xref: /dpdk/examples/l3fwd-power/main.c (revision ff708facfcbf42f3dcb3c62d82ecd93e7b8c2506)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <unistd.h>
45 #include <signal.h>
46 
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 #include <rte_timer.h>
76 #include <rte_power.h>
77 
78 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
79 
80 #define MAX_PKT_BURST 32
81 
82 #define MIN_ZERO_POLL_COUNT 5
83 
84 /* around 100ms at 2 Ghz */
85 #define TIMER_RESOLUTION_CYCLES           200000000ULL
86 /* 100 ms interval */
87 #define TIMER_NUMBER_PER_SECOND           10
88 /* 100000 us */
89 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
90 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
91 
92 #define APP_LOOKUP_EXACT_MATCH          0
93 #define APP_LOOKUP_LPM                  1
94 #define DO_RFC_1812_CHECKS
95 
96 #ifndef APP_LOOKUP_METHOD
97 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
98 #endif
99 
100 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
101 #include <rte_hash.h>
102 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
103 #include <rte_lpm.h>
104 #else
105 #error "APP_LOOKUP_METHOD set to incorrect value"
106 #endif
107 
108 #ifndef IPv6_BYTES
109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
110                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
111 #define IPv6_BYTES(addr) \
112 	addr[0],  addr[1], addr[2],  addr[3], \
113 	addr[4],  addr[5], addr[6],  addr[7], \
114 	addr[8],  addr[9], addr[10], addr[11],\
115 	addr[12], addr[13],addr[14], addr[15]
116 #endif
117 
118 #define MAX_JUMBO_PKT_LEN  9600
119 
120 #define IPV6_ADDR_LEN 16
121 
122 #define MEMPOOL_CACHE_SIZE 256
123 
124 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
125 
126 /*
127  * This expression is used to calculate the number of mbufs needed depending on
128  * user input, taking into account memory for rx and tx hardware rings, cache
129  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
130  * NB_MBUF never goes below a minimum value of 8192.
131  */
132 
133 #define NB_MBUF RTE_MAX	( \
134 	(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
135 	nb_ports*nb_lcores*MAX_PKT_BURST + \
136 	nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
137 	nb_lcores*MEMPOOL_CACHE_SIZE), \
138 	(unsigned)8192)
139 
140 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
141 
142 #define NB_SOCKETS 8
143 
144 /* Configure how many packets ahead to prefetch, when reading packets */
145 #define PREFETCH_OFFSET	3
146 
147 /*
148  * Configurable number of RX/TX ring descriptors
149  */
150 #define RTE_TEST_RX_DESC_DEFAULT 128
151 #define RTE_TEST_TX_DESC_DEFAULT 512
152 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
153 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
154 
155 /* ethernet addresses of ports */
156 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
157 
158 /* mask of enabled ports */
159 static uint32_t enabled_port_mask = 0;
160 /* Ports set in promiscuous mode off by default. */
161 static int promiscuous_on = 0;
162 /* NUMA is enabled by default. */
163 static int numa_on = 1;
164 
165 enum freq_scale_hint_t
166 {
167 	FREQ_LOWER    =      -1,
168 	FREQ_CURRENT  =       0,
169 	FREQ_HIGHER   =       1,
170 	FREQ_HIGHEST  =       2
171 };
172 
173 struct mbuf_table {
174 	uint16_t len;
175 	struct rte_mbuf *m_table[MAX_PKT_BURST];
176 };
177 
178 struct lcore_rx_queue {
179 	uint8_t port_id;
180 	uint8_t queue_id;
181 	enum freq_scale_hint_t freq_up_hint;
182 	uint32_t zero_rx_packet_count;
183 	uint32_t idle_hint;
184 } __rte_cache_aligned;
185 
186 #define MAX_RX_QUEUE_PER_LCORE 16
187 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
188 #define MAX_RX_QUEUE_PER_PORT 128
189 
190 #define MAX_LCORE_PARAMS 1024
191 struct lcore_params {
192 	uint8_t port_id;
193 	uint8_t queue_id;
194 	uint8_t lcore_id;
195 } __rte_cache_aligned;
196 
197 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
198 static struct lcore_params lcore_params_array_default[] = {
199 	{0, 0, 2},
200 	{0, 1, 2},
201 	{0, 2, 2},
202 	{1, 0, 2},
203 	{1, 1, 2},
204 	{1, 2, 2},
205 	{2, 0, 2},
206 	{3, 0, 3},
207 	{3, 1, 3},
208 };
209 
210 static struct lcore_params * lcore_params = lcore_params_array_default;
211 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
212 				sizeof(lcore_params_array_default[0]);
213 
214 static struct rte_eth_conf port_conf = {
215 	.rxmode = {
216 		.mq_mode	= ETH_MQ_RX_RSS,
217 		.max_rx_pkt_len = ETHER_MAX_LEN,
218 		.split_hdr_size = 0,
219 		.header_split   = 0, /**< Header Split disabled */
220 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
221 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
222 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
223 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
224 	},
225 	.rx_adv_conf = {
226 		.rss_conf = {
227 			.rss_key = NULL,
228 			.rss_hf = ETH_RSS_IP,
229 		},
230 	},
231 	.txmode = {
232 		.mq_mode = ETH_DCB_NONE,
233 	},
234 };
235 
236 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
237 
238 
239 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
240 
241 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
242 #include <rte_hash_crc.h>
243 #define DEFAULT_HASH_FUNC       rte_hash_crc
244 #else
245 #include <rte_jhash.h>
246 #define DEFAULT_HASH_FUNC       rte_jhash
247 #endif
248 
249 struct ipv4_5tuple {
250 	uint32_t ip_dst;
251 	uint32_t ip_src;
252 	uint16_t port_dst;
253 	uint16_t port_src;
254 	uint8_t  proto;
255 } __attribute__((__packed__));
256 
257 struct ipv6_5tuple {
258 	uint8_t  ip_dst[IPV6_ADDR_LEN];
259 	uint8_t  ip_src[IPV6_ADDR_LEN];
260 	uint16_t port_dst;
261 	uint16_t port_src;
262 	uint8_t  proto;
263 } __attribute__((__packed__));
264 
265 struct ipv4_l3fwd_route {
266 	struct ipv4_5tuple key;
267 	uint8_t if_out;
268 };
269 
270 struct ipv6_l3fwd_route {
271 	struct ipv6_5tuple key;
272 	uint8_t if_out;
273 };
274 
275 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
276 	{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
277 	{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
278 	{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
279 	{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
