xref: /dpdk/examples/l3fwd-power/main.c (revision f8dbaebbf1c9efcbb2e2354b341ed62175466a57)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_ip.h>
40 #include <rte_tcp.h>
41 #include <rte_udp.h>
42 #include <rte_string_fns.h>
43 #include <rte_timer.h>
44 #include <rte_power.h>
45 #include <rte_spinlock.h>
46 #include <rte_power_empty_poll.h>
47 #include <rte_metrics.h>
48 #include <rte_telemetry.h>
49 #include <rte_power_pmd_mgmt.h>
50 
51 #include "perf_core.h"
52 #include "main.h"
53 
54 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
55 
56 #define MAX_PKT_BURST 32
57 
58 #define MIN_ZERO_POLL_COUNT 10
59 
60 /* 100 ms interval */
61 #define TIMER_NUMBER_PER_SECOND           10
62 /* (10ms) */
63 #define INTERVALS_PER_SECOND             100
64 /* 100000 us */
65 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
66 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
67 
68 #define APP_LOOKUP_EXACT_MATCH          0
69 #define APP_LOOKUP_LPM                  1
70 #define DO_RFC_1812_CHECKS
71 
72 #ifndef APP_LOOKUP_METHOD
73 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
74 #endif
75 
76 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
77 #include <rte_hash.h>
78 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
79 #include <rte_lpm.h>
80 #else
81 #error "APP_LOOKUP_METHOD set to incorrect value"
82 #endif
83 
84 #ifndef IPv6_BYTES
85 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
86                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
87 #define IPv6_BYTES(addr) \
88 	addr[0],  addr[1], addr[2],  addr[3], \
89 	addr[4],  addr[5], addr[6],  addr[7], \
90 	addr[8],  addr[9], addr[10], addr[11],\
91 	addr[12], addr[13],addr[14], addr[15]
92 #endif
93 
94 #define MAX_JUMBO_PKT_LEN  9600
95 
96 #define IPV6_ADDR_LEN 16
97 
98 #define MEMPOOL_CACHE_SIZE 256
99 
100 /*
101  * This expression is used to calculate the number of mbufs needed depending on
102  * user input, taking into account memory for rx and tx hardware rings, cache
103  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
104  * NB_MBUF never goes below a minimum value of 8192.
105  */
106 
107 #define NB_MBUF RTE_MAX	( \
108 	(nb_ports*nb_rx_queue*nb_rxd + \
109 	nb_ports*nb_lcores*MAX_PKT_BURST + \
110 	nb_ports*n_tx_queue*nb_txd + \
111 	nb_lcores*MEMPOOL_CACHE_SIZE), \
112 	(unsigned)8192)
113 
114 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
115 
116 #define NB_SOCKETS 8
117 
118 /* Configure how many packets ahead to prefetch, when reading packets */
119 #define PREFETCH_OFFSET	3
120 
121 /*
122  * Configurable number of RX/TX ring descriptors
123  */
124 #define RTE_TEST_RX_DESC_DEFAULT 1024
125 #define RTE_TEST_TX_DESC_DEFAULT 1024
126 
127 /*
128  * These two thresholds were decided on by running the training algorithm on
129  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
130  * for the med_threshold and high_threshold parameters on the command line.
131  */
132 #define EMPTY_POLL_MED_THRESHOLD 350000UL
133 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
134 
135 #define NUM_TELSTATS RTE_DIM(telstats_strings)
136 
137 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
138 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
139 
140 /* ethernet addresses of ports */
141 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
142 
143 /* ethernet addresses of ports */
144 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
145 
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask = 0;
148 /* Ports set in promiscuous mode off by default. */
149 static int promiscuous_on = 0;
150 /* NUMA is enabled by default. */
151 static int numa_on = 1;
152 static bool empty_poll_stop;
153 static bool empty_poll_train;
154 volatile bool quit_signal;
155 static struct  ep_params *ep_params;
156 static struct  ep_policy policy;
157 static long  ep_med_edpi, ep_hgh_edpi;
158 /* timer to update telemetry every 500ms */
159 static struct rte_timer telemetry_timer;
160 
161 /* stats index returned by metrics lib */
162 int telstats_index;
163 
164 struct telstats_name {
165 	char name[RTE_ETH_XSTATS_NAME_SIZE];
166 };
167 
168 /* telemetry stats to be reported */
169 const struct telstats_name telstats_strings[] = {
170 	{"empty_poll"},
171 	{"full_poll"},
172 	{"busy_percent"}
173 };
174 
175 /* core busyness in percentage */
176 enum busy_rate {
177 	ZERO = 0,
178 	PARTIAL = 50,
179 	FULL = 100
180 };
181 
182 /* reference poll count to measure core busyness */
183 #define DEFAULT_COUNT 10000
184 /*
185  * reference CYCLES to be used to
186  * measure core busyness based on poll count
187  */
188 #define MIN_CYCLES  1500000ULL
189 #define MAX_CYCLES 22000000ULL
190 
191 /* (500ms) */
192 #define TELEMETRY_INTERVALS_PER_SEC 2
193 
194 static int parse_ptype; /**< Parse packet type using rx callback, and */
195 			/**< disabled by default */
196 
197 enum appmode {
198 	APP_MODE_DEFAULT = 0,
199 	APP_MODE_LEGACY,
200 	APP_MODE_EMPTY_POLL,
201 	APP_MODE_TELEMETRY,
202 	APP_MODE_INTERRUPT,
203 	APP_MODE_PMD_MGMT
204 };
205 
206 enum appmode app_mode;
207 
208 static enum rte_power_pmd_mgmt_type pmgmt_type;
209 bool baseline_enabled;
210 
211 enum freq_scale_hint_t
212 {
213 	FREQ_LOWER    =      -1,
214 	FREQ_CURRENT  =       0,
215 	FREQ_HIGHER   =       1,
216 	FREQ_HIGHEST  =       2
217 };
218 
219 struct lcore_rx_queue {
220 	uint16_t port_id;
221 	uint8_t queue_id;
222 	enum freq_scale_hint_t freq_up_hint;
223 	uint32_t zero_rx_packet_count;
224 	uint32_t idle_hint;
225 } __rte_cache_aligned;
226 
227 #define MAX_RX_QUEUE_PER_LCORE 16
228 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
229 #define MAX_RX_QUEUE_PER_PORT 128
230 
231 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
232 
233 
234 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
235 static struct lcore_params lcore_params_array_default[] = {
236 	{0, 0, 2},
237 	{0, 1, 2},
238 	{0, 2, 2},
239 	{1, 0, 2},
240 	{1, 1, 2},
241 	{1, 2, 2},
242 	{2, 0, 2},
243 	{3, 0, 3},
244 	{3, 1, 3},
245 };
246 
247 struct lcore_params *lcore_params = lcore_params_array_default;
248 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
249 
250 static struct rte_eth_conf port_conf = {
251 	.rxmode = {
252 		.mq_mode        = RTE_ETH_MQ_RX_RSS,
253 		.split_hdr_size = 0,
254 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
255 	},
256 	.rx_adv_conf = {
257 		.rss_conf = {
258 			.rss_key = NULL,
259 			.rss_hf = RTE_ETH_RSS_UDP,
260 		},
261 	},
262 	.txmode = {
263 		.mq_mode = RTE_ETH_MQ_TX_NONE,
264 	}
265 };
266 
267 static uint32_t max_pkt_len;
268 
269 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
270 
271 
272 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
273 
274 #ifdef RTE_ARCH_X86
275 #include <rte_hash_crc.h>
276 #define DEFAULT_HASH_FUNC       rte_hash_crc
277 #else
278 #include <rte_jhash.h>
279 #define DEFAULT_HASH_FUNC       rte_jhash
280 #endif
281 
282 struct ipv4_5tuple {
283 	uint32_t ip_dst;
284 	uint32_t ip_src;
285 	uint16_t port_dst;
286 	uint16_t port_src;
287 	uint8_t  proto;
288 } __rte_packed;
289 
290 struct ipv6_5tuple {
291 	uint8_t  ip_dst[IPV6_ADDR_LEN];
292 	uint8_t  ip_src[IPV6_ADDR_LEN];
293 	uint16_t port_dst;
294 	uint16_t port_src;
295 	uint8_t  proto;
296 } __rte_packed;
297 
298 struct ipv4_l3fwd_route {
299 	struct ipv4_5tuple key;
300 	uint8_t if_out;
301 };
302 
303 struct ipv6_l3fwd_route {
304 	struct ipv6_5tuple key;
305 	uint8_t if_out;
306 };
307 
308 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
309 	{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
310 	{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
311 	{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
312 	{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
313 };
314 
315 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
316 	{
317 		{
318 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
319 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
320 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
321 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
322 			 1, 10, IPPROTO_UDP
323 		}, 4
324 	},
325 };
326 
327 typedef struct rte_hash lookup_struct_t;
328 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
329 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
330 
331 #define L3FWD_HASH_ENTRIES	1024
332 
333 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
334 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
335 #endif
336 
337 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
338 struct ipv4_l3fwd_route {
339 	uint32_t ip;
340 	uint8_t  depth;
341 	uint8_t  if_out;
342 };
343 
344 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
345 	{RTE_IPV4(1,1,1,0), 24, 0},
346 	{RTE_IPV4(2,1,1,0), 24, 1},
347 	{RTE_IPV4(3,1,1,0), 24, 2},
348 	{RTE_IPV4(4,1,1,0), 24, 3},
349 	{RTE_IPV4(5,1,1,0), 24, 4},
350 	{RTE_IPV4(6,1,1,0), 24, 5},
351 	{RTE_IPV4(7,1,1,0), 24, 6},
352 	{RTE_IPV4(8,1,1,0), 24, 7},
353 };
354 
355 #define IPV4_L3FWD_LPM_MAX_RULES     1024
356 
357 typedef struct rte_lpm lookup_struct_t;
358 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
359 #endif
360 
361 struct lcore_conf {
362 	uint16_t n_rx_queue;
363 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
364 	uint16_t n_tx_port;
365 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
366 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
367 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
368 	lookup_struct_t * ipv4_lookup_struct;
369 	lookup_struct_t * ipv6_lookup_struct;
370 } __rte_cache_aligned;
371 
372 struct lcore_stats {
373 	/* total sleep time in ms since last frequency scaling down */
374 	uint32_t sleep_time;
375 	/* number of long sleep recently */
376 	uint32_t nb_long_sleep;
377 	/* freq. scaling up trend */
378 	uint32_t trend;
379 	/* total packet processed recently */
380 	uint64_t nb_rx_processed;
381 	/* total iterations looped recently */
382 	uint64_t nb_iteration_looped;
383 	/*
384 	 * Represents empty and non empty polls
385 	 * of rte_eth_rx_burst();
386 	 * ep_nep[0] holds non empty polls
387 	 * i.e. 0 < nb_rx <= MAX_BURST
388 	 * ep_nep[1] holds empty polls.
