1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015 Intel Corporation 3 */ 4 5 /* 6 * This application is a simple Layer 2 PTP v2 client. It shows delta values 7 * which are used to synchronize the PHC clock. if the "-T 1" parameter is 8 * passed to the application the Linux kernel clock is also synchronized. 9 */ 10 11 #include <stdint.h> 12 #include <inttypes.h> 13 #include <rte_eal.h> 14 #include <rte_ethdev.h> 15 #include <rte_cycles.h> 16 #include <rte_lcore.h> 17 #include <rte_mbuf.h> 18 #include <rte_ip.h> 19 #include <limits.h> 20 #include <sys/time.h> 21 #include <getopt.h> 22 23 #define RX_RING_SIZE 1024 24 #define TX_RING_SIZE 1024 25 26 #define NUM_MBUFS 8191 27 #define MBUF_CACHE_SIZE 250 28 29 /* Values for the PTP messageType field. */ 30 #define SYNC 0x0 31 #define DELAY_REQ 0x1 32 #define PDELAY_REQ 0x2 33 #define PDELAY_RESP 0x3 34 #define FOLLOW_UP 0x8 35 #define DELAY_RESP 0x9 36 #define PDELAY_RESP_FOLLOW_UP 0xA 37 #define ANNOUNCE 0xB 38 #define SIGNALING 0xC 39 #define MANAGEMENT 0xD 40 41 #define NSEC_PER_SEC 1000000000L 42 #define KERNEL_TIME_ADJUST_LIMIT 20000 43 #define PTP_PROTOCOL 0x88F7 44 45 struct rte_mempool *mbuf_pool; 46 uint32_t ptp_enabled_port_mask; 47 uint8_t ptp_enabled_port_nb; 48 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS]; 49 50 static const struct rte_eth_conf port_conf_default = { 51 .rxmode = { 52 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 53 }, 54 }; 55 56 static const struct rte_ether_addr ether_multicast = { 57 .addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0} 58 }; 59 60 /* Structs used for PTP handling. */ 61 struct tstamp { 62 uint16_t sec_msb; 63 uint32_t sec_lsb; 64 uint32_t ns; 65 } __attribute__((packed)); 66 67 struct clock_id { 68 uint8_t id[8]; 69 }; 70 71 struct port_id { 72 struct clock_id clock_id; 73 uint16_t port_number; 74 } __attribute__((packed)); 75 76 struct ptp_header { 77 uint8_t msg_type; 78 uint8_t ver; 79 uint16_t message_length; 80 uint8_t domain_number; 81 uint8_t reserved1; 82 uint8_t flag_field[2]; 83 int64_t correction; 84 uint32_t reserved2; 85 struct port_id source_port_id; 86 uint16_t seq_id; 87 uint8_t control; 88 int8_t log_message_interval; 89 } __attribute__((packed)); 90 91 struct sync_msg { 92 struct ptp_header hdr; 93 struct tstamp origin_tstamp; 94 } __attribute__((packed)); 95 96 struct follow_up_msg { 97 struct ptp_header hdr; 98 struct tstamp precise_origin_tstamp; 99 uint8_t suffix[0]; 100 } __attribute__((packed)); 101 102 struct delay_req_msg { 103 struct ptp_header hdr; 104 struct tstamp origin_tstamp; 105 } __attribute__((packed)); 106 107 struct delay_resp_msg { 108 struct ptp_header hdr; 109 struct tstamp rx_tstamp; 110 struct port_id req_port_id; 111 uint8_t suffix[0]; 112 } __attribute__((packed)); 113 114 struct ptp_message { 115 union { 116 struct ptp_header header; 117 struct sync_msg sync; 118 struct delay_req_msg delay_req; 119 struct follow_up_msg follow_up; 120 struct delay_resp_msg delay_resp; 121 } __attribute__((packed)); 122 }; 123 124 struct ptpv2_data_slave_ordinary { 125 struct rte_mbuf *m; 126 struct timespec tstamp1; 127 struct timespec tstamp2; 128 struct timespec tstamp3; 129 struct timespec tstamp4; 130 struct clock_id client_clock_id; 131 struct clock_id master_clock_id; 132 struct timeval new_adj; 133 int64_t delta; 134 uint16_t portid; 135 uint16_t seqID_SYNC; 136 uint16_t seqID_FOLLOWUP; 137 uint8_t ptpset; 138 uint8_t