xref: /dpdk/examples/l3fwd/main.c (revision e9d48c0072d36eb6423b45fba4ec49d0def6c36f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 
45 #include <tmmintrin.h>
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_tailq.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 
76 #include "main.h"
77 
78 #define APP_LOOKUP_EXACT_MATCH          0
79 #define APP_LOOKUP_LPM                  1
80 #define DO_RFC_1812_CHECKS
81 
82 #ifndef APP_LOOKUP_METHOD
83 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
84 #endif
85 
86 #define ENABLE_MULTI_BUFFER_OPTIMIZE	1
87 
88 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
89 #include <rte_hash.h>
90 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
91 #include <rte_lpm.h>
92 #include <rte_lpm6.h>
93 #else
94 #error "APP_LOOKUP_METHOD set to incorrect value"
95 #endif
96 
97 #ifndef IPv6_BYTES
98 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
99                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
100 #define IPv6_BYTES(addr) \
101 	addr[0],  addr[1], addr[2],  addr[3], \
102 	addr[4],  addr[5], addr[6],  addr[7], \
103 	addr[8],  addr[9], addr[10], addr[11],\
104 	addr[12], addr[13],addr[14], addr[15]
105 #endif
106 
107 
108 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
109 
110 #define MAX_JUMBO_PKT_LEN  9600
111 
112 #define IPV6_ADDR_LEN 16
113 
114 #define MEMPOOL_CACHE_SIZE 256
115 
116 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
117 
118 /*
119  * This expression is used to calculate the number of mbufs needed depending on user input, taking
120  *  into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
121  *  RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
122  */
123 
124 #define NB_MBUF RTE_MAX	(																	\
125 				(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT +							\
126 				nb_ports*nb_lcores*MAX_PKT_BURST +											\
127 				nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT +								\
128 				nb_lcores*MEMPOOL_CACHE_SIZE),												\
129 				(unsigned)8192)
130 
131 /*
132  * RX and TX Prefetch, Host, and Write-back threshold values should be
133  * carefully set for optimal performance. Consult the network
134  * controller's datasheet and supporting DPDK documentation for guidance
135  * on how these parameters should be set.
136  */
137 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
138 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
139 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
140 
141 /*
142  * These default values are optimized for use with the Intel(R) 82599 10 GbE
143  * Controller and the DPDK ixgbe PMD. Consider using other values for other
144  * network controllers and/or network drivers.
145  */
146 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
147 #define TX_HTHRESH 0  /**< Default values of TX host threshold reg. */
148 #define TX_WTHRESH 0  /**< Default values of TX write-back threshold reg. */
149 
150 #define MAX_PKT_BURST     32
151 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
152 
153 #define NB_SOCKETS 8
154 
155 /* Configure how many packets ahead to prefetch, when reading packets */
156 #define PREFETCH_OFFSET	3
157 
158 /*
159  * Configurable number of RX/TX ring descriptors
160  */
161 #define RTE_TEST_RX_DESC_DEFAULT 128
162 #define RTE_TEST_TX_DESC_DEFAULT 512
163 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
164 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
165 
166 /* ethernet addresses of ports */
167 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
168 
169 /* mask of enabled ports */
170 static uint32_t enabled_port_mask = 0;
171 static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
172 static int numa_on = 1; /**< NUMA is enabled by default. */
173 
174 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
175 static int ipv6 = 0; /**< ipv6 is false by default. */
176 #endif
177 
178 struct mbuf_table {
179 	uint16_t len;
180 	struct rte_mbuf *m_table[MAX_PKT_BURST];
181 };
182 
183 struct lcore_rx_queue {
184 	uint8_t port_id;
185 	uint8_t queue_id;
186 } __rte_cache_aligned;
187 
188 #define MAX_RX_QUEUE_PER_LCORE 16
189 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
190 #define MAX_RX_QUEUE_PER_PORT 128
191 
192 #define MAX_LCORE_PARAMS 1024
193 struct lcore_params {
194 	uint8_t port_id;
195 	uint8_t queue_id;
196 	uint8_t lcore_id;
197 } __rte_cache_aligned;
198 
199 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
200 static struct lcore_params lcore_params_array_default[] = {
201 	{0, 0, 2},
202 	{0, 1, 2},
203 	{0, 2, 2},
204 	{1, 0, 2},
205 	{1, 1, 2},
206 	{1, 2, 2},
207 	{2, 0, 2},
208 	{3, 0, 3},
209 	{3, 1, 3},
210 };
211 
212 static struct lcore_params * lcore_params = lcore_params_array_default;
213 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
214 				sizeof(lcore_params_array_default[0]);
215 
216 static struct rte_eth_conf port_conf = {
217 	.rxmode = {
218 		.max_rx_pkt_len = ETHER_MAX_LEN,
219 		.split_hdr_size = 0,
220 		.header_split   = 0, /**< Header Split disabled */
221 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
222 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
223 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
224 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
225 	},
226 	.rx_adv_conf = {
227 		.rss_conf = {
228 			.rss_key = NULL,
229 			.rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6,
230 		},
231 	},
232 	.txmode = {
233 		.mq_mode = ETH_MQ_TX_NONE,
234 	},
235 };
236 
237 static const struct rte_eth_rxconf rx_conf = {
238 	.rx_thresh = {
239 		.pthresh = RX_PTHRESH,
240 		.hthresh = RX_HTHRESH,
241 		.wthresh = RX_WTHRESH,
242 	},
243 	.rx_free_thresh = 32,
244 };
245 
246 static struct rte_eth_txconf tx_conf = {
247 	.tx_thresh = {
248 		.pthresh = TX_PTHRESH,
249 		.hthresh = TX_HTHRESH,
250 		.wthresh = TX_WTHRESH,
251 	},
252 	.tx_free_thresh = 0, /* Use PMD default values */
253 	.tx_rs_thresh = 0, /* Use PMD default values */
254 	.txq_flags = (ETH_TXQ_FLAGS_NOMULTSEGS |
255 			ETH_TXQ_FLAGS_NOVLANOFFL |
256 			ETH_TXQ_FLAGS_NOXSUMSCTP |
257 			ETH_TXQ_FLAGS_NOXSUMUDP |
258 			ETH_TXQ_FLAGS_NOXSUMTCP)
259 
260 };
261 
262 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
263 
264 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
265 
266 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
267 #include <rte_hash_crc.h>
268 #define DEFAULT_HASH_FUNC       rte_hash_crc
269 #else
270 #include <rte_jhash.h>
271 #define DEFAULT_HASH_FUNC       rte_jhash
272 #endif
273 
274 struct ipv4_5tuple {
275         uint32_t ip_dst;
276         uint32_t ip_src;
277         uint16_t port_dst;
278         uint16_t port_src;
279         uint8_t  proto;
280 } __attribute__((__packed__));
281 
282 union ipv4_5tuple_host {
283 	struct {
284 		uint8_t  pad0;
285 		uint8_t  proto;
286 		uint16_t pad1;
287 		uint32_t ip_src;
288 		uint32_t ip_dst;
289 		uint16_t port_src;
290 		uint16_t port_dst;
291 	};
292 	__m128i xmm;
293 };
294 
295 #define XMM_NUM_IN_IPV6_5TUPLE 3
296 
297 struct ipv6_5tuple {
298         uint8_t  ip_dst[IPV6_ADDR_LEN];
299         uint8_t  ip_src[IPV6_ADDR_LEN];
300         uint16_t port_dst;
301         uint16_t port_src;
302         uint8_t  proto;
303 } __attribute__((__packed__));
304 
305 union ipv6_5tuple_host {
306 	struct {
307 		uint16_t pad0;
308 		uint8_t  proto;
309 		uint8_t  pad1;
310 		uint8_t  ip_src[IPV6_ADDR_LEN];
311 		uint8_t  ip_dst[IPV6_ADDR_LEN];
312 		uint16_t port_src;
313 		uint16_t port_dst;
314 		uint64_t reserve;
315 	};
316 	__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
317 };
318 
319 struct ipv4_l3fwd_route {
320 	struct ipv4_5tuple key;
321 	uint8_t if_out;
322 };
323 
324 struct ipv6_l3fwd_route {
325 	struct ipv6_5tuple key;
326 	uint8_t if_out;
327 };
328 
329 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
330 	{{IPv4(101,0,0,0), IPv4(100,10,0,1),  101, 11, IPPROTO_TCP}, 0},
331 	{{IPv4(201,0,0,0), IPv4(200,20,0,1),  102, 12, IPPROTO_TCP}, 1},
332 	{{IPv4(111,0,0,0), IPv4(100,30,0,1),  101, 11, IPPROTO_TCP}, 2},
