xref: /dpdk/examples/l3fwd/main.c (revision fc1f2750a3ec6da919e3c86e59d56f34ec97154b)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 
45 #include <rte_common.h>
46 #include <rte_common_vect.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_tailq.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 
76 #include "main.h"
77 
78 #define APP_LOOKUP_EXACT_MATCH          0
79 #define APP_LOOKUP_LPM                  1
80 #define DO_RFC_1812_CHECKS
81 
82 #ifndef APP_LOOKUP_METHOD
83 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
84 #endif
85 
86 /*
87  *  When set to zero, simple forwaring path is eanbled.
88  *  When set to one, optimized forwarding path is enabled.
89  *  Note that LPM optimisation path uses SSE4.1 instructions.
90  */
91 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__))
92 #define ENABLE_MULTI_BUFFER_OPTIMIZE	0
93 #else
94 #define ENABLE_MULTI_BUFFER_OPTIMIZE	1
95 #endif
96 
97 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
98 #include <rte_hash.h>
99 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
100 #include <rte_lpm.h>
101 #include <rte_lpm6.h>
102 #else
103 #error "APP_LOOKUP_METHOD set to incorrect value"
104 #endif
105 
106 #ifndef IPv6_BYTES
107 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
108                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
109 #define IPv6_BYTES(addr) \
110 	addr[0],  addr[1], addr[2],  addr[3], \
111 	addr[4],  addr[5], addr[6],  addr[7], \
112 	addr[8],  addr[9], addr[10], addr[11],\
113 	addr[12], addr[13],addr[14], addr[15]
114 #endif
115 
116 
117 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
118 
119 #define MAX_JUMBO_PKT_LEN  9600
120 
121 #define IPV6_ADDR_LEN 16
122 
123 #define MEMPOOL_CACHE_SIZE 256
124 
125 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
126 
127 /*
128  * This expression is used to calculate the number of mbufs needed depending on user input, taking
129  *  into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
130  *  RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
131  */
132 
133 #define NB_MBUF RTE_MAX	(																	\
134 				(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT +							\
135 				nb_ports*nb_lcores*MAX_PKT_BURST +											\
136 				nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT +								\
137 				nb_lcores*MEMPOOL_CACHE_SIZE),												\
138 				(unsigned)8192)
139 
140 #define MAX_PKT_BURST     32
141 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
142 
143 /*
144  * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
145  */
146 #define	MAX_TX_BURST	(MAX_PKT_BURST / 2)
147 
148 #define NB_SOCKETS 8
149 
150 /* Configure how many packets ahead to prefetch, when reading packets */
151 #define PREFETCH_OFFSET	3
152 
153 /* Used to mark destination port as 'invalid'. */
154 #define	BAD_PORT	((uint16_t)-1)
155 
156 #define FWDSTEP	4
157 
158 /*
159  * Configurable number of RX/TX ring descriptors
160  */
161 #define RTE_TEST_RX_DESC_DEFAULT 128
162 #define RTE_TEST_TX_DESC_DEFAULT 512
163 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
164 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
165 
166 /* ethernet addresses of ports */
167 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
168 
169 static __m128i val_eth[RTE_MAX_ETHPORTS];
170 
171 /* replace first 12B of the ethernet header. */
172 #define	MASK_ETH	0x3f
173 
174 /* mask of enabled ports */
175 static uint32_t enabled_port_mask = 0;
176 static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
177 static int numa_on = 1; /**< NUMA is enabled by default. */
178 
179 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
180 static int ipv6 = 0; /**< ipv6 is false by default. */
181 #endif
182 
183 struct mbuf_table {
184 	uint16_t len;
185 	struct rte_mbuf *m_table[MAX_PKT_BURST];
186 };
187 
188 struct lcore_rx_queue {
189 	uint8_t port_id;
190 	uint8_t queue_id;
191 } __rte_cache_aligned;
192 
193 #define MAX_RX_QUEUE_PER_LCORE 16
194 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
195 #define MAX_RX_QUEUE_PER_PORT 128
196 
197 #define MAX_LCORE_PARAMS 1024
198 struct lcore_params {
199 	uint8_t port_id;
200 	uint8_t queue_id;
201 	uint8_t lcore_id;
202 } __rte_cache_aligned;
203 
204 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
205 static struct lcore_params lcore_params_array_default[] = {
206 	{0, 0, 2},
207 	{0, 1, 2},
208 	{0, 2, 2},
209 	{1, 0, 2},
210 	{1, 1, 2},
211 	{1, 2, 2},
212 	{2, 0, 2},
213 	{3, 0, 3},
214 	{3, 1, 3},
215 };
216 
217 static struct lcore_params * lcore_params = lcore_params_array_default;
218 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
219 				sizeof(lcore_params_array_default[0]);
220 
221 static struct rte_eth_conf port_conf = {
222 	.rxmode = {
223 		.mq_mode = ETH_MQ_RX_RSS,
224 		.max_rx_pkt_len = ETHER_MAX_LEN,
225 		.split_hdr_size = 0,
226 		.header_split   = 0, /**< Header Split disabled */
227 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
228 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
229 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
230 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
231 	},
232 	.rx_adv_conf = {
233 		.rss_conf = {
234 			.rss_key = NULL,
235 			.rss_hf = ETH_RSS_IP,
236 		},
237 	},
238 	.txmode = {
239 		.mq_mode = ETH_MQ_TX_NONE,
240 	},
241 };
242 
243 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
244 
245 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
246 
247 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
248 #include <rte_hash_crc.h>
249 #define DEFAULT_HASH_FUNC       rte_hash_crc
250 #else
251 #include <rte_jhash.h>
252 #define DEFAULT_HASH_FUNC       rte_jhash
253 #endif
254 
255 struct ipv4_5tuple {
256         uint32_t ip_dst;
257         uint32_t ip_src;
258         uint16_t port_dst;
259         uint16_t port_src;
260         uint8_t  proto;
261 } __attribute__((__packed__));
262 
263 union ipv4_5tuple_host {
264 	struct {
265 		uint8_t  pad0;
266 		uint8_t  proto;
267 		uint16_t pad1;
268 		uint32_t ip_src;
269 		uint32_t ip_dst;
270 		uint16_t port_src;
271 		uint16_t port_dst;
272 	};
273 	__m128i xmm;
274 };
275 
276 #define XMM_NUM_IN_IPV6_5TUPLE 3
277 
278 struct ipv6_5tuple {
279         uint8_t  ip_dst[IPV6_ADDR_LEN];
280         uint8_t  ip_src[IPV6_ADDR_LEN];
281         uint16_t port_dst;
282         uint16_t port_src;
283         uint8_t  proto;
284 } __attribute__((__packed__));
285 
286 union ipv6_5tuple_host {
287 	struct {
288 		uint16_t pad0;
289 		uint8_t  proto;
290 		uint8_t  pad1;
291 		uint8_t  ip_src[IPV6_ADDR_LEN];
292 		uint8_t  ip_dst[IPV6_ADDR_LEN];
293 		uint16_t port_src;
294 		uint16_t port_dst;
295 		uint64_t reserve;
296 	};
297 	__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
298 };
299 
300 struct ipv4_l3fwd_route {
301 	struct ipv4_5tuple key;
302 	uint8_t if_out;
303 };
304 
305 struct ipv6_l3fwd_route {
306 	struct ipv6_5tuple key;
307 	uint8_t if_out;
308 };
309 
310 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
311 	{{IPv4(101,0,0,0), IPv4(100,10,0,1),  101, 11, IPPROTO_TCP}, 0},
312 	{{IPv4(201,0,0,0), IPv4(200,20,0,1),  102, 12, IPPROTO_TCP}, 1},
313 	{{IPv4(111,0,0,0), IPv4(100,30,0,1),  101, 11, IPPROTO_TCP}, 2},
314 	{{IPv4(211,0,0,0), IPv4(200,40,0,1),  102, 12, IPPROTO_TCP}, 3},
315 };
316 
317 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
318 	{{
319 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
320 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
321 	101, 11, IPPROTO_TCP}, 0},
322 
323 	{{
324 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
325 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
326 	102, 12, IPPROTO_TCP}, 1},
327 
328 	{{
329 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
330 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
331 	101, 11, IPPROTO_TCP}, 2},
332 
333 	{{
334 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
335 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
336 	102, 12, IPPROTO_TCP}, 3},
337 };
338 
339 typedef struct rte_hash lookup_struct_t;
340 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
341 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
342 
343 #ifdef RTE_ARCH_X86_64
344 /* default to 4 million hash entries (approx) */
345 #define L3FWD_HASH_ENTRIES		1024*1024*4
346 #else
347 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
348 #define L3FWD_HASH_ENTRIES		1024*1024*1
349 #endif
350 #define HASH_ENTRY_NUMBER_DEFAULT	4
351 
352 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
353 
354 static inline uint32_t
355 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
356 	uint32_t init_val)
357 {
358 	const union ipv4_5tuple_host *k;
359 	uint32_t t;
360 	const uint32_t *p;
361 
362 	k = data;
363 	t = k->proto;
364 	p = (const uint32_t *)&k->port_src;
365 
366 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
367 	init_val = rte_hash_crc_4byte(t, init_val);
368 	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
369 	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
370 	init_val = rte_hash_crc_4byte(*p, init_val);
371 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
372 	init_val = rte_jhash_1word(t, init_val);
373 	init_val = rte_jhash_1word(k->ip_src, init_val);
374 	init_val = rte_jhash_1word(k->ip_dst, init_val);
375 	init_val = rte_jhash_1word(*p, init_val);
376 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
377 	return (init_val);
378 }
379 
380 static inline uint32_t
381 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val)
382 {
383 	const union ipv6_5tuple_host *k;
384 	uint32_t t;
385 	const uint32_t *p;
386 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
387 	const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
388 	const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
389 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
390 
391 	k = data;
392 	t = k->proto;
393 	p = (const uint32_t *)&k->port_src;
394 
395 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
396 	ip_src0 = (const uint32_t *) k->ip_src;
397 	ip_src1 = (const uint32_t *)(k->ip_src+4);
398 	ip_src2 = (const uint32_t *)(k->ip_src+8);