280 };
281 
282 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
283 	{
284 		{
285 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
286 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
287 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
288 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
289 			 1, 10, IPPROTO_UDP
290 		}, 4
291 	},
292 };
293 
294 typedef struct rte_hash lookup_struct_t;
295 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
296 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
297 
298 #define L3FWD_HASH_ENTRIES	1024
299 
300 #define IPV4_L3FWD_NUM_ROUTES \
301 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
302 
303 #define IPV6_L3FWD_NUM_ROUTES \
304 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
305 
306 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
307 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
308 #endif
309 
310 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
311 struct ipv4_l3fwd_route {
312 	uint32_t ip;
313 	uint8_t  depth;
314 	uint8_t  if_out;
315 };
316 
317 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
318 	{IPv4(1,1,1,0), 24, 0},
319 	{IPv4(2,1,1,0), 24, 1},
320 	{IPv4(3,1,1,0), 24, 2},
321 	{IPv4(4,1,1,0), 24, 3},
322 	{IPv4(5,1,1,0), 24, 4},
323 	{IPv4(6,1,1,0), 24, 5},
324 	{IPv4(7,1,1,0), 24, 6},
325 	{IPv4(8,1,1,0), 24, 7},
326 };
327 
328 #define IPV4_L3FWD_NUM_ROUTES \
329 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
330 
331 #define IPV4_L3FWD_LPM_MAX_RULES     1024
332 
333 typedef struct rte_lpm lookup_struct_t;
334 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
335 #endif
336 
337 struct lcore_conf {
338 	uint16_t n_rx_queue;
339 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
340 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
341 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
342 	lookup_struct_t * ipv4_lookup_struct;
343 	lookup_struct_t * ipv6_lookup_struct;
344 } __rte_cache_aligned;
345 
346 struct lcore_stats {
347 	/* total sleep time in ms since last frequency scaling down */
348 	uint32_t sleep_time;
349 	/* number of long sleep recently */
350 	uint32_t nb_long_sleep;
351 	/* freq. scaling up trend */
352 	uint32_t trend;
353 	/* total packet processed recently */
354 	uint64_t nb_rx_processed;
355 	/* total iterations looped recently */
356 	uint64_t nb_iteration_looped;
357 	uint32_t padding[9];
358 } __rte_cache_aligned;
359 
360 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
361 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
362 static struct rte_timer power_timers[RTE_MAX_LCORE];
363 
364 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
365 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
366 			unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
367 
368 /* exit signal handler */
369 static void
370 signal_exit_now(int sigtype)
371 {
372 	unsigned lcore_id;
373 	int ret;
374 
375 	if (sigtype == SIGINT) {
376 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
377 			if (rte_lcore_is_enabled(lcore_id) == 0)
378 				continue;
379 
380 			/* init power management library */
381 			ret = rte_power_exit(lcore_id);
382 			if (ret)
383 				rte_exit(EXIT_FAILURE, "Power management "
384 					"library de-initialization failed on "
385 							"core%u\n", lcore_id);
386 		}
387 	}
388 
389 	rte_exit(EXIT_SUCCESS, "User forced exit\n");
390 }
391 
392 /*  Freqency scale down timer callback */
393 static void
394 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
395 			  __attribute__((unused)) void *arg)
396 {
397 	uint64_t hz;
398 	float sleep_time_ratio;
399 	unsigned lcore_id = rte_lcore_id();
400 
401 	/* accumulate total execution time in us when callback is invoked */
402 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
403 					(float)SCALING_PERIOD;
404 
405 	/**
406 	 * check whether need to scale down frequency a step if it sleep a lot.
407 	 */
408 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD)
409 		rte_power_freq_down(lcore_id);
410 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
411 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST)
412 		/**
413 		 * scale down a step if average packet per iteration less
414 		 * than expectation.
415 		 */
416 		rte_power_freq_down(lcore_id);
417 
418 	/**
419 	 * initialize another timer according to current frequency to ensure
420 	 * timer interval is relatively fixed.
421 	 */
422 	hz = rte_get_timer_hz();
423 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
424 				SINGLE, lcore_id, power_timer_cb, NULL);
425 
426 	stats[lcore_id].nb_rx_processed = 0;
427 	stats[lcore_id].nb_iteration_looped = 0;
428 
429 	stats[lcore_id].sleep_time = 0;
430 }
431 
432 /* Send burst of packets on an output interface */
433 static inline int
434 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
435 {
436 	struct rte_mbuf **m_table;
437 	int ret;
438 	uint16_t queueid;
439 
440 	queueid = qconf->tx_queue_id[port];
441 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
442 
443 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
444 	if (unlikely(ret < n)) {
445 		do {
446 			rte_pktmbuf_free(m_table[ret]);
447 		} while (++ret < n);
448 	}
449 
450 	return 0;
451 }
452 
453 /* Enqueue a single packet, and send burst if queue is filled */
454 static inline int
455 send_single_packet(struct rte_mbuf *m, uint8_t port)
456 {
457 	uint32_t lcore_id;
458 	uint16_t len;
459 	struct lcore_conf *qconf;
460 
461 	lcore_id = rte_lcore_id();
462 
463 	qconf = &lcore_conf[lcore_id];
464 	len = qconf->tx_mbufs[port].len;
465 	qconf->tx_mbufs[port].m_table[len] = m;
466 	len++;
467 
468 	/* enough pkts to be sent */
469 	if (unlikely(len == MAX_PKT_BURST)) {
470 		send_burst(qconf, MAX_PKT_BURST, port);
471 		len = 0;
472 	}
473 
474 	qconf->tx_mbufs[port].len = len;
475 	return 0;
476 }
477 
478 #ifdef DO_RFC_1812_CHECKS
479 static inline int
480 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
481 {
482 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
483 	/*
484 	 * 1. The packet length reported by the Link Layer must be large
485 	 * enough to hold the minimum length legal IP datagram (20 bytes).