333 	{{IPv4(211,0,0,0), IPv4(200,40,0,1),  102, 12, IPPROTO_TCP}, 3},
334 };
335 
336 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
337 	{{
338 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
339 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
340 	101, 11, IPPROTO_TCP}, 0},
341 
342 	{{
343 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
344 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
345 	102, 12, IPPROTO_TCP}, 1},
346 
347 	{{
348 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
349 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
350 	101, 11, IPPROTO_TCP}, 2},
351 
352 	{{
353 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
354 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
355 	102, 12, IPPROTO_TCP}, 3},
356 };
357 
358 typedef struct rte_hash lookup_struct_t;
359 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
360 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
361 
362 #ifdef RTE_ARCH_X86_64
363 /* default to 4 million hash entries (approx) */
364 #define L3FWD_HASH_ENTRIES		1024*1024*4
365 #else
366 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
367 #define L3FWD_HASH_ENTRIES		1024*1024*1
368 #endif
369 #define HASH_ENTRY_NUMBER_DEFAULT	4
370 
371 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
372 
373 static inline uint32_t
374 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
375 	uint32_t init_val)
376 {
377 	const union ipv4_5tuple_host *k;
378 	uint32_t t;
379 	const uint32_t *p;
380 
381 	k = data;
382 	t = k->proto;
383 	p = (const uint32_t *)&k->port_src;
384 
385 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
386 	init_val = rte_hash_crc_4byte(t, init_val);
387 	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
388 	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
389 	init_val = rte_hash_crc_4byte(*p, init_val);
390 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
391 	init_val = rte_jhash_1word(t, init_val);
392 	init_val = rte_jhash_1word(k->ip_src, init_val);
393 	init_val = rte_jhash_1word(k->ip_dst, init_val);
394 	init_val = rte_jhash_1word(*p, init_val);
395 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
396 	return (init_val);
397 }
398 
399 static inline uint32_t
400 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val)
401 {
402 	const union ipv6_5tuple_host *k;
403 	uint32_t t;
404 	const uint32_t *p;
405 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
406 	const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
407 	const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
408 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
409 
410 	k = data;
411 	t = k->proto;
412 	p = (const uint32_t *)&k->port_src;
413 
414 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
415 	ip_src0 = (const uint32_t *) k->ip_src;
416 	ip_src1 = (const uint32_t *)(k->ip_src+4);
417 	ip_src2 = (const uint32_t *)(k->ip_src+8);
418 	ip_src3 = (const uint32_t *)(k->ip_src+12);
419 	ip_dst0 = (const uint32_t *) k->ip_dst;
420 	ip_dst1 = (const uint32_t *)(k->ip_dst+4);
421 	ip_dst2 = (const uint32_t *)(k->ip_dst+8);
422 	ip_dst3 = (const uint32_t *)(k->ip_dst+12);
423 	init_val = rte_hash_crc_4byte(t, init_val);
424 	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
425 	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
426 	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
427 	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
428 	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
429 	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
430 	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
431 	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
432 	init_val = rte_hash_crc_4byte(*p, init_val);
433 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
434 	init_val = rte_jhash_1word(t, init_val);
435 	init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
436 	init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
437 	init_val = rte_jhash_1word(*p, init_val);
438 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
439 	return (init_val);
440 }
441 
442 #define IPV4_L3FWD_NUM_ROUTES \
443 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
444 
445 #define IPV6_L3FWD_NUM_ROUTES \
446 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
447 
448 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
449 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
450 
451 #endif
452 
453 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
454 struct ipv4_l3fwd_route {
455 	uint32_t ip;
456 	uint8_t  depth;
457 	uint8_t  if_out;
458 };
459 
460 struct ipv6_l3fwd_route {
461 	uint8_t ip[16];
462 	uint8_t  depth;
463 	uint8_t  if_out;
464 };
465 
466 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
467 	{IPv4(1,1,1,0), 24, 0},
468 	{IPv4(2,1,1,0), 24, 1},
469 	{IPv4(3,1,1,0), 24, 2},
470 	{IPv4(4,1,1,0), 24, 3},
471 	{IPv4(5,1,1,0), 24, 4},
472 	{IPv4(6,1,1,0), 24, 5},
473 	{IPv4(7,1,1,0), 24, 6},
474 	{IPv4(8,1,1,0), 24, 7},
475 };
476 
477 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
478 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
479 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
480 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
481 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
482 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
483 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
484 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
485 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
486 };
487 
488 #define IPV4_L3FWD_NUM_ROUTES \
489 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
490 #define IPV6_L3FWD_NUM_ROUTES \
491 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
492 
493 #define IPV4_L3FWD_LPM_MAX_RULES         1024
494 #define IPV6_L3FWD_LPM_MAX_RULES         1024
495 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
496 
497 typedef struct rte_lpm lookup_struct_t;
498 typedef struct rte_lpm6 lookup6_struct_t;
499 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
500 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
501 #endif
502 
503 struct lcore_conf {
504 	uint16_t n_rx_queue;
505 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
506 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
507 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
508 	lookup_struct_t * ipv4_lookup_struct;
509 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
510 	lookup6_struct_t * ipv6_lookup_struct;
511 #else
512 	lookup_struct_t * ipv6_lookup_struct;
513 #endif
514 } __rte_cache_aligned;
515 
516 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
517 
518 /* Send burst of packets on an output interface */
519 static inline int
520 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
521 {
522 	struct rte_mbuf **m_table;
523 	int ret;
524 	uint16_t queueid;
525 
526 	queueid = qconf->tx_queue_id[port];
527 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
528 
529 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
530 	if (unlikely(ret < n)) {
531 		do {
532 			rte_pktmbuf_free(m_table[ret]);
533 		} while (++ret < n);
534 	}
535 
536 	return 0;
537 }
538 
539 /* Enqueue a single packet, and send burst if queue is filled */
540 static inline int
541 send_single_packet(struct rte_mbuf *m, uint8_t port)
542 {
543 	uint32_t lcore_id;
544 	uint16_t len;
545 	struct lcore_conf *qconf;
546 
547 	lcore_id = rte_lcore_id();
548 
549 	qconf = &lcore_conf[lcore_id];
550 	len = qconf->tx_mbufs[port].len;
551 	qconf->tx_mbufs[port].m_table[len] = m;
552 	len++;
553 
554 	/* enough pkts to be sent */
555 	if (unlikely(len == MAX_PKT_BURST)) {
556 		send_burst(qconf, MAX_PKT_BURST, port);
557 		len = 0;
558 	}
559 
560 	qconf->tx_mbufs[port].len = len;
561 	return 0;
562 }
563 
564 #ifdef DO_RFC_1812_CHECKS
565 static inline int
566 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
567 {
568 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
569 	/*
570 	 * 1. The packet length reported by the Link Layer must be large
571 	 * enough to hold the minimum length legal IP datagram (20 bytes).