389 	 * i.e. nb_rx == 0
390 	 */
391 	uint64_t ep_nep[2];
392 	/*
393 	 * Represents full and empty+partial
394 	 * polls of rte_eth_rx_burst();
395 	 * ep_nep[0] holds empty+partial polls.
396 	 * i.e. 0 <= nb_rx < MAX_BURST
397 	 * ep_nep[1] holds full polls
398 	 * i.e. nb_rx == MAX_BURST
399 	 */
400 	uint64_t fp_nfp[2];
401 	enum busy_rate br;
402 	rte_spinlock_t telemetry_lock;
403 } __rte_cache_aligned;
404 
405 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
406 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
407 static struct rte_timer power_timers[RTE_MAX_LCORE];
408 
409 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
410 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
411 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
412 
413 
414 /*
415  * These defaults are using the max frequency index (1), a medium index (9)
416  * and a typical low frequency index (14). These can be adjusted to use
417  * different indexes using the relevant command line parameters.
418  */
419 static uint8_t  freq_tlb[] = {14, 9, 1};
420 
421 static int is_done(void)
422 {
423 	return quit_signal;
424 }
425 
426 /* exit signal handler */
427 static void
428 signal_exit_now(int sigtype)
429 {
430 
431 	if (sigtype == SIGINT)
432 		quit_signal = true;
433 
434 }
435 
436 /*  Freqency scale down timer callback */
437 static void
438 power_timer_cb(__rte_unused struct rte_timer *tim,
439 			  __rte_unused void *arg)
440 {
441 	uint64_t hz;
442 	float sleep_time_ratio;
443 	unsigned lcore_id = rte_lcore_id();
444 
445 	/* accumulate total execution time in us when callback is invoked */
446 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
447 					(float)SCALING_PERIOD;
448 	/**
449 	 * check whether need to scale down frequency a step if it sleep a lot.
450 	 */
451 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
452 		if (rte_power_freq_down)
453 			rte_power_freq_down(lcore_id);
454 	}
455 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
456 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
457 		/**
458 		 * scale down a step if average packet per iteration less
459 		 * than expectation.
460 		 */
461 		if (rte_power_freq_down)
462 			rte_power_freq_down(lcore_id);
463 	}
464 
465 	/**
466 	 * initialize another timer according to current frequency to ensure
467 	 * timer interval is relatively fixed.
468 	 */
469 	hz = rte_get_timer_hz();
470 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
471 				SINGLE, lcore_id, power_timer_cb, NULL);
472 
473 	stats[lcore_id].nb_rx_processed = 0;
474 	stats[lcore_id].nb_iteration_looped = 0;
475 
476 	stats[lcore_id].sleep_time = 0;
477 }
478 
479 /* Enqueue a single packet, and send burst if queue is filled */
480 static inline int
481 send_single_packet(struct rte_mbuf *m, uint16_t port)
482 {
483 	uint32_t lcore_id;
484 	struct lcore_conf *qconf;
485 
486 	lcore_id = rte_lcore_id();
487 	qconf = &lcore_conf[lcore_id];
488 
489 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
490 			qconf->tx_buffer[port], m);
491 
492 	return 0;
493 }
494 
495 #ifdef DO_RFC_1812_CHECKS
496 static inline int
497 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
498 {
499 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
500 	/*
501 	 * 1. The packet length reported by the Link Layer must be large
502 	 * enough to hold the minimum length legal IP datagram (20 bytes).
503 	 */
504 	if (link_len < sizeof(struct rte_ipv4_hdr))
505 		return -1;
506 
507 	/* 2. The IP checksum must be correct. */
508 	/* if this is not checked in H/W, check it. */
509 	if ((port_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM) == 0) {
510 		uint16_t actual_cksum, expected_cksum;
511 		actual_cksum = pkt->hdr_checksum;
512 		pkt->hdr_checksum = 0;
513 		expected_cksum = rte_ipv4_cksum(pkt);
514 		if (actual_cksum != expected_cksum)
515 			return -2;
516 	}
517 
518 	/*
519 	 * 3. The IP version number must be 4. If the version number is not 4
520 	 * then the packet may be another version of IP, such as IPng or
521 	 * ST-II.
522 	 */
523 	if (((pkt->version_ihl) >> 4) != 4)
524 		return -3;
525 	/*
526 	 * 4. The IP header length field must be large enough to hold the
527 	 * minimum length legal IP datagram (20 bytes = 5 words).
528 	 */
529 	if ((pkt->version_ihl & 0xf) < 5)
530 		return -4;
531 
532 	/*
533 	 * 5. The IP total length field must be large enough to hold the IP
534 	 * datagram header, whose length is specified in the IP header length
535 	 * field.
536 	 */
537 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
538 		return -5;
539 
540 	return 0;
541 }
542 #endif
543 
544 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
545 static void
546 print_ipv4_key(struct ipv4_5tuple key)
547 {
548 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
549 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
550 				key.port_dst, key.port_src, key.proto);
551 }
552 static void
553 print_ipv6_key(struct ipv6_5tuple key)
554 {
555 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
556 	        "port dst = %d, port src = %d, proto = %d\n",
557 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
558 	        key.port_dst, key.port_src, key.proto);
559 }
560 
561 static inline uint16_t
562 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
563 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
564 {
565 	struct ipv4_5tuple key;
566 	struct rte_tcp_hdr *tcp;
567 	struct rte_udp_hdr *udp;
568 	int ret = 0;
569 
570 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
571 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
572 	key.proto = ipv4_hdr->next_proto_id;
573 
574 	switch (ipv4_hdr->next_proto_id) {
575 	case IPPROTO_TCP:
576 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
577 					sizeof(struct rte_ipv4_hdr));
578 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
579 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
580 		break;
581 
582 	case IPPROTO_UDP:
583 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
584 					sizeof(struct rte_ipv4_hdr));
585 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
586 		key.port_src = rte_be_to_cpu_16(udp->src_port);
587 		break;
588 
589 	default:
590 		key.port_dst = 0;
591 		key.port_src = 0;
592 		break;
593 	}
594 
595 	/* Find destination port */
596 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
597 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
598 }
599 
600 static inline uint16_t
601 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
602 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
603 {
604 	struct ipv6_5tuple key;
605 	struct rte_tcp_hdr *tcp;
606 	struct rte_udp_hdr *udp;
607 	int ret = 0;
608 
609 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
610 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
611 
612 	key.proto = ipv6_hdr->proto;
613 
614 	switch (ipv6_hdr->proto) {
615 	case IPPROTO_TCP:
616 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
617 					sizeof(struct rte_ipv6_hdr));
618 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
619 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
620 		break;
621 
622 	case IPPROTO_UDP:
623 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
624 					sizeof(struct rte_ipv6_hdr));
625 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
626 		key.port_src = rte_be_to_cpu_16(udp->src_port);
627 		break;
628 
629 	default:
630 		key.port_dst = 0;
631 		key.port_src = 0;
632 		break;
633 	}
634 
635 	/* Find destination port */
636 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
637 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
638 }
639 #endif
640 
641 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
642 static inline uint16_t
643 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
644 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
645 {
646 	uint32_t next_hop;
647 
648 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
649 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
650 			next_hop : portid);
651 }
652 #endif
653 
654 static inline void
655 parse_ptype_one(struct rte_mbuf *m)
656 {
657 	struct rte_ether_hdr *eth_hdr;
658 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
659 	uint16_t ether_type;
660 
661 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
662 	ether_type = eth_hdr->ether_type;
663 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
664 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
665 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
666 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
667 
668 	m->packet_type = packet_type;
669 }
670 
671 static uint16_t
672 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
673 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
674 	       uint16_t max_pkts __rte_unused,
675 	       void *user_param __rte_unused)
676 {
677 	unsigned int i;
678 
679 	for (i = 0; i < nb_pkts; ++i)
680 		parse_ptype_one(pkts[i]);
681 
682 	return nb_pkts;
683 }
684 
685 static int
686 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
687 {
688 	printf("Port %d: softly parse packet type info\n", portid);
689 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
690 		return 0;
691 