486 	 */
487 	if (link_len < sizeof(struct ipv4_hdr))
488 		return -1;
489 
490 	/* 2. The IP checksum must be correct. */
491 	/* this is checked in H/W */
492 
493 	/*
494 	 * 3. The IP version number must be 4. If the version number is not 4
495 	 * then the packet may be another version of IP, such as IPng or
496 	 * ST-II.
497 	 */
498 	if (((pkt->version_ihl) >> 4) != 4)
499 		return -3;
500 	/*
501 	 * 4. The IP header length field must be large enough to hold the
502 	 * minimum length legal IP datagram (20 bytes = 5 words).
503 	 */
504 	if ((pkt->version_ihl & 0xf) < 5)
505 		return -4;
506 
507 	/*
508 	 * 5. The IP total length field must be large enough to hold the IP
509 	 * datagram header, whose length is specified in the IP header length
510 	 * field.
511 	 */
512 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
513 		return -5;
514 
515 	return 0;
516 }
517 #endif
518 
519 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
520 static void
521 print_ipv4_key(struct ipv4_5tuple key)
522 {
523 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
524 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
525 				key.port_dst, key.port_src, key.proto);
526 }
527 static void
528 print_ipv6_key(struct ipv6_5tuple key)
529 {
530 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
531 	        "port dst = %d, port src = %d, proto = %d\n",
532 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
533 	        key.port_dst, key.port_src, key.proto);
534 }
535 
536 static inline uint8_t
537 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
538 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
539 {
540 	struct ipv4_5tuple key;
541 	struct tcp_hdr *tcp;
542 	struct udp_hdr *udp;
543 	int ret = 0;
544 
545 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
546 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
547 	key.proto = ipv4_hdr->next_proto_id;
548 
549 	switch (ipv4_hdr->next_proto_id) {
550 	case IPPROTO_TCP:
551 		tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
552 					sizeof(struct ipv4_hdr));
553 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
554 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
555 		break;
556 
557 	case IPPROTO_UDP:
558 		udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
559 					sizeof(struct ipv4_hdr));
560 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
561 		key.port_src = rte_be_to_cpu_16(udp->src_port);
562 		break;
563 
564 	default:
565 		key.port_dst = 0;
566 		key.port_src = 0;
567 		break;
568 	}
569 
570 	/* Find destination port */
571 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
572 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
573 }
574 
575 static inline uint8_t
576 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid,
577 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
578 {
579 	struct ipv6_5tuple key;
580 	struct tcp_hdr *tcp;
581 	struct udp_hdr *udp;
582 	int ret = 0;
583 
584 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
585 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
586 
587 	key.proto = ipv6_hdr->proto;
588 
589 	switch (ipv6_hdr->proto) {
590 	case IPPROTO_TCP:
591 		tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
592 					sizeof(struct ipv6_hdr));
593 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
594 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
595 		break;
596 
597 	case IPPROTO_UDP:
598 		udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
599 					sizeof(struct ipv6_hdr));
600 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
601 		key.port_src = rte_be_to_cpu_16(udp->src_port);
602 		break;
603 
604 	default:
605 		key.port_dst = 0;
606 		key.port_src = 0;
607 		break;
608 	}
609 
610 	/* Find destination port */
611 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
612 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
613 }
614 #endif
615 
616 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
617 static inline uint8_t
618 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
619 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
620 {
621 	uint8_t next_hop;
622 
623 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
624 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
625 			next_hop : portid);
626 }
627 #endif
628 
629 static inline void
630 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
631 				struct lcore_conf *qconf)
632 {
633 	struct ether_hdr *eth_hdr;
634 	struct ipv4_hdr *ipv4_hdr;
635 	void *d_addr_bytes;
636 	uint8_t dst_port;
637 
638 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
639 
640 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
641 		/* Handle IPv4 headers.*/
642 		ipv4_hdr =
643 			(struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
644 						+ sizeof(struct ether_hdr));
645 
646 #ifdef DO_RFC_1812_CHECKS
647 		/* Check to make sure the packet is valid (RFC1812) */
648 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
649 			rte_pktmbuf_free(m);
650 			return;
651 		}
652 #endif
653 
654 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
655 					qconf->ipv4_lookup_struct);
656 		if (dst_port >= RTE_MAX_ETHPORTS ||
657 				(enabled_port_mask & 1 << dst_port) == 0)
658 			dst_port = portid;
659 
660 		/* 02:00:00:00:00:xx */
661 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
662 		*((uint64_t *)d_addr_bytes) =
663 			0x000000000002 + ((uint64_t)dst_port << 40);
664 
665 #ifdef DO_RFC_1812_CHECKS
666 		/* Update time to live and header checksum */
667 		--(ipv4_hdr->time_to_live);
668 		++(ipv4_hdr->hdr_checksum);
669 #endif
670 
671 		/* src addr */
672 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
673 
674 		send_single_packet(m, dst_port);
675 	}
676 	else {
677 		/* Handle IPv6 headers.*/
678 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
679 		struct ipv6_hdr *ipv6_hdr;
680 
681 		ipv6_hdr =
682 			(struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
683 						+ sizeof(struct ether_hdr));