572 	 */
573 	if (link_len < sizeof(struct ipv4_hdr))
574 		return -1;
575 
576 	/* 2. The IP checksum must be correct. */
577 	/* this is checked in H/W */
578 
579 	/*
580 	 * 3. The IP version number must be 4. If the version number is not 4
581 	 * then the packet may be another version of IP, such as IPng or
582 	 * ST-II.
583 	 */
584 	if (((pkt->version_ihl) >> 4) != 4)
585 		return -3;
586 	/*
587 	 * 4. The IP header length field must be large enough to hold the
588 	 * minimum length legal IP datagram (20 bytes = 5 words).
589 	 */
590 	if ((pkt->version_ihl & 0xf) < 5)
591 		return -4;
592 
593 	/*
594 	 * 5. The IP total length field must be large enough to hold the IP
595 	 * datagram header, whose length is specified in the IP header length
596 	 * field.
597 	 */
598 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
599 		return -5;
600 
601 	return 0;
602 }
603 #endif
604 
605 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
606 
607 static __m128i mask0;
608 static __m128i mask1;
609 static __m128i mask2;
610 static inline uint8_t
611 get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
612 {
613 	int ret = 0;
614 	union ipv4_5tuple_host key;
615 
616 	ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
617 	__m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr));
618 	/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
619 	key.xmm = _mm_and_si128(data, mask0);
620 	/* Find destination port */
621 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
622 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
623 }
624 
625 static inline uint8_t
626 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
627 {
628 	int ret = 0;
629 	union ipv6_5tuple_host key;
630 
631 	ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
632 	__m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr));
633 	__m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)));
634 	__m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i)));
635 	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
636 	key.xmm[0] = _mm_and_si128(data0, mask1);
637 	/* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */
638 	key.xmm[1] = data1;
639 	/* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */
640 	key.xmm[2] = _mm_and_si128(data2, mask2);
641 
642 	/* Find destination port */
643 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
644 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
645 }
646 #endif
647 
648 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
649 static inline uint8_t
650 get_ipv4_dst_port(void *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
651 {
652 	uint8_t next_hop;
653 
654 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
655 			rte_be_to_cpu_32(((struct ipv4_hdr*)ipv4_hdr)->dst_addr), &next_hop) == 0)?
656 			next_hop : portid);
657 }
658 
659 static inline uint8_t
660 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
661 {
662 	uint8_t next_hop;
663 	return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
664 			((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)?
665 			next_hop : portid);
666 }
667 #endif
668 
669 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) & (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
670 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf);
671 
672 #define MASK_ALL_PKTS    0xf
673 #define EXECLUDE_1ST_PKT 0xe
674 #define EXECLUDE_2ND_PKT 0xd
675 #define EXECLUDE_3RD_PKT 0xb
676 #define EXECLUDE_4TH_PKT 0x7
677 
678 static inline void
679 simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
680 {
681 	struct ether_hdr *eth_hdr[4];
682 	struct ipv4_hdr *ipv4_hdr[4];
683 	void *d_addr_bytes[4];
684 	uint8_t dst_port[4];
685 	int32_t ret[4];
686 	union ipv4_5tuple_host key[4];
687 	__m128i data[4];
688 
689 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
690 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
691 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
692 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
693 
694 	/* Handle IPv4 headers.*/
695 	ipv4_hdr[0] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
696 			sizeof(struct ether_hdr));
697 	ipv4_hdr[1] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
698 			sizeof(struct ether_hdr));
699 	ipv4_hdr[2] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
700 			sizeof(struct ether_hdr));
701 	ipv4_hdr[3] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
702 			sizeof(struct ether_hdr));
703 
704 #ifdef DO_RFC_1812_CHECKS
705 	/* Check to make sure the packet is valid (RFC1812) */
706 	uint8_t valid_mask = MASK_ALL_PKTS;
707 	if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt.pkt_len) < 0) {
708 		rte_pktmbuf_free(m[0]);
709 		valid_mask &= EXECLUDE_1ST_PKT;
710 	}
711 	if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt.pkt_len) < 0) {
712 		rte_pktmbuf_free(m[1]);
713 		valid_mask &= EXECLUDE_2ND_PKT;
714 	}
715 	if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt.pkt_len) < 0) {
716 		rte_pktmbuf_free(m[2]);
717 		valid_mask &= EXECLUDE_3RD_PKT;
718 	}
719 	if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt.pkt_len) < 0) {
720 		rte_pktmbuf_free(m[3]);
721 		valid_mask &= EXECLUDE_4TH_PKT;
722 	}
723 	if (unlikely(valid_mask != MASK_ALL_PKTS)) {
724 		if (valid_mask == 0){
725 			return;
726 		} else {
727 			uint8_t i = 0;
728 			for (i = 0; i < 4; i++) {
729 				if ((0x1 << i) & valid_mask) {
730 					l3fwd_simple_forward(m[i], portid, qconf);
731 				}
732 			}
733 			return;
734 		}
735 	}
736 #endif // End of #ifdef DO_RFC_1812_CHECKS
737 
738 	data[0] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) +
739 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
740 	data[1] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) +
741 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
742 	data[2] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) +
743 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
744 	data[3] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) +
745 		sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
746 
747 	key[0].xmm = _mm_and_si128(data[0], mask0);
748 	key[1].xmm = _mm_and_si128(data[1], mask0);
749 	key[2].xmm = _mm_and_si128(data[2], mask0);
750 	key[3].xmm = _mm_and_si128(data[3], mask0);
751 
752 	const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
753 	rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
754 	dst_port[0] = (uint8_t) ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
755 	dst_port[1] = (uint8_t) ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
756 	dst_port[2] = (uint8_t) ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
757 	dst_port[3] = (uint8_t) ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
758 
759 	if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
760 		dst_port[0] = portid;
761 	if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
762 		dst_port[1] = portid;
763 	if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
764 		dst_port[2] = portid;
765 	if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
766 		dst_port[3] = portid;
767 
768 	/* 02:00:00:00:00:xx */
769 	d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
770 	d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
771 	d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
772 	d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
773 	*((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
774 	*((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
775 	*((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
776 	*((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
777 
778 #ifdef DO_RFC_1812_CHECKS
779 	/* Update time to live and header checksum */
780 	--(ipv4_hdr[0]->time_to_live);
781 	--(ipv4_hdr[1]->time_to_live);
782 	--(ipv4_hdr[2]->time_to_live);