399 	ip_src3 = (const uint32_t *)(k->ip_src+12);
400 	ip_dst0 = (const uint32_t *) k->ip_dst;
401 	ip_dst1 = (const uint32_t *)(k->ip_dst+4);
402 	ip_dst2 = (const uint32_t *)(k->ip_dst+8);
403 	ip_dst3 = (const uint32_t *)(k->ip_dst+12);
404 	init_val = rte_hash_crc_4byte(t, init_val);
405 	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
406 	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
407 	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
408 	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
409 	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
410 	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
411 	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
412 	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
413 	init_val = rte_hash_crc_4byte(*p, init_val);
414 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
415 	init_val = rte_jhash_1word(t, init_val);
416 	init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
417 	init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
418 	init_val = rte_jhash_1word(*p, init_val);
419 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
420 	return (init_val);
421 }
422 
423 #define IPV4_L3FWD_NUM_ROUTES \
424 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
425 
426 #define IPV6_L3FWD_NUM_ROUTES \
427 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
428 
429 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
430 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
431 
432 #endif
433 
434 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
435 struct ipv4_l3fwd_route {
436 	uint32_t ip;
437 	uint8_t  depth;
438 	uint8_t  if_out;
439 };
440 
441 struct ipv6_l3fwd_route {
442 	uint8_t ip[16];
443 	uint8_t  depth;
444 	uint8_t  if_out;
445 };
446 
447 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
448 	{IPv4(1,1,1,0), 24, 0},
449 	{IPv4(2,1,1,0), 24, 1},
450 	{IPv4(3,1,1,0), 24, 2},
451 	{IPv4(4,1,1,0), 24, 3},
452 	{IPv4(5,1,1,0), 24, 4},
453 	{IPv4(6,1,1,0), 24, 5},
454 	{IPv4(7,1,1,0), 24, 6},
455 	{IPv4(8,1,1,0), 24, 7},
456 };
457 
458 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
459 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
460 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
461 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
462 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
463 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
464 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
465 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
466 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
467 };
468 
469 #define IPV4_L3FWD_NUM_ROUTES \
470 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
471 #define IPV6_L3FWD_NUM_ROUTES \
472 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
473 
474 #define IPV4_L3FWD_LPM_MAX_RULES         1024
475 #define IPV6_L3FWD_LPM_MAX_RULES         1024
476 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
477 
478 typedef struct rte_lpm lookup_struct_t;
479 typedef struct rte_lpm6 lookup6_struct_t;
480 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
481 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
482 #endif
483 
484 struct lcore_conf {
485 	uint16_t n_rx_queue;
486 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
487 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
488 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
489 	lookup_struct_t * ipv4_lookup_struct;
490 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
491 	lookup6_struct_t * ipv6_lookup_struct;
492 #else
493 	lookup_struct_t * ipv6_lookup_struct;
494 #endif
495 } __rte_cache_aligned;
496 
497 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
498 
499 /* Send burst of packets on an output interface */
500 static inline int
501 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
502 {
503 	struct rte_mbuf **m_table;
504 	int ret;
505 	uint16_t queueid;
506 
507 	queueid = qconf->tx_queue_id[port];
508 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
509 
510 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
511 	if (unlikely(ret < n)) {
512 		do {
513 			rte_pktmbuf_free(m_table[ret]);
514 		} while (++ret < n);
515 	}
516 
517 	return 0;
518 }
519 
520 /* Enqueue a single packet, and send burst if queue is filled */
521 static inline int
522 send_single_packet(struct rte_mbuf *m, uint8_t port)
523 {
524 	uint32_t lcore_id;
525 	uint16_t len;
526 	struct lcore_conf *qconf;
527 
528 	lcore_id = rte_lcore_id();
529 
530 	qconf = &lcore_conf[lcore_id];
531 	len = qconf->tx_mbufs[port].len;
532 	qconf->tx_mbufs[port].m_table[len] = m;
533 	len++;
534 
535 	/* enough pkts to be sent */
536 	if (unlikely(len == MAX_PKT_BURST)) {
537 		send_burst(qconf, MAX_PKT_BURST, port);
538 		len = 0;
539 	}
540 
541 	qconf->tx_mbufs[port].len = len;
542 	return 0;
543 }
544 
545 static inline __attribute__((always_inline)) void
546 send_packetsx4(struct lcore_conf *qconf, uint8_t port,
547 	struct rte_mbuf *m[], uint32_t num)
548 {
549 	uint32_t len, j, n;
550 
551 	len = qconf->tx_mbufs[port].len;
552 
553 	/*
554 	 * If TX buffer for that queue is empty, and we have enough packets,
555 	 * then send them straightway.
556 	 */
557 	if (num >= MAX_TX_BURST && len == 0) {
558 		n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
559 		if (unlikely(n < num)) {
560 			do {
561 				rte_pktmbuf_free(m[n]);
562 			} while (++n < num);
563 		}
564 		return;
565 	}
566 
567 	/*
568 	 * Put packets into TX buffer for that queue.
569 	 */
570 
571 	n = len + num;
572 	n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
573 
574 	j = 0;
575 	switch (n % FWDSTEP) {
576 	while (j < n) {
577 	case 0:
578 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
579 		j++;
580 	case 3:
581 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
582 		j++;
583 	case 2:
584 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
585 		j++;
586 	case 1:
587 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
588 		j++;
589 	}
590 	}
591 
592 	len += n;
593 
594 	/* enough pkts to be sent */
595 	if (unlikely(len == MAX_PKT_BURST)) {
596 
597 		send_burst(qconf, MAX_PKT_BURST, port);
598 
599 		/* copy rest of the packets into the TX buffer. */
600 		len = num - n;
601 		j = 0;
602 		switch (len % FWDSTEP) {
603 		while (j < len) {
604 		case 0:
605 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
606 			j++;
607 		case 3:
608 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
609 			j++;
610 		case 2:
611 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
612 			j++;
613 		case 1:
614 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
615 			j++;
616 		}
617 		}
618 	}
619 
620 	qconf->tx_mbufs[port].len = len;
621 }
622 
623 #ifdef DO_RFC_1812_CHECKS
624 static inline int
625 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
626 {
627 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
628 	/*
629 	 * 1. The packet length reported by the Link Layer must be large
630 	 * enough to hold the minimum length legal IP datagram (20 bytes).
631 	 */
632 	if (link_len < sizeof(struct ipv4_hdr))
633 		return -1;
634 
635 	/* 2. The IP checksum must be correct. */
636 	/* this is checked in H/W */
637 
638 	/*
639 	 * 3. The IP version number must be 4. If the version number is not 4
640 	 * then the packet may be another version of IP, such as IPng or
641 	 * ST-II.
642 	 */
643 	if (((pkt->version_ihl) >> 4) != 4)
644 		return -3;
645 	/*
646 	 * 4. The IP header length field must be large enough to hold the
647 	 * minimum length legal IP datagram (20 bytes = 5 words).
648 	 */
649 	if ((pkt->version_ihl & 0xf) < 5)
650 		return -4;
651 
652 	/*
653 	 * 5. The IP total length field must be large enough to hold the IP
654 	 * datagram header, whose length is specified in the IP header length
655 	 * field.
656 	 */
657 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
658 		return -5;
659 
660 	return 0;
661 }
662 #endif
663 
664 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
665 
666 static __m128i mask0;
667 static __m128i mask1;
668 static __m128i mask2;
669 static inline uint8_t
670 get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
671 {
672 	int ret = 0;
673 	union ipv4_5tuple_host key;
674 
675 	ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
676 	__m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr));
677 	/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
678 	key.xmm = _mm_and_si128(data, mask0);
679 	/* Find destination port */
680 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
681 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
682 }
683 
684 static inline uint8_t
685 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
686 {
687 	int ret = 0;
688 	union ipv6_5tuple_host key;
689 
690 	ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
691 	__m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr));
692 	__m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)));
693 	__m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i)));
694 	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
695 	key.xmm[0] = _mm_and_si128(data0, mask1);
696 	/* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */
697 	key.xmm[1] = data1;
698 	/* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */
699 	key.xmm[2] = _mm_and_si128(data2, mask2);
700 
701 	/* Find destination port */
702 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
703 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
704 }
705 #endif
706 
707 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
708 
709 static inline uint8_t
710 get_ipv4_dst_port(void *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
711 {
712 	uint8_t next_hop;
713 
714 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
715 		rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
716 		&next_hop) == 0) ? next_hop : portid);
717 }
718 
719 static inline uint8_t
720 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
721 {
722 	uint8_t next_hop;
723 	return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
724 			((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)?
