eth_dev_info_get(port, &dev_info); 225 if (retval != 0) { 226 printf("Error during getting device (port %u) info: %s\n", 227 port, strerror(-retval)); 228 229 return retval; 230 } 231 232 if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_TIMESTAMP) 233 port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_TIMESTAMP; 234 235 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) 236 port_conf.txmode.offloads |= 237 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; 238 /* Force full Tx path in the driver, required for IEEE1588 */ 239 port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS; 240 241 /* Configure the Ethernet device. */ 242 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 243 if (retval != 0) 244 return retval; 245 246 retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd); 247 if (retval != 0) 248 return retval; 249 250 /* Allocate and set up 1 RX queue per Ethernet port. */ 251 for (q = 0; q < rx_rings; q++) { 252 struct rte_eth_rxconf *rxconf; 253 254 rxconf = &dev_info.default_rxconf; 255 rxconf->offloads = port_conf.rxmode.offloads; 256 257 retval = rte_eth_rx_queue_setup(port, q, nb_rxd, 258 rte_eth_dev_socket_id(port), rxconf, mbuf_pool); 259 260 if (retval < 0) 261 return retval; 262 } 263 264 /* Allocate and set up 1 TX queue per Ethernet port. */ 265 for (q = 0; q < tx_rings; q++) { 266 struct rte_eth_txconf *txconf; 267 268 txconf = &dev_info.default_txconf; 269 txconf->offloads = port_conf.txmode.offloads; 270 271 retval = rte_eth_tx_queue_setup(port, q, nb_txd, 272 rte_eth_dev_socket_id(port), txconf); 273 if (retval < 0) 274 return retval; 275 } 276 277 /* Start the Ethernet port. */ 278 retval = rte_eth_dev_start(port); 279 if (retval < 0) 280 return retval; 281 282 /* Enable timesync timestamping for the Ethernet device */ 283 retval = rte_eth_timesync_enable(port); 284 if (retval < 0) { 285 printf("Timesync enable failed: %d\n", retval); 286 return retval; 287 } 288 289 /* Enable RX in promiscuous mode for the Ethernet device. */ 290 retval = rte_eth_promiscuous_enable(port); 291 if (retval != 0) { 292 printf("Promiscuous mode enable failed: %s\n", 293 rte_strerror(-retval)); 294 return retval; 295 } 296 297 /* 298 * If the clock servo controller is enabled, the PMD must support 299 * adjustment of the clock frequency. 300 */ 301 if (mode != MODE_NONE) { 302 retval = rte_eth_timesync_adjust_freq(port, 0); 303 if (retval == -ENOTSUP) { 304 printf("The servo controller cannot work on devices that" 305 " do not support frequency adjustment.\n"); 306 return retval; 307 } 308 } 309 310 return 0; 311 } 312 313 static void 314 print_clock_info(struct ptpv2_time_receiver_ordinary *ptp_data) 315 { 316 int64_t nsec; 317 struct timespec net_time, sys_time; 318 319 printf("time transmitter clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", 320 ptp_data->transmitter_clock_id.id[0], 321 ptp_data->transmitter_clock_id.id[1], 322 ptp_data->transmitter_clock_id.id[2], 323 ptp_data->transmitter_clock_id.id[3], 324 ptp_data->transmitter_clock_id.id[4], 325 ptp_data->transmitter_clock_id.id[5], 326 ptp_data->transmitter_clock_id.id[6], 327 ptp_data->transmitter_clock_id.id[7]); 328 329 printf("\nT2 - time receiver clock. %lds %ldns", 330 (ptp_data->tstamp2.tv_sec), 331 (ptp_data->tstamp2.tv_nsec)); 332 333 printf("\nT1 - time transmitter clock. %lds %ldns ", 334 ptp_data->tstamp1.tv_sec, 335 (ptp_data->tstamp1.tv_nsec)); 336 337 printf("\nT3 - time