783 	--(ipv4_hdr[3]->time_to_live);
784 	++(ipv4_hdr[0]->hdr_checksum);
785 	++(ipv4_hdr[1]->hdr_checksum);
786 	++(ipv4_hdr[2]->hdr_checksum);
787 	++(ipv4_hdr[3]->hdr_checksum);
788 #endif
789 
790 	/* src addr */
791 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
792 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
793 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
794 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
795 
796 	send_single_packet(m[0], (uint8_t)dst_port[0]);
797 	send_single_packet(m[1], (uint8_t)dst_port[1]);
798 	send_single_packet(m[2], (uint8_t)dst_port[2]);
799 	send_single_packet(m[3], (uint8_t)dst_port[3]);
800 
801 }
802 
803 static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1,
804 				 union ipv6_5tuple_host * key)
805 {
806         __m128i tmpdata0 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
807 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)));
808         __m128i tmpdata1 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
809 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
810 			+  sizeof(__m128i)));
811         __m128i tmpdata2 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
812 			+ sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
813 			+ sizeof(__m128i) + sizeof(__m128i)));
814         key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
815         key->xmm[1] = tmpdata1;
816         key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
817 	return;
818 }
819 
820 static inline void
821 simple_ipv6_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
822 {
823 	struct ether_hdr *eth_hdr[4];
824 	__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[4];
825 	void *d_addr_bytes[4];
826 	uint8_t dst_port[4];
827 	int32_t ret[4];
828 	union ipv6_5tuple_host key[4];
829 
830 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
831 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
832 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
833 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
834 
835 	/* Handle IPv6 headers.*/
836 	ipv6_hdr[0] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
837 			sizeof(struct ether_hdr));
838 	ipv6_hdr[1] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
839 			sizeof(struct ether_hdr));
840 	ipv6_hdr[2] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
841 			sizeof(struct ether_hdr));
842 	ipv6_hdr[3] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
843 			sizeof(struct ether_hdr));
844 
845 	get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
846 	get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
847 	get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
848 	get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
849 
850 	const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
851 	rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 4, ret);
852 	dst_port[0] = (uint8_t) ((ret[0] < 0)? portid:ipv6_l3fwd_out_if[ret[0]]);
853 	dst_port[1] = (uint8_t) ((ret[1] < 0)? portid:ipv6_l3fwd_out_if[ret[1]]);
854 	dst_port[2] = (uint8_t) ((ret[2] < 0)? portid:ipv6_l3fwd_out_if[ret[2]]);
855 	dst_port[3] = (uint8_t) ((ret[3] < 0)? portid:ipv6_l3fwd_out_if[ret[3]]);
856 
857 	if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
858 		dst_port[0] = portid;
859 	if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
860 		dst_port[1] = portid;
861 	if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
862 		dst_port[2] = portid;
863 	if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
864 		dst_port[3] = portid;
865 
866 	/* 02:00:00:00:00:xx */
867 	d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
868 	d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
869 	d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
870 	d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
871 	*((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
872 	*((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
873 	*((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
874 	*((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
875 
876 	/* src addr */
877 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
878 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
879 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
880 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
881 
882 	send_single_packet(m[0], (uint8_t)dst_port[0]);
883 	send_single_packet(m[1], (uint8_t)dst_port[1]);
884 	send_single_packet(m[2], (uint8_t)dst_port[2]);
885 	send_single_packet(m[3], (uint8_t)dst_port[3]);
886 
887 }
888 #endif // End of #if(APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)&(ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
889 
890 static inline __attribute__((always_inline)) void
891 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
892 {
893 	struct ether_hdr *eth_hdr;
894 	struct ipv4_hdr *ipv4_hdr;
895 	void *d_addr_bytes;
896 	uint8_t dst_port;
897 
898 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
899 
900 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
901 		/* Handle IPv4 headers.*/
902 		ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
903 				sizeof(struct ether_hdr));
904 
905 #ifdef DO_RFC_1812_CHECKS
906 		/* Check to make sure the packet is valid (RFC1812) */
907 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt.pkt_len) < 0) {
908 			rte_pktmbuf_free(m);
909 			return;
910 		}
911 #endif
912 
913 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid, qconf->ipv4_lookup_struct);
914 		if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
915 			dst_port = portid;
916 
917 		/* 02:00:00:00:00:xx */
918 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
919 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
920 
921 #ifdef DO_RFC_1812_CHECKS
922 		/* Update time to live and header checksum */
923 		--(ipv4_hdr->time_to_live);
924 		++(ipv4_hdr->hdr_checksum);
925 #endif
926 
927 		/* src addr */
928 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
929 
930 		send_single_packet(m, dst_port);
931 
932 	} else {
933 		/* Handle IPv6 headers.*/
934 		struct ipv6_hdr *ipv6_hdr;
935 
936 		ipv6_hdr = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
937 				sizeof(struct ether_hdr));
938 
939 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
940 
941 		if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
942 			dst_port = portid;
943 
944 		/* 02:00:00:00:00:xx */
945 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
946 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
947 
948 		/* src addr */
949 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
950 
951 		send_single_packet(m, dst_port);
952 	}
953 
954 }
955 
956 /* main processing loop */
957 static int
958 main_loop(__attribute__((unused)) void *dummy)
959 {
960 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
961 	unsigned lcore_id;
962 	uint64_t prev_tsc, diff_tsc, cur_tsc;
963 	int i, j, nb_rx;
964 	uint8_t portid, queueid;
965 	struct lcore_conf *qconf;
966 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
967 
968 	prev_tsc = 0;
969 
970 	lcore_id = rte_lcore_id();
971 	qconf = &lcore_conf[lcore_id];
972 
973 	if (qconf->n_rx_queue == 0) {
974 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
975 		return 0;
976 	}
977 
978 	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
979 
980 	for (i = 0; i < qconf->n_rx_queue; i++) {
981 
982 		portid = qconf->rx_queue_list[i].port_id;
983 		queueid = qconf->rx_queue_list[i].queue_id;
984 		RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
985 			portid, queueid);
986 	}
987 
988 	while (1) {
989 
990 		cur_tsc = rte_rdtsc();
991 
992 		/*
993 		 * TX burst queue drain
994 		 */
995 		diff_tsc = cur_tsc - prev_tsc;
996 		if (unlikely(diff_tsc > drain_tsc)) {
997 
998 			/*
999 			 * This could be optimized (use queueid instead of