725 			next_hop : portid);
726 }
727 #endif
728 
729 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
730 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
731 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf);
732 
733 #define MASK_ALL_PKTS    0xf
734 #define EXECLUDE_1ST_PKT 0xe
735 #define EXECLUDE_2ND_PKT 0xd
736 #define EXECLUDE_3RD_PKT 0xb
737 #define EXECLUDE_4TH_PKT 0x7
738 
739 static inline void
740 simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
741 {
742 	struct ether_hdr *eth_hdr[4];
743 	struct ipv4_hdr *ipv4_hdr[4];
744 	void *d_addr_bytes[4];
745 	uint8_t dst_port[4];
746 	int32_t ret[4];
747 	union ipv4_5tuple_host key[4];
748 	__m128i data[4];
749 
750 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
751 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
752 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
753 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
754 
755 	/* Handle IPv4 headers.*/
756 	ipv4_hdr[0] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
757 			sizeof(struct ether_hdr));
758 	ipv4_hdr[1] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
759 			sizeof(struct ether_hdr));
760 	ipv4_hdr[2] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
761 			sizeof(struct ether_hdr));
762 	ipv4_hdr[3] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
763 			sizeof(struct ether_hdr));
764 
765 #ifdef DO_RFC_1812_CHECKS
766 	/* Check to make sure the packet is valid (RFC1812) */
767 	uint8_t valid_mask = MASK_ALL_PKTS;
768 	if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
769 		rte_pktmbuf_free(m[0]);
770 		valid_mask &= EXECLUDE_1ST_PKT;
771 	}
772 	if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
773 		rte_pktmbuf_free(m[1]);
774 		valid_mask &= EXECLUDE_2ND_PKT;
775 	}
776 	if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
777 		rte_pktmbuf_free(m[2]);
778 		valid_mask &= EXECLUDE_3RD_PKT;
779 	}
780 	if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
781 		rte_pktmbuf_free(m[3]);
782 		valid_mask &= EXECLUDE_4TH_PKT;
783 	}
784 	if (unlikely(valid_mask != MASK_ALL_PKTS)) {
785 		if (valid_mask == 0){
786 			return;
787 		} else {
788 			uint8_t i = 0;
789 			for (i = 0; i < 4; i++) {
790 				if ((0x1 << i) & valid_mask) {
791 					l3fwd_simple_forward(m[i], portid, qconf);
792 				}
793 			}
794 			return;
795 		}
796 	}
797 #endif // End of #ifdef DO_RFC_1812_CHECKS
798 
799 	data[0] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) +
800 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
801 	data[1] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) +
802 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
803 	data[2] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) +
804 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
805 	data[3] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) +
806 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
807 
808 	key[0].xmm = _mm_and_si128(data[0], mask0);
809 	key[1].xmm = _mm_and_si128(data[1], mask0);
810 	key[2].xmm = _mm_and_si128(data[2], mask0);
811 	key[3].xmm = _mm_and_si128(data[3], mask0);
812 
813 	const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
814 	rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
815 	dst_port[0] = (uint8_t) ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
816 	dst_port[1] = (uint8_t) ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
817 	dst_port[2] = (uint8_t) ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
818 	dst_port[3] = (uint8_t) ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
819 
820 	if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
821 		dst_port[0] = portid;
822 	if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
823 		dst_port[1] = portid;
824 	if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
825 		dst_port[2] = portid;
826 	if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
827 		dst_port[3] = portid;
828 
829 	/* 02:00:00:00:00:xx */
830 	d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
831 	d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
832 	d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
833 	d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
834 	*((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
835 	*((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
836 	*((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
837 	*((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
838 
839 #ifdef DO_RFC_1812_CHECKS
840 	/* Update time to live and header checksum */
841 	--(ipv4_hdr[0]->time_to_live);
842 	--(ipv4_hdr[1]->time_to_live);
843 	--(ipv4_hdr[2]->time_to_live);
844 	--(ipv4_hdr[3]->time_to_live);
845 	++(ipv4_hdr[0]->hdr_checksum);
846 	++(ipv4_hdr[1]->hdr_checksum);
847 	++(ipv4_hdr[2]->hdr_checksum);
848 	++(ipv4_hdr[3]->hdr_checksum);
849 #endif
850 
851 	/* src addr */
852 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
853 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
854 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
855 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
856 
857 	send_single_packet(m[0], (uint8_t)dst_port[0]);
858 	send_single_packet(m[1], (uint8_t)dst_port[1]);
859 	send_single_packet(m[2], (uint8_t)dst_port[2]);
860 	send_single_packet(m[3], (uint8_t)dst_port[3]);
861 
862 }
863 
864 static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1,
865 				 union ipv6_5tuple_host * key)
866 {
867         __m128i tmpdata0 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
868 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)));
869         __m128i tmpdata1 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
870 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
871 			+  sizeof(__m128i)));
872         __m128i tmpdata2 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
873 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
874 			+ sizeof(__m128i) + sizeof(__m128i)));
875         key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
876         key->xmm[1] = tmpdata1;
877         key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
878 	return;
879 }
880 
881 static inline void
882 simple_ipv6_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
883 {
884 	struct ether_hdr *eth_hdr[4];
885 	__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[4];
886 	void *d_addr_bytes[4];
887 	uint8_t dst_port[4];
888 	int32_t ret[4];
889 	union ipv6_5tuple_host key[4];
890 
891 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
892 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
893 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
894 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
895 
896 	/* Handle IPv6 headers.*/
897 	ipv6_hdr[0] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
898 			sizeof(struct ether_hdr));
899 	ipv6_hdr[1] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
900 			sizeof(struct ether_hdr));
901 	ipv6_hdr[2] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
902 			sizeof(struct ether_hdr));
903 	ipv6_hdr[3] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
904 			sizeof(struct ether_hdr));
905 
906 	get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
907 	get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
908 	get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
909 	get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
910 
911 	const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
912 	rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 4, ret);
913 	dst_port[0] = (uint8_t) ((ret[0] < 0)? portid:ipv6_l3fwd_out_if[ret[0]]);
914 	dst_port[1] = (uint8_t) ((ret[1] < 0)? portid:ipv6_l3fwd_out_if[ret[1]]);
915 	dst_port[2] = (uint8_t) ((ret[2] < 0)? portid:ipv6_l3fwd_out_if[ret[2]]);
916 	dst_port[3] = (uint8_t) ((ret[3] < 0)? portid:ipv6_l3fwd_out_if[ret[3]]);
917 
918 	if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
919 		dst_port[0] = portid;
920 	if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
921 		dst_port[1] = portid;
922 	if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
923 		dst_port[2] = portid;
924 	if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
925 		dst_port[3] = portid;
926 
927 	/* 02:00:00:00:00:xx */
928 	d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
929 	d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
930 	d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
931 	d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
932 	*((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
933 	*((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
934 	*((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
935 	*((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
936 
937 	/* src addr */
938 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
939 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
940 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
941 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
942 
943 	send_single_packet(m[0], (uint8_t)dst_port[0]);
944 	send_single_packet(m[1], (uint8_t)dst_port[1]);
945 	send_single_packet(m[2], (uint8_t)dst_port[2]);
946 	send_single_packet(m[3], (uint8_t)dst_port[3]);
947 
948 }
949 #endif /* APP_LOOKUP_METHOD */
950 
951 static inline __attribute__((always_inline)) void
952 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
953 {
954 	struct ether_hdr *eth_hdr;
955 	struct ipv4_hdr *ipv4_hdr;
956 	void *d_addr_bytes;
957 	uint8_t dst_port;
958 
959 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
960 
961 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
962 		/* Handle IPv4 headers.*/
963 		ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
964 				sizeof(struct ether_hdr));
965 
966 #ifdef DO_RFC_1812_CHECKS
967 		/* Check to make sure the packet is valid (RFC1812) */
968 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
969 			rte_pktmbuf_free(m);
970 			return;
971 		}
972 #endif
973 
974 		 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
975 			qconf->ipv4_lookup_struct);
976 		if (dst_port >= RTE_MAX_ETHPORTS ||
977 				(enabled_port_mask & 1 << dst_port) == 0)
978 			dst_port = portid;
979 
980 		/* 02:00:00:00:00:xx */
981 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
982 		*((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
983 			((uint64_t)dst_port << 40);
984 
985 #ifdef DO_RFC_1812_CHECKS
986 		/* Update time to live and header checksum */
987 		--(ipv4_hdr->time_to_live);
988 		++(ipv4_hdr->hdr_checksum);
989 #endif
990 
991 		/* src addr */
992 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
993 
994 		send_single_packet(m, dst_port);
995 
996 	} else {
997 		/* Handle IPv6 headers.*/
998 		struct ipv6_hdr *ipv6_hdr;
999 
1000 		ipv6_hdr = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
1001 				sizeof(struct ether_hdr));
1002 
1003 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
1004 
1005 		if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
1006 			dst_port = portid;
1007 
1008 		/* 02:00:00:00:00:xx */
1009 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
1010 		*((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
1011 			((uint64_t)dst_port << 40);
1012 
1013 		/* src addr */
1014 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1015 
1016 		send_single_packet(m, dst_port);
1017 	}
1018 
1019 }
1020 
1021 #ifdef DO_RFC_1812_CHECKS
1022 
1023 #define	IPV4_MIN_VER_IHL	0x45
1024 #define	IPV4_MAX_VER_IHL	0x4f
1025 #define	IPV4_MAX_VER_IHL_DIFF	(IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
1026 
1027 /* Minimum value of IPV4 total length (20B) in network byte order. */
1028 #define	IPV4_MIN_LEN_BE	(sizeof(struct ipv4_hdr) << 8)
1029 
1030 /*
1031  * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
1032  * - The IP version number must be 4.
1033  * - The IP header length field must be large enough to hold the
1034  *    minimum length legal IP datagram (20 bytes = 5 words).
1035  * - The IP total length field must be large enough to hold the IP
1036  *   datagram header, whose length is specified in the IP header length
1037  *   field.
1038  * If we encounter invalid IPV4 packet, then set destination port for it
1039  * to BAD_PORT value.