692 	printf("Failed to add rx callback: port=%d\n", portid);
693 	return -1;
694 }
695 
696 static inline void
697 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
698 				struct lcore_conf *qconf)
699 {
700 	struct rte_ether_hdr *eth_hdr;
701 	struct rte_ipv4_hdr *ipv4_hdr;
702 	void *d_addr_bytes;
703 	uint16_t dst_port;
704 
705 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
706 
707 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
708 		/* Handle IPv4 headers.*/
709 		ipv4_hdr =
710 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
711 						sizeof(struct rte_ether_hdr));
712 
713 #ifdef DO_RFC_1812_CHECKS
714 		/* Check to make sure the packet is valid (RFC1812) */
715 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
716 			rte_pktmbuf_free(m);
717 			return;
718 		}
719 #endif
720 
721 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
722 					qconf->ipv4_lookup_struct);
723 		if (dst_port >= RTE_MAX_ETHPORTS ||
724 				(enabled_port_mask & 1 << dst_port) == 0)
725 			dst_port = portid;
726 
727 		/* 02:00:00:00:00:xx */
728 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
729 		*((uint64_t *)d_addr_bytes) =
730 			0x000000000002 + ((uint64_t)dst_port << 40);
731 
732 #ifdef DO_RFC_1812_CHECKS
733 		/* Update time to live and header checksum */
734 		--(ipv4_hdr->time_to_live);
735 		++(ipv4_hdr->hdr_checksum);
736 #endif
737 
738 		/* src addr */
739 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
740 				&eth_hdr->src_addr);
741 
742 		send_single_packet(m, dst_port);
743 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
744 		/* Handle IPv6 headers.*/
745 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
746 		struct rte_ipv6_hdr *ipv6_hdr;
747 
748 		ipv6_hdr =
749 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
750 						sizeof(struct rte_ether_hdr));
751 
752 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
753 					qconf->ipv6_lookup_struct);
754 
755 		if (dst_port >= RTE_MAX_ETHPORTS ||
756 				(enabled_port_mask & 1 << dst_port) == 0)
757 			dst_port = portid;
758 
759 		/* 02:00:00:00:00:xx */
760 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
761 		*((uint64_t *)d_addr_bytes) =
762 			0x000000000002 + ((uint64_t)dst_port << 40);
763 
764 		/* src addr */
765 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
766 				&eth_hdr->src_addr);
767 
768 		send_single_packet(m, dst_port);
769 #else
770 		/* We don't currently handle IPv6 packets in LPM mode. */
771 		rte_pktmbuf_free(m);
772 #endif
773 	} else
774 		rte_pktmbuf_free(m);
775 
776 }
777 
778 #define MINIMUM_SLEEP_TIME         1
779 #define SUSPEND_THRESHOLD          300
780 
781 static inline uint32_t
782 power_idle_heuristic(uint32_t zero_rx_packet_count)
783 {
784 	/* If zero count is less than 100,  sleep 1us */
785 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
786 		return MINIMUM_SLEEP_TIME;
787 	/* If zero count is less than 1000, sleep 100 us which is the
788 		minimum latency switching from C3/C6 to C0
789 	*/
790 	else
791 		return SUSPEND_THRESHOLD;
792 }
793 
794 static inline enum freq_scale_hint_t
795 power_freq_scaleup_heuristic(unsigned lcore_id,
796 			     uint16_t port_id,
797 			     uint16_t queue_id)
798 {
799 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
800 /**
801  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
802  * per iteration
803  */
804 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
805 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
806 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
807 #define FREQ_UP_TREND1_ACC   1
808 #define FREQ_UP_TREND2_ACC   100
809 #define FREQ_UP_THRESHOLD    10000
810 
811 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
812 		stats[lcore_id].trend = 0;
813 		return FREQ_HIGHEST;
814 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
815 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
816 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
817 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
818 
819 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
820 		stats[lcore_id].trend = 0;
821 		return FREQ_HIGHER;
822 	}
823 
824 	return FREQ_CURRENT;
825 }
826 
827 /**
828  * force polling thread sleep until one-shot rx interrupt triggers
829  * @param port_id
830  *  Port id.
831  * @param queue_id
832  *  Rx queue id.
833  * @return
834  *  0 on success
835  */
836 static int
837 sleep_until_rx_interrupt(int num, int lcore)
838 {
839 	/*
840 	 * we want to track when we are woken up by traffic so that we can go
841 	 * back to sleep again without log spamming. Avoid cache line sharing
842 	 * to prevent threads stepping on each others' toes.
843 	 */
844 	static struct {
845 		bool wakeup;
846 	} __rte_cache_aligned status[RTE_MAX_LCORE];
847 	struct rte_epoll_event event[num];
848 	int n, i;
849 	uint16_t port_id;
850 	uint8_t queue_id;
851 	void *data;
852 
853 	if (status[lcore].wakeup) {
854 		RTE_LOG(INFO, L3FWD_POWER,
855 				"lcore %u sleeps until interrupt triggers\n",
856 				rte_lcore_id());
857 	}
858 
859 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
860 	for (i = 0; i < n; i++) {
861 		data = event[i].epdata.data;
862 		port_id = ((uintptr_t)data) >> CHAR_BIT;
863 		queue_id = ((uintptr_t)data) &
864 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
865 		RTE_LOG(INFO, L3FWD_POWER,
866 			"lcore %u is waked up from rx interrupt on"
867 			" port %d queue %d\n",
868 			rte_lcore_id(), port_id, queue_id);
869 	}
870 	status[lcore].wakeup = n != 0;
871 
872 	return 0;
873 }
874 
875 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
876 {
877 	int i;
878 	struct lcore_rx_queue *rx_queue;
879 	uint8_t queue_id;
880 	uint16_t port_id;
881 
882 	for (i = 0; i < qconf->n_rx_queue; ++i) {
883 		rx_queue = &(qconf->rx_queue_list[i]);
884 		port_id = rx_queue->port_id;
885 		queue_id = rx_queue->queue_id;
886 
887 		rte_spinlock_lock(&(locks[port_id]));
888 		if (on)
889 			rte_eth_dev_rx_intr_enable(port_id, queue_id);
890 		else
891 			rte_eth_dev_rx_intr_disable(port_id, queue_id);
892 		rte_spinlock_unlock(&(locks[port_id]));
893 	}
894 }
895 
896 static int event_register(struct lcore_conf *qconf)
897 {
898 	struct lcore_rx_queue *rx_queue;
899 	uint8_t queueid;
900 	uint16_t portid;
901 	uint32_t data;
902 	int ret;
903 	int i;
904 
905 	for (i = 0; i < qconf->n_rx_queue; ++i) {
906 		rx_queue = &(qconf->rx_queue_list[i]);
907 		portid = rx_queue->port_id;
908 		queueid = rx_queue->queue_id;
909 		data = portid << CHAR_BIT | queueid;
910 
911 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
912 						RTE_EPOLL_PER_THREAD,
913 						RTE_INTR_EVENT_ADD,
914 						(void *)((uintptr_t)data));
915 		if (ret)
916 			return ret;
917 	}
918 
919 	return 0;
920 }
921 
922 /* Main processing loop. 8< */
923 static int main_intr_loop(__rte_unused void *dummy)
924 {
925 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
926 	unsigned int lcore_id;
927 	uint64_t prev_tsc, diff_tsc, cur_tsc;
928 	int i, j, nb_rx;
929 	uint8_t queueid;
930 	uint16_t portid;
931 	struct lcore_conf *qconf;
932 	struct lcore_rx_queue *rx_queue;
933 	uint32_t lcore_rx_idle_count = 0;
934 	uint32_t lcore_idle_hint = 0;
935 	int intr_en = 0;
936 
937 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
938 				   US_PER_S * BURST_TX_DRAIN_US;
939 
940 	prev_tsc = 0;
941 
942 	lcore_id = rte_lcore_id();
943 	qconf = &lcore_conf[lcore_id];
944 
945 	if (qconf->n_rx_queue == 0) {
946 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
947 				lcore_id);
948 		return 0;
949 	}
950 
951 	RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
952 			lcore_id);
953 
954 	for (i = 0; i < qconf->n_rx_queue; i++) {
955 		portid = qconf->rx_queue_list[i].port_id;
956 		queueid = qconf->rx_queue_list[i].queue_id;
957 		RTE_LOG(INFO, L3FWD_POWER,
958 				" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
959 				lcore_id, portid, queueid);
960 	}
961 
962 	/* add into event wait list */
963 	if (event_register(qconf) == 0)
964 		intr_en = 1;
965 	else
966 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
967 
968 	while (!is_done()) {
969 		stats[lcore_id].nb_iteration_looped++;
970 
971 		cur_tsc = rte_rdtsc();
972 
973 		/*
974 		 * TX burst queue drain
975 		 */
976 		diff_tsc = cur_tsc - prev_tsc;
977 		if (unlikely(diff_tsc > drain_tsc)) {
978 			for (i = 0; i < qconf->n_tx_port; ++i) {
979 				portid = qconf->tx_port_id[i];
980 				rte_eth_tx_buffer_flush(portid,
981 						qconf->tx_queue_id[portid],
982 						qconf->tx_buffer[portid]);
983 			}
984 			prev_tsc = cur_tsc;
985 		}
986 
987 start_rx:
988 		/*
989 		 * Read packet from RX queues
990 		 */
991 		lcore_rx_idle_count = 0;
992 		for (i = 0; i < qconf->n_rx_queue; ++i) {
993 			rx_queue = &(qconf->rx_queue_list[i]);
994 			rx_queue->idle_hint = 0;
995 			portid = rx_queue->port_id;
996 			queueid = rx_queue->queue_id;
997 
998 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
999 					MAX_PKT_BURST);
1000 
1001 			stats[lcore_id].nb_rx_processed += nb_rx;
1002 			if (unlikely(nb_rx == 0)) {
1003 				/**
1004 				 * no packet received from rx queue, try to
1005 				 * sleep for a while forcing CPU enter deeper
1006 				 * C states.