receiver clock. %lds %ldns", 338 ptp_data->tstamp3.tv_sec, 339 (ptp_data->tstamp3.tv_nsec)); 340 341 printf("\nT4 - time transmitter clock. %lds %ldns\n", 342 ptp_data->tstamp4.tv_sec, 343 (ptp_data->tstamp4.tv_nsec)); 344 345 if (mode == MODE_NONE) { 346 printf("\nDelta between transmitter and receiver clocks:%"PRId64"ns\n", 347 ptp_data->delta); 348 349 clock_gettime(CLOCK_REALTIME, &sys_time); 350 rte_eth_timesync_read_time(ptp_data->current_ptp_port, 351 &net_time); 352 353 time_t ts = net_time.tv_sec; 354 355 printf("\n\nComparison between Linux kernel Time and PTP:"); 356 357 printf("\nCurrent PTP Time: %.24s %.9ld ns", 358 ctime(&ts), net_time.tv_nsec); 359 360 nsec = (int64_t)timespec64_to_ns(&net_time) - 361 (int64_t)timespec64_to_ns(&sys_time); 362 ptp_data->new_adj = ns_to_timeval(nsec); 363 364 gettimeofday(&ptp_data->new_adj, NULL); 365 366 time_t tp = ptp_data->new_adj.tv_sec; 367 368 printf("\nCurrent SYS Time: %.24s %.6ld ns", 369 ctime(&tp), ptp_data->new_adj.tv_usec); 370 371 printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n", 372 nsec); 373 } 374 375 if (mode == MODE_PI) { 376 printf("path delay: %"PRId64"ns\n", ptp_data->path_delay); 377 printf("time transmitter offset: %"PRId64"ns\n", ptp_data->master_offset); 378 } 379 380 printf("[Ctrl+C to quit]\n"); 381 382 /* Clear screen and put cursor in column 1, row 1 */ 383 printf("\033[2J\033[1;1H"); 384 } 385 386 static int64_t 387 delta_eval(struct ptpv2_time_receiver_ordinary *ptp_data) 388 { 389 int64_t delta; 390 uint64_t t1 = 0; 391 uint64_t t2 = 0; 392 uint64_t t3 = 0; 393 uint64_t t4 = 0; 394 395 t1 = timespec64_to_ns(&ptp_data->tstamp1); 396 t2 = timespec64_to_ns(&ptp_data->tstamp2); 397 t3 = timespec64_to_ns(&ptp_data->tstamp3); 398 t4 = timespec64_to_ns(&ptp_data->tstamp4); 399 400 delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2; 401 402 return delta; 403 } 404 405 /* 406 * Parse the PTP SYNC message. 407 */ 408 static void 409 parse_sync(struct ptpv2_time_receiver_ordinary *ptp_data, uint16_t rx_tstamp_idx) 410 { 411 struct ptp_header *ptp_hdr; 412 413 ptp_hdr = rte_pktmbuf_mtod_offset(ptp_data->m, struct ptp_header *, 414 sizeof(struct rte_ether_hdr)); 415 ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id); 416 417 if (ptp_data->ptpset == 0) { 418 rte_memcpy(&ptp_data->transmitter_clock_id, 419 &ptp_hdr->source_port_id.clock_id, 420 sizeof(struct clock_id)); 421 ptp_data->ptpset = 1; 422 } 423 424 if (memcmp(&ptp_hdr->source_port_id.clock_id, 425 &ptp_hdr->source_port_id.clock_id, 426 sizeof(struct clock_id)) == 0) { 427 428 if (ptp_data->ptpset == 1) 429 rte_eth_timesync_read_rx_timestamp(ptp_data->portid, 430 &ptp_data->tstamp2, rx_tstamp_idx); 431 } 432 433 } 434 435 /* 436 * Parse the PTP FOLLOWUP message and send DELAY_REQ to the main clock. 437 */ 438 static void 439 parse_fup(struct ptpv2_time_receiver_ordinary *ptp_data) 440 { 441 struct rte_ether_hdr *eth_hdr; 442 struct rte_ether_addr eth_addr; 443 struct ptp_header *ptp_hdr; 444 struct clock_id *client_clkid; 445 struct ptp_message *ptp_msg; 446 struct delay_req_msg *req_msg; 447 struct rte_mbuf *created_pkt; 448 struct tstamp *origin_tstamp; 449 struct rte_ether_addr eth_multicast = ether_multicast; 450 size_t pkt_size; 451 int wait_us; 452 struct rte_mbuf *m = ptp_data->m; 453 int ret; 454 455 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 456 ptp_hdr = rte_pktmbuf_mtod_offset(m, struct ptp_header *, 457 sizeof(struct