1000 			 * portid), but it is not called so often
1001 			 */
1002 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1003 				if (qconf->tx_mbufs[portid].len == 0)
1004 					continue;
1005 				send_burst(&lcore_conf[lcore_id],
1006 					qconf->tx_mbufs[portid].len,
1007 					portid);
1008 				qconf->tx_mbufs[portid].len = 0;
1009 			}
1010 
1011 			prev_tsc = cur_tsc;
1012 		}
1013 
1014 		/*
1015 		 * Read packet from RX queues
1016 		 */
1017 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1018 			portid = qconf->rx_queue_list[i].port_id;
1019 			queueid = qconf->rx_queue_list[i].queue_id;
1020 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
1021 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) & (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
1022 			{
1023 				/* Send nb_rx - nb_rx%4 packets in groups of 4.*/
1024 				int32_t n = RTE_ALIGN_FLOOR(nb_rx, 4);
1025 				for (j = 0; j < n ; j+=4) {
1026 					uint32_t ol_flag = pkts_burst[j]->ol_flags
1027 							& pkts_burst[j+1]->ol_flags
1028 							& pkts_burst[j+2]->ol_flags
1029 							& pkts_burst[j+3]->ol_flags;
1030 					if (ol_flag & PKT_RX_IPV4_HDR ) {
1031 						simple_ipv4_fwd_4pkts(&pkts_burst[j],
1032 									portid, qconf);
1033 					} else if (ol_flag & PKT_RX_IPV6_HDR) {
1034 						simple_ipv6_fwd_4pkts(&pkts_burst[j],
1035 									portid, qconf);
1036 					} else {
1037 						l3fwd_simple_forward(pkts_burst[j],
1038 									portid, qconf);
1039 						l3fwd_simple_forward(pkts_burst[j+1],
1040 									portid, qconf);
1041 						l3fwd_simple_forward(pkts_burst[j+2],
1042 									portid, qconf);
1043 						l3fwd_simple_forward(pkts_burst[j+3],
1044 									portid, qconf);
1045 					}
1046 				}
1047 				for (; j < nb_rx ; j++) {
1048 					l3fwd_simple_forward(pkts_burst[j],
1049 								portid, qconf);
1050 				}
1051 			}
1052 #else
1053 			/* Prefetch first packets */
1054 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1055 				rte_prefetch0(rte_pktmbuf_mtod(
1056 						pkts_burst[j], void *));
1057 			}
1058 
1059 			/* Prefetch and forward already prefetched packets */
1060 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1061 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1062 						j + PREFETCH_OFFSET], void *));
1063 				l3fwd_simple_forward(pkts_burst[j], portid, qconf);
1064 			}
1065 
1066 			/* Forward remaining prefetched packets */
1067 			for (; j < nb_rx; j++) {
1068 				l3fwd_simple_forward(pkts_burst[j], portid, qconf);
1069 			}
1070 #endif // End of #if((ENABLE_MULTI_BUFFER_OPTIMIZE == 1)&(APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH))
1071 		}
1072 	}
1073 }
1074 
1075 static int
1076 check_lcore_params(void)
1077 {
1078 	uint8_t queue, lcore;
1079 	uint16_t i;
1080 	int socketid;
1081 
1082 	for (i = 0; i < nb_lcore_params; ++i) {
1083 		queue = lcore_params[i].queue_id;
1084 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1085 			printf("invalid queue number: %hhu\n", queue);
1086 			return -1;
1087 		}
1088 		lcore = lcore_params[i].lcore_id;
1089 		if (!rte_lcore_is_enabled(lcore)) {
1090 			printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
1091 			return -1;
1092 		}
1093 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1094 			(numa_on == 0)) {
1095 			printf("warning: lcore %hhu is on socket %d with numa off \n",
1096 				lcore, socketid);
1097 		}
1098 	}
1099 	return 0;
1100 }
1101 
1102 static int
1103 check_port_config(const unsigned nb_ports)
1104 {
1105 	unsigned portid;
1106 	uint16_t i;
1107 
1108 	for (i = 0; i < nb_lcore_params; ++i) {
1109 		portid = lcore_params[i].port_id;
1110 		if ((enabled_port_mask & (1 << portid)) == 0) {
1111 			printf("port %u is not enabled in port mask\n", portid);
1112 			return -1;
1113 		}
1114 		if (portid >= nb_ports) {
1115 			printf("port %u is not present on the board\n", portid);
1116 			return -1;
1117 		}
1118 	}
1119 	return 0;
1120 }
1121 
1122 static uint8_t
1123 get_port_n_rx_queues(const uint8_t port)
1124 {
1125 	int queue = -1;
1126 	uint16_t i;
1127 
1128 	for (i = 0; i < nb_lcore_params; ++i) {
1129 		if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
1130 			queue = lcore_params[i].queue_id;
1131 	}
1132 	return (uint8_t)(++queue);
1133 }
1134 
1135 static int
1136 init_lcore_rx_queues(void)
1137 {
1138 	uint16_t i, nb_rx_queue;
1139 	uint8_t lcore;
1140 
1141 	for (i = 0; i < nb_lcore_params; ++i) {
1142 		lcore = lcore_params[i].lcore_id;
1143 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1144 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1145 			printf("error: too many queues (%u) for lcore: %u\n",
1146 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1147 			return -1;
1148 		} else {
1149 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1150 				lcore_params[i].port_id;
1151 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1152 				lcore_params[i].queue_id;
1153 			lcore_conf[lcore].n_rx_queue++;
1154 		}
1155 	}
1156 	return 0;
1157 }
1158 
1159 /* display usage */
1160 static void
1161 print_usage(const char *prgname)
1162 {
1163 	printf ("%s [EAL options] -- -p PORTMASK -P"
1164 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1165 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1166 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1167 		"  -P : enable promiscuous mode\n"
1168 		"  --config (port,queue,lcore): rx queues configuration\n"
1169 		"  --no-numa: optional, disable numa awareness\n"
1170 		"  --ipv6: optional, specify it if running ipv6 packets\n"
1171 		"  --enable-jumbo: enable jumbo frame"
1172 		" which max packet len is PKTLEN in decimal (64-9600)\n"
1173 		"  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n",
1174 		prgname);
1175 }
1176 
1177 static int parse_max_pkt_len(const char *pktlen)
1178 {
1179 	char *end = NULL;
1180 	unsigned long len;
1181 
1182 	/* parse decimal string */
1183 	len = strtoul(pktlen, &end, 10);
1184 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1185 		return -1;
1186 
1187 	if (len == 0)
1188 		return -1;
1189 
1190 	return len;
1191 }
1192 
1193 static int
1194 parse_portmask(const char *portmask)
1195 {
1196 	char *end = NULL;
1197 	unsigned long pm;
1198 
1199 	/* parse hexadecimal string */
1200 	pm = strtoul(portmask, &end, 16);
1201 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1202 		return -1;
1203 
1204 	if (pm == 0)
1205 		return -1;
1206 
1207 	return pm;
1208 }
1209 
1210 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1211 static int
1212 parse_hash_entry_number(const char *hash_entry_num)
1213 {
1214 	char *end = NULL;
1215 	unsigned long hash_en;
1216 	/* parse hexadecimal string */
1217 	hash_en = strtoul(hash_entry_num, &end, 16);
1218 	if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
1219 		return -1;
1220 
1221 	if (hash_en == 0)
1222 		return -1;
1223 
1224 	return hash_en;
1225 }
1226 #endif
1227 
1228 static int
1229 parse_config(const char *q_arg)
1230 {
1231 	char s[256];
1232 	const char *p, *p0 = q_arg;
1233 	char *end;
1234 	enum fieldnames {
1235 		FLD_PORT = 0,
1236 		FLD_QUEUE,
1237 		FLD_LCORE,
1238 		_NUM_FLD
1239 	};
1240 	unsigned long int_fld[_NUM_FLD];
1241 	char *str_fld[_NUM_FLD];
1242 	int i;
1243 	unsigned size;
1244 
1245 	nb_lcore_params = 0;
1246 
1247 	while ((p = strchr(p0,'(')) != NULL) {
1248 		++p;
1249 		if((p0 = strchr(p,')')) == NULL)
1250 			return -1;
1251 
1252 		size = p0 - p;
1253 		if(size >= sizeof(s))
1254 			return -1;
1255 
1256 		rte_snprintf(s, sizeof(s), "%.*s", size, p);
1257 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
1258 			return -1;
1259 		for (i = 0; i < _NUM_FLD; i++){
1260 			errno = 0;
1261 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1262 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1263 				return -1;
1264 		}