1007 				 */
1008 				rx_queue->zero_rx_packet_count++;
1009 
1010 				if (rx_queue->zero_rx_packet_count <=
1011 						MIN_ZERO_POLL_COUNT)
1012 					continue;
1013 
1014 				rx_queue->idle_hint = power_idle_heuristic(
1015 						rx_queue->zero_rx_packet_count);
1016 				lcore_rx_idle_count++;
1017 			} else {
1018 				rx_queue->zero_rx_packet_count = 0;
1019 			}
1020 
1021 			/* Prefetch first packets */
1022 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1023 				rte_prefetch0(rte_pktmbuf_mtod(
1024 						pkts_burst[j], void *));
1025 			}
1026 
1027 			/* Prefetch and forward already prefetched packets */
1028 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1029 				rte_prefetch0(rte_pktmbuf_mtod(
1030 						pkts_burst[j + PREFETCH_OFFSET],
1031 						void *));
1032 				l3fwd_simple_forward(
1033 						pkts_burst[j], portid, qconf);
1034 			}
1035 
1036 			/* Forward remaining prefetched packets */
1037 			for (; j < nb_rx; j++) {
1038 				l3fwd_simple_forward(
1039 						pkts_burst[j], portid, qconf);
1040 			}
1041 		}
1042 
1043 		if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1044 			/**
1045 			 * All Rx queues empty in recent consecutive polls,
1046 			 * sleep in a conservative manner, meaning sleep as
1047 			 * less as possible.
1048 			 */
1049 			for (i = 1,
1050 			    lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1051 					i < qconf->n_rx_queue; ++i) {
1052 				rx_queue = &(qconf->rx_queue_list[i]);
1053 				if (rx_queue->idle_hint < lcore_idle_hint)
1054 					lcore_idle_hint = rx_queue->idle_hint;
1055 			}
1056 
1057 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1058 				/**
1059 				 * execute "pause" instruction to avoid context
1060 				 * switch which generally take hundred of
1061 				 * microseconds for short sleep.
1062 				 */
1063 				rte_delay_us(lcore_idle_hint);
1064 			else {
1065 				/* suspend until rx interrupt triggers */
1066 				if (intr_en) {
1067 					turn_on_off_intr(qconf, 1);
1068 					sleep_until_rx_interrupt(
1069 							qconf->n_rx_queue,
1070 							lcore_id);
1071 					turn_on_off_intr(qconf, 0);
1072 					/**
1073 					 * start receiving packets immediately
1074 					 */
1075 					if (likely(!is_done()))
1076 						goto start_rx;
1077 				}
1078 			}
1079 			stats[lcore_id].sleep_time += lcore_idle_hint;
1080 		}
1081 	}
1082 
1083 	return 0;
1084 }
1085 /* >8 End of main processing loop. */
1086 
1087 /* main processing loop */
1088 static int
1089 main_telemetry_loop(__rte_unused void *dummy)
1090 {
1091 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1092 	unsigned int lcore_id;
1093 	uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1094 	int i, j, nb_rx;
1095 	uint8_t queueid;
1096 	uint16_t portid;
1097 	struct lcore_conf *qconf;
1098 	struct lcore_rx_queue *rx_queue;
1099 	uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1100 	uint64_t poll_count;
1101 	enum busy_rate br;
1102 
1103 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1104 					US_PER_S * BURST_TX_DRAIN_US;
1105 
1106 	poll_count = 0;
1107 	prev_tsc = 0;
1108 	prev_tel_tsc = 0;
1109 
1110 	lcore_id = rte_lcore_id();
1111 	qconf = &lcore_conf[lcore_id];
1112 
1113 	if (qconf->n_rx_queue == 0) {
1114 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1115 			lcore_id);
1116 		return 0;
1117 	}
1118 
1119 	RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1120 		lcore_id);
1121 
1122 	for (i = 0; i < qconf->n_rx_queue; i++) {
1123 		portid = qconf->rx_queue_list[i].port_id;
1124 		queueid = qconf->rx_queue_list[i].queue_id;
1125 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1126 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1127 	}
1128 
1129 	while (!is_done()) {
1130 
1131 		cur_tsc = rte_rdtsc();
1132 		/*
1133 		 * TX burst queue drain
1134 		 */
1135 		diff_tsc = cur_tsc - prev_tsc;
1136 		if (unlikely(diff_tsc > drain_tsc)) {
1137 			for (i = 0; i < qconf->n_tx_port; ++i) {
1138 				portid = qconf->tx_port_id[i];
1139 				rte_eth_tx_buffer_flush(portid,
1140 						qconf->tx_queue_id[portid],
1141 						qconf->tx_buffer[portid]);
1142 			}
1143 			prev_tsc = cur_tsc;
1144 		}
1145 
1146 		/*
1147 		 * Read packet from RX queues
1148 		 */
1149 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1150 			rx_queue = &(qconf->rx_queue_list[i]);
1151 			portid = rx_queue->port_id;
1152 			queueid = rx_queue->queue_id;
1153 
1154 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1155 								MAX_PKT_BURST);
1156 			ep_nep[nb_rx == 0]++;
1157 			fp_nfp[nb_rx == MAX_PKT_BURST]++;
1158 			poll_count++;
1159 			if (unlikely(nb_rx == 0))
1160 				continue;
1161 
1162 			/* Prefetch first packets */
1163 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1164 				rte_prefetch0(rte_pktmbuf_mtod(
1165 						pkts_burst[j], void *));
1166 			}
1167 
1168 			/* Prefetch and forward already prefetched packets */
1169 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1170 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1171 						j + PREFETCH_OFFSET], void *));
1172 				l3fwd_simple_forward(pkts_burst[j], portid,
1173 								qconf);
1174 			}
1175 
1176 			/* Forward remaining prefetched packets */
1177 			for (; j < nb_rx; j++) {
1178 				l3fwd_simple_forward(pkts_burst[j], portid,
1179 								qconf);
1180 			}
1181 		}
1182 		if (unlikely(poll_count >= DEFAULT_COUNT)) {
1183 			diff_tsc = cur_tsc - prev_tel_tsc;
1184 			if (diff_tsc >= MAX_CYCLES) {
1185 				br = FULL;
1186 			} else if (diff_tsc > MIN_CYCLES &&
1187 					diff_tsc < MAX_CYCLES) {
1188 				br = (diff_tsc * 100) / MAX_CYCLES;
1189 			} else {
1190 				br = ZERO;
1191 			}
1192 			poll_count = 0;
1193 			prev_tel_tsc = cur_tsc;
1194 			/* update stats for telemetry */
1195 			rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1196 			stats[lcore_id].ep_nep[0] = ep_nep[0];
1197 			stats[lcore_id].ep_nep[1] = ep_nep[1];
1198 			stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1199 			stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1200 			stats[lcore_id].br = br;
1201 			rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1202 		}
1203 	}
1204 
1205 	return 0;
1206 }
1207 /* main processing loop */
1208 static int
1209 main_empty_poll_loop(__rte_unused void *dummy)
1210 {
1211 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1212 	unsigned int lcore_id;
1213 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1214 	int i, j, nb_rx;
1215 	uint8_t queueid;
1216 	uint16_t portid;
1217 	struct lcore_conf *qconf;
1218 	struct lcore_rx_queue *rx_queue;
1219 
1220 	const uint64_t drain_tsc =
1221 		(rte_get_tsc_hz() + US_PER_S - 1) /
1222 		US_PER_S * BURST_TX_DRAIN_US;
1223 
1224 	prev_tsc = 0;
1225 
1226 	lcore_id = rte_lcore_id();
1227 	qconf = &lcore_conf[lcore_id];
1228 
1229 	if (qconf->n_rx_queue == 0) {
1230 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1231 			lcore_id);
1232 		return 0;
1233 	}
1234 
1235 	for (i = 0; i < qconf->n_rx_queue; i++) {
1236 		portid = qconf->rx_queue_list[i].port_id;
1237 		queueid = qconf->rx_queue_list[i].queue_id;
1238 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1239 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1240 	}
1241 
1242 	while (!is_done()) {
1243 		stats[lcore_id].nb_iteration_looped++;
1244 
1245 		cur_tsc = rte_rdtsc();
1246 		/*
1247 		 * TX burst queue drain