1040  */
1041 static inline __attribute__((always_inline)) void
1042 rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t flags)
1043 {
1044 	uint8_t ihl;
1045 
1046 	if ((flags & PKT_RX_IPV4_HDR) != 0) {
1047 
1048 		ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
1049 
1050 		ipv4_hdr->time_to_live--;
1051 		ipv4_hdr->hdr_checksum++;
1052 
1053 		if (ihl > IPV4_MAX_VER_IHL_DIFF ||
1054 				((uint8_t)ipv4_hdr->total_length == 0 &&
1055 				ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
1056 			dp[0] = BAD_PORT;
1057 		}
1058 	}
1059 }
1060 
1061 #else
1062 #define	rfc1812_process(mb, dp)	do { } while (0)
1063 #endif /* DO_RFC_1812_CHECKS */
1064 
1065 
1066 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1067 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1068 
1069 static inline __attribute__((always_inline)) uint16_t
1070 get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
1071 	uint32_t dst_ipv4, uint8_t portid)
1072 {
1073 	uint8_t next_hop;
1074 	struct ipv6_hdr *ipv6_hdr;
1075 	struct ether_hdr *eth_hdr;
1076 
1077 	if (pkt->ol_flags & PKT_RX_IPV4_HDR) {
1078 		if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
1079 				&next_hop) != 0)
1080 			next_hop = portid;
1081 	} else if (pkt->ol_flags & PKT_RX_IPV6_HDR) {
1082 		eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1083 		ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
1084 		if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
1085 				ipv6_hdr->dst_addr, &next_hop) != 0)
1086 			next_hop = portid;
1087 	} else {
1088 		next_hop = portid;
1089 	}
1090 
1091 	return next_hop;
1092 }
1093 
1094 static inline void
1095 process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
1096 	uint16_t *dst_port, uint8_t portid)
1097 {
1098 	struct ether_hdr *eth_hdr;
1099 	struct ipv4_hdr *ipv4_hdr;
1100 	uint32_t dst_ipv4;
1101 	uint16_t dp;
1102 	__m128i te, ve;
1103 
1104 	eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1105 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1106 
1107 	dst_ipv4 = ipv4_hdr->dst_addr;
1108 	dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
1109 	dp = get_dst_port(qconf, pkt, dst_ipv4, portid);
1110 
1111 	te = _mm_load_si128((__m128i *)eth_hdr);
1112 	ve = val_eth[dp];
1113 
1114 	dst_port[0] = dp;
1115 	rfc1812_process(ipv4_hdr, dst_port, pkt->ol_flags);
1116 
1117 	te =  _mm_blend_epi16(te, ve, MASK_ETH);
1118 	_mm_store_si128((__m128i *)eth_hdr, te);
1119 }
1120 
1121 /*
1122  * Read ol_flags and destination IPV4 addresses from 4 mbufs.
1123  */
1124 static inline void
1125 processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *flag)
1126 {
1127 	struct ipv4_hdr *ipv4_hdr;
1128 	struct ether_hdr *eth_hdr;
1129 	uint32_t x0, x1, x2, x3;
1130 
1131 	eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
1132 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1133 	x0 = ipv4_hdr->dst_addr;
1134 	flag[0] = pkt[0]->ol_flags & PKT_RX_IPV4_HDR;
1135 
1136 	eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
1137 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1138 	x1 = ipv4_hdr->dst_addr;
1139 	flag[0] &= pkt[1]->ol_flags;
1140 
1141 	eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
1142 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1143 	x2 = ipv4_hdr->dst_addr;
1144 	flag[0] &= pkt[2]->ol_flags;
1145 
1146 	eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
1147 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1148 	x3 = ipv4_hdr->dst_addr;
1149 	flag[0] &= pkt[3]->ol_flags;
1150 
1151 	dip[0] = _mm_set_epi32(x3, x2, x1, x0);
1152 }
1153 
1154 /*
1155  * Lookup into LPM for destination port.
1156  * If lookup fails, use incoming port (portid) as destination port.
1157  */
1158 static inline void
1159 processx4_step2(const struct lcore_conf *qconf, __m128i dip, uint32_t flag,
1160 	uint8_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP])
1161 {
1162 	rte_xmm_t dst;
1163 	const  __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
1164 						4, 5, 6, 7, 0, 1, 2, 3);
1165 
1166 	/* Byte swap 4 IPV4 addresses. */
1167 	dip = _mm_shuffle_epi8(dip, bswap_mask);
1168 
1169 	/* if all 4 packets are IPV4. */
1170 	if (likely(flag != 0)) {
1171 		rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
1172 	} else {
1173 		dst.m = dip;
1174 		dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);
1175 		dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
1176 		dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
1177 		dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
1178 	}
1179 }
1180 
1181 /*
1182  * Update source and destination MAC addresses in the ethernet header.
1183  * Perform RFC1812 checks and updates for IPV4 packets.
1184  */
1185 static inline void
1186 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
1187 {
1188 	__m128i te[FWDSTEP];
1189 	__m128i ve[FWDSTEP];
1190 	__m128i *p[FWDSTEP];
1191 
1192 	p[0] = (rte_pktmbuf_mtod(pkt[0], __m128i *));
1193 	p[1] = (rte_pktmbuf_mtod(pkt[1], __m128i *));
1194 	p[2] = (rte_pktmbuf_mtod(pkt[2], __m128i *));
1195 	p[3] = (rte_pktmbuf_mtod(pkt[3], __m128i *));
1196 
1197 	ve[0] = val_eth[dst_port[0]];
1198 	te[0] = _mm_load_si128(p[0]);
1199 
1200 	ve[1] = val_eth[dst_port[1]];
1201 	te[1] = _mm_load_si128(p[1]);
1202 
1203 	ve[2] = val_eth[dst_port[2]];
1204 	te[2] = _mm_load_si128(p[2]);
1205 
1206 	ve[3] = val_eth[dst_port[3]];
1207 	te[3] = _mm_load_si128(p[3]);
1208 
1209 	/* Update first 12 bytes, keep rest bytes intact. */
1210 	te[0] =  _mm_blend_epi16(te[0], ve[0], MASK_ETH);
1211 	te[1] =  _mm_blend_epi16(te[1], ve[1], MASK_ETH);
1212 	te[2] =  _mm_blend_epi16(te[2], ve[2], MASK_ETH);
1213 	te[3] =  _mm_blend_epi16(te[3], ve[3], MASK_ETH);
1214 
1215 	_mm_store_si128(p[0], te[0]);
1216 	_mm_store_si128(p[1], te[1]);
1217 	_mm_store_si128(p[2], te[2]);
1218 	_mm_store_si128(p[3], te[3]);
1219 
1220 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
1221 		&dst_port[0], pkt[0]->ol_flags);
1222 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
1223 		&dst_port[1], pkt[1]->ol_flags);
1224 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
1225 		&dst_port[2], pkt[2]->ol_flags);
1226 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
1227 		&dst_port[3], pkt[3]->ol_flags);
1228 }
1229 
1230 /*
1231  * We group consecutive packets with the same destionation port into one burst.
1232  * To avoid extra latency this is done together with some other packet
1233  * processing, but after we made a final decision about packet's destination.
1234  * To do this we maintain:
1235  * pnum - array of number of consecutive packets with the same dest port for
1236  * each packet in the input burst.
1237  * lp - pointer to the last updated element in the pnum.
1238  * dlp - dest port value lp corresponds to.
1239  */
1240 
1241 #define	GRPSZ	(1 << FWDSTEP)
1242 #define	GRPMSK	(GRPSZ - 1)
1243 
1244 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx)	do { \
1245 	if (likely((dlp) == (dcp)[(idx)])) {         \
1246 		(lp)[0]++;                           \
1247 	} else {                                     \
1248 		(dlp) = (dcp)[idx];                  \
1249 		(lp) = (pn) + (idx);                 \
1250 		(lp)[0] = 1;                         \
1251 	}                                            \
1252 } while (0)
1253 
1254 /*
1255  * Group consecutive packets with the same destination port in bursts of 4.
1256  * Suppose we have array of destionation ports:
1257  * dst_port[] = {a, b, c, d,, e, ... }
1258  * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
1259  * We doing 4 comparisions at once and the result is 4 bit mask.
1260  * This mask is used as an index into prebuild array of pnum values.