kernel_time_set; 139 uint16_t current_ptp_port; 140 }; 141 142 static struct ptpv2_data_slave_ordinary ptp_data; 143 144 static inline uint64_t timespec64_to_ns(const struct timespec *ts) 145 { 146 return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; 147 } 148 149 static struct timeval 150 ns_to_timeval(int64_t nsec) 151 { 152 struct timespec t_spec = {0, 0}; 153 struct timeval t_eval = {0, 0}; 154 int32_t rem; 155 156 if (nsec == 0) 157 return t_eval; 158 rem = nsec % NSEC_PER_SEC; 159 t_spec.tv_sec = nsec / NSEC_PER_SEC; 160 161 if (rem < 0) { 162 t_spec.tv_sec--; 163 rem += NSEC_PER_SEC; 164 } 165 166 t_spec.tv_nsec = rem; 167 t_eval.tv_sec = t_spec.tv_sec; 168 t_eval.tv_usec = t_spec.tv_nsec / 1000; 169 170 return t_eval; 171 } 172 173 /* 174 * Initializes a given port using global settings and with the RX buffers 175 * coming from the mbuf_pool passed as a parameter. 176 */ 177 static inline int 178 port_init(uint16_t port, struct rte_mempool *mbuf_pool) 179 { 180 struct rte_eth_dev_info dev_info; 181 struct rte_eth_conf port_conf = port_conf_default; 182 const uint16_t rx_rings = 1; 183 const uint16_t tx_rings = 1; 184 int retval; 185 uint16_t q; 186 uint16_t nb_rxd = RX_RING_SIZE; 187 uint16_t nb_txd = TX_RING_SIZE; 188 189 if (!rte_eth_dev_is_valid_port(port)) 190 return -1; 191 192 rte_eth_dev_info_get(port, &dev_info); 193 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 194 port_conf.txmode.offloads |= 195 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 196 /* Force full Tx path in the driver, required for IEEE1588 */ 197 port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; 198 199 /* Configure the Ethernet device. */ 200 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 201 if (retval != 0) 202 return retval; 203 204 retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd); 205 if (retval != 0) 206 return retval; 207 208 /* Allocate and set up 1 RX queue per Ethernet port. */ 209 for (q = 0; q < rx_rings; q++) { 210 retval = rte_eth_rx_queue_setup(port, q, nb_rxd, 211 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 212 213 if (retval < 0) 214 return retval; 215 } 216 217 /* Allocate and set up 1 TX queue per Ethernet port. */ 218 for (q = 0; q < tx_rings; q++) { 219 struct rte_eth_txconf *txconf; 220 221 txconf = &dev_info.default_txconf; 222 txconf->offloads = port_conf.txmode.offloads; 223 224 retval = rte_eth_tx_queue_setup(port, q, nb_txd, 225 rte_eth_dev_socket_id(port), txconf); 226 if (retval < 0) 227 return retval; 228 } 229 230 /* Start the Ethernet port. */ 231 retval = rte_eth_dev_start(port); 232 if (retval < 0) 233 return retval; 234 235 /* Enable timesync timestamping for the Ethernet device */ 236 rte_eth_timesync_enable(port); 237 238 /* Enable RX in promiscuous mode for the Ethernet device. */ 239 rte_eth_promiscuous_enable(port); 240 241 return 0; 242 } 243 244 static void 245 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data) 246 { 247 int64_t nsec; 248 struct timespec net_time, sys_time; 249 250 printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", 251 ptp_data->master_clock_id.id[0], 252 ptp_data->master_clock_id.id[1], 253 ptp_data->master_clock_id.id[2], 254 ptp_data->master_clock_id.id[3], 255 ptp_data->master_clock_id.id[4], 256 ptp_data->master_clock_id.id[5], 257 ptp_data->master_clock_id.id[6], 258 ptp_data->master_clock_id.id[7]); 259 260 printf("\nT2 - Slave Clock. %lds %ldns", 261 (ptp_data->tstamp2.tv_sec), 