1248 		 */
1249 		diff_tsc = cur_tsc - prev_tsc;
1250 		if (unlikely(diff_tsc > drain_tsc)) {
1251 			for (i = 0; i < qconf->n_tx_port; ++i) {
1252 				portid = qconf->tx_port_id[i];
1253 				rte_eth_tx_buffer_flush(portid,
1254 						qconf->tx_queue_id[portid],
1255 						qconf->tx_buffer[portid]);
1256 			}
1257 			prev_tsc = cur_tsc;
1258 		}
1259 
1260 		/*
1261 		 * Read packet from RX queues
1262 		 */
1263 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1264 			rx_queue = &(qconf->rx_queue_list[i]);
1265 			rx_queue->idle_hint = 0;
1266 			portid = rx_queue->port_id;
1267 			queueid = rx_queue->queue_id;
1268 
1269 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1270 					MAX_PKT_BURST);
1271 
1272 			stats[lcore_id].nb_rx_processed += nb_rx;
1273 
1274 			if (nb_rx == 0) {
1275 
1276 				rte_power_empty_poll_stat_update(lcore_id);
1277 
1278 				continue;
1279 			} else {
1280 				rte_power_poll_stat_update(lcore_id, nb_rx);
1281 			}
1282 
1283 
1284 			/* Prefetch first packets */
1285 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1286 				rte_prefetch0(rte_pktmbuf_mtod(
1287 							pkts_burst[j], void *));
1288 			}
1289 
1290 			/* Prefetch and forward already prefetched packets */
1291 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1292 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1293 							j + PREFETCH_OFFSET],
1294 							void *));
1295 				l3fwd_simple_forward(pkts_burst[j], portid,
1296 						qconf);
1297 			}
1298 
1299 			/* Forward remaining prefetched packets */
1300 			for (; j < nb_rx; j++) {
1301 				l3fwd_simple_forward(pkts_burst[j], portid,
1302 						qconf);
1303 			}
1304 
1305 		}
1306 
1307 	}
1308 
1309 	return 0;
1310 }
1311 /* main processing loop */
1312 static int
1313 main_legacy_loop(__rte_unused void *dummy)
1314 {
1315 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1316 	unsigned lcore_id;
1317 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1318 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1319 	int i, j, nb_rx;
1320 	uint8_t queueid;
1321 	uint16_t portid;
1322 	struct lcore_conf *qconf;
1323 	struct lcore_rx_queue *rx_queue;
1324 	enum freq_scale_hint_t lcore_scaleup_hint;
1325 	uint32_t lcore_rx_idle_count = 0;
1326 	uint32_t lcore_idle_hint = 0;
1327 	int intr_en = 0;
1328 
1329 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1330 
1331 	prev_tsc = 0;
1332 	hz = rte_get_timer_hz();
1333 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1334 
1335 	lcore_id = rte_lcore_id();
1336 	qconf = &lcore_conf[lcore_id];
1337 
1338 	if (qconf->n_rx_queue == 0) {
1339 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1340 		return 0;
1341 	}
1342 
1343 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1344 
1345 	for (i = 0; i < qconf->n_rx_queue; i++) {
1346 		portid = qconf->rx_queue_list[i].port_id;
1347 		queueid = qconf->rx_queue_list[i].queue_id;
1348 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1349 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1350 	}
1351 
1352 	/* add into event wait list */
1353 	if (event_register(qconf) == 0)
1354 		intr_en = 1;
1355 	else
1356 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1357 
1358 	while (!is_done()) {
1359 		stats[lcore_id].nb_iteration_looped++;
1360 
1361 		cur_tsc = rte_rdtsc();
1362 		cur_tsc_power = cur_tsc;
1363 
1364 		/*
1365 		 * TX burst queue drain
1366 		 */
1367 		diff_tsc = cur_tsc - prev_tsc;
1368 		if (unlikely(diff_tsc > drain_tsc)) {
1369 			for (i = 0; i < qconf->n_tx_port; ++i) {
1370 				portid = qconf->tx_port_id[i];
1371 				rte_eth_tx_buffer_flush(portid,
1372 						qconf->tx_queue_id[portid],
1373 						qconf->tx_buffer[portid]);
1374 			}
1375 			prev_tsc = cur_tsc;
1376 		}
1377 
1378 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1379 		if (diff_tsc_power > tim_res_tsc) {
1380 			rte_timer_manage();
1381 			prev_tsc_power = cur_tsc_power;
1382 		}
1383 
1384 start_rx:
1385 		/*
1386 		 * Read packet from RX queues
1387 		 */
1388 		lcore_scaleup_hint = FREQ_CURRENT;
1389 		lcore_rx_idle_count = 0;
1390 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1391 			rx_queue = &(qconf->rx_queue_list[i]);
1392 			rx_queue->idle_hint = 0;
1393 			portid = rx_queue->port_id;
1394 			queueid = rx_queue->queue_id;
1395 
1396 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1397 								MAX_PKT_BURST);
1398 
1399 			stats[lcore_id].nb_rx_processed += nb_rx;
1400 			if (unlikely(nb_rx == 0)) {
1401 				/**
1402 				 * no packet received from rx queue, try to
1403 				 * sleep for a while forcing CPU enter deeper
1404 				 * C states.
1405 				 */
1406 				rx_queue->zero_rx_packet_count++;
1407 
1408 				if (rx_queue->zero_rx_packet_count <=
1409 							MIN_ZERO_POLL_COUNT)
1410 					continue;
1411 
1412 				rx_queue->idle_hint = power_idle_heuristic(\
1413 					rx_queue->zero_rx_packet_count);
1414 				lcore_rx_idle_count++;
1415 			} else {
1416 				rx_queue->zero_rx_packet_count = 0;
1417 
1418 				/**
1419 				 * do not scale up frequency immediately as
1420 				 * user to kernel space communication is costly
1421 				 * which might impact packet I/O for received
1422 				 * packets.
1423 				 */
1424 				rx_queue->freq_up_hint =
1425 					power_freq_scaleup_heuristic(lcore_id,
1426 							portid, queueid);
1427 			}
1428 
1429 			/* Prefetch first packets */
1430 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1431 				rte_prefetch0(rte_pktmbuf_mtod(
1432 						pkts_burst[j], void *));
1433 			}
1434 
1435 			/* Prefetch and forward already prefetched packets */
1436 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1437 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1438 						j + PREFETCH_OFFSET], void *));
1439 				l3fwd_simple_forward(pkts_burst[j], portid,
1440 								qconf);
1441 			}
1442 
1443 			/* Forward remaining prefetched packets */
1444 			for (; j < nb_rx; j++) {
1445 				l3fwd_simple_forward(pkts_burst[j], portid,
1446 								qconf);
1447 			}
1448 		}
1449 
1450 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1451 			for (i = 1, lcore_scaleup_hint =
1452 				qconf->rx_queue_list[0].freq_up_hint;
1453 					i < qconf->n_rx_queue; ++i) {
1454 				rx_queue = &(qconf->rx_queue_list[i]);
1455 				if (rx_queue->freq_up_hint >
1456 						lcore_scaleup_hint)
1457 					lcore_scaleup_hint =
1458 						rx_queue->freq_up_hint;
1459 			}
1460 
1461 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1462 				if (rte_power_freq_max)
1463 					rte_power_freq_max(lcore_id);
1464 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1465 				if (rte_power_freq_up)
1466 					rte_power_freq_up(lcore_id);
1467 			}
1468 		} else {
1469 			/**
1470 			 * All Rx queues empty in recent consecutive polls,
1471 			 * sleep in a conservative manner, meaning sleep as
1472 			 * less as possible.
1473 			 */
1474 			for (i = 1, lcore_idle_hint =
1475 				qconf->rx_queue_list[0].idle_hint;
1476 					i < qconf->n_rx_queue; ++i) {
1477 				rx_queue = &(qconf->rx_queue_list[i]);
1478 				if (rx_queue->idle_hint < lcore_idle_hint)
1479 					lcore_idle_hint = rx_queue->idle_hint;
1480 			}
1481 
1482 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1483 				/**
1484 				 * execute "pause" instruction to avoid context
1485 				 * switch which generally take hundred of
1486 				 * microseconds for short sleep.