rte_ether_hdr)); 458 if (memcmp(&ptp_data->transmitter_clock_id, 459 &ptp_hdr->source_port_id.clock_id, 460 sizeof(struct clock_id)) != 0) 461 return; 462 463 ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id); 464 ptp_msg = rte_pktmbuf_mtod_offset(m, struct ptp_message *, 465 sizeof(struct rte_ether_hdr)); 466 467 origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp; 468 ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns); 469 ptp_data->tstamp1.tv_sec = 470 ((uint64_t)ntohl(origin_tstamp->sec_lsb)) | 471 (((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32); 472 473 if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) { 474 ret = rte_eth_macaddr_get(ptp_data->portid, ð_addr); 475 if (ret != 0) { 476 printf("\nCore %u: port %u failed to get MAC address: %s\n", 477 rte_lcore_id(), ptp_data->portid, 478 rte_strerror(-ret)); 479 return; 480 } 481 482 created_pkt = rte_pktmbuf_alloc(mbuf_pool); 483 pkt_size = sizeof(struct rte_ether_hdr) + 484 sizeof(struct delay_req_msg); 485 486 if (rte_pktmbuf_append(created_pkt, pkt_size) == NULL) { 487 rte_pktmbuf_free(created_pkt); 488 return; 489 } 490 created_pkt->data_len = pkt_size; 491 created_pkt->pkt_len = pkt_size; 492 eth_hdr = rte_pktmbuf_mtod(created_pkt, struct rte_ether_hdr *); 493 rte_ether_addr_copy(ð_addr, ð_hdr->src_addr); 494 495 /* Set multicast address 01-1B-19-00-00-00. */ 496 rte_ether_addr_copy(ð_multicast, ð_hdr->dst_addr); 497 498 eth_hdr->ether_type = htons(PTP_PROTOCOL); 499 req_msg = rte_pktmbuf_mtod_offset(created_pkt, 500 struct delay_req_msg *, sizeof(struct 501 rte_ether_hdr)); 502 503 req_msg->hdr.seq_id = htons(ptp_data->seqID_SYNC); 504 req_msg->hdr.msg_type = DELAY_REQ; 505 req_msg->hdr.ver = 2; 506 req_msg->hdr.control = 1; 507 req_msg->hdr.log_message_interval = 127; 508 req_msg->hdr.message_length = 509 htons(sizeof(struct delay_req_msg)); 510 req_msg->hdr.domain_number = ptp_hdr->domain_number; 511 512 /* Set up clock id. */ 513 client_clkid = 514 &req_msg->hdr.source_port_id.clock_id; 515 516 client_clkid->id[0] = eth_hdr->src_addr.addr_bytes[0]; 517 client_clkid->id[1] = eth_hdr->src_addr.addr_bytes[1]; 518 client_clkid->id[2] = eth_hdr->src_addr.addr_bytes[2]; 519 client_clkid->id[3] = 0xFF; 520 client_clkid->id[4] = 0xFE; 521 client_clkid->id[5] = eth_hdr->src_addr.addr_bytes[3]; 522 client_clkid->id[6] = eth_hdr->src_addr.addr_bytes[4]; 523 client_clkid->id[7] = eth_hdr->src_addr.addr_bytes[5]; 524 525 rte_memcpy(&ptp_data->client_clock_id, 526 client_clkid, 527 sizeof(struct clock_id)); 528 529 /* Enable flag for hardware timestamping. */ 530 created_pkt->ol_flags |= RTE_MBUF_F_TX_IEEE1588_TMST; 531 532 /*Read value from NIC to prevent latching with old value. */ 533 rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 534 &ptp_data->tstamp3); 535 536 /* Transmit the packet. */ 537 rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1); 538 539 wait_us = 0; 540 ptp_data->tstamp3.tv_nsec = 0; 541 ptp_data->tstamp3.tv_sec = 0; 542 543 /* Wait at least 1 us to read TX timestamp. */ 544 while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 545 &ptp_data->tstamp3) < 0) && (wait_us < 1000)) { 546 rte_delay_us(1); 547 wait_us++; 548 } 549 } 550 } 551 552 /* 553 * Update the kernel time with the difference between it and the current NIC 554 * time. 555 */ 556 static inline void 557 update_kernel_time(void) 558 { 559 int64_t nsec; 560 struct timespec net_time, sys_time; 561 562 clock_gettime(CLOCK_REALTIME, &sys_time); 563 rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time); 564 565 nsec = (int64_t)timespec64_to_ns(&net_time) - 566 (int64_t)timespec64_to_ns(&sys_time); 567 568 ptp_data.new_adj = ns_to_timeval(nsec); 569 570 /* 571 * If difference between kernel time and system time in NIC is too big 572 * (more than +/- 20 microseconds), use clock_settime to set directly 573 * the kernel time, as adjtime is better for small adjustments (takes 574 * longer to adjust the time). 