684 
685 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
686 					qconf->ipv6_lookup_struct);
687 
688 		if (dst_port >= RTE_MAX_ETHPORTS ||
689 				(enabled_port_mask & 1 << dst_port) == 0)
690 			dst_port = portid;
691 
692 		/* 02:00:00:00:00:xx */
693 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
694 		*((uint64_t *)d_addr_bytes) =
695 			0x000000000002 + ((uint64_t)dst_port << 40);
696 
697 		/* src addr */
698 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
699 
700 		send_single_packet(m, dst_port);
701 #else
702 		/* We don't currently handle IPv6 packets in LPM mode. */
703 		rte_pktmbuf_free(m);
704 #endif
705 	}
706 
707 }
708 
709 #define SLEEP_GEAR1_THRESHOLD            100
710 #define SLEEP_GEAR2_THRESHOLD            1000
711 
712 static inline uint32_t
713 power_idle_heuristic(uint32_t zero_rx_packet_count)
714 {
715 	/* If zero count is less than 100, use it as the sleep time in us */
716 	if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD)
717 		return zero_rx_packet_count;
718 	/* If zero count is less than 1000, sleep time should be 100 us */
719 	else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) &&
720 			(zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD))
721 		return SLEEP_GEAR1_THRESHOLD;
722 	/* If zero count is greater than 1000, sleep time should be 1000 us */
723 	else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD)
724 		return SLEEP_GEAR2_THRESHOLD;
725 
726 	return 0;
727 }
728 
729 static inline enum freq_scale_hint_t
730 power_freq_scaleup_heuristic(unsigned lcore_id,
731 			     uint8_t port_id,
732 			     uint16_t queue_id)
733 {
734 /**
735  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
736  * per iteration
737  */
738 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
739 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
740 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
741 #define FREQ_UP_TREND1_ACC   1
742 #define FREQ_UP_TREND2_ACC   100
743 #define FREQ_UP_THRESHOLD    10000
744 
745 	if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
746 			FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
747 		stats[lcore_id].trend = 0;
748 		return FREQ_HIGHEST;
749 	} else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
750 			FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
751 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
752 	else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
753 			FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
754 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
755 
756 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
757 		stats[lcore_id].trend = 0;
758 		return FREQ_HIGHER;
759 	}
760 
761 	return FREQ_CURRENT;
762 }
763 
764 /* main processing loop */
765 static int
766 main_loop(__attribute__((unused)) void *dummy)
767 {
768 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
769 	unsigned lcore_id;
770 	uint64_t prev_tsc, diff_tsc, cur_tsc;
771 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
772 	int i, j, nb_rx;
773 	uint8_t portid, queueid;
774 	struct lcore_conf *qconf;
775 	struct lcore_rx_queue *rx_queue;
776 	enum freq_scale_hint_t lcore_scaleup_hint;
777 
778 	uint32_t lcore_rx_idle_count = 0;
779 	uint32_t lcore_idle_hint = 0;
780 
781 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
782 
783 	prev_tsc = 0;
784 
785 	lcore_id = rte_lcore_id();
786 	qconf = &lcore_conf[lcore_id];
787 
788 	if (qconf->n_rx_queue == 0) {
789 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
790 		return 0;
791 	}
792 
793 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
794 
795 	for (i = 0; i < qconf->n_rx_queue; i++) {
796 
797 		portid = qconf->rx_queue_list[i].port_id;
798 		queueid = qconf->rx_queue_list[i].queue_id;
799 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
800 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
801 	}
802 
803 	while (1) {
804 		stats[lcore_id].nb_iteration_looped++;
805 
806 		cur_tsc = rte_rdtsc();
807 		cur_tsc_power = cur_tsc;
808 
809 		/*
810 		 * TX burst queue drain
811 		 */
812 		diff_tsc = cur_tsc - prev_tsc;
813 		if (unlikely(diff_tsc > drain_tsc)) {
814 
815 			/*
816 			 * This could be optimized (use queueid instead of
817 			 * portid), but it is not called so often
818 			 */
819 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
820 				if (qconf->tx_mbufs[portid].len == 0)
821 					continue;
822 				send_burst(&lcore_conf[lcore_id],
823 					qconf->tx_mbufs[portid].len,
824 					portid);
825 				qconf->tx_mbufs[portid].len = 0;
826 			}
827 
828 			prev_tsc = cur_tsc;
829 		}
830 
831 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
832 		if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
833 			rte_timer_manage();
834 			prev_tsc_power = cur_tsc_power;
835 		}
836 
837 		/*
838 		 * Read packet from RX queues
839 		 */
840 		lcore_scaleup_hint = FREQ_CURRENT;
841 		lcore_rx_idle_count = 0;
842 		for (i = 0; i < qconf->n_rx_queue; ++i) {
843 			rx_queue = &(qconf->rx_queue_list[i]);
844 			rx_queue->idle_hint = 0;
845 			portid = rx_queue->port_id;
846 			queueid = rx_queue->queue_id;
847 
848 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
849 								MAX_PKT_BURST);
850 			stats[lcore_id].nb_rx_processed += nb_rx;
851 			if (unlikely(nb_rx == 0)) {
852 				/**
853 				 * no packet received from rx queue, try to
854 				 * sleep for a while forcing CPU enter deeper
855 				 * C states.
856 				 */
857 				rx_queue->zero_rx_packet_count++;
858 
859 				if (rx_queue->zero_rx_packet_count <=
860 							MIN_ZERO_POLL_COUNT)
861 					continue;
862 
863 				rx_queue->idle_hint = power_idle_heuristic(\
864 					rx_queue->zero_rx_packet_count);
865 				lcore_rx_idle_count++;
866 			} else {
867 				rx_queue->zero_rx_packet_count = 0;
868 
869 				/**
870 				 * do not scale up frequency immediately as
871 				 * user to kernel space communication is costly
872 				 * which might impact packet I/O for received
873 				 * packets.
