1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_ip.h> 72 #include <rte_tcp.h> 73 #include <rte_udp.h> 74 #include <rte_string_fns.h> 75 #include <rte_timer.h> 76 #include <rte_power.h> 77 78 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 79 80 #define MAX_PKT_BURST 32 81 82 #define MIN_ZERO_POLL_COUNT 5 83 84 /* around 100ms at 2 Ghz */ 85 #define TIMER_RESOLUTION_CYCLES 200000000ULL 86 /* 100 ms interval */ 87 #define TIMER_NUMBER_PER_SECOND 10 88 /* 100000 us */ 89 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 90 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 91 92 #define APP_LOOKUP_EXACT_MATCH 0 93 #define APP_LOOKUP_LPM 1 94 #define DO_RFC_1812_CHECKS 95 96 #ifndef APP_LOOKUP_METHOD 97 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 98 #endif 99 100 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 101 #include <rte_hash.h> 102 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 103 #include <rte_lpm.h> 104 #else 105 #error "APP_LOOKUP_METHOD set to incorrect value" 106 #endif 107 108 #ifndef IPv6_BYTES 109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 110 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 111 #define IPv6_BYTES(addr) \ 112 addr[0], addr[1], addr[2], addr[3], \ 113 addr[4], addr[5], addr[6], addr[7], \ 114 addr[8], addr[9], addr[10], addr[11],\ 115 addr[12], addr[13],addr[14], addr[15] 116 #endif 117 118 #define MAX_JUMBO_PKT_LEN 9600 119 120 #define IPV6_ADDR_LEN 16 121 122 #define MEMPOOL_CACHE_SIZE 256 123 124 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 125 126 /* 127 * This expression is used to calculate the number of mbufs needed depending on 128 * user input, taking into account memory for rx and tx hardware rings, cache 129 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 130 * NB_MBUF never goes below a minimum value of 8192. 131 */ 132 133 #define NB_MBUF RTE_MAX ( \ 134 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 135 nb_ports*nb_lcores*MAX_PKT_BURST + \ 136 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 137 nb_lcores*MEMPOOL_CACHE_SIZE), \ 138 (unsigned)8192) 139 140 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 141 142 #define NB_SOCKETS 8 143 144 /* Configure how many packets ahead to prefetch, when reading packets */ 145 #define PREFETCH_OFFSET 3 146 147 /* 148 * Configurable number of RX/TX ring descriptors 149 */ 150 #define RTE_TEST_RX_DESC_DEFAULT 128 151 #define RTE_TEST_TX_DESC_DEFAULT 512 152 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 153 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 154 155 /* ethernet addresses of ports */ 156 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 157 158 /* mask of enabled ports */ 159 static uint32_t enabled_port_mask = 0; 160 /* Ports set in promiscuous mode off by default. */ 161 static int promiscuous_on = 0; 162 /* NUMA is enabled by default. */ 163 static int numa_on = 1; 164 165 enum freq_scale_hint_t 166 { 167 FREQ_LOWER = -1, 168 FREQ_CURRENT = 0, 169 FREQ_HIGHER = 1, 170 FREQ_HIGHEST = 2 171 }; 172 173 struct mbuf_table { 174 uint16_t len; 175 struct rte_mbuf *m_table[MAX_PKT_BURST]; 176 }; 177 178 struct lcore_rx_queue { 179 uint8_t port_id; 180 uint8_t queue_id; 181 enum freq_scale_hint_t freq_up_hint; 182 uint32_t zero_rx_packet_count; 183 uint32_t idle_hint; 184 } __rte_cache_aligned; 185 186 #define MAX_RX_QUEUE_PER_LCORE 16 187 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 188 #define MAX_RX_QUEUE_PER_PORT 128 189 190 #define MAX_LCORE_PARAMS 1024 191 struct lcore_params { 192 uint8_t port_id; 193 uint8_t queue_id; 194 uint8_t lcore_id; 195 } __rte_cache_aligned; 196 197 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 198 static struct lcore_params lcore_params_array_default[] = { 199 {0, 0, 2}, 200 {0, 1, 2}, 201 {0, 2, 2}, 202 {1, 0, 2}, 203 {1, 1, 2}, 204 {1, 2, 2}, 205 {2, 0, 2}, 206 {3, 0, 3}, 207 {3, 1, 3}, 208 }; 209 210 static struct lcore_params * lcore_params = lcore_params_array_default; 211 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 212 sizeof(lcore_params_array_default[0]); 213 214 static struct rte_eth_conf port_conf = { 215 .rxmode = { 216 .mq_mode = ETH_MQ_RX_RSS, 217 .max_rx_pkt_len = ETHER_MAX_LEN, 218 .split_hdr_size = 0, 219 .header_split = 0, /**< Header Split disabled */ 220 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 221 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 222 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 223 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 224 }, 225 .rx_adv_conf = { 226 .rss_conf = { 227 .rss_key = NULL, 228 .rss_hf = ETH_RSS_IP, 229 }, 230 }, 231 .txmode = { 232 .mq_mode = ETH_DCB_NONE, 233 }, 234 }; 235 236 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 237 238 239 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 240 241 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 242 #include <rte_hash_crc.h> 243 #define DEFAULT_HASH_FUNC rte_hash_crc 244 #else 245 #include <rte_jhash.h> 246 #define DEFAULT_HASH_FUNC rte_jhash 247 #endif 248 249 struct ipv4_5tuple { 250 uint32_t ip_dst; 251 uint32_t ip_src; 252 uint16_t port_dst; 253 uint16_t port_src; 254 uint8_t proto; 255 } __attribute__((__packed__)); 256 257 struct ipv6_5tuple { 258 uint8_t ip_dst[IPV6_ADDR_LEN]; 259 uint8_t ip_src[IPV6_ADDR_LEN]; 260 uint16_t port_dst; 261 uint16_t port_src; 262 uint8_t proto; 263 } __attribute__((__packed__)); 264 265 struct ipv4_l3fwd_route { 266 struct ipv4_5tuple key; 267 uint8_t if_out; 268 }; 269 270 struct ipv6_l3fwd_route { 271 struct ipv6_5tuple key; 272 uint8_t if_out; 273 }; 274 275 