575 */ 576 577 if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT) 578 clock_settime(CLOCK_REALTIME, &net_time); 579 else 580 adjtime(&ptp_data.new_adj, 0); 581 582 583 } 584 585 static void 586 clock_path_delay(struct ptpv2_time_receiver_ordinary *ptp_data) 587 { 588 uint64_t t1_ns, t2_ns, t3_ns, t4_ns; 589 int64_t pd, diff; 590 591 t1_ns = timespec64_to_ns(&ptp_data->tstamp1); 592 t2_ns = timespec64_to_ns(&ptp_data->tstamp2); 593 t3_ns = timespec64_to_ns(&ptp_data->tstamp3); 594 t4_ns = timespec64_to_ns(&ptp_data->tstamp4); 595 596 pd = (t2_ns - t3_ns) + (t4_ns - t1_ns); 597 diff = t3_ns - t2_ns; 598 if (diff <= INT32_MAX && diff >= INT32_MIN) 599 ptp_data->path_delay = pd / 2; 600 else 601 ptp_data->path_delay = 0; 602 } 603 604 static double 605 pi_sample(struct pi_servo *s, int64_t offset, double local_ts, 606 enum servo_state *state) 607 { 608 double ki_term, ppb = s->last_freq; 609 double freq_est_interval, localdiff; 610 611 switch (s->count) { 612 case 0: 613 s->offset[0] = offset; 614 s->local[0] = local_ts; 615 *state = SERVO_UNLOCKED; 616 s->count = 1; 617 break; 618 case 1: 619 s->offset[1] = offset; 620 s->local[1] = local_ts; 621 622 /* Make sure the first sample is older than the second. */ 623 if (s->local[0] >= s->local[1]) { 624 *state = SERVO_UNLOCKED; 625 s->count = 0; 626 break; 627 } 628 629 /* Wait long enough before estimating the frequency offset. */ 630 localdiff = (s->local[1] - s->local[0]) / 1e9; 631 localdiff += localdiff * FREQ_EST_MARGIN; 632 freq_est_interval = 0.016 / KI; 633 if (freq_est_interval > 1000.0) 634 freq_est_interval = 1000.0; 635 636 if (localdiff < freq_est_interval) { 637 *state = SERVO_UNLOCKED; 638 break; 639 } 640 641 /* Adjust drift by the measured frequency offset. */ 642 s->drift += (1e9 - s->drift) * (s->offset[1] - s->offset[0]) / 643 (s->local[1] - s->local[0]); 644 645 if (s->drift < -s->max_frequency) 646 s->drift = -s->max_frequency; 647 else if (s->drift > s->max_frequency) 648 s->drift = s->max_frequency; 649 650 if ((s->first_update && 651 s->first_step_threshold && 652 s->first_step_threshold < llabs(offset)) || 653 (s->step_threshold && 654 s->step_threshold < llabs(offset))) 655 *state = SERVO_JUMP; 656 else 657 *state = SERVO_LOCKED; 658 659 ppb = s->drift; 660 s->count = 2; 661 break; 662 case 2: 663 /* 664 * reset the clock servo when offset is greater than the max 665 * offset value. Note that the clock jump will be performed in 666 * step 1, so it is not necessary to have clock jump 667 * immediately. This allows re-calculating drift as in initial 668 * clock startup. 