262 (ptp_data->tstamp2.tv_nsec)); 263 264 printf("\nT1 - Master Clock. %lds %ldns ", 265 ptp_data->tstamp1.tv_sec, 266 (ptp_data->tstamp1.tv_nsec)); 267 268 printf("\nT3 - Slave Clock. %lds %ldns", 269 ptp_data->tstamp3.tv_sec, 270 (ptp_data->tstamp3.tv_nsec)); 271 272 printf("\nT4 - Master Clock. %lds %ldns ", 273 ptp_data->tstamp4.tv_sec, 274 (ptp_data->tstamp4.tv_nsec)); 275 276 printf("\nDelta between master and slave clocks:%"PRId64"ns\n", 277 ptp_data->delta); 278 279 clock_gettime(CLOCK_REALTIME, &sys_time); 280 rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time); 281 282 time_t ts = net_time.tv_sec; 283 284 printf("\n\nComparison between Linux kernel Time and PTP:"); 285 286 printf("\nCurrent PTP Time: %.24s %.9ld ns", 287 ctime(&ts), net_time.tv_nsec); 288 289 nsec = (int64_t)timespec64_to_ns(&net_time) - 290 (int64_t)timespec64_to_ns(&sys_time); 291 ptp_data->new_adj = ns_to_timeval(nsec); 292 293 gettimeofday(&ptp_data->new_adj, NULL); 294 295 time_t tp = ptp_data->new_adj.tv_sec; 296 297 printf("\nCurrent SYS Time: %.24s %.6ld ns", 298 ctime(&tp), ptp_data->new_adj.tv_usec); 299 300 printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n", 301 nsec); 302 303 printf("[Ctrl+C to quit]\n"); 304 305 /* Clear screen and put cursor in column 1, row 1 */ 306 printf("\033[2J\033[1;1H"); 307 } 308 309 static int64_t 310 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data) 311 { 312 int64_t delta; 313 uint64_t t1 = 0; 314 uint64_t t2 = 0; 315 uint64_t t3 = 0; 316 uint64_t t4 = 0; 317 318 t1 = timespec64_to_ns(&ptp_data->tstamp1); 319 t2 = timespec64_to_ns(&ptp_data->tstamp2); 320 t3 = timespec64_to_ns(&ptp_data->tstamp3); 321 t4 = timespec64_to_ns(&ptp_data->tstamp4); 322 323 delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2; 324 325 return delta; 326 } 327 328 /* 329 * Parse the PTP SYNC message. 330 */ 331 static void 332 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx) 333 { 334 struct ptp_header *ptp_hdr; 335 336 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *) 337 + sizeof(struct rte_ether_hdr)); 338 ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id); 339 340 if (ptp_data->ptpset == 0) { 341 rte_memcpy(&ptp_data->master_clock_id, 342 &ptp_hdr->source_port_id.clock_id, 343 sizeof(struct clock_id)); 344 ptp_data->ptpset = 1; 345 } 346 347 if (memcmp(&ptp_hdr->source_port_id.clock_id, 348 &ptp_hdr->source_port_id.clock_id, 349 sizeof(struct clock_id)) == 0) { 350 351 if (ptp_data->ptpset == 1) 352 rte_eth_timesync_read_rx_timestamp(ptp_data->portid, 353 &ptp_data->tstamp2, rx_tstamp_idx); 354 } 355 356 } 357 358 /* 359 * Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock. 360 */ 361 static void 362 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data) 363 { 364 struct rte_ether_hdr *eth_hdr; 365 struct ptp_header *ptp_hdr; 366 struct clock_id *client_clkid; 367 struct ptp_message *ptp_msg; 368 struct rte_mbuf *created_pkt; 369 struct tstamp *origin_tstamp; 370 struct rte_ether_addr eth_multicast = ether_multicast; 371 size_t pkt_size; 372 int wait_us; 373 struct rte_mbuf *m = ptp_data->m; 374 375 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 376 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) 377 + sizeof(struct rte_ether_hdr)); 378 if (memcmp(&ptp_data->master_clock_id, 379 &ptp_hdr->source_port_id.clock_id, 380 sizeof(struct clock_id)) != 0) 381 return; 382 383 ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id); 