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 276 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 277 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 278 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 279 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 280 }; 281 282 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 283 { 284 { 285 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 286 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 287 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 288 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 289 1, 10, IPPROTO_UDP 290 }, 4 291 }, 292 }; 293 294 typedef struct rte_hash lookup_struct_t; 295 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 296 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 297 298 #define L3FWD_HASH_ENTRIES 1024 299 300 #define IPV4_L3FWD_NUM_ROUTES \ 301 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 302 303 #define IPV6_L3FWD_NUM_ROUTES \ 304 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 305 306 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 307 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 308 #endif 309 310 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 311 struct ipv4_l3fwd_route { 312 uint32_t ip; 313 uint8_t depth; 314 uint8_t if_out; 315 }; 316 317 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 318 {IPv4(1,1,1,0), 24, 0}, 319 {IPv4(2,1,1,0), 24, 1}, 320 {IPv4(3,1,1,0), 24, 2}, 321 {IPv4(4,1,1,0), 24, 3}, 322 {IPv4(5,1,1,0), 24, 4}, 323 {IPv4(6,1,1,0), 24, 5}, 324 {IPv4(7,1,1,0), 24, 6}, 325 {IPv4(8,1,1,0), 24, 7}, 326 }; 327 328 #define IPV4_L3FWD_NUM_ROUTES \ 329 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 330 331 #define IPV4_L3FWD_LPM_MAX_RULES 1024 332 333 typedef struct rte_lpm lookup_struct_t; 334 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 335 #endif 336 337 struct lcore_conf { 338 uint16_t n_rx_queue; 339 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 340 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 341 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 342 lookup_struct_t * ipv4_lookup_struct; 343 lookup_struct_t * ipv6_lookup_struct; 344 } __rte_cache_aligned; 345 346 struct lcore_stats { 347 /* total sleep time in ms since last frequency scaling down */ 348 uint32_t sleep_time; 349 /* number of long sleep recently */ 350 uint32_t nb_long_sleep; 351 /* freq. scaling up trend */ 352 uint32_t trend; 353 /* total packet processed recently */ 354 uint64_t nb_rx_processed; 355 /* total iterations looped recently */ 356 uint64_t nb_iteration_looped; 357 uint32_t padding[9]; 358 } __rte_cache_aligned; 359 360 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 361 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 362 static struct rte_timer power_timers[RTE_MAX_LCORE]; 363 364 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 365 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 366 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 367 368 /* exit signal handler */ 369 static void 370 signal_exit_now(int sigtype) 371 { 372 unsigned lcore_id; 373 int ret; 374 375 if (sigtype == SIGINT) { 376 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 377 if (rte_lcore_is_enabled(lcore_id) == 0) 378 continue; 379 380 /* init power management library */ 381 ret = rte_power_exit(lcore_id); 382 if (ret) 383 rte_exit(EXIT_FAILURE, "Power management " 384 "library de-initialization failed on " 385 "core%u\n", lcore_id); 386 } 387 } 388 389 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 390 } 391 392 /* Freqency scale down timer callback */ 393 static void 394 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 395 __attribute__((unused)) void *arg) 396 { 397 uint64_t hz; 398 float sleep_time_ratio; 399 unsigned lcore_id = rte_lcore_id(); 400 401 /* accumulate total execution time in us when callback is invoked */ 402 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 403 (float)SCALING_PERIOD; 404 405 /** 406 * check whether need to scale down frequency a step if it sleep a lot. 407 */ 408 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) 409 rte_power_freq_down(lcore_id); 410 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 411 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) 412 /** 413 * scale down a step if average packet per iteration less 414 * than expectation. 415 */ 416 rte_power_freq_down(lcore_id); 417 418 /** 419 * initialize another timer according to current frequency to ensure 420 * timer interval is relatively fixed. 421 */ 422 hz = rte_get_timer_hz(); 423 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 424 SINGLE, lcore_id, power_timer_cb, NULL); 425 426 stats[lcore_id].nb_rx_processed = 0; 427 stats[lcore_id].nb_iteration_looped = 0; 428 429 stats[lcore_id].sleep_time = 0; 430 } 431 432 /* Send burst of packets on an output interface */ 433 static inline int 434 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) 435 { 436 struct rte_mbuf **m_table; 437 int ret; 438 uint16_t queueid; 439 440 queueid = qconf->tx_queue_id[port]; 441 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 442 443 ret = rte_eth_tx_burst(port, queueid, m_table, n); 444 if (unlikely(ret < n)) { 445 do { 446 rte_pktmbuf_free(m_table[ret]); 447 } while (++ret < n); 448 } 449 450 return 0; 451 } 452 453 /* Enqueue a single packet, and send burst if queue is filled */ 454 static inline int 455 send_single_packet(struct rte_mbuf *m, uint8_t port) 456 { 457 uint32_t lcore_id; 458 uint16_t len; 459 struct lcore_conf *qconf; 460 461 lcore_id = rte_lcore_id(); 462 463 qconf = &lcore_conf[lcore_id]; 464 len = qconf->tx_mbufs[port].len; 465 qconf->tx_mbufs[port].m_table[len] = m; 466 len++; 467 468 /* enough pkts to be sent */ 469 if (unlikely(len == MAX_PKT_BURST)) { 470 send_burst(qconf, MAX_PKT_BURST, port); 471 len = 0; 472 } 473 474 qconf->tx_mbufs[port].len = len; 475 return 0; 476 } 477 478 #ifdef DO_RFC_1812_CHECKS 479 static inline int 480 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 481 { 482 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 483 /* 484 * 1. The packet length reported by the Link Layer must be large 485 * enough to hold the minimum length legal IP datagram (20 bytes). 