874 				 */
875 				rx_queue->freq_up_hint =
876 					power_freq_scaleup_heuristic(lcore_id,
877 							portid, queueid);
878  			}
879 
880 			/* Prefetch first packets */
881 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
882 				rte_prefetch0(rte_pktmbuf_mtod(
883 						pkts_burst[j], void *));
884 			}
885 
886 			/* Prefetch and forward already prefetched packets */
887 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
888 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
889 						j + PREFETCH_OFFSET], void *));
890 				l3fwd_simple_forward(pkts_burst[j], portid,
891 								qconf);
892 			}
893 
894 			/* Forward remaining prefetched packets */
895 			for (; j < nb_rx; j++) {
896 				l3fwd_simple_forward(pkts_burst[j], portid,
897 								qconf);
898 			}
899 		}
900 
901 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
902 			for (i = 1, lcore_scaleup_hint =
903 				qconf->rx_queue_list[0].freq_up_hint;
904 					i < qconf->n_rx_queue; ++i) {
905 				rx_queue = &(qconf->rx_queue_list[i]);
906 				if (rx_queue->freq_up_hint >
907 						lcore_scaleup_hint)
908 					lcore_scaleup_hint =
909 						rx_queue->freq_up_hint;
910 			}
911 
912 			if (lcore_scaleup_hint == FREQ_HIGHEST)
913 				rte_power_freq_max(lcore_id);
914 			else if (lcore_scaleup_hint == FREQ_HIGHER)
915 				rte_power_freq_up(lcore_id);
916 		} else {
917 			/**
918 			 * All Rx queues empty in recent consecutive polls,
919 			 * sleep in a conservative manner, meaning sleep as
920  			 * less as possible.
921  			 */
922 			for (i = 1, lcore_idle_hint =
923 				qconf->rx_queue_list[0].idle_hint;
924 					i < qconf->n_rx_queue; ++i) {
925 				rx_queue = &(qconf->rx_queue_list[i]);
926 				if (rx_queue->idle_hint < lcore_idle_hint)
927 					lcore_idle_hint = rx_queue->idle_hint;
928 			}
929 
930 			if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
931 				/**
932 				 * execute "pause" instruction to avoid context
933 				 * switch for short sleep.
934  				 */
935 				rte_delay_us(lcore_idle_hint);
936 			else
937 				/* long sleep force runing thread to suspend */
938 				usleep(lcore_idle_hint);
939 
940 			stats[lcore_id].sleep_time += lcore_idle_hint;
941 		}
942 	}
943 }
944 
945 static int
946 check_lcore_params(void)
947 {
948 	uint8_t queue, lcore;
949 	uint16_t i;
950 	int socketid;
951 
952 	for (i = 0; i < nb_lcore_params; ++i) {
953 		queue = lcore_params[i].queue_id;
954 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
955 			printf("invalid queue number: %hhu\n", queue);
956 			return -1;
957 		}
958 		lcore = lcore_params[i].lcore_id;
959 		if (!rte_lcore_is_enabled(lcore)) {
960 			printf("error: lcore %hhu is not enabled in lcore "
961 							"mask\n", lcore);
962 			return -1;
963 		}
964 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
965 							(numa_on == 0)) {
966 			printf("warning: lcore %hhu is on socket %d with numa "
967 						"off\n", lcore, socketid);
968 		}
969 	}
970 	return 0;
971 }
972 
973 static int
974 check_port_config(const unsigned nb_ports)
975 {
976 	unsigned portid;
977 	uint16_t i;
978 
979 	for (i = 0; i < nb_lcore_params; ++i) {
980 		portid = lcore_params[i].port_id;
981 		if ((enabled_port_mask & (1 << portid)) == 0) {
982 			printf("port %u is not enabled in port mask\n",
983 								portid);
984 			return -1;
985 		}
986 		if (portid >= nb_ports) {
987 			printf("port %u is not present on the board\n",
988 								portid);
989 			return -1;
990 		}
991 	}
992 	return 0;
993 }
994 
995 static uint8_t
996 get_port_n_rx_queues(const uint8_t port)
997 {
998 	int queue = -1;
999 	uint16_t i;
1000 
1001 	for (i = 0; i < nb_lcore_params; ++i) {
1002 		if (lcore_params[i].port_id == port &&
1003 				lcore_params[i].queue_id > queue)
1004 			queue = lcore_params[i].queue_id;
1005 	}
1006 	return (uint8_t)(++queue);
1007 }
1008 
1009 static int
1010 init_lcore_rx_queues(void)
1011 {
1012 	uint16_t i, nb_rx_queue;
1013 	uint8_t lcore;
1014 
1015 	for (i = 0; i < nb_lcore_params; ++i) {
1016 		lcore = lcore_params[i].lcore_id;
1017 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1018 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1019 			printf("error: too many queues (%u) for lcore: %u\n",
1020 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1021 			return -1;
1022 		} else {
1023 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1024 				lcore_params[i].port_id;
1025 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1026 				lcore_params[i].queue_id;
1027 			lcore_conf[lcore].n_rx_queue++;
1028 		}
1029 	}
1030 	return 0;
1031 }
1032 
1033 /* display usage */
1034 static void
1035 print_usage(const char *prgname)
1036 {
1037 	printf ("%s [EAL options] -- -p PORTMASK -P"
1038 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1039 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1040 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1041 		"  -P : enable promiscuous mode\n"
1042 		"  --config (port,queue,lcore): rx queues configuration\n"
1043 		"  --no-numa: optional, disable numa awareness\n"
1044 		"  --enable-jumbo: enable jumbo frame"
1045 		" which max packet len is PKTLEN in decimal (64-9600)\n",
1046 		prgname);
1047 }
1048 
1049 static int parse_max_pkt_len(const char *pktlen)
1050 {
1051 	char *end = NULL;
1052 	unsigned long len;
1053 
1054 	/* parse decimal string */
1055 	len = strtoul(pktlen, &end, 10);
1056 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1057 		return -1;
1058 
1059 	if (len == 0)
1060 		return -1;
1061 
1062 	return len;
1063 }
1064 
1065 static int
1066 parse_portmask(const char *portmask)
1067 {
1068 	char *end = NULL;
1069 	unsigned long pm;
1070 
1071 	/* parse hexadecimal string */
1072 	pm = strtoul(portmask, &end, 16);
1073 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1074 		return -1;
1075 
1076 	if (pm == 0)
1077 		return -1;