1261  */
1262 static inline uint16_t *
1263 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
1264 {
1265 	static const struct {
1266 		uint64_t pnum; /* prebuild 4 values for pnum[]. */
1267 		int32_t  idx;  /* index for new last updated elemnet. */
1268 		uint16_t lpv;  /* add value to the last updated element. */
1269 	} gptbl[GRPSZ] = {
1270 	{
1271 		/* 0: a != b, b != c, c != d, d != e */
1272 		.pnum = UINT64_C(0x0001000100010001),
1273 		.idx = 4,
1274 		.lpv = 0,
1275 	},
1276 	{
1277 		/* 1: a == b, b != c, c != d, d != e */
1278 		.pnum = UINT64_C(0x0001000100010002),
1279 		.idx = 4,
1280 		.lpv = 1,
1281 	},
1282 	{
1283 		/* 2: a != b, b == c, c != d, d != e */
1284 		.pnum = UINT64_C(0x0001000100020001),
1285 		.idx = 4,
1286 		.lpv = 0,
1287 	},
1288 	{
1289 		/* 3: a == b, b == c, c != d, d != e */
1290 		.pnum = UINT64_C(0x0001000100020003),
1291 		.idx = 4,
1292 		.lpv = 2,
1293 	},
1294 	{
1295 		/* 4: a != b, b != c, c == d, d != e */
1296 		.pnum = UINT64_C(0x0001000200010001),
1297 		.idx = 4,
1298 		.lpv = 0,
1299 	},
1300 	{
1301 		/* 5: a == b, b != c, c == d, d != e */
1302 		.pnum = UINT64_C(0x0001000200010002),
1303 		.idx = 4,
1304 		.lpv = 1,
1305 	},
1306 	{
1307 		/* 6: a != b, b == c, c == d, d != e */
1308 		.pnum = UINT64_C(0x0001000200030001),
1309 		.idx = 4,
1310 		.lpv = 0,
1311 	},
1312 	{
1313 		/* 7: a == b, b == c, c == d, d != e */
1314 		.pnum = UINT64_C(0x0001000200030004),
1315 		.idx = 4,
1316 		.lpv = 3,
1317 	},
1318 	{
1319 		/* 8: a != b, b != c, c != d, d == e */
1320 		.pnum = UINT64_C(0x0002000100010001),
1321 		.idx = 3,
1322 		.lpv = 0,
1323 	},
1324 	{
1325 		/* 9: a == b, b != c, c != d, d == e */
1326 		.pnum = UINT64_C(0x0002000100010002),
1327 		.idx = 3,
1328 		.lpv = 1,
1329 	},
1330 	{
1331 		/* 0xa: a != b, b == c, c != d, d == e */
1332 		.pnum = UINT64_C(0x0002000100020001),
1333 		.idx = 3,
1334 		.lpv = 0,
1335 	},
1336 	{
1337 		/* 0xb: a == b, b == c, c != d, d == e */
1338 		.pnum = UINT64_C(0x0002000100020003),
1339 		.idx = 3,
1340 		.lpv = 2,
1341 	},
1342 	{
1343 		/* 0xc: a != b, b != c, c == d, d == e */
1344 		.pnum = UINT64_C(0x0002000300010001),
1345 		.idx = 2,
1346 		.lpv = 0,
1347 	},
1348 	{
1349 		/* 0xd: a == b, b != c, c == d, d == e */
1350 		.pnum = UINT64_C(0x0002000300010002),
1351 		.idx = 2,
1352 		.lpv = 1,
1353 	},
1354 	{
1355 		/* 0xe: a != b, b == c, c == d, d == e */
1356 		.pnum = UINT64_C(0x0002000300040001),
1357 		.idx = 1,
1358 		.lpv = 0,
1359 	},
1360 	{
1361 		/* 0xf: a == b, b == c, c == d, d == e */
1362 		.pnum = UINT64_C(0x0002000300040005),
1363 		.idx = 0,
1364 		.lpv = 4,
1365 	},
1366 	};
1367 
1368 	union {
1369 		uint16_t u16[FWDSTEP + 1];
1370 		uint64_t u64;
1371 	} *pnum = (void *)pn;
1372 
1373 	int32_t v;
1374 
1375 	dp1 = _mm_cmpeq_epi16(dp1, dp2);
1376 	dp1 = _mm_unpacklo_epi16(dp1, dp1);
1377 	v = _mm_movemask_ps((__m128)dp1);
1378 
1379 	/* update last port counter. */
1380 	lp[0] += gptbl[v].lpv;
1381 
1382 	/* if dest port value has changed. */
1383 	if (v != GRPMSK) {
1384 		lp = pnum->u16 + gptbl[v].idx;
1385 		lp[0] = 1;
1386 		pnum->u64 = gptbl[v].pnum;
1387 	}
1388 
1389 	return lp;
1390 }
1391 
1392 #endif /* APP_LOOKUP_METHOD */
1393 
1394 /* main processing loop */
1395 static int
1396 main_loop(__attribute__((unused)) void *dummy)
1397 {
1398 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1399 	unsigned lcore_id;
1400 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1401 	int i, j, nb_rx;
1402 	uint8_t portid, queueid;
1403 	struct lcore_conf *qconf;
1404 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1405 		US_PER_S * BURST_TX_DRAIN_US;
1406 
1407 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1408 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1409 	int32_t k;
1410 	uint16_t dlp;
1411 	uint16_t *lp;
1412 	uint16_t dst_port[MAX_PKT_BURST];
1413 	__m128i dip[MAX_PKT_BURST / FWDSTEP];
1414 	uint32_t flag[MAX_PKT_BURST / FWDSTEP];
1415 	uint16_t pnum[MAX_PKT_BURST + 1];
1416 #endif
1417 
1418 	prev_tsc = 0;
1419 
1420 	lcore_id = rte_lcore_id();
1421 	qconf = &lcore_conf[lcore_id];
1422 
1423 	if (qconf->n_rx_queue == 0) {
1424 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
1425 		return 0;
1426 	}
1427 
1428 	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
1429 
1430 	for (i = 0; i < qconf->n_rx_queue; i++) {
1431 
1432 		portid = qconf->rx_queue_list[i].port_id;
1433 		queueid = qconf->rx_queue_list[i].queue_id;
1434 		RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
1435 			portid, queueid);
1436 	}
1437 
1438 	while (1) {
1439 
1440 		cur_tsc = rte_rdtsc();
1441 
1442 		/*
1443 		 * TX burst queue drain
1444 		 */
1445 		diff_tsc = cur_tsc - prev_tsc;
1446 		if (unlikely(diff_tsc > drain_tsc)) {
1447 
1448 			/*
1449 			 * This could be optimized (use queueid instead of
1450 			 * portid), but it is not called so often
1451 			 */
1452 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1453 				if (qconf->tx_mbufs[portid].len == 0)
1454 					continue;
1455 				send_burst(qconf,
1456 					qconf->tx_mbufs[portid].len,
1457 					portid);
1458 				qconf->tx_mbufs[portid].len = 0;
1459 			}
1460 
1461 			prev_tsc = cur_tsc;
1462 		}
1463 
1464 		/*
1465 		 * Read packet from RX queues
1466 		 */
1467 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1468 			portid = qconf->rx_queue_list[i].port_id;
1469 			queueid = qconf->rx_queue_list[i].queue_id;
1470 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1471 				MAX_PKT_BURST);
1472 			if (nb_rx == 0)
1473 				continue;
1474 
1475 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
1476 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1477 			{
1478 				/*
1479 				 * Send nb_rx - nb_rx%4 packets
1480 				 * in groups of 4.
1481 				 */
1482 				int32_t n = RTE_ALIGN_FLOOR(nb_rx, 4);
1483 				for (j = 0; j < n ; j+=4) {
1484 					uint32_t ol_flag = pkts_burst[j]->ol_flags
1485 							& pkts_burst[j+1]->ol_flags
1486 							& pkts_burst[j+2]->ol_flags
1487 							& pkts_burst[j+3]->ol_flags;
1488 					if (ol_flag & PKT_RX_IPV4_HDR ) {
1489 						simple_ipv4_fwd_4pkts(&pkts_burst[j],
1490 									portid, qconf);
1491 					} else if (ol_flag & PKT_RX_IPV6_HDR) {
1492 						simple_ipv6_fwd_4pkts(&pkts_burst[j],
1493 									portid, qconf);
1494 					} else {
1495 						l3fwd_simple_forward(pkts_burst[j],
1496 									portid, qconf);
1497 						l3fwd_simple_forward(pkts_burst[j+1],
1498 									portid, qconf);
1499 						l3fwd_simple_forward(pkts_burst[j+2],
1500 									portid, qconf);
1501 						l3fwd_simple_forward(pkts_burst[j+3],
1502 									portid, qconf);
1503 					}
1504 				}
1505 				for (; j < nb_rx ; j++) {
1506 					l3fwd_simple_forward(pkts_burst[j],
1507 								portid, qconf);
1508 				}
1509 			}
1510 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1511 
1512 			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1513 			for (j = 0; j != k; j += FWDSTEP) {
1514 				processx4_step1(&pkts_burst[j],
1515 					&dip[j / FWDSTEP],
1516 					&flag[j / FWDSTEP]);
1517 			}
1518 
1519 			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1520 			for (j = 0; j != k; j += FWDSTEP) {
1521 				processx4_step2(qconf, dip[j / FWDSTEP],
1522 					flag[j / FWDSTEP], portid,
1523 					&pkts_burst[j], &dst_port[j]);
1524 			}
1525 
1526 			/*
1527 			 * Finish packet processing and group consecutive
1528 			 * packets with the same destination port.
1529 			 */
1530 			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1531 			if (k != 0) {
1532 				__m128i dp1, dp2;
1533 
1534 				lp = pnum;
1535 				lp[0] = 1;
1536 
1537 				processx4_step3(pkts_burst, dst_port);
1538 
1539 				/* dp1: <d[0], d[1], d[2], d[3], ... > */
1540 				dp1 = _mm_loadu_si128((__m128i *)dst_port);
1541 
1542 				for (j = FWDSTEP; j != k; j += FWDSTEP) {
1543 					processx4_step3(&pkts_burst[j],
1544 						&dst_port[j]);
1545 
1546 					/*
1547 					 * dp2:
1548 					 * <d[j-3], d[j-2], d[j-1], d[j], ... >
1549 					 */
1550 					dp2 = _mm_loadu_si128((__m128i *)
1551 						&dst_port[j - FWDSTEP + 1]);
1552 					lp  = port_groupx4(&pnum[j - FWDSTEP],
1553 						lp, dp1, dp2);
1554 
1555 					/*
1556 					 * dp1:
1557 					 * <d[j], d[j+1], d[j+2], d[j+3], ... >
1558 					 */
1559 					dp1 = _mm_srli_si128(dp2,
1560 						(FWDSTEP - 1) *
1561 						sizeof(dst_port[0]));
1562 				}
1563 
1564 				/*
1565 				 * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
1566 				 */
1567 				dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
1568 				lp  = port_groupx4(&pnum[j - FWDSTEP], lp,
1569 					dp1, dp2);
1570 
1571 				/*
1572 				 * remove values added by the last repeated
1573 				 * dst port.
1574 				 */
1575 				lp[0]--;
1576 				dlp = dst_port[j - 1];
1577 			} else {
1578 				/* set dlp and lp to the never used values. */
1579 				dlp = BAD_PORT - 1;
1580 				lp = pnum + MAX_PKT_BURST;
1581 			}
1582 
1583 			/* Process up to last 3 packets one by one. */
1584 			switch (nb_rx % FWDSTEP) {
1585 			case 3:
1586 				process_packet(qconf, pkts_burst[j],
1587 					dst_port + j, portid);
1588 				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1589 				j++;
1590 			case 2:
1591 				process_packet(qconf, pkts_burst[j],
1592 					dst_port + j, portid);
1593 				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1594 				j++;
1595 			case 1:
1596 				process_packet(qconf, pkts_burst[j],
1597 					dst_port + j, portid);
1598 				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1599 				j++;
1600 			}
1601 
1602 			/*
1603 			 * Send packets out, through destination port.
1604 			 * Consecuteve pacekts with the same destination port
1605 			 * are already grouped together.
1606 			 * If destination port for the packet equals BAD_PORT,
1607 			 * then free the packet without sending it out.