486 */ 487 if (link_len < sizeof(struct ipv4_hdr)) 488 return -1; 489 490 /* 2. The IP checksum must be correct. */ 491 /* this is checked in H/W */ 492 493 /* 494 * 3. The IP version number must be 4. If the version number is not 4 495 * then the packet may be another version of IP, such as IPng or 496 * ST-II. 497 */ 498 if (((pkt->version_ihl) >> 4) != 4) 499 return -3; 500 /* 501 * 4. The IP header length field must be large enough to hold the 502 * minimum length legal IP datagram (20 bytes = 5 words). 503 */ 504 if ((pkt->version_ihl & 0xf) < 5) 505 return -4; 506 507 /* 508 * 5. The IP total length field must be large enough to hold the IP 509 * datagram header, whose length is specified in the IP header length 510 * field. 511 */ 512 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 513 return -5; 514 515 return 0; 516 } 517 #endif 518 519 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 520 static void 521 print_ipv4_key(struct ipv4_5tuple key) 522 { 523 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 524 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 525 key.port_dst, key.port_src, key.proto); 526 } 527 static void 528 print_ipv6_key(struct ipv6_5tuple key) 529 { 530 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 531 "port dst = %d, port src = %d, proto = %d\n", 532 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 533 key.port_dst, key.port_src, key.proto); 534 } 535 536 static inline uint8_t 537 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 538 lookup_struct_t * ipv4_l3fwd_lookup_struct) 539 { 540 struct ipv4_5tuple key; 541 struct tcp_hdr *tcp; 542 struct udp_hdr *udp; 543 int ret = 0; 544 545 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 546 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 547 key.proto = ipv4_hdr->next_proto_id; 548 549 switch (ipv4_hdr->next_proto_id) { 550 case IPPROTO_TCP: 551 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 552 sizeof(struct ipv4_hdr)); 553 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 554 key.port_src = rte_be_to_cpu_16(tcp->src_port); 555 break; 556 557 case IPPROTO_UDP: 558 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 559 sizeof(struct ipv4_hdr)); 560 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 561 key.port_src = rte_be_to_cpu_16(udp->src_port); 562 break; 563 564 default: 565 key.port_dst = 0; 566 key.port_src = 0; 567 break; 568 } 569 570 /* Find destination port */ 571 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 572 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 573 } 574 575 static inline uint8_t 576 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 577 lookup_struct_t *ipv6_l3fwd_lookup_struct) 578 { 579 struct ipv6_5tuple key; 580 struct tcp_hdr *tcp; 581 struct udp_hdr *udp; 582 int ret = 0; 583 584 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 585 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 586 587 key.proto = ipv6_hdr->proto; 588 589 switch (ipv6_hdr->proto) { 590 case IPPROTO_TCP: 591 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 592 sizeof(struct ipv6_hdr)); 593 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 594 key.port_src = rte_be_to_cpu_16(tcp->src_port); 595 break; 596 597 case IPPROTO_UDP: 598 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 599 sizeof(struct ipv6_hdr)); 600 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 601 key.port_src = rte_be_to_cpu_16(udp->src_port); 602 break; 603 604 default: 605 key.port_dst = 0; 606 key.port_src = 0; 607 break; 608 } 609 610 /* Find destination port */ 611 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 612 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 613 } 614 #endif 615 616 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 617 static inline uint8_t 618 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 619 lookup_struct_t *ipv4_l3fwd_lookup_struct) 620 { 621 uint8_t next_hop; 622 623 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 624 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 625 next_hop : portid); 626 } 627 #endif 628 629 static inline void 630 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 631 struct lcore_conf *qconf) 632 { 633 struct ether_hdr *eth_hdr; 634 struct ipv4_hdr *ipv4_hdr; 635 void *d_addr_bytes; 636 uint8_t dst_port; 637 638 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 639 640 if (m->ol_flags & PKT_RX_IPV4_HDR) { 641 /* Handle IPv4 headers.*/ 642 ipv4_hdr = 643 (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 644 + sizeof(struct ether_hdr)); 645 646 #ifdef DO_RFC_1812_CHECKS 647 /* Check to make sure the packet is valid (RFC1812) */ 648 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 649 rte_pktmbuf_free(m); 650 return; 651 } 652 #endif 653 654 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 655 qconf->ipv4_lookup_struct); 656 if (dst_port >= RTE_MAX_ETHPORTS || 657 (enabled_port_mask & 1 << dst_port) == 0) 658 dst_port = portid; 659 660 /* 02:00:00:00:00:xx */ 661 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 662 *((uint64_t *)d_addr_bytes) = 663 0x000000000002 + ((uint64_t)dst_port << 40); 664 665 #ifdef DO_RFC_1812_CHECKS 666 /* Update time to live and header checksum */ 667 --(ipv4_hdr->time_to_live); 668 ++(ipv4_hdr->hdr_checksum); 669 #endif 670 671 /* src addr */ 672 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 673 674 send_single_packet(m, dst_port); 675 } 676 else { 677 /* Handle IPv6 headers.