1078 
1079 	return pm;
1080 }
1081 
1082 static int
1083 parse_config(const char *q_arg)
1084 {
1085 	char s[256];
1086 	const char *p, *p0 = q_arg;
1087 	char *end;
1088 	enum fieldnames {
1089 		FLD_PORT = 0,
1090 		FLD_QUEUE,
1091 		FLD_LCORE,
1092 		_NUM_FLD
1093 	};
1094 	unsigned long int_fld[_NUM_FLD];
1095 	char *str_fld[_NUM_FLD];
1096 	int i;
1097 	unsigned size;
1098 
1099 	nb_lcore_params = 0;
1100 
1101 	while ((p = strchr(p0,'(')) != NULL) {
1102 		++p;
1103 		if((p0 = strchr(p,')')) == NULL)
1104 			return -1;
1105 
1106 		size = p0 - p;
1107 		if(size >= sizeof(s))
1108 			return -1;
1109 
1110 		snprintf(s, sizeof(s), "%.*s", size, p);
1111 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1112 								_NUM_FLD)
1113 			return -1;
1114 		for (i = 0; i < _NUM_FLD; i++){
1115 			errno = 0;
1116 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1117 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1118 									255)
1119 				return -1;
1120 		}
1121 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1122 			printf("exceeded max number of lcore params: %hu\n",
1123 				nb_lcore_params);
1124 			return -1;
1125 		}
1126 		lcore_params_array[nb_lcore_params].port_id =
1127 				(uint8_t)int_fld[FLD_PORT];
1128 		lcore_params_array[nb_lcore_params].queue_id =
1129 				(uint8_t)int_fld[FLD_QUEUE];
1130 		lcore_params_array[nb_lcore_params].lcore_id =
1131 				(uint8_t)int_fld[FLD_LCORE];
1132 		++nb_lcore_params;
1133 	}
1134 	lcore_params = lcore_params_array;
1135 
1136 	return 0;
1137 }
1138 
1139 /* Parse the argument given in the command line of the application */
1140 static int
1141 parse_args(int argc, char **argv)
1142 {
1143 	int opt, ret;
1144 	char **argvopt;
1145 	int option_index;
1146 	char *prgname = argv[0];
1147 	static struct option lgopts[] = {
1148 		{"config", 1, 0, 0},
1149 		{"no-numa", 0, 0, 0},
1150 		{"enable-jumbo", 0, 0, 0},
1151 		{NULL, 0, 0, 0}
1152 	};
1153 
1154 	argvopt = argv;
1155 
1156 	while ((opt = getopt_long(argc, argvopt, "p:P",
1157 				lgopts, &option_index)) != EOF) {
1158 
1159 		switch (opt) {
1160 		/* portmask */
1161 		case 'p':
1162 			enabled_port_mask = parse_portmask(optarg);
1163 			if (enabled_port_mask == 0) {
1164 				printf("invalid portmask\n");
1165 				print_usage(prgname);
1166 				return -1;
1167 			}
1168 			break;
1169 		case 'P':
1170 			printf("Promiscuous mode selected\n");
1171 			promiscuous_on = 1;
1172 			break;
1173 
1174 		/* long options */
1175 		case 0:
1176 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1177 				ret = parse_config(optarg);
1178 				if (ret) {
1179 					printf("invalid config\n");
1180 					print_usage(prgname);
1181 					return -1;
1182 				}
1183 			}
1184 
1185 			if (!strncmp(lgopts[option_index].name,
1186 						"no-numa", 7)) {
1187 				printf("numa is disabled \n");
1188 				numa_on = 0;
1189 			}
1190 
1191 			if (!strncmp(lgopts[option_index].name,
1192 					"enable-jumbo", 12)) {
1193 				struct option lenopts =
1194 					{"max-pkt-len", required_argument, \
1195 									0, 0};
1196 
1197 				printf("jumbo frame is enabled \n");
1198 				port_conf.rxmode.jumbo_frame = 1;
1199 
1200 				/**
1201 				 * if no max-pkt-len set, use the default value
1202 				 * ETHER_MAX_LEN
1203 				 */
1204 				if (0 == getopt_long(argc, argvopt, "",
1205 						&lenopts, &option_index)) {
1206 					ret = parse_max_pkt_len(optarg);
1207 					if ((ret < 64) ||
1208 						(ret > MAX_JUMBO_PKT_LEN)){
1209 						printf("invalid packet "
1210 								"length\n");
1211 						print_usage(prgname);
1212 						return -1;
1213 					}
1214 					port_conf.rxmode.max_rx_pkt_len = ret;
1215 				}
1216 				printf("set jumbo frame "
1217 					"max packet length to %u\n",
1218 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1219 			}
1220 
1221 			break;
1222 
1223 		default:
1224 			print_usage(prgname);
1225 			return -1;
1226 		}
1227 	}
1228 
1229 	if (optind >= 0)
1230 		argv[optind-1] = prgname;
1231 
1232 	ret = optind-1;
1233 	optind = 0; /* reset getopt lib */
1234 	return ret;
1235 }
1236 
1237 static void
1238 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1239 {
1240 	char buf[ETHER_ADDR_FMT_SIZE];
1241 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1242 	printf("%s%s", name, buf);
1243 }
1244 
1245 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1246 static void
1247 setup_hash(int socketid)
1248 {
1249 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1250 		.name = NULL,
1251 		.entries = L3FWD_HASH_ENTRIES,
1252 		.bucket_entries = 4,
1253 		.key_len = sizeof(struct ipv4_5tuple),
1254 		.hash_func = DEFAULT_HASH_FUNC,
1255 		.hash_func_init_val = 0,
1256 	};
1257 
1258 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1259 		.name = NULL,
1260 		.entries = L3FWD_HASH_ENTRIES,
1261 		.bucket_entries = 4,
1262 		.key_len = sizeof(struct ipv6_5tuple),
1263 		.hash_func = DEFAULT_HASH_FUNC,
1264 		.hash_func_init_val = 0,
1265 	};
1266 
1267 	unsigned i;
1268 	int ret;
1269 	char s[64];
1270 
1271 	/* create ipv4 hash */
1272 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1273 	ipv4_l3fwd_hash_params.name = s;
1274 	ipv4_l3fwd_hash_params.socket_id = socketid;
1275 	ipv4_l3fwd_lookup_struct[socketid] =
1276 		rte_hash_create(&ipv4_l3fwd_hash_params);
1277 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1278 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1279 				"socket %d\n", socketid);
1280 
1281 	/* create ipv6 hash */
1282 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1283 	ipv6_l3fwd_hash_params.name = s;
1284 	ipv6_l3fwd_hash_params.socket_id = socketid;
1285 	ipv6_l3fwd_lookup_struct[socketid] =
1286 		rte_hash_create(&ipv6_l3fwd_hash_params);
1287 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1288 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1289 				"socket %d\n", socketid);