669 */ 670 if (s->step_threshold && 671 s->step_threshold < llabs(offset)) { 672 *state = SERVO_UNLOCKED; 673 s->count = 0; 674 break; 675 } 676 677 ki_term = KI * offset; 678 ppb = KP * offset + s->drift + ki_term; 679 if (ppb < -s->max_frequency) 680 ppb = -s->max_frequency; 681 else if (ppb > s->max_frequency) 682 ppb = s->max_frequency; 683 else 684 s->drift += ki_term; 685 686 *state = SERVO_LOCKED; 687 break; 688 } 689 690 s->last_freq = ppb; 691 return ppb; 692 } 693 694 static void 695 ptp_adjust_servo(struct ptpv2_time_receiver_ordinary *ptp_data) 696 { 697 uint64_t t1_ns, t2_ns; 698 double adj_freq; 699 enum servo_state state = SERVO_UNLOCKED; 700 701 t1_ns = timespec64_to_ns(&ptp_data->tstamp1); 702 t2_ns = timespec64_to_ns(&ptp_data->tstamp2); 703 ptp_data->master_offset = t2_ns - t1_ns - ptp_data->path_delay; 704 if (!ptp_data->path_delay) 705 return; 706 707 adj_freq = pi_sample(ptp_data->servo, ptp_data->master_offset, t2_ns, 708 &state); 709 710 switch (state) { 711 case SERVO_UNLOCKED: 712 break; 713 case SERVO_JUMP: 714 ptp_data->servo->first_update = 0; 715 rte_eth_timesync_adjust_freq(ptp_data->portid, 716 -(long)(adj_freq * 65.536)); 717 rte_eth_timesync_adjust_time(ptp_data->portid, 718 -ptp_data->master_offset); 719 break; 720 case SERVO_LOCKED: 721 ptp_data->servo->first_update = 0; 722 rte_eth_timesync_adjust_freq(ptp_data->portid, 723 -(long)(adj_freq * 65.536)); 724 break; 725 } 726 } 727 728 /* 729 * Parse the DELAY_RESP message. 730 */ 731 static void 732 parse_drsp(struct ptpv2_time_receiver_ordinary *ptp_data) 733 { 734 struct rte_mbuf *m = ptp_data->m; 735 struct ptp_message *ptp_msg; 736 struct tstamp *rx_tstamp; 737 uint16_t seq_id; 738 739 ptp_msg = rte_pktmbuf_mtod_offset(m, struct ptp_message *, 740 sizeof(struct rte_ether_hdr)); 741 seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id); 742 if (memcmp(&ptp_data->client_clock_id, 743 &ptp_msg->delay_resp.req_port_id.clock_id, 744 sizeof(struct clock_id)) == 0) { 745 if (seq_id == ptp_data->seqID_FOLLOWUP) { 746 rx_tstamp = &ptp_msg->delay_resp.rx_tstamp; 747 ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns); 748 ptp_data->tstamp4.tv_sec = 749 ((uint64_t)ntohl(rx_tstamp->sec_lsb)) | 750 (((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32); 751 752 if (mode == MODE_PI) { 753 clock_path_delay(ptp_data); 754 ptp_adjust_servo(ptp_data); 755 } else { 756 /* Evaluate the delta for adjustment. */ 757 ptp_data->delta = delta_eval(ptp_data); 758 759 rte_eth_timesync_adjust_time(ptp_data->portid, 760 ptp_data->delta); 761 } 762 763 ptp_data->current_ptp_port = ptp_data->portid; 764 765 /* Update kernel time if enabled in app parameters. */ 766 if (ptp_data->kernel_time_set == 1) 767 update_kernel_time(); 768 769 770 771 } 772 } 773 } 774 775 /* This function processes PTP packets, implementing time receiver PTP IEEE1588 L2 776 * functionality. 777 */ 778 779 /* Parse ptp frames. 8< */ 780 static void 781 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) { 782 struct ptp_header *ptp_hdr; 783 struct rte_ether_hdr *eth_hdr; 784 uint16_t eth_type; 785 786 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 787 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type); 788 789 if (eth_type == PTP_PROTOCOL) { 790 ptp_data.m = m; 791 ptp_data.portid = portid; 792 ptp_hdr = rte_pktmbuf_mtod_offset(m, struct ptp_header *, 793 sizeof(struct rte_ether_hdr)); 794 795 switch (ptp_hdr->msg_type) { 796 case SYNC: 797 parse_sync(&ptp_data, m->timesync); 798 break; 799 case FOLLOW_UP: 800 parse_fup(&ptp_data); 801 break; 802 case DELAY_RESP: 803 parse_drsp(&ptp_data); 804 print_clock_info(&ptp_data); 805 break; 806 default: 807 break; 808 } 809 } 810 } 811 /* >8 End of function processes PTP packets. */ 812 813 /* 814 * The lcore main. This is the main thread that does the work, reading from an 815 * input port and writing to an output port. 816 */ 817 static void 818 lcore_main(void) 819 { 820 uint16_t portid; 821 unsigned nb_rx; 822 struct rte_mbuf *m; 823 824 printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n", 825 rte_lcore_id()); 826 827 /* Run until the application is quit or killed. */ 828 829 while (!force_quit) { 830 /* Read packet from RX queues. 