*/ 678 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 679 struct ipv6_hdr *ipv6_hdr; 680 681 ipv6_hdr = 682 (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 683 + sizeof(struct ether_hdr)); 684 685 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 686 qconf->ipv6_lookup_struct); 687 688 if (dst_port >= RTE_MAX_ETHPORTS || 689 (enabled_port_mask & 1 << dst_port) == 0) 690 dst_port = portid; 691 692 /* 02:00:00:00:00:xx */ 693 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 694 *((uint64_t *)d_addr_bytes) = 695 0x000000000002 + ((uint64_t)dst_port << 40); 696 697 /* src addr */ 698 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 699 700 send_single_packet(m, dst_port); 701 #else 702 /* We don't currently handle IPv6 packets in LPM mode. */ 703 rte_pktmbuf_free(m); 704 #endif 705 } 706 707 } 708 709 #define SLEEP_GEAR1_THRESHOLD 100 710 #define SLEEP_GEAR2_THRESHOLD 1000 711 712 static inline uint32_t 713 power_idle_heuristic(uint32_t zero_rx_packet_count) 714 { 715 /* If zero count is less than 100, use it as the sleep time in us */ 716 if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD) 717 return zero_rx_packet_count; 718 /* If zero count is less than 1000, sleep time should be 100 us */ 719 else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) && 720 (zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD)) 721 return SLEEP_GEAR1_THRESHOLD; 722 /* If zero count is greater than 1000, sleep time should be 1000 us */ 723 else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD) 724 return SLEEP_GEAR2_THRESHOLD; 725 726 return 0; 727 } 728 729 static inline enum freq_scale_hint_t 730 power_freq_scaleup_heuristic(unsigned lcore_id, 731 uint8_t port_id, 732 uint16_t queue_id) 733 { 734 /** 735 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 736 * per iteration 737 */ 738 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 739 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 740 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 741 #define FREQ_UP_TREND1_ACC 1 742 #define FREQ_UP_TREND2_ACC 100 743 #define FREQ_UP_THRESHOLD 10000 744 745 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 746 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 747 stats[lcore_id].trend = 0; 748 return FREQ_HIGHEST; 749 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 750 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 751 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 752 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 753 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 754 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 755 756 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 757 stats[lcore_id].trend = 0; 758 return FREQ_HIGHER; 759 } 760 761 return FREQ_CURRENT; 762 } 763 764 /* main processing loop */ 765 static int 766 main_loop(__attribute__((unused)) void *dummy) 767 { 768 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 769 unsigned lcore_id; 770 uint64_t prev_tsc, diff_tsc, cur_tsc; 771 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 772 int i, j, nb_rx; 773 uint8_t portid, queueid; 774 struct lcore_conf *qconf; 775 struct lcore_rx_queue *rx_queue; 776 enum freq_scale_hint_t lcore_scaleup_hint; 777 778 uint32_t lcore_rx_idle_count = 0; 779 uint32_t lcore_idle_hint = 0; 780 781 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 782 783 prev_tsc = 0; 784 785 lcore_id = rte_lcore_id(); 786 qconf = &lcore_conf[lcore_id]; 787 788 if (qconf->n_rx_queue == 0) { 789 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 790 return 0; 791 } 792 793 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 794 795 for (i = 0; i < qconf->n_rx_queue; i++) { 796 797 portid = qconf->rx_queue_list[i].port_id; 798 queueid = qconf->rx_queue_list[i].queue_id; 799 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 800 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 801 } 802 803 while (1) { 804 stats[lcore_id].nb_iteration_looped++; 805 806 cur_tsc = rte_rdtsc(); 807 cur_tsc_power = cur_tsc; 808 809 /* 810 * TX burst queue drain 811 */ 812 diff_tsc = cur_tsc - prev_tsc; 813 if (unlikely(diff_tsc > drain_tsc)) { 814 815 /* 816 * This could be optimized (use queueid instead of 817 * portid), but it is not called so often 818 */ 819 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 820 if (qconf->tx_mbufs[portid].len == 0) 821 continue; 822 send_burst(&lcore_conf[lcore_id], 823 qconf->tx_mbufs[portid].len, 824 portid); 825 qconf->tx_mbufs[portid].len = 0; 826 } 827 828 prev_tsc = cur_tsc; 829 } 830 831 diff_tsc_power = cur_tsc_power - prev_tsc_power; 832 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 833 rte_timer_manage(); 834 prev_tsc_power = cur_tsc_power; 835 } 836 837 /* 838 * Read packet from RX queues 839 */ 840 lcore_scaleup_hint = FREQ_CURRENT; 841 lcore_rx_idle_count = 0; 842 for (i = 0; i < qconf->n_rx_queue; ++i) { 843 rx_queue = &(qconf->rx_queue_list[i]); 844 rx_queue->idle_hint = 0; 845 portid = rx_queue->port_id; 846 queueid = rx_queue->queue_id; 847 848 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 849 MAX_PKT_BURST); 850 stats[lcore_id].nb_rx_processed += nb_rx; 851 if (unlikely(nb_rx == 0)) { 852 /** 853 * no packet received from rx queue, try to 854 * sleep for a while forcing CPU enter deeper 855 * C states. 