1487 				 */
1488 				rte_delay_us(lcore_idle_hint);
1489 			else {
1490 				/* suspend until rx interrupt triggers */
1491 				if (intr_en) {
1492 					turn_on_off_intr(qconf, 1);
1493 					sleep_until_rx_interrupt(
1494 							qconf->n_rx_queue,
1495 							lcore_id);
1496 					turn_on_off_intr(qconf, 0);
1497 					/**
1498 					 * start receiving packets immediately
1499 					 */
1500 					if (likely(!is_done()))
1501 						goto start_rx;
1502 				}
1503 			}
1504 			stats[lcore_id].sleep_time += lcore_idle_hint;
1505 		}
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static int
1512 check_lcore_params(void)
1513 {
1514 	uint8_t queue, lcore;
1515 	uint16_t i;
1516 	int socketid;
1517 
1518 	for (i = 0; i < nb_lcore_params; ++i) {
1519 		queue = lcore_params[i].queue_id;
1520 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1521 			printf("invalid queue number: %hhu\n", queue);
1522 			return -1;
1523 		}
1524 		lcore = lcore_params[i].lcore_id;
1525 		if (!rte_lcore_is_enabled(lcore)) {
1526 			printf("error: lcore %hhu is not enabled in lcore "
1527 							"mask\n", lcore);
1528 			return -1;
1529 		}
1530 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1531 							(numa_on == 0)) {
1532 			printf("warning: lcore %hhu is on socket %d with numa "
1533 						"off\n", lcore, socketid);
1534 		}
1535 		if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1536 			printf("cannot enable main core %d in config for telemetry mode\n",
1537 				rte_lcore_id());
1538 			return -1;
1539 		}
1540 	}
1541 	return 0;
1542 }
1543 
1544 static int
1545 check_port_config(void)
1546 {
1547 	unsigned portid;
1548 	uint16_t i;
1549 
1550 	for (i = 0; i < nb_lcore_params; ++i) {
1551 		portid = lcore_params[i].port_id;
1552 		if ((enabled_port_mask & (1 << portid)) == 0) {
1553 			printf("port %u is not enabled in port mask\n",
1554 								portid);
1555 			return -1;
1556 		}
1557 		if (!rte_eth_dev_is_valid_port(portid)) {
1558 			printf("port %u is not present on the board\n",
1559 								portid);
1560 			return -1;
1561 		}
1562 	}
1563 	return 0;
1564 }
1565 
1566 static uint8_t
1567 get_port_n_rx_queues(const uint16_t port)
1568 {
1569 	int queue = -1;
1570 	uint16_t i;
1571 
1572 	for (i = 0; i < nb_lcore_params; ++i) {
1573 		if (lcore_params[i].port_id == port &&
1574 				lcore_params[i].queue_id > queue)
1575 			queue = lcore_params[i].queue_id;
1576 	}
1577 	return (uint8_t)(++queue);
1578 }
1579 
1580 static int
1581 init_lcore_rx_queues(void)
1582 {
1583 	uint16_t i, nb_rx_queue;
1584 	uint8_t lcore;
1585 
1586 	for (i = 0; i < nb_lcore_params; ++i) {
1587 		lcore = lcore_params[i].lcore_id;
1588 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1589 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1590 			printf("error: too many queues (%u) for lcore: %u\n",
1591 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1592 			return -1;
1593 		} else {
1594 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1595 				lcore_params[i].port_id;
1596 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1597 				lcore_params[i].queue_id;
1598 			lcore_conf[lcore].n_rx_queue++;
1599 		}
1600 	}
1601 	return 0;
1602 }
1603 
1604 /* display usage */
1605 static void
1606 print_usage(const char *prgname)
1607 {
1608 	printf ("%s [EAL options] -- -p PORTMASK -P"
1609 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1610 		"  [--high-perf-cores CORELIST"
1611 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1612 		"  [--max-pkt-len PKTLEN]\n"
1613 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1614 		"  -P: enable promiscuous mode\n"
1615 		"  --config (port,queue,lcore): rx queues configuration\n"
1616 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1617 		"  --perf-config: similar as config, cores specified as indices"
1618 		" for bins containing high or regular performance cores\n"
1619 		"  --no-numa: optional, disable numa awareness\n"
1620 		"  --max-pkt-len PKTLEN: maximum packet length in decimal (64-9600)\n"
1621 		"  --parse-ptype: parse packet type by software\n"
1622 		"  --legacy: use legacy interrupt-based scaling\n"
1623 		"  --empty-poll: enable empty poll detection"
1624 		" follow (training_flag, high_threshold, med_threshold)\n"
1625 		" --telemetry: enable telemetry mode, to update"
1626 		" empty polls, full polls, and core busyness to telemetry\n"
1627 		" --interrupt-only: enable interrupt-only mode\n"
1628 		" --pmd-mgmt MODE: enable PMD power management mode. "
1629 		"Currently supported modes: baseline, monitor, pause, scale\n",
1630 		prgname);
1631 }
1632 
1633 static int parse_max_pkt_len(const char *pktlen)
1634 {
1635 	char *end = NULL;
1636 	unsigned long len;
1637 
1638 	/* parse decimal string */
1639 	len = strtoul(pktlen, &end, 10);
1640 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1641 		return -1;
1642 
1643 	if (len == 0)
1644 		return -1;
1645 
1646 	return len;
1647 }
1648 
1649 static int
1650 parse_portmask(const char *portmask)
1651 {
1652 	char *end = NULL;
1653 	unsigned long pm;
1654 
1655 	/* parse hexadecimal string */
1656 	pm = strtoul(portmask, &end, 16);
1657 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1658 		return 0;
1659 
1660 	return pm;
1661 }
1662 
1663 static int
1664 parse_config(const char *q_arg)
1665 {
1666 	char s[256];
1667 	const char *p, *p0 = q_arg;
1668 	char *end;
1669 	enum fieldnames {
1670 		FLD_PORT = 0,
1671 		FLD_QUEUE,
1672 		FLD_LCORE,
1673 		_NUM_FLD
1674 	};
1675 	unsigned long int_fld[_NUM_FLD];
1676 	char *str_fld[_NUM_FLD];
1677 	int i;
1678 	unsigned size;
1679 
1680 	nb_lcore_params = 0;
1681 
1682 	while ((p = strchr(p0,'(')) != NULL) {
1683 		++p;
1684 		if((p0 = strchr(p,')')) == NULL)
1685 			return -1;
1686 
1687 		size = p0 - p;
1688 		if(size >= sizeof(s))
1689 			return -1;
1690 
1691 		snprintf(s, sizeof(s), "%.*s", size, p);
1692 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1693 								_NUM_FLD)
1694 			return -1;
1695 		for (i = 0; i < _NUM_FLD; i++){
1696 			errno = 0;
1697 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1698 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1699 									255)
1700 				return -1;
1701 		}
1702 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1703 			printf("exceeded max number of lcore params: %hu\n",
1704 				nb_lcore_params);
1705 			return -1;
1706 		}
1707 		lcore_params_array[nb_lcore_params].port_id =
1708 				(uint8_t)int_fld[FLD_PORT];
1709 		lcore_params_array[nb_lcore_params].queue_id =
1710 				(uint8_t)int_fld[FLD_QUEUE];
1711 		lcore_params_array[nb_lcore_params].lcore_id =
1712 				(uint8_t)int_fld[FLD_LCORE];
1713 		++nb_lcore_params;
1714 	}
1715 	lcore_params = lcore_params_array;
1716 
1717 	return 0;
1718 }
1719 
1720 static int
1721 parse_pmd_mgmt_config(const char *name)
1722 {
1723 #define PMD_MGMT_MONITOR "monitor"
1724 #define PMD_MGMT_PAUSE   "pause"
1725 #define PMD_MGMT_SCALE   "scale"
1726 #define PMD_MGMT_BASELINE  "baseline"
1727 
1728 	if (strncmp(PMD_MGMT_MONITOR, name, sizeof(PMD_MGMT_MONITOR)) == 0) {
1729 		pmgmt_type = RTE_POWER_MGMT_TYPE_MONITOR;
1730 		return 0;
1731 	}
1732 
1733 	if (strncmp(PMD_MGMT_PAUSE, name, sizeof(PMD_MGMT_PAUSE)) == 0) {
1734 		pmgmt_type = RTE_POWER_MGMT_TYPE_PAUSE;
1735 		return 0;
1736 	}
1737 
1738 	if (strncmp(PMD_MGMT_SCALE, name, sizeof(PMD_MGMT_SCALE)) == 0) {
1739 		pmgmt_type = RTE_POWER_MGMT_TYPE_SCALE;
1740 		return 0;
1741 	}
1742 	if (strncmp(PMD_MGMT_BASELINE, name, sizeof(PMD_MGMT_BASELINE)) == 0) {
1743 		baseline_enabled = true;
1744 		return 0;
1745 	}
1746 	/* unknown PMD power management mode */
1747 	return -1;
1748 }
1749 
1750 static int
1751 parse_ep_config(const char *q_arg)
1752 {
1753 	char s[256];
1754 	const char *p = q_arg;
1755 	char *end;
1756 	int  num_arg;
1757 
1758 	char *str_fld[3];
1759 
1760 	int training_flag;
1761 	int med_edpi;
1762 	int hgh_edpi;
1763 
1764 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1765 	ep_hgh_edpi = EMPTY_POLL_HGH_THRESHOLD;
1766 
1767 	strlcpy(s, p, sizeof(s));
1768 
1769 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1770 
1771 	empty_poll_train = false;
1772 
1773 	if (num_arg == 0)
1774 		return 0;
1775 
1776 	if (num_arg == 3) {
1777 
1778 		training_flag = strtoul(str_fld[0], &end, 0);
1779 		med_edpi = strtoul(str_fld[1], &end, 0);
1780 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1781 
1782 		if (training_flag == 1)
1783 			empty_poll_train = true;
1784 
1785 		if (med_edpi > 0)