8< */ 831 for (portid = 0; portid < ptp_enabled_port_nb; portid++) { 832 833 portid = ptp_enabled_ports[portid]; 834 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1); 835 836 if (likely(nb_rx == 0)) 837 continue; 838 839 /* Packet is parsed to determine which type. 8< */ 840 if (m->ol_flags & RTE_MBUF_F_RX_IEEE1588_PTP) 841 parse_ptp_frames(portid, m); 842 /* >8 End of packet is parsed to determine which type. */ 843 844 rte_pktmbuf_free(m); 845 } 846 /* >8 End of read packets from RX queues. */ 847 } 848 } 849 850 static void 851 print_usage(const char *prgname) 852 { 853 printf("%s [EAL options] -- -p PORTMASK -T VALUE\n" 854 " -T VALUE: 0 - Disable, 1 - Enable Linux Clock" 855 " Synchronization (0 default)\n" 856 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 857 " -c CONTROLLER: 0 - Not used, 1 - PI. The servo which is" 858 " used to synchronize the local clock. (0 default)\n", 859 prgname); 860 } 861 862 static int 863 ptp_parse_portmask(const char *portmask) 864 { 865 char *end = NULL; 866 unsigned long pm; 867 868 /* Parse the hexadecimal string. */ 869 pm = strtoul(portmask, &end, 16); 870 871 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 872 return 0; 873 874 return pm; 875 } 876 877 static int 878 parse_ptp_kernel(const char *param) 879 { 880 char *end = NULL; 881 unsigned long pm; 882 883 /* Parse the hexadecimal string. */ 884 pm = strtoul(param, &end, 16); 885 886 if ((param[0] == '\0') || (end == NULL) || (*end != '\0')) 887 return -1; 888 if (pm == 0) 889 return 0; 890 891 return 1; 892 } 893 894 static int 895 parse_ptp_servo_mode(const char *param) 896 { 897 char *end = NULL; 898 unsigned long pm; 899 900 /* Parse the hexadecimal string. */ 901 pm = strtoul(param, &end, 10); 902 903 if ((param[0] == '\0') || (end == NULL) || (*end != '\0')) 904 return -1; 905 906 return pm; 907 } 908 909 static void 910 servo_init(struct pi_servo *servo) 911 { 912 memset(servo, 0x00, sizeof(*servo)); 913 914 servo->drift = 100000000; 915 servo->last_freq = 100000000; 916 servo->count = 0; 917 918 servo->max_frequency = 100000000; 919 servo->step_threshold = 0.1 * NSEC_PER_SEC; 920 servo->first_step_threshold = 0.00002 * NSEC_PER_SEC; 921 servo->first_update = 1; 922 } 923 924 /* Parse the commandline arguments. */ 925 static int 926 ptp_parse_args(int argc, char **argv) 927 { 928 int opt, ret; 929 char **argvopt; 930 int option_index; 931 char *prgname = argv[0]; 932 static struct option lgopts[] = { {NULL, 0, 0, 0} }; 933 934 argvopt = argv; 935 936 while ((opt = getopt_long(argc, argvopt, "p:T:c:", 937 lgopts, &option_index)) != EOF) { 938 939 switch (opt) { 940 941 /* Portmask. */ 942 case 'p': 943 ptp_enabled_port_mask = ptp_parse_portmask(optarg); 944 if (ptp_enabled_port_mask == 0) { 945 printf("invalid portmask\n"); 946 print_usage(prgname); 947 return -1; 948 } 949 break; 950 /* Time synchronization. */ 951 case 'T': 952 ret = parse_ptp_kernel(optarg); 953 if (ret < 0) { 954 print_usage(prgname); 955 return -1; 956 } 957 958 