856 */ 857 rx_queue->zero_rx_packet_count++; 858 859 if (rx_queue->zero_rx_packet_count <= 860 MIN_ZERO_POLL_COUNT) 861 continue; 862 863 rx_queue->idle_hint = power_idle_heuristic(\ 864 rx_queue->zero_rx_packet_count); 865 lcore_rx_idle_count++; 866 } else { 867 rx_queue->zero_rx_packet_count = 0; 868 869 /** 870 * do not scale up frequency immediately as 871 * user to kernel space communication is costly 872 * which might impact packet I/O for received 873 * packets. 874 */ 875 rx_queue->freq_up_hint = 876 power_freq_scaleup_heuristic(lcore_id, 877 portid, queueid); 878 } 879 880 /* Prefetch first packets */ 881 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 882 rte_prefetch0(rte_pktmbuf_mtod( 883 pkts_burst[j], void *)); 884 } 885 886 /* Prefetch and forward already prefetched packets */ 887 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 888 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 889 j + PREFETCH_OFFSET], void *)); 890 l3fwd_simple_forward(pkts_burst[j], portid, 891 qconf); 892 } 893 894 /* Forward remaining prefetched packets */ 895 for (; j < nb_rx; j++) { 896 l3fwd_simple_forward(pkts_burst[j], portid, 897 qconf); 898 } 899 } 900 901 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 902 for (i = 1, lcore_scaleup_hint = 903 qconf->rx_queue_list[0].freq_up_hint; 904 i < qconf->n_rx_queue; ++i) { 905 rx_queue = &(qconf->rx_queue_list[i]); 906 if (rx_queue->freq_up_hint > 907 lcore_scaleup_hint) 908 lcore_scaleup_hint = 909 rx_queue->freq_up_hint; 910 } 911 912 if (lcore_scaleup_hint == FREQ_HIGHEST) 913 rte_power_freq_max(lcore_id); 914 else if (lcore_scaleup_hint == FREQ_HIGHER) 915 rte_power_freq_up(lcore_id); 916 } else { 917 /** 918 * All Rx queues empty in recent consecutive polls, 919 * sleep in a conservative manner, meaning sleep as 920 * less as possible. 921 */ 922 for (i = 1, lcore_idle_hint = 923 qconf->rx_queue_list[0].idle_hint; 924 i < qconf->n_rx_queue; ++i) { 925 rx_queue = &(qconf->rx_queue_list[i]); 926 if (rx_queue->idle_hint < lcore_idle_hint) 927 lcore_idle_hint = rx_queue->idle_hint; 928 } 929 930 if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD) 931 /** 932 * execute "pause" instruction to avoid context 933 * switch for short sleep. 934 */ 935 rte_delay_us(lcore_idle_hint); 936 else 937 /* long sleep force runing thread to suspend */ 938 usleep(lcore_idle_hint); 939 940 stats[lcore_id].sleep_time += lcore_idle_hint; 941 } 942 } 943 } 944 945 static int 946 check_lcore_params(void) 947 { 948 uint8_t queue, lcore; 949 uint16_t i; 950 int socketid; 951 952 for (i = 0; i < nb_lcore_params; ++i) { 953 queue = lcore_params[i].queue_id; 954 if (queue >= MAX_RX_QUEUE_PER_PORT) { 955 printf("invalid queue number: %hhu\n", queue); 956 return -1; 957 } 958 lcore = lcore_params[i].lcore_id; 959 if (!rte_lcore_is_enabled(lcore)) { 960 printf("error: lcore %hhu is not enabled in lcore " 961 "mask\n", lcore); 962 return -1; 963 } 964 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 965 (numa_on == 0)) { 966 printf("warning: lcore %hhu is on socket %d with numa " 967 "off\n", lcore, socketid); 968 } 969 } 970 return 0; 971 } 972 973 static int 974 check_port_config(const unsigned nb_ports) 975 { 976 unsigned portid; 977 uint16_t i; 978 979 for (i = 0; i < nb_lcore_params; ++i) { 980 portid = lcore_params[i].port_id; 981 if ((enabled_port_mask & (1 << portid)) == 0) { 982 printf("port %u is not enabled in port mask\n", 983 portid); 984 return -1; 985 } 986 if (portid >= nb_ports) { 987 printf("port %u is not present on the board\n", 988 portid); 989 return -1; 990 } 991 } 992 return 0; 993 } 994 995 static uint8_t 996 get_port_n_rx_queues(const uint8_t port) 997 { 998 int queue = -1; 999 uint16_t i; 1000 1001 for (i = 0; i < nb_lcore_params; ++i) { 1002 if (lcore_params[i].port_id == port && 1003 lcore_params[i].queue_id > queue) 1004 queue = lcore_params[i].queue_id; 1005 } 1006 return (uint8_t)(++queue); 1007 } 1008 1009 static int 1010 init_lcore_rx_queues(void) 1011 { 1012 uint16_t i, nb_rx_queue; 1013 uint8_t lcore; 1014 1015 for (i = 0; i < nb_lcore_params; ++i) { 1016 lcore = lcore_params[i].lcore_id; 1017 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1018 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1019 printf("error: too many queues (%u) for lcore: %u\n", 1020 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1021 return -1; 1022 } else { 1023 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1024 lcore_params[i].port_id; 1025 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1026 lcore_params[i].queue_id; 1027 lcore_conf[lcore].n_rx_queue++; 1028 } 1029 } 1030 return 0; 1031 } 1032 1033 /* display usage */ 1034 static void 1035 print_usage(const char *prgname) 1036 { 1037 printf ("%s [EAL options] -- -p PORTMASK -P" 1038 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1039 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1040 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1041 " -P : enable promiscuous mode\n" 1042 " --config (port,queue,lcore): rx queues configuration\n" 1043 " --no-numa: optional, disable numa awareness\n" 1044 " --enable-jumbo: enable jumbo frame" 1045 " which max packet len is PKTLEN in decimal (64-9600)\n", 1046 prgname); 1047 } 1048 1049 static int parse_max_pkt_len(const char *pktlen) 1050 { 1051 char *end = NULL; 1052 unsigned long len; 1053 1054 /* parse decimal string */ 1055 len = strtoul(pktlen, &end, 