1608 			 */
1609 			for (j = 0; j < nb_rx; j += k) {
1610 
1611 				int32_t m;
1612 				uint16_t pn;
1613 
1614 				pn = dst_port[j];
1615 				k = pnum[j];
1616 
1617 				if (likely(pn != BAD_PORT)) {
1618 					send_packetsx4(qconf, pn,
1619 						pkts_burst + j, k);
1620 				} else {
1621 					for (m = j; m != j + k; m++)
1622 						rte_pktmbuf_free(pkts_burst[m]);
1623 				}
1624 			}
1625 
1626 #endif /* APP_LOOKUP_METHOD */
1627 #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
1628 
1629 			/* Prefetch first packets */
1630 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1631 				rte_prefetch0(rte_pktmbuf_mtod(
1632 						pkts_burst[j], void *));
1633 			}
1634 
1635 			/* Prefetch and forward already prefetched packets */
1636 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1637 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1638 						j + PREFETCH_OFFSET], void *));
1639 				l3fwd_simple_forward(pkts_burst[j], portid,
1640 					qconf);
1641 			}
1642 
1643 			/* Forward remaining prefetched packets */
1644 			for (; j < nb_rx; j++) {
1645 				l3fwd_simple_forward(pkts_burst[j], portid,
1646 					qconf);
1647 			}
1648 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
1649 
1650 		}
1651 	}
1652 }
1653 
1654 static int
1655 check_lcore_params(void)
1656 {
1657 	uint8_t queue, lcore;
1658 	uint16_t i;
1659 	int socketid;
1660 
1661 	for (i = 0; i < nb_lcore_params; ++i) {
1662 		queue = lcore_params[i].queue_id;
1663 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1664 			printf("invalid queue number: %hhu\n", queue);
1665 			return -1;
1666 		}
1667 		lcore = lcore_params[i].lcore_id;
1668 		if (!rte_lcore_is_enabled(lcore)) {
1669 			printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
1670 			return -1;
1671 		}
1672 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1673 			(numa_on == 0)) {
1674 			printf("warning: lcore %hhu is on socket %d with numa off \n",
1675 				lcore, socketid);
1676 		}
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int
1682 check_port_config(const unsigned nb_ports)
1683 {
1684 	unsigned portid;
1685 	uint16_t i;
1686 
1687 	for (i = 0; i < nb_lcore_params; ++i) {
1688 		portid = lcore_params[i].port_id;
1689 		if ((enabled_port_mask & (1 << portid)) == 0) {
1690 			printf("port %u is not enabled in port mask\n", portid);
1691 			return -1;
1692 		}
1693 		if (portid >= nb_ports) {
1694 			printf("port %u is not present on the board\n", portid);
1695 			return -1;
1696 		}
1697 	}
1698 	return 0;
1699 }
1700 
1701 static uint8_t
1702 get_port_n_rx_queues(const uint8_t port)
1703 {
1704 	int queue = -1;
1705 	uint16_t i;
1706 
1707 	for (i = 0; i < nb_lcore_params; ++i) {
1708 		if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
1709 			queue = lcore_params[i].queue_id;
1710 	}
1711 	return (uint8_t)(++queue);
1712 }
1713 
1714 static int
1715 init_lcore_rx_queues(void)
1716 {
1717 	uint16_t i, nb_rx_queue;
1718 	uint8_t lcore;
1719 
1720 	for (i = 0; i < nb_lcore_params; ++i) {
1721 		lcore = lcore_params[i].lcore_id;
1722 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1723 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1724 			printf("error: too many queues (%u) for lcore: %u\n",
1725 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1726 			return -1;
1727 		} else {
1728 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1729 				lcore_params[i].port_id;
1730 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1731 				lcore_params[i].queue_id;
1732 			lcore_conf[lcore].n_rx_queue++;
1733 		}
1734 	}
1735 	return 0;
1736 }
1737 
1738 /* display usage */
1739 static void
1740 print_usage(const char *prgname)
1741 {
1742 	printf ("%s [EAL options] -- -p PORTMASK -P"
1743 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1744 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1745 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1746 		"  -P : enable promiscuous mode\n"
1747 		"  --config (port,queue,lcore): rx queues configuration\n"
1748 		"  --no-numa: optional, disable numa awareness\n"
1749 		"  --ipv6: optional, specify it if running ipv6 packets\n"
1750 		"  --enable-jumbo: enable jumbo frame"
1751 		" which max packet len is PKTLEN in decimal (64-9600)\n"
1752 		"  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n",
1753 		prgname);
1754 }
1755 
1756 static int parse_max_pkt_len(const char *pktlen)
1757 {
1758 	char *end = NULL;
1759 	unsigned long len;
1760 
1761 	/* parse decimal string */
1762 	len = strtoul(pktlen, &end, 10);
1763 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1764 		return -1;
1765 
1766 	if (len == 0)
1767 		return -1;
1768 
1769 	return len;
1770 }
1771 
1772 static int
1773 parse_portmask(const char *portmask)
1774 {
1775 	char *end = NULL;
1776 	unsigned long pm;
1777 
1778 	/* parse hexadecimal string */
1779 	pm = strtoul(portmask, &end, 16);
1780 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1781 		return -1;
1782 
1783 	if (pm == 0)
1784 		return -1;
1785 
1786 	return pm;
1787 }
1788 
1789 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1790 static int
1791 parse_hash_entry_number(const char *hash_entry_num)
1792 {
1793 	char *end = NULL;
1794 	unsigned long hash_en;
1795 	/* parse hexadecimal string */
1796 	hash_en = strtoul(hash_entry_num, &end, 16);
1797 	if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
1798 		return -1;
1799 
1800 	if (hash_en == 0)
1801 		return -1;
1802 
1803 	return hash_en;
1804 }
1805 #endif
1806 
1807 static int
1808 parse_config(const char *q_arg)
1809 {
1810 	char s[256];
1811 	const char *p, *p0 = q_arg;
1812 	char *end;
1813 	enum fieldnames {
1814 		FLD_PORT = 0,
1815 		FLD_QUEUE,
1816 		FLD_LCORE,
1817 		_NUM_FLD
1818 	};
1819 	unsigned long int_fld[_NUM_FLD];
1820 	char *str_fld[_NUM_FLD];
1821 	int i;
1822 	unsigned size;
1823 
1824 	nb_lcore_params = 0;
1825 
1826 	while ((p = strchr(p0,'(')) != NULL) {
1827 		++p;
1828 		if((p0 = strchr(p,')')) == NULL)
1829 			return -1;
1830 
1831 		size = p0 - p;
1832 		if(size >= sizeof(s))
1833 			return -1;
1834 
1835 		snprintf(s, sizeof(s), "%.*s", size, p);
1836 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
1837 			return -1;
1838 		for (i = 0; i < _NUM_FLD; i++){
1839 			errno = 0;
1840 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1841 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1842 				return -1;
1843 		}
1844 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1845 			printf("exceeded max number of lcore params: %hu\n",
1846 				nb_lcore_params);
1847 			return -1;
1848 		}
1849 		lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
1850 		lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
1851 		lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
1852 		++nb_lcore_params;
1853 	}
1854 	lcore_params = lcore_params_array;
1855 	return 0;
1856 }
1857 
1858 #define CMD_LINE_OPT_CONFIG "config"
1859 #define CMD_LINE_OPT_NO_NUMA "no-numa"
1860 #define CMD_LINE_OPT_IPV6 "ipv6"
1861 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
1862 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
1863 
1864 /* Parse the argument given in the command line of the application */
1865 static int
1866 parse_args(int argc, char **argv)
1867 {
1868 	int opt, ret;
1869 	char **argvopt;
1870 	int option_index;
1871 	char *prgname = argv[0];
1872 	static struct option lgopts[] = {
1873 		{CMD_LINE_OPT_CONFIG, 1, 0, 0},
1874 		{CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
1875 		{CMD_LINE_OPT_IPV6, 0, 0, 0},
1876 		{CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
1877 		{CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
1878 		{NULL, 0, 0, 0}
1879 	};
1880 
1881 	argvopt = argv;
1882 
1883 	while ((opt = getopt_long(argc, argvopt, "p:P",
1884 				lgopts, &option_index)) != EOF) {
1885 
1886 		switch (opt) {
1887 		/* portmask */
1888 		case 'p':
1889 			enabled_port_mask = parse_portmask(optarg);
1890 			if (enabled_port_mask == 0) {
1891 				printf("invalid portmask\n");
1892 				print_usage(prgname);
1893 				return -1;
1894 			}
1895 			break;
1896 		case 'P':
1897 			printf("Promiscuous mode selected\n");
1898 			promiscuous_on = 1;
1899 			break;
1900 
1901 		/* long options */
1902 		case 0:
1903 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG,
1904 				sizeof (CMD_LINE_OPT_CONFIG))) {
1905 				ret = parse_config(optarg);
1906 				if (ret) {
1907 					printf("invalid config\n");
1908 					print_usage(prgname);
1909 					return -1;
1910 				}
1911 			}
1912 
1913 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
1914 				sizeof(CMD_LINE_OPT_NO_NUMA))) {
1915 				printf("numa is disabled \n");
1916 				numa_on = 0;
1917 			}
1918 
1919 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1920 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
1921 				sizeof(CMD_LINE_OPT_IPV6))) {
1922 				printf("ipv6 is specified \n");
1923 				ipv6 = 1;
1924 			}
1925 #endif
1926 
1927 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
1928 				sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) {
1929 				struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
1930 
1931 				printf("jumbo frame is enabled - disabling simple TX path\n");
1932 				port_conf.rxmode.jumbo_frame = 1;
1933 
1934 				/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
1935 				if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
1936 					ret = parse_max_pkt_len(optarg);
1937 					if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
1938 						printf("invalid packet length\n");
1939 						print_usage(prgname);
1940 						return -1;
1941 					}
1942 					port_conf.rxmode.max_rx_pkt_len = ret;
1943 				}
1944 				printf("set jumbo frame max packet length to %u\n",
1945 						(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1946 			}
1947 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1948 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
1949 				sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
1950 				ret = parse_hash_entry_number(optarg);
1951 				if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
1952 					hash_entry_number = ret;