384 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + 385 sizeof(struct rte_ether_hdr)); 386 387 origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp; 388 ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns); 389 ptp_data->tstamp1.tv_sec = 390 ((uint64_t)ntohl(origin_tstamp->sec_lsb)) | 391 (((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32); 392 393 if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) { 394 395 created_pkt = rte_pktmbuf_alloc(mbuf_pool); 396 pkt_size = sizeof(struct rte_ether_hdr) + 397 sizeof(struct ptp_message); 398 created_pkt->data_len = pkt_size; 399 created_pkt->pkt_len = pkt_size; 400 eth_hdr = rte_pktmbuf_mtod(created_pkt, struct rte_ether_hdr *); 401 rte_eth_macaddr_get(ptp_data->portid, ð_hdr->s_addr); 402 403 /* Set multicast address 01-1B-19-00-00-00. */ 404 rte_ether_addr_copy(ð_multicast, ð_hdr->d_addr); 405 406 eth_hdr->ether_type = htons(PTP_PROTOCOL); 407 ptp_msg = (struct ptp_message *) 408 (rte_pktmbuf_mtod(created_pkt, char *) + 409 sizeof(struct rte_ether_hdr)); 410 411 ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC); 412 ptp_msg->delay_req.hdr.msg_type = DELAY_REQ; 413 ptp_msg->delay_req.hdr.ver = 2; 414 ptp_msg->delay_req.hdr.control = 1; 415 ptp_msg->delay_req.hdr.log_message_interval = 127; 416 417 /* Set up clock id. */ 418 client_clkid = 419 &ptp_msg->delay_req.hdr.source_port_id.clock_id; 420 421 client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0]; 422 client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1]; 423 client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2]; 424 client_clkid->id[3] = 0xFF; 425 client_clkid->id[4] = 0xFE; 426 client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3]; 427 client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4]; 428 client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5]; 429 430 rte_memcpy(&ptp_data->client_clock_id, 431 client_clkid, 432 sizeof(struct clock_id)); 433 434 /* Enable flag for hardware timestamping. */ 435 created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST; 436 437 /*Read value from NIC to prevent latching with old value. */ 438 rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 439 &ptp_data->tstamp3); 440 441 /* Transmit the packet. */ 442 rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1); 443 444 wait_us = 0; 445 ptp_data->tstamp3.tv_nsec = 0; 446 ptp_data->tstamp3.tv_sec = 0; 447 448 /* Wait at least 1 us to read TX timestamp. */ 449 while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid, 450 &ptp_data->tstamp3) < 0) && (wait_us < 1000)) { 451 rte_delay_us(1); 452 wait_us++; 453 } 454 } 455 } 456 457 /* 458 * Update the kernel time with the difference between it and the current NIC 459 * time. 460 */ 461 static inline void 462 update_kernel_time(void) 463 { 464 int64_t nsec; 465 struct timespec net_time, sys_time; 466 467 clock_gettime(CLOCK_REALTIME, &sys_time); 468 rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time); 469 470 nsec = (int64_t)timespec64_to_ns(&net_time) - 471 (int64_t)timespec64_to_ns(&sys_time); 472 473 ptp_data.new_adj = ns_to_timeval(nsec); 474 475 /* 476 * If difference between kernel time and system time in NIC is too big 477 * (more than +/- 20 microseconds), use clock_settime to set directly 478 * the kernel time, as adjtime is better for small adjustments (takes 479 * longer to adjust the time). 