10); 1056 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1057 return -1; 1058 1059 if (len == 0) 1060 return -1; 1061 1062 return len; 1063 } 1064 1065 static int 1066 parse_portmask(const char *portmask) 1067 { 1068 char *end = NULL; 1069 unsigned long pm; 1070 1071 /* parse hexadecimal string */ 1072 pm = strtoul(portmask, &end, 16); 1073 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1074 return -1; 1075 1076 if (pm == 0) 1077 return -1; 1078 1079 return pm; 1080 } 1081 1082 static int 1083 parse_config(const char *q_arg) 1084 { 1085 char s[256]; 1086 const char *p, *p0 = q_arg; 1087 char *end; 1088 enum fieldnames { 1089 FLD_PORT = 0, 1090 FLD_QUEUE, 1091 FLD_LCORE, 1092 _NUM_FLD 1093 }; 1094 unsigned long int_fld[_NUM_FLD]; 1095 char *str_fld[_NUM_FLD]; 1096 int i; 1097 unsigned size; 1098 1099 nb_lcore_params = 0; 1100 1101 while ((p = strchr(p0,'(')) != NULL) { 1102 ++p; 1103 if((p0 = strchr(p,')')) == NULL) 1104 return -1; 1105 1106 size = p0 - p; 1107 if(size >= sizeof(s)) 1108 return -1; 1109 1110 snprintf(s, sizeof(s), "%.*s", size, p); 1111 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1112 _NUM_FLD) 1113 return -1; 1114 for (i = 0; i < _NUM_FLD; i++){ 1115 errno = 0; 1116 int_fld[i] = strtoul(str_fld[i], &end, 0); 1117 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1118 255) 1119 return -1; 1120 } 1121 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1122 printf("exceeded max number of lcore params: %hu\n", 1123 nb_lcore_params); 1124 return -1; 1125 } 1126 lcore_params_array[nb_lcore_params].port_id = 1127 (uint8_t)int_fld[FLD_PORT]; 1128 lcore_params_array[nb_lcore_params].queue_id = 1129 (uint8_t)int_fld[FLD_QUEUE]; 1130 lcore_params_array[nb_lcore_params].lcore_id = 1131 (uint8_t)int_fld[FLD_LCORE]; 1132 ++nb_lcore_params; 1133 } 1134 lcore_params = lcore_params_array; 1135 1136 return 0; 1137 } 1138 1139 /* Parse the argument given in the command line of the application */ 1140 static int 1141 parse_args(int argc, char **argv) 1142 { 1143 int opt, ret; 1144 char **argvopt; 1145 int option_index; 1146 char *prgname = argv[0]; 1147 static struct option lgopts[] = { 1148 {"config", 1, 0, 0}, 1149 {"no-numa", 0, 0, 0}, 1150 {"enable-jumbo", 0, 0, 0}, 1151 {NULL, 0, 0, 0} 1152 }; 1153 1154 argvopt = argv; 1155 1156 while ((opt = getopt_long(argc, argvopt, "p:P", 1157 lgopts, &option_index)) != EOF) { 1158 1159 switch (opt) { 1160 /* portmask */ 1161 case 'p': 1162 enabled_port_mask = parse_portmask(optarg); 1163 if (enabled_port_mask == 0) { 1164 printf("invalid portmask\n"); 1165 print_usage(prgname); 1166 return -1; 1167 } 1168 break; 1169 case 'P': 1170 printf("Promiscuous mode selected\n"); 1171 promiscuous_on = 1; 1172 break; 1173 1174 /* long options */ 1175 case 0: 1176 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1177 ret = parse_config(optarg); 1178 if (ret) { 1179 printf("invalid config\n"); 1180 print_usage(prgname); 1181 return -1; 1182 } 1183 } 1184 1185 if (!strncmp(lgopts[option_index].name, 1186 "no-numa", 7)) { 1187 printf("numa is disabled \n"); 1188 numa_on = 0; 1189 } 1190 1191 if (!strncmp(lgopts[option_index].name, 1192 "enable-jumbo", 12)) { 1193 struct option lenopts = 1194 {"max-pkt-len", required_argument, \ 1195 0, 0}; 1196 1197 printf("jumbo frame is enabled \n"); 1198 port_conf.rxmode.jumbo_frame = 1; 1199 1200 /** 1201 * if no max-pkt-len set, use the default value 1202 * ETHER_MAX_LEN 1203 */ 1204 if (0 == getopt_long(argc, argvopt, "", 1205 &lenopts, &option_index)) { 1206 ret = parse_max_pkt_len(optarg); 1207 if ((ret < 64) || 1208 (ret > MAX_JUMBO_PKT_LEN)){ 1209 printf("invalid packet " 1210 "length\n"); 1211 print_usage(prgname); 1212 return -1; 1213 } 1214 port_conf.rxmode.max_rx_pkt_len = ret; 1215 } 1216 printf("set jumbo frame " 1217 "max packet length to %u\n", 1218 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1219 } 1220 1221 break; 1222 1223 default: 1224 print_usage(prgname); 1225 return -1; 1226 } 1227 } 1228 1229 if (optind >= 0) 1230 argv[optind-1] = prgname; 1231 1232 ret = optind-1; 1233 optind = 0; /* reset getopt lib */ 1234 return ret; 1235 } 1236 1237 static void 1238 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1239 { 1240 char buf[ETHER_ADDR_FMT_SIZE]; 1241 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1242 printf("%s%s", name, buf); 1243 } 1244 1245 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1246 static void 1247 setup_hash(int socketid) 1248 { 1249 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1250 .name = NULL, 1251 .entries = L3FWD_HASH_ENTRIES, 1252 .bucket_entries = 4, 1253 .key_len = sizeof(struct ipv4_5tuple), 1254 .hash_func = DEFAULT_HASH_FUNC, 1255 .hash_func_init_val = 0, 1256 }; 1257 1258 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1259 .name = NULL, 1260 .entries = L3FWD_HASH_ENTRIES, 1261 .bucket_entries = 4, 1262 .key_len = sizeof(struct ipv6_5tuple), 1263 .hash_func = DEFAULT_HASH_FUNC, 1264 .hash_func_init_val = 0, 1265 }; 1266 1267 unsigned i; 1268 int ret; 1269 char s[64]; 1270 1271 /* create ipv4 hash */ 1272 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1273 ipv4_l3fwd_hash_params.name = s; 1274 ipv4_l3fwd_hash_params.socket_id = socketid; 1275 ipv4_l3fwd_lookup_struct[socketid] = 1276 rte_hash_create(&ipv4_l3fwd_hash_params); 1277 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1278 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1279 "socket %d\n", socketid); 1280 1281 /* create ipv6 hash */ 1282 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1283 ipv6_l3fwd_hash_params.name = s; 1284 ipv6_l3fwd_hash_params.socket_id = socketid; 1285 ipv6_l3fwd_lookup_struct[socketid] = 1286 rte_hash_create(&ipv6_l3fwd_hash_params); 1287 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1288 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1289 "socket %d\n", socketid); 1290 1291 1292 /* populate the ipv4 hash */ 1293 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1294 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1295 (void *) &ipv4_l3fwd_route_array[i].key); 1296 if (ret < 0) { 1297 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1298 "l3fwd hash on socket %d\n", i, socketid); 1299 } 1300 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1301 printf("Hash: Adding key\n"); 1302 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1303 } 1304 1305 /* populate the ipv6 hash */ 1306 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1307 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1308 (void *) &ipv6_l3fwd_route_array[i].key); 1309 if (ret < 0) { 1310 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1311 "l3fwd hash on socket %d\n", i, socketid); 1312 } 1313 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1314 printf("Hash: Adding key\n"); 1315 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1316 } 1317 } 1318 #endif 1319 1320 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1321 static void 1322 setup_lpm(int socketid) 1323 { 1324 unsigned i; 1325 int ret; 1326 char s[64]; 1327 1328 /* create the LPM table */ 1329 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1330 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, 1331 IPV4_L3FWD_LPM_MAX_RULES, 0); 1332 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1333 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1334 " on socket %d\n", socketid); 1335 1336 /* populate the LPM table */ 1337 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1338 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1339 ipv4_l3fwd_route_array[i].ip, 1340 ipv4_l3fwd_route_array[i].depth, 1341 ipv4_l3fwd_route_array[i].if_out); 1342 1343 if (ret < 0) { 1344 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1345 "l3fwd LPM table on socket %d\n", 1346 i, socketid); 1347 } 1348 1349 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1350 (unsigned)ipv4_l3fwd_route_array[i].ip, 1351 ipv4_l3fwd_route_array[i].depth, 1352 ipv4_l3fwd_route_array[i].if_out); 1353 } 1354 } 1355 #endif 1356 1357 static int 1358 init_mem(unsigned nb_mbuf) 1359 { 1360 struct lcore_conf *qconf; 1361 int socketid; 1362 unsigned lcore_id; 1363 char s[64]; 1364 1365 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1366 if (rte_lcore_is_enabled(lcore_id) == 0) 1367 continue; 1368 1369 if (numa_on) 1370 socketid = rte_lcore_to_socket_id(lcore_id); 1371 else 1372 socketid = 0; 1373 1374 if (socketid >= NB_SOCKETS) { 1375 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1376 "out of range %d\n", socketid, 1377 lcore_id, NB_SOCKETS); 1378 } 1379 if (pktmbuf_pool[socketid] == NULL) { 1380 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1381 pktmbuf_pool[socketid] = 1382 rte_mempool_create(s, nb_mbuf, 1383 MBUF_SIZE, MEMPOOL_CACHE_SIZE, 1384 sizeof(struct rte_pktmbuf_pool_private), 1385 rte_pktmbuf_pool_init, NULL, 1386 rte_pktmbuf_init, NULL, 1387 socketid, 0); 1388 if (pktmbuf_pool[socketid] == NULL) 1389 rte_exit(EXIT_FAILURE, 1390 "Cannot init mbuf pool on socket %d\n", 1391 socketid); 1392 else 1393 printf("Allocated mbuf pool on socket %d\n", 1394 socketid); 1395 1396 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1397 setup_lpm(socketid); 1398 #else 1399 setup_hash(socketid); 1400 #endif 1401 } 1402 qconf = &lcore_conf[lcore_id]; 1403 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1404 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1405 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1406 #endif 1407 } 1408 return 0; 1409 } 1410 1411 /* Check the link status of all ports in up to 9s, and print them finally */ 1412 static void 1413 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1414 { 1415 #define CHECK_INTERVAL 100 /* 100ms */ 1416 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1417 uint8_t portid, count, all_ports_up, print_flag = 0; 1418 struct rte_eth_link link; 1419 1420 printf("\nChecking link status"); 1421 fflush(stdout); 1422 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1423 all_ports_up = 1; 1424 for (portid = 0; portid < port_num; portid++) { 1425 if ((port_mask & (1 << portid)) == 0) 1426 continue; 1427 memset(&link, 0, sizeof(link)); 1428 rte_eth_link_get_nowait(portid, &link); 1429 /* print link status if flag set */ 1430 if (print_flag == 1) { 1431 if (link.link_status) 1432 printf("Port %d Link Up - speed %u " 1433 "Mbps - %s\n", (uint8_t)portid, 1434 (unsigned)link.link_speed, 1435 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1436 ("full-duplex") : ("half-duplex\n")); 1437 else 1438 printf("Port %d Link Down\n", 1439 (uint8_t)portid); 1440 continue; 1441 } 1442 /* clear all_ports_up flag if any link down */ 1443 if (link.link_status == 0) { 1444 all_ports_up = 0; 1445 break; 1446 } 1447 } 1448 /* after finally printing all link status, get out */ 1449 if (print_flag == 1) 1450 break; 1451 1452 if (all_ports_up == 0) { 1453 printf("."); 1454 fflush(stdout); 1455 rte_delay_ms(CHECK_INTERVAL); 1456 } 1457 1458 /* set the print_flag if all ports up or timeout */ 1459 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1460 print_flag = 1; 1461 printf("done\n"); 1462 } 1463 } 1464 } 1465 1466 int 1467 main(int argc, char **argv) 1468 { 1469 struct lcore_conf *qconf; 1470 struct rte_eth_dev_info dev_info; 