1265 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1266 			printf("exceeded max number of lcore params: %hu\n",
1267 				nb_lcore_params);
1268 			return -1;
1269 		}
1270 		lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
1271 		lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
1272 		lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
1273 		++nb_lcore_params;
1274 	}
1275 	lcore_params = lcore_params_array;
1276 	return 0;
1277 }
1278 
1279 #define CMD_LINE_OPT_CONFIG "config"
1280 #define CMD_LINE_OPT_NO_NUMA "no-numa"
1281 #define CMD_LINE_OPT_IPV6 "ipv6"
1282 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
1283 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
1284 
1285 /* Parse the argument given in the command line of the application */
1286 static int
1287 parse_args(int argc, char **argv)
1288 {
1289 	int opt, ret;
1290 	char **argvopt;
1291 	int option_index;
1292 	char *prgname = argv[0];
1293 	static struct option lgopts[] = {
1294 		{CMD_LINE_OPT_CONFIG, 1, 0, 0},
1295 		{CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
1296 		{CMD_LINE_OPT_IPV6, 0, 0, 0},
1297 		{CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
1298 		{CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
1299 		{NULL, 0, 0, 0}
1300 	};
1301 
1302 	argvopt = argv;
1303 
1304 	while ((opt = getopt_long(argc, argvopt, "p:P",
1305 				lgopts, &option_index)) != EOF) {
1306 
1307 		switch (opt) {
1308 		/* portmask */
1309 		case 'p':
1310 			enabled_port_mask = parse_portmask(optarg);
1311 			if (enabled_port_mask == 0) {
1312 				printf("invalid portmask\n");
1313 				print_usage(prgname);
1314 				return -1;
1315 			}
1316 			break;
1317 		case 'P':
1318 			printf("Promiscuous mode selected\n");
1319 			promiscuous_on = 1;
1320 			break;
1321 
1322 		/* long options */
1323 		case 0:
1324 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG,
1325 				sizeof (CMD_LINE_OPT_CONFIG))) {
1326 				ret = parse_config(optarg);
1327 				if (ret) {
1328 					printf("invalid config\n");
1329 					print_usage(prgname);
1330 					return -1;
1331 				}
1332 			}
1333 
1334 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
1335 				sizeof(CMD_LINE_OPT_NO_NUMA))) {
1336 				printf("numa is disabled \n");
1337 				numa_on = 0;
1338 			}
1339 
1340 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1341 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
1342 				sizeof(CMD_LINE_OPT_IPV6))) {
1343 				printf("ipv6 is specified \n");
1344 				ipv6 = 1;
1345 			}
1346 #endif
1347 
1348 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
1349 				sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) {
1350 				struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
1351 
1352 				printf("jumbo frame is enabled - disabling simple TX path\n");
1353 				port_conf.rxmode.jumbo_frame = 1;
1354 				tx_conf.txq_flags = 0;
1355 
1356 				/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
1357 				if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
1358 					ret = parse_max_pkt_len(optarg);
1359 					if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
1360 						printf("invalid packet length\n");
1361 						print_usage(prgname);
1362 						return -1;
1363 					}
1364 					port_conf.rxmode.max_rx_pkt_len = ret;
1365 				}
1366 				printf("set jumbo frame max packet length to %u\n",
1367 						(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1368 			}
1369 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1370 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
1371 				sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
1372 				ret = parse_hash_entry_number(optarg);
1373 				if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
1374 					hash_entry_number = ret;
1375 				} else {
1376 					printf("invalid hash entry number\n");
1377 					print_usage(prgname);
1378 					return -1;
1379 				}
1380 			}
1381 #endif
1382 			break;
1383 
1384 		default:
1385 			print_usage(prgname);
1386 			return -1;
1387 		}
1388 	}
1389 
1390 	if (optind >= 0)
1391 		argv[optind-1] = prgname;
1392 
1393 	ret = optind-1;
1394 	optind = 0; /* reset getopt lib */
1395 	return ret;
1396 }
1397 
1398 static void
1399 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1400 {
1401 	printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
1402 		eth_addr->addr_bytes[0],
1403 		eth_addr->addr_bytes[1],
1404 		eth_addr->addr_bytes[2],
1405 		eth_addr->addr_bytes[3],
1406 		eth_addr->addr_bytes[4],
1407 		eth_addr->addr_bytes[5]);
1408 }
1409 
1410 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1411 
1412 static void convert_ipv4_5tuple(struct ipv4_5tuple* key1,
1413 		union ipv4_5tuple_host* key2)
1414 {
1415 	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
1416 	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
1417 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
1418 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
1419 	key2->proto = key1->proto;
1420 	key2->pad0 = 0;
1421 	key2->pad1 = 0;
1422 	return;
1423 }
1424 
1425 static void convert_ipv6_5tuple(struct ipv6_5tuple* key1,
1426                 union ipv6_5tuple_host* key2)
1427 {
1428 	uint32_t i;
1429 	for (i = 0; i < 16; i++)
1430 	{
1431 		key2->ip_dst[i] = key1->ip_dst[i];
1432 		key2->ip_src[i] = key1->ip_src[i];
1433 	}
1434 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
1435 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
1436 	key2->proto = key1->proto;
1437 	key2->pad0 = 0;
1438 	key2->pad1 = 0;
1439 	key2->reserve = 0;
1440 	return;
1441 }
1442 
1443 #define BYTE_VALUE_MAX 256
1444 #define ALL_32_BITS 0xffffffff
1445 #define BIT_8_TO_15 0x0000ff00
1446 static inline void
1447 populate_ipv4_few_flow_into_table(const struct rte_hash* h)
1448 {
1449 	uint32_t i;
1450 	int32_t ret;
1451 	uint32_t array_len = sizeof(ipv4_l3fwd_route_array)/sizeof(ipv4_l3fwd_route_array[0]);
1452 
1453 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
1454 	for (i = 0; i < array_len; i++) {
1455 		struct ipv4_l3fwd_route  entry;
1456 		union ipv4_5tuple_host newkey;
1457 		entry = ipv4_l3fwd_route_array[i];
1458 		convert_ipv4_5tuple(&entry.key, &newkey);
1459 		ret = rte_hash_add_key (h,(void *) &newkey);
1460 		if (ret < 0) {
1461 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1462                                 "l3fwd hash.\n", i);
1463 		}
1464 		ipv4_l3fwd_out_if[ret] = entry.if_out;
1465 	}
1466 	printf("Hash: Adding 0x%x keys\n", array_len);
1467 }
1468 
1469 #define BIT_16_TO_23 0x00ff0000
1470 static inline void
1471 populate_ipv6_few_flow_into_table(const struct rte_hash* h)
1472 {
1473 	uint32_t i;
1474 	int32_t ret;
1475 	uint32_t array_len = sizeof(ipv6_l3fwd_route_array)/sizeof(ipv6_l3fwd_route_array[0]);
1476 
1477 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
1478 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
1479 	for (i = 0; i < array_len; i++) {
1480 		struct ipv6_l3fwd_route entry;
1481 		union ipv6_5tuple_host newkey;
1482 		entry = ipv6_l3fwd_route_array[i];
1483 		convert_ipv6_5tuple(&entry.key, &newkey);
1484 		ret = rte_hash_add_key (h, (void *) &newkey);
1485 		if (ret < 0) {
1486 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1487                                 "l3fwd hash.\n", i);
1488 		}
1489 		ipv6_l3fwd_out_if[ret] = entry.if_out;
1490 	}
1491 	printf("Hash: Adding 0x%xkeys\n", array_len);
1492 }
1493 
1494 #define NUMBER_PORT_USED 4
1495 static inline void
1496 populate_ipv4_many_flow_into_table(const struct rte_hash* h,
1497                 unsigned int nr_flow)
1498 {
1499 	unsigned i;
1500 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
1501 	for (i = 0; i < nr_flow; i++) {
1502 		struct ipv4_l3fwd_route entry;
1503 		union ipv4_5tuple_host newkey;
1504 		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