480 */ 481 482 if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT) 483 clock_settime(CLOCK_REALTIME, &net_time); 484 else 485 adjtime(&ptp_data.new_adj, 0); 486 487 488 } 489 490 /* 491 * Parse the DELAY_RESP message. 492 */ 493 static void 494 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data) 495 { 496 struct rte_mbuf *m = ptp_data->m; 497 struct ptp_message *ptp_msg; 498 struct tstamp *rx_tstamp; 499 uint16_t seq_id; 500 501 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) + 502 sizeof(struct rte_ether_hdr)); 503 seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id); 504 if (memcmp(&ptp_data->client_clock_id, 505 &ptp_msg->delay_resp.req_port_id.clock_id, 506 sizeof(struct clock_id)) == 0) { 507 if (seq_id == ptp_data->seqID_FOLLOWUP) { 508 rx_tstamp = &ptp_msg->delay_resp.rx_tstamp; 509 ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns); 510 ptp_data->tstamp4.tv_sec = 511 ((uint64_t)ntohl(rx_tstamp->sec_lsb)) | 512 (((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32); 513 514 /* Evaluate the delta for adjustment. */ 515 ptp_data->delta = delta_eval(ptp_data); 516 517 rte_eth_timesync_adjust_time(ptp_data->portid, 518 ptp_data->delta); 519 520 ptp_data->current_ptp_port = ptp_data->portid; 521 522 /* Update kernel time if enabled in app parameters. */ 523 if (ptp_data->kernel_time_set == 1) 524 update_kernel_time(); 525 526 527 528 } 529 } 530 } 531 532 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2 533 * functionality. 534 */ 535 static void 536 parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) { 537 struct ptp_header *ptp_hdr; 538 struct rte_ether_hdr *eth_hdr; 539 uint16_t eth_type; 540 541 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 542 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type); 543 544 if (eth_type == PTP_PROTOCOL) { 545 ptp_data.m = m; 546 ptp_data.portid = portid; 547 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *) 548 + sizeof(struct rte_ether_hdr)); 549 550 switch (ptp_hdr->msg_type) { 551 case SYNC: 552 parse_sync(&ptp_data, m->timesync); 553 break; 554 case FOLLOW_UP: 555 parse_fup(&ptp_data); 556 break; 557 case DELAY_RESP: 558 parse_drsp(&ptp_data); 559 print_clock_info(&ptp_data); 560 break; 561 default: 562 break; 563 } 564 } 565 } 566 567 /* 568 * The lcore main. This is the main thread that does the work, reading from an 569 * input port and writing to an output port. 570 */ 571 static __attribute__((noreturn)) void 572 lcore_main(void) 573 { 574 uint16_t portid; 575 unsigned nb_rx; 576 struct rte_mbuf *m; 577 578 /* 579 * Check that the port is on the same NUMA node as the polling thread 580 * for best performance. 581 */ 582 printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n", 583 rte_lcore_id()); 584 585 /* Run until the application is quit or killed. */ 586 587 while (1) { 588 /* Read packet from RX queues. */ 589 for (portid = 0; portid < ptp_enabled_port_nb; portid++) { 590 591 portid = ptp_enabled_ports[portid]; 592 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1); 593 594 if (likely(nb_rx == 0)) 595 continue; 596 597 if (m->ol_flags & PKT_RX_IEEE1588_PTP) 598 parse_ptp_frames(portid, m); 599 600 rte_pktmbuf_free(m); 601 } 602 } 603 } 604 605 static void 606 print_usage(const char *prgname) 607 { 608 printf("%s [EAL options] -- -p PORTMASK -T VALUE\n" 609 " -T VALUE: 0 - Disable, 1 - Enable Linux Clock" 610 " Synchronization (0 default)\n" 611 " -p PORTMASK: hexadecimal bitmask of ports to