1290 
1291 
1292 	/* populate the ipv4 hash */
1293 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1294 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1295 				(void *) &ipv4_l3fwd_route_array[i].key);
1296 		if (ret < 0) {
1297 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1298 				"l3fwd hash on socket %d\n", i, socketid);
1299 		}
1300 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1301 		printf("Hash: Adding key\n");
1302 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1303 	}
1304 
1305 	/* populate the ipv6 hash */
1306 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1307 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1308 				(void *) &ipv6_l3fwd_route_array[i].key);
1309 		if (ret < 0) {
1310 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1311 				"l3fwd hash on socket %d\n", i, socketid);
1312 		}
1313 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1314 		printf("Hash: Adding key\n");
1315 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1316 	}
1317 }
1318 #endif
1319 
1320 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1321 static void
1322 setup_lpm(int socketid)
1323 {
1324 	unsigned i;
1325 	int ret;
1326 	char s[64];
1327 
1328 	/* create the LPM table */
1329 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1330 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1331 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1332 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1333 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1334 				" on socket %d\n", socketid);
1335 
1336 	/* populate the LPM table */
1337 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1338 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1339 			ipv4_l3fwd_route_array[i].ip,
1340 			ipv4_l3fwd_route_array[i].depth,
1341 			ipv4_l3fwd_route_array[i].if_out);
1342 
1343 		if (ret < 0) {
1344 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1345 				"l3fwd LPM table on socket %d\n",
1346 				i, socketid);
1347 		}
1348 
1349 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1350 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1351 			ipv4_l3fwd_route_array[i].depth,
1352 			ipv4_l3fwd_route_array[i].if_out);
1353 	}
1354 }
1355 #endif
1356 
1357 static int
1358 init_mem(unsigned nb_mbuf)
1359 {
1360 	struct lcore_conf *qconf;
1361 	int socketid;
1362 	unsigned lcore_id;
1363 	char s[64];
1364 
1365 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1366 		if (rte_lcore_is_enabled(lcore_id) == 0)
1367 			continue;
1368 
1369 		if (numa_on)
1370 			socketid = rte_lcore_to_socket_id(lcore_id);
1371 		else
1372 			socketid = 0;
1373 
1374 		if (socketid >= NB_SOCKETS) {
1375 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1376 					"out of range %d\n", socketid,
1377 						lcore_id, NB_SOCKETS);
1378 		}
1379 		if (pktmbuf_pool[socketid] == NULL) {
1380 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1381 			pktmbuf_pool[socketid] =
1382 				rte_mempool_create(s, nb_mbuf,
1383 					MBUF_SIZE, MEMPOOL_CACHE_SIZE,
1384 					sizeof(struct rte_pktmbuf_pool_private),
1385 					rte_pktmbuf_pool_init, NULL,
1386 					rte_pktmbuf_init, NULL,
1387 					socketid, 0);
1388 			if (pktmbuf_pool[socketid] == NULL)
1389 				rte_exit(EXIT_FAILURE,
1390 					"Cannot init mbuf pool on socket %d\n",
1391 								socketid);
1392 			else
1393 				printf("Allocated mbuf pool on socket %d\n",
1394 								socketid);
1395 
1396 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1397 			setup_lpm(socketid);
1398 #else
1399 			setup_hash(socketid);
1400 #endif
1401 		}
1402 		qconf = &lcore_conf[lcore_id];
1403 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1404 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1405 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1406 #endif
1407 	}
1408 	return 0;
1409 }
1410 
1411 /* Check the link status of all ports in up to 9s, and print them finally */
1412 static void
1413 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1414 {
1415 #define CHECK_INTERVAL 100 /* 100ms */
1416 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1417 	uint8_t portid, count, all_ports_up, print_flag = 0;
1418 	struct rte_eth_link link;
1419 
1420 	printf("\nChecking link status");
1421 	fflush(stdout);
1422 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1423 		all_ports_up = 1;
1424 		for (portid = 0; portid < port_num; portid++) {
1425 			if ((port_mask & (1 << portid)) == 0)
1426 				continue;
1427 			memset(&link, 0, sizeof(link));
1428 			rte_eth_link_get_nowait(portid, &link);
1429 			/* print link status if flag set */
1430 			if (print_flag == 1) {
1431 				if (link.link_status)
1432 					printf("Port %d Link Up - speed %u "
1433 						"Mbps - %s\n", (uint8_t)portid,
1434 						(unsigned)link.link_speed,
1435 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1436 					("full-duplex") : ("half-duplex\n"));
1437 				else
1438 					printf("Port %d Link Down\n",
1439 						(uint8_t)portid);
1440 				continue;
1441 			}
1442 			/* clear all_ports_up flag if any link down */
1443 			if (link.link_status == 0) {
1444 				all_ports_up = 0;
1445 				break;
1446 			}
1447 		}
1448 		/* after finally printing all link status, get out */
1449 		if (print_flag == 1)
1450 			break;
1451 
1452 		if (all_ports_up == 0) {
1453 			printf(".");
1454 			fflush(stdout);
1455 			rte_delay_ms(CHECK_INTERVAL);
1456 		}
1457 
1458 		/* set the print_flag if all ports up or timeout */
1459 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1460 			print_flag = 1;
1461 			printf("done\n");
1462 		}
1463 	}
1464 }
1465 
1466 int
1467 main(int argc, char **argv)
1468 {
1469 	struct lcore_conf *qconf;
1470 	struct rte_eth_dev_info dev_info;
1471 	struct rte_eth_txconf *txconf;
1472 	int ret;
1473 	unsigned nb_ports;
1474 	uint16_t queueid;