1505 		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
1506 		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
1507 		/* Create the ipv4 exact match flow */
1508 		switch (i & (NUMBER_PORT_USED -1)) {
1509 		case 0:
1510 			entry = ipv4_l3fwd_route_array[0];
1511 			entry.key.ip_dst = IPv4(101,c,b,a);
1512 			break;
1513 		case 1:
1514 			entry = ipv4_l3fwd_route_array[1];
1515 			entry.key.ip_dst = IPv4(201,c,b,a);
1516 			break;
1517 		case 2:
1518 			entry = ipv4_l3fwd_route_array[2];
1519 			entry.key.ip_dst = IPv4(111,c,b,a);
1520 			break;
1521 		case 3:
1522 			entry = ipv4_l3fwd_route_array[3];
1523 			entry.key.ip_dst = IPv4(211,c,b,a);
1524 			break;
1525 		};
1526 		convert_ipv4_5tuple(&entry.key, &newkey);
1527 		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
1528 		if (ret < 0) {
1529 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
1530 		}
1531 		ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
1532 
1533 	}
1534 	printf("Hash: Adding 0x%x keys\n", nr_flow);
1535 }
1536 
1537 static inline void
1538 populate_ipv6_many_flow_into_table(const struct rte_hash* h,
1539                 unsigned int nr_flow)
1540 {
1541 	unsigned i;
1542 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
1543 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
1544 	for (i = 0; i < nr_flow; i++) {
1545 		struct ipv6_l3fwd_route entry;
1546 		union ipv6_5tuple_host newkey;
1547 		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
1548 		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
1549 		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
1550 		/* Create the ipv6 exact match flow */
1551 		switch (i & (NUMBER_PORT_USED - 1)) {
1552 		case 0: entry = ipv6_l3fwd_route_array[0]; break;
1553 		case 1: entry = ipv6_l3fwd_route_array[1]; break;
1554 		case 2: entry = ipv6_l3fwd_route_array[2]; break;
1555 		case 3: entry = ipv6_l3fwd_route_array[3]; break;
1556 		};
1557 		entry.key.ip_dst[13] = c;
1558 		entry.key.ip_dst[14] = b;
1559 		entry.key.ip_dst[15] = a;
1560 		convert_ipv6_5tuple(&entry.key, &newkey);
1561 		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
1562 		if (ret < 0) {
1563 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
1564 		}
1565 		ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
1566 
1567 	}
1568 	printf("Hash: Adding 0x%x keys\n", nr_flow);
1569 }
1570 
1571 static void
1572 setup_hash(int socketid)
1573 {
1574     struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1575         .name = NULL,
1576         .entries = L3FWD_HASH_ENTRIES,
1577         .bucket_entries = 4,
1578         .key_len = sizeof(union ipv4_5tuple_host),
1579         .hash_func = ipv4_hash_crc,
1580         .hash_func_init_val = 0,
1581     };
1582 
1583     struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1584         .name = NULL,
1585         .entries = L3FWD_HASH_ENTRIES,
1586         .bucket_entries = 4,
1587         .key_len = sizeof(union ipv6_5tuple_host),
1588         .hash_func = ipv6_hash_crc,
1589         .hash_func_init_val = 0,
1590     };
1591 
1592     char s[64];
1593 
1594 	/* create ipv4 hash */
1595 	rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1596 	ipv4_l3fwd_hash_params.name = s;
1597 	ipv4_l3fwd_hash_params.socket_id = socketid;
1598 	ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params);
1599 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1600 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1601 				"socket %d\n", socketid);
1602 
1603 	/* create ipv6 hash */
1604 	rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1605 	ipv6_l3fwd_hash_params.name = s;
1606 	ipv6_l3fwd_hash_params.socket_id = socketid;
1607 	ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params);
1608 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1609 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1610 				"socket %d\n", socketid);
1611 
1612 	if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
1613 		/* For testing hash matching with a large number of flows we
1614 		 * generate millions of IP 5-tuples with an incremented dst
1615 		 * address to initialize the hash table. */
1616 		if (ipv6 == 0) {
1617 			/* populate the ipv4 hash */
1618 			populate_ipv4_many_flow_into_table(
1619 				ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
1620 		} else {
1621 			/* populate the ipv6 hash */
1622 			populate_ipv6_many_flow_into_table(
1623 				ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
1624 		}
1625 	} else {
1626 		/* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize the hash table */
1627 		if (ipv6 == 0) {
1628 			/* populate the ipv4 hash */
1629 			populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
1630 		} else {
1631 			/* populate the ipv6 hash */
1632 			populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
1633 		}
1634 	}
1635 }
1636 #endif
1637 
1638 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1639 static void
1640 setup_lpm(int socketid)
1641 {
1642 	struct rte_lpm6_config config;
1643 	unsigned i;
1644 	int ret;
1645 	char s[64];
1646 
1647 	/* create the LPM table */
1648 	rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1649 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1650 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1651 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1652 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1653 				" on socket %d\n", socketid);
1654 
1655 	/* populate the LPM table */
1656 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1657 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1658 			ipv4_l3fwd_route_array[i].ip,
1659 			ipv4_l3fwd_route_array[i].depth,
1660 			ipv4_l3fwd_route_array[i].if_out);
1661 
1662 		if (ret < 0) {
1663 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1664 				"l3fwd LPM table on socket %d\n",
1665 				i, socketid);
1666 		}
1667 
1668 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1669 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1670 			ipv4_l3fwd_route_array[i].depth,
1671 			ipv4_l3fwd_route_array[i].if_out);
1672 	}
1673 
1674 	/* create the LPM6 table */
1675 	rte_snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
1676 
1677 	config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
1678 	config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
1679 	config.flags = 0;
1680 	ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
1681 				&config);
1682 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1683 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1684 				" on socket %d\n", socketid);
1685 
1686 	/* populate the LPM table */
1687 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1688 		ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
1689 			ipv6_l3fwd_route_array[i].ip,
1690 			ipv6_l3fwd_route_array[i].depth,
1691 			ipv6_l3fwd_route_array[i].if_out);
1692 
1693 		if (ret < 0) {
1694 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1695 				"l3fwd LPM table on socket %d\n",
1696 				i, socketid);
1697 		}
1698 
1699 		printf("LPM: Adding route %s / %d (%d)\n",
1700 			"IPV6",
1701 			ipv6_l3fwd_route_array[i].depth,
1702 			ipv6_l3fwd_route_array[i].if_out);
1703 	}
1704 }
1705 #endif
1706 
1707 static int
1708 init_mem(unsigned nb_mbuf)
1709 {
1710 	struct lcore_conf *qconf;
1711 	int socketid;
1712 	unsigned lcore_id;
1713 	char s[64];
1714 
1715 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1716 		if (rte_lcore_is_enabled(lcore_id) == 0)
1717 			continue;
1718 
1719 		if (numa_on)
1720 			socketid = rte_lcore_to_socket_id(lcore_id);
1721 		else
1722 			socketid = 0;
1723 
1724 		if (socketid >= NB_SOCKETS) {
1725 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
1726 				socketid, lcore_id, NB_SOCKETS);
1727 		}
1728 		if (pktmbuf_pool[socketid] == NULL) {