1471 struct rte_eth_txconf *txconf; 1472 int ret; 1473 unsigned nb_ports; 1474 uint16_t queueid; 1475 unsigned lcore_id; 1476 uint64_t hz; 1477 uint32_t n_tx_queue, nb_lcores; 1478 uint8_t portid, nb_rx_queue, queue, socketid; 1479 1480 /* catch SIGINT and restore cpufreq governor to ondemand */ 1481 signal(SIGINT, signal_exit_now); 1482 1483 /* init EAL */ 1484 ret = rte_eal_init(argc, argv); 1485 if (ret < 0) 1486 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1487 argc -= ret; 1488 argv += ret; 1489 1490 /* init RTE timer library to be used late */ 1491 rte_timer_subsystem_init(); 1492 1493 /* parse application arguments (after the EAL ones) */ 1494 ret = parse_args(argc, argv); 1495 if (ret < 0) 1496 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1497 1498 if (check_lcore_params() < 0) 1499 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1500 1501 ret = init_lcore_rx_queues(); 1502 if (ret < 0) 1503 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1504 1505 1506 nb_ports = rte_eth_dev_count(); 1507 if (nb_ports > RTE_MAX_ETHPORTS) 1508 nb_ports = RTE_MAX_ETHPORTS; 1509 1510 if (check_port_config(nb_ports) < 0) 1511 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1512 1513 nb_lcores = rte_lcore_count(); 1514 1515 /* initialize all ports */ 1516 for (portid = 0; portid < nb_ports; portid++) { 1517 /* skip ports that are not enabled */ 1518 if ((enabled_port_mask & (1 << portid)) == 0) { 1519 printf("\nSkipping disabled port %d\n", portid); 1520 continue; 1521 } 1522 1523 /* init port */ 1524 printf("Initializing port %d ... ", portid ); 1525 fflush(stdout); 1526 1527 nb_rx_queue = get_port_n_rx_queues(portid); 1528 n_tx_queue = nb_lcores; 1529 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1530 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1531 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1532 nb_rx_queue, (unsigned)n_tx_queue ); 1533 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1534 (uint16_t)n_tx_queue, &port_conf); 1535 if (ret < 0) 1536 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1537 "err=%d, port=%d\n", ret, portid); 1538 1539 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1540 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1541 printf(", "); 1542 1543 /* init memory */ 1544 ret = init_mem(NB_MBUF); 1545 if (ret < 0) 1546 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1547 1548 /* init one TX queue per couple (lcore,port) */ 1549 queueid = 0; 1550 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1551 if (rte_lcore_is_enabled(lcore_id) == 0) 1552 continue; 1553 1554 if (numa_on) 1555 socketid = \ 1556 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1557 else 1558 socketid = 0; 1559 1560 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1561 fflush(stdout); 1562 1563 rte_eth_dev_info_get(portid, &dev_info); 1564 txconf = &dev_info.default_txconf; 1565 if (port_conf.rxmode.jumbo_frame) 1566 txconf->txq_flags = 0; 1567 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1568 socketid, txconf); 1569 if (ret < 0) 1570 rte_exit(EXIT_FAILURE, 1571 "rte_eth_tx_queue_setup: err=%d, " 1572 "port=%d\n", ret, portid); 1573 1574 qconf = &lcore_conf[lcore_id]; 1575 qconf->tx_queue_id[portid] = queueid; 1576 queueid++; 1577 } 1578 printf("\n"); 1579 } 1580 1581 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1582 if (rte_lcore_is_enabled(lcore_id) == 0) 1583 continue; 1584 1585 /* init power management library */ 1586 ret = rte_power_init(lcore_id); 1587 if (ret) 1588 rte_exit(EXIT_FAILURE, "Power management library " 1589 "initialization failed on core%u\n", lcore_id); 1590 1591 /* init timer structures for each enabled lcore */ 1592 rte_timer_init(&power_timers[lcore_id]); 1593 hz = rte_get_timer_hz(); 1594 rte_timer_reset(&power_timers[lcore_id], 1595 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1596 power_timer_cb, NULL); 1597 1598 qconf = &lcore_conf[lcore_id]; 1599 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1600 fflush(stdout); 1601 /* init RX queues */ 1602 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1603 portid = qconf->rx_queue_list[queue].port_id; 1604 queueid = qconf->rx_queue_list[queue].queue_id; 1605 1606 if (numa_on) 1607 socketid = \ 1608 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1609 else 1610 socketid = 0; 1611 1612 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1613 fflush(stdout); 1614 1615 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1616 socketid, NULL, 1617 pktmbuf_pool[socketid]); 1618 if (ret < 0) 1619 rte_exit(EXIT_FAILURE, 1620 "rte_eth_rx_queue_setup: err=%d, " 1621 "port=%d\n", ret, portid); 1622 } 1623 } 1624 1625 printf("\n"); 1626 1627 /* start ports */ 1628 for (portid = 0; portid < nb_ports; portid++) { 1629 if ((enabled_port_mask & (1 << portid)) == 0) { 1630 continue; 1631 } 1632 /* Start device */ 1633 ret = rte_eth_dev_start(portid); 1634 if (ret < 0) 1635 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1636 "port=%d\n", ret, portid); 1637 1638 /* 1639 * If enabled, put device in promiscuous mode. 1640 * This allows IO forwarding mode to forward packets 1641 * to itself through 2 cross-connected ports of the 1642 * target machine. 1643 */ 1644 if (promiscuous_on) 1645 rte_eth_promiscuous_enable(portid); 1646 } 1647 1648 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1649 1650 /* launch per-lcore init on every lcore */ 1651 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1652 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1653 if (rte_eal_wait_lcore(lcore_id) < 0) 1654 return -1; 1655 } 1656 1657 return 0; 1658 } 1659