1953 				} else {
1954 					printf("invalid hash entry number\n");
1955 					print_usage(prgname);
1956 					return -1;
1957 				}
1958 			}
1959 #endif
1960 			break;
1961 
1962 		default:
1963 			print_usage(prgname);
1964 			return -1;
1965 		}
1966 	}
1967 
1968 	if (optind >= 0)
1969 		argv[optind-1] = prgname;
1970 
1971 	ret = optind-1;
1972 	optind = 0; /* reset getopt lib */
1973 	return ret;
1974 }
1975 
1976 static void
1977 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1978 {
1979 	char buf[ETHER_ADDR_FMT_SIZE];
1980 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1981 	printf("%s%s", name, buf);
1982 }
1983 
1984 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1985 
1986 static void convert_ipv4_5tuple(struct ipv4_5tuple* key1,
1987 		union ipv4_5tuple_host* key2)
1988 {
1989 	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
1990 	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
1991 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
1992 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
1993 	key2->proto = key1->proto;
1994 	key2->pad0 = 0;
1995 	key2->pad1 = 0;
1996 	return;
1997 }
1998 
1999 static void convert_ipv6_5tuple(struct ipv6_5tuple* key1,
2000                 union ipv6_5tuple_host* key2)
2001 {
2002 	uint32_t i;
2003 	for (i = 0; i < 16; i++)
2004 	{
2005 		key2->ip_dst[i] = key1->ip_dst[i];
2006 		key2->ip_src[i] = key1->ip_src[i];
2007 	}
2008 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
2009 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
2010 	key2->proto = key1->proto;
2011 	key2->pad0 = 0;
2012 	key2->pad1 = 0;
2013 	key2->reserve = 0;
2014 	return;
2015 }
2016 
2017 #define BYTE_VALUE_MAX 256
2018 #define ALL_32_BITS 0xffffffff
2019 #define BIT_8_TO_15 0x0000ff00
2020 static inline void
2021 populate_ipv4_few_flow_into_table(const struct rte_hash* h)
2022 {
2023 	uint32_t i;
2024 	int32_t ret;
2025 	uint32_t array_len = sizeof(ipv4_l3fwd_route_array)/sizeof(ipv4_l3fwd_route_array[0]);
2026 
2027 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
2028 	for (i = 0; i < array_len; i++) {
2029 		struct ipv4_l3fwd_route  entry;
2030 		union ipv4_5tuple_host newkey;
2031 		entry = ipv4_l3fwd_route_array[i];
2032 		convert_ipv4_5tuple(&entry.key, &newkey);
2033 		ret = rte_hash_add_key (h,(void *) &newkey);
2034 		if (ret < 0) {
2035 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
2036 				" to the l3fwd hash.\n", i);
2037 		}
2038 		ipv4_l3fwd_out_if[ret] = entry.if_out;
2039 	}
2040 	printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
2041 }
2042 
2043 #define BIT_16_TO_23 0x00ff0000
2044 static inline void
2045 populate_ipv6_few_flow_into_table(const struct rte_hash* h)
2046 {
2047 	uint32_t i;
2048 	int32_t ret;
2049 	uint32_t array_len = sizeof(ipv6_l3fwd_route_array)/sizeof(ipv6_l3fwd_route_array[0]);
2050 
2051 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
2052 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
2053 	for (i = 0; i < array_len; i++) {
2054 		struct ipv6_l3fwd_route entry;
2055 		union ipv6_5tuple_host newkey;
2056 		entry = ipv6_l3fwd_route_array[i];
2057 		convert_ipv6_5tuple(&entry.key, &newkey);
2058 		ret = rte_hash_add_key (h, (void *) &newkey);
2059 		if (ret < 0) {
2060 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
2061 				" to the l3fwd hash.\n", i);
2062 		}
2063 		ipv6_l3fwd_out_if[ret] = entry.if_out;
2064 	}
2065 	printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
2066 }
2067 
2068 #define NUMBER_PORT_USED 4
2069 static inline void
2070 populate_ipv4_many_flow_into_table(const struct rte_hash* h,
2071                 unsigned int nr_flow)
2072 {
2073 	unsigned i;
2074 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
2075 	for (i = 0; i < nr_flow; i++) {
2076 		struct ipv4_l3fwd_route entry;
2077 		union ipv4_5tuple_host newkey;
2078 		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
2079 		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
2080 		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
2081 		/* Create the ipv4 exact match flow */
2082 		memset(&entry, 0, sizeof(entry));
2083 		switch (i & (NUMBER_PORT_USED -1)) {
2084 		case 0:
2085 			entry = ipv4_l3fwd_route_array[0];
2086 			entry.key.ip_dst = IPv4(101,c,b,a);
2087 			break;
2088 		case 1:
2089 			entry = ipv4_l3fwd_route_array[1];
2090 			entry.key.ip_dst = IPv4(201,c,b,a);
2091 			break;
2092 		case 2:
2093 			entry = ipv4_l3fwd_route_array[2];
2094 			entry.key.ip_dst = IPv4(111,c,b,a);
2095 			break;
2096 		case 3:
2097 			entry = ipv4_l3fwd_route_array[3];
2098 			entry.key.ip_dst = IPv4(211,c,b,a);
2099 			break;
2100 		};
2101 		convert_ipv4_5tuple(&entry.key, &newkey);
2102 		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
2103 		if (ret < 0) {
2104 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
2105 		}
2106 		ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
2107 
2108 	}
2109 	printf("Hash: Adding 0x%x keys\n", nr_flow);
2110 }
2111 
2112 static inline void
2113 populate_ipv6_many_flow_into_table(const struct rte_hash* h,
2114                 unsigned int nr_flow)
2115 {
2116 	unsigned i;
2117 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
2118 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
2119 	for (i = 0; i < nr_flow; i++) {
2120 		struct ipv6_l3fwd_route entry;
2121 		union ipv6_5tuple_host newkey;
2122 		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
2123 		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
2124 		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
2125 		/* Create the ipv6 exact match flow */
2126 		memset(&entry, 0, sizeof(entry));
2127 		switch (i & (NUMBER_PORT_USED - 1)) {
2128 		case 0: entry = ipv6_l3fwd_route_array[0]; break;
2129 		case 1: entry = ipv6_l3fwd_route_array[1]; break;
2130 		case 2: entry = ipv6_l3fwd_route_array[2]; break;
2131 		case 3: entry = ipv6_l3fwd_route_array[3]; break;
2132 		};
2133 		entry.key.ip_dst[13] = c;
2134 		entry.key.ip_dst[14] = b;
2135 		entry.key.ip_dst[15] = a;
2136 		convert_ipv6_5tuple(&entry.key, &newkey);
2137 		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
2138 		if (ret < 0) {
2139 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
2140 		}
2141 		ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
2142 
2143 	}
2144 	printf("Hash: Adding 0x%x keys\n", nr_flow);
2145 }
2146 
2147 static void
2148 setup_hash(int socketid)
2149 {
2150     struct rte_hash_parameters ipv4_l3fwd_hash_params = {
2151         .name = NULL,
2152         .entries = L3FWD_HASH_ENTRIES,
2153         .bucket_entries = 4,
2154         .key_len = sizeof(union ipv4_5tuple_host),
2155         .hash_func = ipv4_hash_crc,
2156         .hash_func_init_val = 0,
2157     };
2158 
2159     struct rte_hash_parameters ipv6_l3fwd_hash_params = {
2160         .name = NULL,
2161         .entries = L3FWD_HASH_ENTRIES,
2162         .bucket_entries = 4,
2163         .key_len = sizeof(union ipv6_5tuple_host),
2164         .hash_func = ipv6_hash_crc,
2165         .hash_func_init_val = 0,
2166     };
2167 
2168     char s[64];
2169 
2170 	/* create ipv4 hash */
2171 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
2172 	ipv4_l3fwd_hash_params.name = s;
2173 	ipv4_l3fwd_hash_params.socket_id = socketid;
2174 	ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params);
2175 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2176 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2177 				"socket %d\n", socketid);
2178 
2179 	/* create ipv6 hash */
2180 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2181 	ipv6_l3fwd_hash_params.name = s;
2182 	ipv6_l3fwd_hash_params.socket_id = socketid;
2183 	ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params);
2184 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2185 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2186 				"socket %d\n", socketid);
2187 
2188 	if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
2189 		/* For testing hash matching with a large number of flows we
2190 		 * generate millions of IP 5-tuples with an incremented dst
2191 		 * address to initialize the hash table. */
2192 		if (ipv6 == 0) {
2193 			/* populate the ipv4 hash */
2194 			populate_ipv4_many_flow_into_table(
2195 				ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
2196 		} else {
2197 			/* populate the ipv6 hash */
2198 			populate_ipv6_many_flow_into_table(
2199 				ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
2200 		}
2201 	} else {
2202 		/* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize the hash table */
2203 		if (ipv6 == 0) {
2204 			/* populate the ipv4 hash */
2205 			populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
2206 		} else {
2207 			/* populate the ipv6 hash */
2208 			populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
2209 		}
2210 	}
2211 }
2212 #endif
2213 
2214 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2215 static void
2216 setup_lpm(int socketid)
2217 {
2218 	struct rte_lpm6_config config;
2219 	unsigned i;
2220 	int ret;
2221 	char s[64];
2222 
2223 	/* create the LPM table */
2224 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2225 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
2226 				IPV4_L3FWD_LPM_MAX_RULES, 0);
2227 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2228 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2229 				" on socket %d\n", socketid);
2230 
2231 	/* populate the LPM table */
2232 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
2233 
2234 		/* skip unused ports */
2235 		if ((1 << ipv4_l3fwd_route_array[i].if_out &
2236 				enabled_port_mask) == 0)
2237 			continue;
2238 
2239 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2240 			ipv4_l3fwd_route_array[i].ip,
2241 			ipv4_l3fwd_route_array[i].depth,
2242 			ipv4_l3fwd_route_array[i].if_out);
2243 
2244 		if (ret < 0) {
2245 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2246 				"l3fwd LPM table on socket %d\n",
2247 				i, socketid);
2248 		}
2249 
2250 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2251 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2252 			ipv4_l3fwd_route_array[i].depth,