ptp_data.kernel_time_set = ret; 959 break; 960 case 'c': 961 ret = parse_ptp_servo_mode(optarg); 962 if (ret == 0) { 963 mode = MODE_NONE; 964 } else if (ret == 1) { 965 mode = MODE_PI; 966 } else { 967 print_usage(prgname); 968 return -1; 969 } 970 break; 971 972 default: 973 print_usage(prgname); 974 return -1; 975 } 976 } 977 978 argv[optind-1] = prgname; 979 980 optind = 1; /* Reset getopt lib. */ 981 982 return 0; 983 } 984 985 static void 986 signal_handler(int signum) 987 { 988 if (signum == SIGINT || signum == SIGTERM) 989 force_quit = true; 990 } 991 992 /* 993 * The main function, which does initialization and calls the per-lcore 994 * functions. 995 */ 996 int 997 main(int argc, char *argv[]) 998 { 999 unsigned nb_ports; 1000 1001 uint16_t portid; 1002 1003 /* Initialize the Environment Abstraction Layer (EAL). 8< */ 1004 int ret = rte_eal_init(argc, argv); 1005 1006 if (ret < 0) 1007 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 1008 /* >8 End of initialization of EAL. */ 1009 1010 memset(&ptp_data, 0, sizeof(struct ptpv2_time_receiver_ordinary)); 1011 1012 /* Parse specific arguments. 8< */ 1013 argc -= ret; 1014 argv += ret; 1015 1016 force_quit = false; 1017 signal(SIGINT, signal_handler); 1018 signal(SIGTERM, signal_handler); 1019 1020 ret = ptp_parse_args(argc, argv); 1021 if (ret < 0) 1022 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n"); 1023 /* >8 End of parsing specific arguments. */ 1024 1025 if (mode == MODE_PI) { 1026 ptp_data.servo = malloc(sizeof(*(ptp_data.servo))); 1027 if (!ptp_data.servo) 1028 rte_exit(EXIT_FAILURE, "no memory for servo\n"); 1029 1030 servo_init(ptp_data.servo); 1031 } 1032 1033 /* Check that there is an even number of ports to send/receive on. */ 1034 nb_ports = rte_eth_dev_count_avail(); 1035 1036 /* Creates a new mempool in memory to hold the mbufs. 8< */ 1037 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 1038 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 1039 /* >8 End of a new mempool in memory to hold the mbufs. */ 1040 1041 if (mbuf_pool == NULL) 1042 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 1043 1044 /* Initialize all ports. 8< */ 1045 RTE_ETH_FOREACH_DEV(portid) { 1046 if ((ptp_enabled_port_mask & (1 << portid)) != 0) { 1047 if (port_init(portid, mbuf_pool) == 0) { 1048 ptp_enabled_ports[ptp_enabled_port_nb] = portid; 1049 ptp_enabled_port_nb++; 1050 } else { 1051 rte_exit(EXIT_FAILURE, 1052 "Cannot init port %"PRIu8 "\n", 1053 portid); 1054 } 1055 } else 1056 printf("Skipping disabled port %u\n", portid); 1057 } 1058 /* >8 End of initialization of all ports. */ 1059 1060 if (ptp_enabled_port_nb == 0) { 1061 rte_exit(EXIT_FAILURE, 1062 "All available ports are disabled." 1063 " Please set portmask.\n"); 1064 } 1065 1066 if (rte_lcore_count() > 1) 1067 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 1068 1069 /* Call lcore_main on the main core only. */ 1070 lcore_main(); 1071 1072 RTE_ETH_FOREACH_DEV(portid) { 1073 if ((ptp_enabled_port_mask & (1 << portid)) == 0) 1074 continue; 1075 1076 /* Disable timesync timestamping for the Ethernet device */ 1077 rte_eth_timesync_disable(portid); 1078 1079 ret = rte_eth_dev_stop(portid); 1080 if (ret != 0) 1081 printf("rte_eth_dev_stop: err=%d, port=%d\n", ret, portid); 1082 1083 rte_eth_dev_close(portid); 1084 } 1085 1086 if (mode == MODE_PI) 1087 free(ptp_data.servo); 1088 1089 /* clean up the EAL */ 1090 rte_eal_cleanup(); 1091 1092 return 0; 1093 } 1094