1786 			ep_med_edpi = med_edpi;
1787 
1788 		if (hgh_edpi > 0)
1789 			ep_hgh_edpi = hgh_edpi;
1790 
1791 	} else {
1792 
1793 		return -1;
1794 	}
1795 
1796 	return 0;
1797 
1798 }
1799 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1800 #define CMD_LINE_OPT_LEGACY "legacy"
1801 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1802 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1803 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1804 #define CMD_LINE_OPT_PMD_MGMT "pmd-mgmt"
1805 #define CMD_LINE_OPT_MAX_PKT_LEN "max-pkt-len"
1806 
1807 /* Parse the argument given in the command line of the application */
1808 static int
1809 parse_args(int argc, char **argv)
1810 {
1811 	int opt, ret;
1812 	char **argvopt;
1813 	int option_index;
1814 	uint32_t limit;
1815 	char *prgname = argv[0];
1816 	static struct option lgopts[] = {
1817 		{"config", 1, 0, 0},
1818 		{"perf-config", 1, 0, 0},
1819 		{"high-perf-cores", 1, 0, 0},
1820 		{"no-numa", 0, 0, 0},
1821 		{CMD_LINE_OPT_MAX_PKT_LEN, 1, 0, 0},
1822 		{CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1823 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1824 		{CMD_LINE_OPT_LEGACY, 0, 0, 0},
1825 		{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1826 		{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1827 		{CMD_LINE_OPT_PMD_MGMT, 1, 0, 0},
1828 		{NULL, 0, 0, 0}
1829 	};
1830 
1831 	argvopt = argv;
1832 
1833 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1834 				lgopts, &option_index)) != EOF) {
1835 
1836 		switch (opt) {
1837 		/* portmask */
1838 		case 'p':
1839 			enabled_port_mask = parse_portmask(optarg);
1840 			if (enabled_port_mask == 0) {
1841 				printf("invalid portmask\n");
1842 				print_usage(prgname);
1843 				return -1;
1844 			}
1845 			break;
1846 		case 'P':
1847 			printf("Promiscuous mode selected\n");
1848 			promiscuous_on = 1;
1849 			break;
1850 		case 'l':
1851 			limit = parse_max_pkt_len(optarg);
1852 			freq_tlb[LOW] = limit;
1853 			break;
1854 		case 'm':
1855 			limit = parse_max_pkt_len(optarg);
1856 			freq_tlb[MED] = limit;
1857 			break;
1858 		case 'h':
1859 			limit = parse_max_pkt_len(optarg);
1860 			freq_tlb[HGH] = limit;
1861 			break;
1862 		/* long options */
1863 		case 0:
1864 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1865 				ret = parse_config(optarg);
1866 				if (ret) {
1867 					printf("invalid config\n");
1868 					print_usage(prgname);
1869 					return -1;
1870 				}
1871 			}
1872 
1873 			if (!strncmp(lgopts[option_index].name,
1874 					"perf-config", 11)) {
1875 				ret = parse_perf_config(optarg);
1876 				if (ret) {
1877 					printf("invalid perf-config\n");
1878 					print_usage(prgname);
1879 					return -1;
1880 				}
1881 			}
1882 
1883 			if (!strncmp(lgopts[option_index].name,
1884 					"high-perf-cores", 15)) {
1885 				ret = parse_perf_core_list(optarg);
1886 				if (ret) {
1887 					printf("invalid high-perf-cores\n");
1888 					print_usage(prgname);
1889 					return -1;
1890 				}
1891 			}
1892 
1893 			if (!strncmp(lgopts[option_index].name,
1894 						"no-numa", 7)) {
1895 				printf("numa is disabled \n");
1896 				numa_on = 0;
1897 			}
1898 
1899 			if (!strncmp(lgopts[option_index].name,
1900 					CMD_LINE_OPT_LEGACY,
1901 					sizeof(CMD_LINE_OPT_LEGACY))) {
1902 				if (app_mode != APP_MODE_DEFAULT) {
1903 					printf(" legacy mode is mutually exclusive with other modes\n");
1904 					return -1;
1905 				}
1906 				app_mode = APP_MODE_LEGACY;
1907 				printf("legacy mode is enabled\n");
1908 			}
1909 
1910 			if (!strncmp(lgopts[option_index].name,
1911 					CMD_LINE_OPT_EMPTY_POLL, 10)) {
1912 				if (app_mode != APP_MODE_DEFAULT) {
1913 					printf(" empty-poll mode is mutually exclusive with other modes\n");
1914 					return -1;
1915 				}
1916 				app_mode = APP_MODE_EMPTY_POLL;
1917 				ret = parse_ep_config(optarg);
1918 
1919 				if (ret) {
1920 					printf("invalid empty poll config\n");
1921 					print_usage(prgname);
1922 					return -1;
1923 				}
1924 				printf("empty-poll is enabled\n");
1925 			}
1926 
1927 			if (!strncmp(lgopts[option_index].name,
1928 					CMD_LINE_OPT_TELEMETRY,
1929 					sizeof(CMD_LINE_OPT_TELEMETRY))) {
1930 				if (app_mode != APP_MODE_DEFAULT) {
1931 					printf(" telemetry mode is mutually exclusive with other modes\n");
1932 					return -1;
1933 				}
1934 				app_mode = APP_MODE_TELEMETRY;
1935 				printf("telemetry mode is enabled\n");
1936 			}
1937 
1938 			if (!strncmp(lgopts[option_index].name,
1939 					CMD_LINE_OPT_PMD_MGMT,
1940 					sizeof(CMD_LINE_OPT_PMD_MGMT))) {
1941 				if (app_mode != APP_MODE_DEFAULT) {
1942 					printf(" power mgmt mode is mutually exclusive with other modes\n");
1943 					return -1;
1944 				}
1945 				if (parse_pmd_mgmt_config(optarg) < 0) {
1946 					printf(" Invalid PMD power management mode: %s\n",
1947 							optarg);
1948 					return -1;
1949 				}
1950 				app_mode = APP_MODE_PMD_MGMT;
1951 				printf("PMD power mgmt mode is enabled\n");
1952 			}
1953 			if (!strncmp(lgopts[option_index].name,
1954 					CMD_LINE_OPT_INTERRUPT_ONLY,
1955 					sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1956 				if (app_mode != APP_MODE_DEFAULT) {
1957 					printf(" interrupt-only mode is mutually exclusive with other modes\n");
1958 					return -1;
1959 				}
1960 				app_mode = APP_MODE_INTERRUPT;
1961 				printf("interrupt-only mode is enabled\n");
1962 			}
1963 
1964 			if (!strncmp(lgopts[option_index].name,
1965 					CMD_LINE_OPT_MAX_PKT_LEN,
1966 					sizeof(CMD_LINE_OPT_MAX_PKT_LEN))) {
1967 				printf("Custom frame size is configured\n");
1968 				max_pkt_len = parse_max_pkt_len(optarg);
1969 			}
1970 
1971 			if (!strncmp(lgopts[option_index].name,
1972 				     CMD_LINE_OPT_PARSE_PTYPE,
1973 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1974 				printf("soft parse-ptype is enabled\n");
1975 				parse_ptype = 1;
1976 			}
1977 
1978 			break;
1979 
1980 		default:
1981 			print_usage(prgname);
1982 			return -1;
1983 		}
1984 	}
1985 
1986 	if (optind >= 0)
1987 		argv[optind-1] = prgname;
1988 
1989 	ret = optind-1;
1990 	optind = 1; /* reset getopt lib */
1991 	return ret;
1992 }
1993 
1994 static void
1995 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1996 {
1997 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
1998 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1999 	printf("%s%s", name, buf);
2000 }
2001 
2002 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2003 static void
2004 setup_hash(int socketid)
2005 {
2006 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
2007 		.name = NULL,
2008 		.entries = L3FWD_HASH_ENTRIES,
2009 		.key_len = sizeof(struct ipv4_5tuple),
2010 		.hash_func = DEFAULT_HASH_FUNC,
2011 		.hash_func_init_val = 0,
2012 	};
2013 
2014 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
2015 		.name = NULL,
2016 		.entries = L3FWD_HASH_ENTRIES,
2017 		.key_len = sizeof(struct ipv6_5tuple),
2018 		.hash_func = DEFAULT_HASH_FUNC,
2019 		.hash_func_init_val = 0,
2020 	};
2021 
2022 	unsigned i;
2023 	int ret;
2024 	char s[64];
2025 
2026 	/* create ipv4 hash */
2027 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
2028 	ipv4_l3fwd_hash_params.name = s;
2029 	ipv4_l3fwd_hash_params.socket_id = socketid;
2030 	ipv4_l3fwd_lookup_struct[socketid] =
2031 		rte_hash_create(&ipv4_l3fwd_hash_params);
2032 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2033 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2034 				"socket %d\n", socketid);
2035 
2036 	/* create ipv6 hash */
2037 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2038 	ipv6_l3fwd_hash_params.name = s;
2039 	ipv6_l3fwd_hash_params.socket_id = socketid;
2040 	ipv6_l3fwd_lookup_struct[socketid] =
2041 		rte_hash_create(&ipv6_l3fwd_hash_params);
2042 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2043 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2044 				"socket %d\n", socketid);
2045 
2046 
2047 	/* populate the ipv4 hash */
2048 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2049 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2050 				(void *) &ipv4_l3fwd_route_array[i].key);
2051 		if (ret < 0) {
2052 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2053 				"l3fwd hash on socket %d\n", i, socketid);
2054 		}
2055 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2056 		printf("Hash: Adding key\n");
2057 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2058 	}
2059 