2253 			ipv4_l3fwd_route_array[i].if_out);
2254 	}
2255 
2256 	/* create the LPM6 table */
2257 	snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
2258 
2259 	config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
2260 	config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
2261 	config.flags = 0;
2262 	ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
2263 				&config);
2264 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2265 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2266 				" on socket %d\n", socketid);
2267 
2268 	/* populate the LPM table */
2269 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
2270 
2271 		/* skip unused ports */
2272 		if ((1 << ipv6_l3fwd_route_array[i].if_out &
2273 				enabled_port_mask) == 0)
2274 			continue;
2275 
2276 		ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
2277 			ipv6_l3fwd_route_array[i].ip,
2278 			ipv6_l3fwd_route_array[i].depth,
2279 			ipv6_l3fwd_route_array[i].if_out);
2280 
2281 		if (ret < 0) {
2282 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2283 				"l3fwd LPM table on socket %d\n",
2284 				i, socketid);
2285 		}
2286 
2287 		printf("LPM: Adding route %s / %d (%d)\n",
2288 			"IPV6",
2289 			ipv6_l3fwd_route_array[i].depth,
2290 			ipv6_l3fwd_route_array[i].if_out);
2291 	}
2292 }
2293 #endif
2294 
2295 static int
2296 init_mem(unsigned nb_mbuf)
2297 {
2298 	struct lcore_conf *qconf;
2299 	int socketid;
2300 	unsigned lcore_id;
2301 	char s[64];
2302 
2303 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2304 		if (rte_lcore_is_enabled(lcore_id) == 0)
2305 			continue;
2306 
2307 		if (numa_on)
2308 			socketid = rte_lcore_to_socket_id(lcore_id);
2309 		else
2310 			socketid = 0;
2311 
2312 		if (socketid >= NB_SOCKETS) {
2313 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
2314 				socketid, lcore_id, NB_SOCKETS);
2315 		}
2316 		if (pktmbuf_pool[socketid] == NULL) {
2317 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2318 			pktmbuf_pool[socketid] =
2319 				rte_mempool_create(s, nb_mbuf, MBUF_SIZE, MEMPOOL_CACHE_SIZE,
2320 					sizeof(struct rte_pktmbuf_pool_private),
2321 					rte_pktmbuf_pool_init, NULL,
2322 					rte_pktmbuf_init, NULL,
2323 					socketid, 0);
2324 			if (pktmbuf_pool[socketid] == NULL)
2325 				rte_exit(EXIT_FAILURE,
2326 						"Cannot init mbuf pool on socket %d\n", socketid);
2327 			else
2328 				printf("Allocated mbuf pool on socket %d\n", socketid);
2329 
2330 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2331 			setup_lpm(socketid);
2332 #else
2333 			setup_hash(socketid);
2334 #endif
2335 		}
2336 		qconf = &lcore_conf[lcore_id];
2337 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2338 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2339 	}
2340 	return 0;
2341 }
2342 
2343 /* Check the link status of all ports in up to 9s, and print them finally */
2344 static void
2345 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
2346 {
2347 #define CHECK_INTERVAL 100 /* 100ms */
2348 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2349 	uint8_t portid, count, all_ports_up, print_flag = 0;
2350 	struct rte_eth_link link;
2351 
2352 	printf("\nChecking link status");
2353 	fflush(stdout);
2354 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2355 		all_ports_up = 1;
2356 		for (portid = 0; portid < port_num; portid++) {
2357 			if ((port_mask & (1 << portid)) == 0)
2358 				continue;
2359 			memset(&link, 0, sizeof(link));
2360 			rte_eth_link_get_nowait(portid, &link);
2361 			/* print link status if flag set */
2362 			if (print_flag == 1) {
2363 				if (link.link_status)
2364 					printf("Port %d Link Up - speed %u "
2365 						"Mbps - %s\n", (uint8_t)portid,
2366 						(unsigned)link.link_speed,
2367 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
2368 					("full-duplex") : ("half-duplex\n"));
2369 				else
2370 					printf("Port %d Link Down\n",
2371 						(uint8_t)portid);
2372 				continue;
2373 			}
2374 			/* clear all_ports_up flag if any link down */
2375 			if (link.link_status == 0) {
2376 				all_ports_up = 0;
2377 				break;
2378 			}
2379 		}
2380 		/* after finally printing all link status, get out */
2381 		if (print_flag == 1)
2382 			break;
2383 
2384 		if (all_ports_up == 0) {
2385 			printf(".");
2386 			fflush(stdout);
2387 			rte_delay_ms(CHECK_INTERVAL);
2388 		}
2389 
2390 		/* set the print_flag if all ports up or timeout */
2391 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2392 			print_flag = 1;
2393 			printf("done\n");
2394 		}
2395 	}
2396 }
2397 
2398 int
2399 MAIN(int argc, char **argv)
2400 {
2401 	struct lcore_conf *qconf;
2402 	struct rte_eth_dev_info dev_info;
2403 	struct rte_eth_txconf *txconf;
2404 	int ret;
2405 	unsigned nb_ports;
2406 	uint16_t queueid;
2407 	unsigned lcore_id;
2408 	uint32_t n_tx_queue, nb_lcores;
2409 	uint8_t portid, nb_rx_queue, queue, socketid;
2410 
2411 	/* init EAL */
2412 	ret = rte_eal_init(argc, argv);
2413 	if (ret < 0)
2414 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2415 	argc -= ret;
2416 	argv += ret;
2417 
2418 	/* parse application arguments (after the EAL ones) */
2419 	ret = parse_args(argc, argv);
2420 	if (ret < 0)
2421 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2422 
2423 	if (check_lcore_params() < 0)
2424 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2425 
2426 	ret = init_lcore_rx_queues();
2427 	if (ret < 0)
2428 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2429 
2430 	nb_ports = rte_eth_dev_count();
2431 	if (nb_ports > RTE_MAX_ETHPORTS)
2432 		nb_ports = RTE_MAX_ETHPORTS;
2433 
2434 	if (check_port_config(nb_ports) < 0)
2435 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2436 
2437 	nb_lcores = rte_lcore_count();
2438 
2439 	/* initialize all ports */
2440 	for (portid = 0; portid < nb_ports; portid++) {
2441 		/* skip ports that are not enabled */
2442 		if ((enabled_port_mask & (1 << portid)) == 0) {
2443 			printf("\nSkipping disabled port %d\n", portid);
2444 			continue;
2445 		}
2446 
2447 		/* init port */
2448 		printf("Initializing port %d ... ", portid );
2449 		fflush(stdout);
2450 
2451 		nb_rx_queue = get_port_n_rx_queues(portid);
2452 		n_tx_queue = nb_lcores;
2453 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
2454 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
2455 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2456 			nb_rx_queue, (unsigned)n_tx_queue );
2457 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2458 					(uint16_t)n_tx_queue, &port_conf);
2459 		if (ret < 0)
2460 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
2461 				ret, portid);
2462 
2463 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2464 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2465 		printf(", ");
2466 
2467 		/*
2468 		 * prepare dst and src MACs for each port.
2469 		 */
2470 		*(uint64_t *)(val_eth + portid) =
2471 			ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40);
2472 		ether_addr_copy(&ports_eth_addr[portid],
2473 			(struct ether_addr *)(val_eth + portid) + 1);
2474 
2475 		/* init memory */
2476 		ret = init_mem(NB_MBUF);
2477 		if (ret < 0)
2478 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2479 
2480 		/* init one TX queue per couple (lcore,port) */
2481 		queueid = 0;
2482 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2483 			if (rte_lcore_is_enabled(lcore_id) == 0)
2484 				continue;
2485 
2486 			if (numa_on)
2487 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2488 			else
2489 				socketid = 0;
2490 
2491 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2492 			fflush(stdout);
2493 
2494 			rte_eth_dev_info_get(portid, &dev_info);
2495 			txconf = &dev_info.default_txconf;
2496 			if (port_conf.rxmode.jumbo_frame)
2497 				txconf->txq_flags = 0;
2498 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2499 						     socketid, txconf);
2500 			if (ret < 0)
2501 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
2502 					"port=%d\n", ret, portid);
2503 
2504 			qconf = &lcore_conf[lcore_id];
2505 			qconf->tx_queue_id[portid] = queueid;
2506 			queueid++;
2507 		}
2508 		printf("\n");
2509 	}
2510 
2511 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2512 		if (rte_lcore_is_enabled(lcore_id) == 0)
2513 			continue;
2514 		qconf = &lcore_conf[lcore_id];
2515 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2516 		fflush(stdout);
2517 		/* init RX queues */
2518 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2519 			portid = qconf->rx_queue_list[queue].port_id;
2520 			queueid = qconf->rx_queue_list[queue].queue_id;
2521 
2522 			if (numa_on)
2523 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2524 			else
2525 				socketid = 0;
2526 
2527 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2528 			fflush(stdout);
2529 
2530 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2531 					socketid,
2532 					NULL,
2533 					pktmbuf_pool[socketid]);
2534 			if (ret < 0)
2535 				rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
2536 						"port=%d\n", ret, portid);
2537 		}
2538 	}
2539 
2540 	printf("\n");
2541 
2542 	/* start ports */
2543 	for (portid = 0; portid < nb_ports; portid++) {
2544 		if ((enabled_port_mask & (1 << portid)) == 0) {
2545 			continue;
2546 		}
2547 		/* Start device */
2548 		ret = rte_eth_dev_start(portid);
2549 		if (ret < 0)
2550 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
2551 				ret, portid);
2552 
2553 		/*
2554 		 * If enabled, put device in promiscuous mode.
2555 		 * This allows IO forwarding mode to forward packets
2556 		 * to itself through 2 cross-connected  ports of the
2557 		 * target machine.
2558 		 */
2559 		if (promiscuous_on)
2560 			rte_eth_promiscuous_enable(portid);
2561 	}
2562 
2563 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
2564 
2565 	/* launch per-lcore init on every lcore */
2566 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2567 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2568 		if (rte_eal_wait_lcore(lcore_id) < 0)
2569 			return -1;
2570 	}
2571 
2572 	return 0;
2573 }
2574