configure\n", 612 prgname); 613 } 614 615 static int 616 ptp_parse_portmask(const char *portmask) 617 { 618 char *end = NULL; 619 unsigned long pm; 620 621 /* Parse the hexadecimal string. */ 622 pm = strtoul(portmask, &end, 16); 623 624 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 625 return -1; 626 627 if (pm == 0) 628 return -1; 629 630 return pm; 631 } 632 633 static int 634 parse_ptp_kernel(const char *param) 635 { 636 char *end = NULL; 637 unsigned long pm; 638 639 /* Parse the hexadecimal string. */ 640 pm = strtoul(param, &end, 16); 641 642 if ((param[0] == '\0') || (end == NULL) || (*end != '\0')) 643 return -1; 644 if (pm == 0) 645 return 0; 646 647 return 1; 648 } 649 650 /* Parse the commandline arguments. */ 651 static int 652 ptp_parse_args(int argc, char **argv) 653 { 654 int opt, ret; 655 char **argvopt; 656 int option_index; 657 char *prgname = argv[0]; 658 static struct option lgopts[] = { {NULL, 0, 0, 0} }; 659 660 argvopt = argv; 661 662 while ((opt = getopt_long(argc, argvopt, "p:T:", 663 lgopts, &option_index)) != EOF) { 664 665 switch (opt) { 666 667 /* Portmask. */ 668 case 'p': 669 ptp_enabled_port_mask = ptp_parse_portmask(optarg); 670 if (ptp_enabled_port_mask == 0) { 671 printf("invalid portmask\n"); 672 print_usage(prgname); 673 return -1; 674 } 675 break; 676 /* Time synchronization. */ 677 case 'T': 678 ret = parse_ptp_kernel(optarg); 679 if (ret < 0) { 680 print_usage(prgname); 681 return -1; 682 } 683 684 ptp_data.kernel_time_set = ret; 685 break; 686 687 default: 688 print_usage(prgname); 689 return -1; 690 } 691 } 692 693 argv[optind-1] = prgname; 694 695 optind = 1; /* Reset getopt lib. */ 696 697 return 0; 698 } 699 700 /* 701 * The main function, which does initialization and calls the per-lcore 702 * functions. 703 */ 704 int 705 main(int argc, char *argv[]) 706 { 707 unsigned nb_ports; 708 709 uint16_t portid; 710 711 /* Initialize the Environment Abstraction Layer (EAL). */ 712 int ret = rte_eal_init(argc, argv); 713 714 if (ret < 0) 715 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 716 717 memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary)); 718 719 argc -= ret; 720 argv += ret; 721 722 ret = ptp_parse_args(argc, argv); 723 if (ret < 0) 724 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n"); 725 726 /* Check that there is an even number of ports to send/receive on. */ 727 nb_ports = rte_eth_dev_count_avail(); 728 729 /* Creates a new mempool in memory to hold the mbufs. */ 730 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 731 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 732 733 if (mbuf_pool == NULL) 734 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 735 736 /* Initialize all ports. */ 737 RTE_ETH_FOREACH_DEV(portid) { 738 if ((ptp_enabled_port_mask & (1 << portid)) != 0) { 739 if (port_init(portid, mbuf_pool) == 0) { 740 ptp_enabled_ports[ptp_enabled_port_nb] = portid; 741 ptp_enabled_port_nb++; 742 } else { 743 rte_exit(EXIT_FAILURE, 744 "Cannot init port %"PRIu8 "\n", 745 portid); 746 } 747 } else 748 printf("Skipping disabled port %u\n", portid); 749 } 750 751 if (ptp_enabled_port_nb == 0) { 752 rte_exit(EXIT_FAILURE, 753 "All available ports are disabled." 754 " Please set portmask.\n"); 755 } 756 757 if (rte_lcore_count() > 1) 758 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 759 760 /* Call lcore_main on the master core only. */ 761 lcore_main(); 762 763 return 0; 764 } 765