1729 			rte_snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1730 			pktmbuf_pool[socketid] =
1731 				rte_mempool_create(s, nb_mbuf, MBUF_SIZE, MEMPOOL_CACHE_SIZE,
1732 					sizeof(struct rte_pktmbuf_pool_private),
1733 					rte_pktmbuf_pool_init, NULL,
1734 					rte_pktmbuf_init, NULL,
1735 					socketid, 0);
1736 			if (pktmbuf_pool[socketid] == NULL)
1737 				rte_exit(EXIT_FAILURE,
1738 						"Cannot init mbuf pool on socket %d\n", socketid);
1739 			else
1740 				printf("Allocated mbuf pool on socket %d\n", socketid);
1741 
1742 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1743 			setup_lpm(socketid);
1744 #else
1745 			setup_hash(socketid);
1746 #endif
1747 		}
1748 		qconf = &lcore_conf[lcore_id];
1749 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1750 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1751 	}
1752 	return 0;
1753 }
1754 
1755 /* Check the link status of all ports in up to 9s, and print them finally */
1756 static void
1757 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1758 {
1759 #define CHECK_INTERVAL 100 /* 100ms */
1760 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1761 	uint8_t portid, count, all_ports_up, print_flag = 0;
1762 	struct rte_eth_link link;
1763 
1764 	printf("\nChecking link status");
1765 	fflush(stdout);
1766 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1767 		all_ports_up = 1;
1768 		for (portid = 0; portid < port_num; portid++) {
1769 			if ((port_mask & (1 << portid)) == 0)
1770 				continue;
1771 			memset(&link, 0, sizeof(link));
1772 			rte_eth_link_get_nowait(portid, &link);
1773 			/* print link status if flag set */
1774 			if (print_flag == 1) {
1775 				if (link.link_status)
1776 					printf("Port %d Link Up - speed %u "
1777 						"Mbps - %s\n", (uint8_t)portid,
1778 						(unsigned)link.link_speed,
1779 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1780 					("full-duplex") : ("half-duplex\n"));
1781 				else
1782 					printf("Port %d Link Down\n",
1783 						(uint8_t)portid);
1784 				continue;
1785 			}
1786 			/* clear all_ports_up flag if any link down */
1787 			if (link.link_status == 0) {
1788 				all_ports_up = 0;
1789 				break;
1790 			}
1791 		}
1792 		/* after finally printing all link status, get out */
1793 		if (print_flag == 1)
1794 			break;
1795 
1796 		if (all_ports_up == 0) {
1797 			printf(".");
1798 			fflush(stdout);
1799 			rte_delay_ms(CHECK_INTERVAL);
1800 		}
1801 
1802 		/* set the print_flag if all ports up or timeout */
1803 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1804 			print_flag = 1;
1805 			printf("done\n");
1806 		}
1807 	}
1808 }
1809 
1810 int
1811 MAIN(int argc, char **argv)
1812 {
1813 	struct lcore_conf *qconf;
1814 	int ret;
1815 	unsigned nb_ports;
1816 	uint16_t queueid;
1817 	unsigned lcore_id;
1818 	uint32_t n_tx_queue, nb_lcores;
1819 	uint8_t portid, nb_rx_queue, queue, socketid;
1820 
1821 	/* init EAL */
1822 	ret = rte_eal_init(argc, argv);
1823 	if (ret < 0)
1824 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1825 	argc -= ret;
1826 	argv += ret;
1827 
1828 	/* parse application arguments (after the EAL ones) */
1829 	ret = parse_args(argc, argv);
1830 	if (ret < 0)
1831 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1832 
1833 	if (check_lcore_params() < 0)
1834 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1835 
1836 	ret = init_lcore_rx_queues();
1837 	if (ret < 0)
1838 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1839 
1840 
1841 	/* init driver(s) */
1842 	if (rte_pmd_init_all() < 0)
1843 		rte_exit(EXIT_FAILURE, "Cannot init pmd\n");
1844 
1845 	if (rte_eal_pci_probe() < 0)
1846 		rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
1847 
1848 	nb_ports = rte_eth_dev_count();
1849 	if (nb_ports > RTE_MAX_ETHPORTS)
1850 		nb_ports = RTE_MAX_ETHPORTS;
1851 
1852 	if (check_port_config(nb_ports) < 0)
1853 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1854 
1855 	nb_lcores = rte_lcore_count();
1856 
1857 	/* initialize all ports */
1858 	for (portid = 0; portid < nb_ports; portid++) {
1859 		/* skip ports that are not enabled */
1860 		if ((enabled_port_mask & (1 << portid)) == 0) {
1861 			printf("\nSkipping disabled port %d\n", portid);
1862 			continue;
1863 		}
1864 
1865 		/* init port */
1866 		printf("Initializing port %d ... ", portid );
1867 		fflush(stdout);
1868 
1869 		nb_rx_queue = get_port_n_rx_queues(portid);
1870 		n_tx_queue = nb_lcores;
1871 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1872 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1873 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1874 			nb_rx_queue, (unsigned)n_tx_queue );
1875 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1876 					(uint16_t)n_tx_queue, &port_conf);
1877 		if (ret < 0)
1878 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
1879 				ret, portid);
1880 
1881 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1882 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1883 		printf(", ");
1884 
1885 		/* init memory */
1886 		ret = init_mem(NB_MBUF);
1887 		if (ret < 0)
1888 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1889 
1890 		/* init one TX queue per couple (lcore,port) */
1891 		queueid = 0;
1892 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1893 			if (rte_lcore_is_enabled(lcore_id) == 0)
1894 				continue;
1895 
1896 			if (numa_on)
1897 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1898 			else
1899 				socketid = 0;
1900 
1901 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1902 			fflush(stdout);
1903 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1904 						     socketid, &tx_conf);
1905 			if (ret < 0)
1906 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1907 					"port=%d\n", ret, portid);
1908 
1909 			qconf = &lcore_conf[lcore_id];
1910 			qconf->tx_queue_id[portid] = queueid;
1911 			queueid++;
1912 		}
1913 		printf("\n");
1914 	}
1915 
1916 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1917 		if (rte_lcore_is_enabled(lcore_id) == 0)
1918 			continue;
1919 		qconf = &lcore_conf[lcore_id];
1920 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1921 		fflush(stdout);
1922 		/* init RX queues */
1923 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1924 			portid = qconf->rx_queue_list[queue].port_id;
1925 			queueid = qconf->rx_queue_list[queue].queue_id;
1926 
1927 			if (numa_on)
1928 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1929 			else
1930 				socketid = 0;
1931 
1932 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1933 			fflush(stdout);
1934 
1935 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1936 				        socketid, &rx_conf, pktmbuf_pool[socketid]);
1937 			if (ret < 0)
1938 				rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
1939 						"port=%d\n", ret, portid);
1940 		}
1941 	}
1942 
1943 	printf("\n");
1944 
1945 	/* start ports */
1946 	for (portid = 0; portid < nb_ports; portid++) {
1947 		if ((enabled_port_mask & (1 << portid)) == 0) {
1948 			continue;
1949 		}
1950 		/* Start device */
1951 		ret = rte_eth_dev_start(portid);
1952 		if (ret < 0)
1953 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1954 				ret, portid);
1955 
1956 		/*
1957 		 * If enabled, put device in promiscuous mode.
1958 		 * This allows IO forwarding mode to forward packets
1959 		 * to itself through 2 cross-connected  ports of the
1960 		 * target machine.
1961 		 */
1962 		if (promiscuous_on)
1963 			rte_eth_promiscuous_enable(portid);
1964 	}
1965 
1966 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1967 
1968 	/* launch per-lcore init on every lcore */
1969 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1970 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1971 		if (rte_eal_wait_lcore(lcore_id) < 0)
1972 			return -1;
1973 	}
1974 
1975 	return 0;
1976 }
1977