1475 	unsigned lcore_id;
1476 	uint64_t hz;
1477 	uint32_t n_tx_queue, nb_lcores;
1478 	uint8_t portid, nb_rx_queue, queue, socketid;
1479 
1480 	/* catch SIGINT and restore cpufreq governor to ondemand */
1481 	signal(SIGINT, signal_exit_now);
1482 
1483 	/* init EAL */
1484 	ret = rte_eal_init(argc, argv);
1485 	if (ret < 0)
1486 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1487 	argc -= ret;
1488 	argv += ret;
1489 
1490 	/* init RTE timer library to be used late */
1491 	rte_timer_subsystem_init();
1492 
1493 	/* parse application arguments (after the EAL ones) */
1494 	ret = parse_args(argc, argv);
1495 	if (ret < 0)
1496 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1497 
1498 	if (check_lcore_params() < 0)
1499 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1500 
1501 	ret = init_lcore_rx_queues();
1502 	if (ret < 0)
1503 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1504 
1505 
1506 	nb_ports = rte_eth_dev_count();
1507 	if (nb_ports > RTE_MAX_ETHPORTS)
1508 		nb_ports = RTE_MAX_ETHPORTS;
1509 
1510 	if (check_port_config(nb_ports) < 0)
1511 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1512 
1513 	nb_lcores = rte_lcore_count();
1514 
1515 	/* initialize all ports */
1516 	for (portid = 0; portid < nb_ports; portid++) {
1517 		/* skip ports that are not enabled */
1518 		if ((enabled_port_mask & (1 << portid)) == 0) {
1519 			printf("\nSkipping disabled port %d\n", portid);
1520 			continue;
1521 		}
1522 
1523 		/* init port */
1524 		printf("Initializing port %d ... ", portid );
1525 		fflush(stdout);
1526 
1527 		nb_rx_queue = get_port_n_rx_queues(portid);
1528 		n_tx_queue = nb_lcores;
1529 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1530 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1531 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1532 			nb_rx_queue, (unsigned)n_tx_queue );
1533 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1534 					(uint16_t)n_tx_queue, &port_conf);
1535 		if (ret < 0)
1536 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1537 					"err=%d, port=%d\n", ret, portid);
1538 
1539 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1540 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1541 		printf(", ");
1542 
1543 		/* init memory */
1544 		ret = init_mem(NB_MBUF);
1545 		if (ret < 0)
1546 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1547 
1548 		/* init one TX queue per couple (lcore,port) */
1549 		queueid = 0;
1550 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1551 			if (rte_lcore_is_enabled(lcore_id) == 0)
1552 				continue;
1553 
1554 			if (numa_on)
1555 				socketid = \
1556 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1557 			else
1558 				socketid = 0;
1559 
1560 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1561 			fflush(stdout);
1562 
1563 			rte_eth_dev_info_get(portid, &dev_info);
1564 			txconf = &dev_info.default_txconf;
1565 			if (port_conf.rxmode.jumbo_frame)
1566 				txconf->txq_flags = 0;
1567 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1568 						     socketid, txconf);
1569 			if (ret < 0)
1570 				rte_exit(EXIT_FAILURE,
1571 					"rte_eth_tx_queue_setup: err=%d, "
1572 						"port=%d\n", ret, portid);
1573 
1574 			qconf = &lcore_conf[lcore_id];
1575 			qconf->tx_queue_id[portid] = queueid;
1576 			queueid++;
1577 		}
1578 		printf("\n");
1579 	}
1580 
1581 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1582 		if (rte_lcore_is_enabled(lcore_id) == 0)
1583 			continue;
1584 
1585 		/* init power management library */
1586 		ret = rte_power_init(lcore_id);
1587 		if (ret)
1588 			rte_exit(EXIT_FAILURE, "Power management library "
1589 				"initialization failed on core%u\n", lcore_id);
1590 
1591 		/* init timer structures for each enabled lcore */
1592 		rte_timer_init(&power_timers[lcore_id]);
1593 		hz = rte_get_timer_hz();
1594 		rte_timer_reset(&power_timers[lcore_id],
1595 			hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1596 						power_timer_cb, NULL);
1597 
1598 		qconf = &lcore_conf[lcore_id];
1599 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1600 		fflush(stdout);
1601 		/* init RX queues */
1602 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1603 			portid = qconf->rx_queue_list[queue].port_id;
1604 			queueid = qconf->rx_queue_list[queue].queue_id;
1605 
1606 			if (numa_on)
1607 				socketid = \
1608 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1609 			else
1610 				socketid = 0;
1611 
1612 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1613 			fflush(stdout);
1614 
1615 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1616 				socketid, NULL,
1617 				pktmbuf_pool[socketid]);
1618 			if (ret < 0)
1619 				rte_exit(EXIT_FAILURE,
1620 					"rte_eth_rx_queue_setup: err=%d, "
1621 						"port=%d\n", ret, portid);
1622 		}
1623 	}
1624 
1625 	printf("\n");
1626 
1627 	/* start ports */
1628 	for (portid = 0; portid < nb_ports; portid++) {
1629 		if ((enabled_port_mask & (1 << portid)) == 0) {
1630 			continue;
1631 		}
1632 		/* Start device */
1633 		ret = rte_eth_dev_start(portid);
1634 		if (ret < 0)
1635 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1636 						"port=%d\n", ret, portid);
1637 
1638 		/*
1639 		 * If enabled, put device in promiscuous mode.
1640 		 * This allows IO forwarding mode to forward packets
1641 		 * to itself through 2 cross-connected  ports of the
1642 		 * target machine.
1643 		 */
1644 		if (promiscuous_on)
1645 			rte_eth_promiscuous_enable(portid);
1646 	}
1647 
1648 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1649 
1650 	/* launch per-lcore init on every lcore */
1651 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1652 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1653 		if (rte_eal_wait_lcore(lcore_id) < 0)
1654 			return -1;
1655 	}
1656 
1657 	return 0;
1658 }
1659