2060 	/* populate the ipv6 hash */
2061 	for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2062 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2063 				(void *) &ipv6_l3fwd_route_array[i].key);
2064 		if (ret < 0) {
2065 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2066 				"l3fwd hash on socket %d\n", i, socketid);
2067 		}
2068 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2069 		printf("Hash: Adding key\n");
2070 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2071 	}
2072 }
2073 #endif
2074 
2075 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2076 static void
2077 setup_lpm(int socketid)
2078 {
2079 	unsigned i;
2080 	int ret;
2081 	char s[64];
2082 
2083 	/* create the LPM table */
2084 	struct rte_lpm_config lpm_ipv4_config;
2085 
2086 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2087 	lpm_ipv4_config.number_tbl8s = 256;
2088 	lpm_ipv4_config.flags = 0;
2089 
2090 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2091 	ipv4_l3fwd_lookup_struct[socketid] =
2092 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
2093 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2094 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2095 				" on socket %d\n", socketid);
2096 
2097 	/* populate the LPM table */
2098 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2099 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2100 			ipv4_l3fwd_route_array[i].ip,
2101 			ipv4_l3fwd_route_array[i].depth,
2102 			ipv4_l3fwd_route_array[i].if_out);
2103 
2104 		if (ret < 0) {
2105 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2106 				"l3fwd LPM table on socket %d\n",
2107 				i, socketid);
2108 		}
2109 
2110 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2111 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2112 			ipv4_l3fwd_route_array[i].depth,
2113 			ipv4_l3fwd_route_array[i].if_out);
2114 	}
2115 }
2116 #endif
2117 
2118 static int
2119 init_mem(unsigned nb_mbuf)
2120 {
2121 	struct lcore_conf *qconf;
2122 	int socketid;
2123 	unsigned lcore_id;
2124 	char s[64];
2125 
2126 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2127 		if (rte_lcore_is_enabled(lcore_id) == 0)
2128 			continue;
2129 
2130 		if (numa_on)
2131 			socketid = rte_lcore_to_socket_id(lcore_id);
2132 		else
2133 			socketid = 0;
2134 
2135 		if (socketid >= NB_SOCKETS) {
2136 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2137 					"out of range %d\n", socketid,
2138 						lcore_id, NB_SOCKETS);
2139 		}
2140 		if (pktmbuf_pool[socketid] == NULL) {
2141 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2142 			pktmbuf_pool[socketid] =
2143 				rte_pktmbuf_pool_create(s, nb_mbuf,
2144 					MEMPOOL_CACHE_SIZE, 0,
2145 					RTE_MBUF_DEFAULT_BUF_SIZE,
2146 					socketid);
2147 			if (pktmbuf_pool[socketid] == NULL)
2148 				rte_exit(EXIT_FAILURE,
2149 					"Cannot init mbuf pool on socket %d\n",
2150 								socketid);
2151 			else
2152 				printf("Allocated mbuf pool on socket %d\n",
2153 								socketid);
2154 
2155 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2156 			setup_lpm(socketid);
2157 #else
2158 			setup_hash(socketid);
2159 #endif
2160 		}
2161 		qconf = &lcore_conf[lcore_id];
2162 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2163 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2164 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2165 #endif
2166 	}
2167 	return 0;
2168 }
2169 
2170 /* Check the link status of all ports in up to 9s, and print them finally */
2171 static void
2172 check_all_ports_link_status(uint32_t port_mask)
2173 {
2174 #define CHECK_INTERVAL 100 /* 100ms */
2175 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2176 	uint8_t count, all_ports_up, print_flag = 0;
2177 	uint16_t portid;
2178 	struct rte_eth_link link;
2179 	int ret;
2180 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
2181 
2182 	printf("\nChecking link status");
2183 	fflush(stdout);
2184 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2185 		all_ports_up = 1;
2186 		RTE_ETH_FOREACH_DEV(portid) {
2187 			if ((port_mask & (1 << portid)) == 0)
2188 				continue;
2189 			memset(&link, 0, sizeof(link));
2190 			ret = rte_eth_link_get_nowait(portid, &link);
2191 			if (ret < 0) {
2192 				all_ports_up = 0;
2193 				if (print_flag == 1)
2194 					printf("Port %u link get failed: %s\n",
2195 						portid, rte_strerror(-ret));
2196 				continue;
2197 			}
2198 			/* print link status if flag set */
2199 			if (print_flag == 1) {
2200 				rte_eth_link_to_str(link_status_text,
2201 					sizeof(link_status_text), &link);
2202 				printf("Port %d %s\n", portid,
2203 				       link_status_text);
2204 				continue;
2205 			}
2206 			/* clear all_ports_up flag if any link down */
2207 			if (link.link_status == RTE_ETH_LINK_DOWN) {
2208 				all_ports_up = 0;
2209 				break;
2210 			}
2211 		}
2212 		/* after finally printing all link status, get out */
2213 		if (print_flag == 1)
2214 			break;
2215 
2216 		if (all_ports_up == 0) {
2217 			printf(".");
2218 			fflush(stdout);
2219 			rte_delay_ms(CHECK_INTERVAL);
2220 		}
2221 
2222 		/* set the print_flag if all ports up or timeout */
2223 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2224 			print_flag = 1;
2225 			printf("done\n");
2226 		}
2227 	}
2228 }
2229 
2230 static int check_ptype(uint16_t portid)
2231 {
2232 	int i, ret;
2233 	int ptype_l3_ipv4 = 0;
2234 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2235 	int ptype_l3_ipv6 = 0;
2236 #endif
2237 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2238 
2239 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2240 	if (ret <= 0)
2241 		return 0;
2242 
2243 	uint32_t ptypes[ret];
2244 
2245 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2246 	for (i = 0; i < ret; ++i) {
2247 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2248 			ptype_l3_ipv4 = 1;
2249 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2250 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2251 			ptype_l3_ipv6 = 1;
2252 #endif
2253 	}
2254 
2255 	if (ptype_l3_ipv4 == 0)
2256 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2257 
2258 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2259 	if (ptype_l3_ipv6 == 0)
2260 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2261 #endif
2262 
2263 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2264 	if (ptype_l3_ipv4)
2265 #else /* APP_LOOKUP_EXACT_MATCH */
2266 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
2267 #endif
2268 		return 1;
2269 
2270 	return 0;
2271 
2272 }
2273 
2274 static int
2275 init_power_library(void)
2276 {
2277 	enum power_management_env env;
2278 	unsigned int lcore_id;
2279 	int ret = 0;
2280 
2281 	RTE_LCORE_FOREACH(lcore_id) {
2282 		/* init power management library */
2283 		ret = rte_power_init(lcore_id);
2284 		if (ret) {
2285 			RTE_LOG(ERR, POWER,
2286 				"Library initialization failed on core %u\n",
2287 				lcore_id);
2288 			return ret;
2289 		}
2290 		/* we're not supporting the VM channel mode */
2291 		env = rte_power_get_env();
2292 		if (env != PM_ENV_ACPI_CPUFREQ &&
2293 				env != PM_ENV_PSTATE_CPUFREQ) {
2294 			RTE_LOG(ERR, POWER,
2295 				"Only ACPI and PSTATE mode are supported\n");
2296 			return -1;
2297 		}
2298 	}
2299 	return ret;
2300 }
2301 
2302 static int
2303 deinit_power_library(void)
2304 {
2305 	unsigned int lcore_id;
2306 	int ret = 0;
2307 
2308 	RTE_LCORE_FOREACH(lcore_id) {
2309 		/* deinit power management library */
2310 		ret = rte_power_exit(lcore_id);
2311 		if (ret) {
2312 			RTE_LOG(ERR, POWER,
2313 				"Library deinitialization failed on core %u\n",
2314 				lcore_id);
2315 			return ret;
2316 		}
2317 	}
2318 	return ret;
2319 }
2320 
2321 static void
2322 get_current_stat_values(uint64_t *values)
2323 {
2324 	unsigned int lcore_id = rte_lcore_id();
2325 	struct lcore_conf *qconf;
2326 	uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2327 	uint64_t count = 0;
2328 
2329 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2330 		qconf = &lcore_conf[lcore_id];
2331 		if (qconf->n_rx_queue == 0)
2332 			continue;
2333 		count++;
2334 		rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2335 		app_eps += stats[lcore_id].ep_nep[1];
2336 		app_fps += stats[lcore_id].fp_nfp[1];
2337 		app_br += stats[lcore_id].br;
2338 		rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2339 	}
2340 
2341 	if (count > 0) {
2342 		values[0] = app_eps/count;
2343 		values[1] = app_fps/count;
2344 		values[2] = app_br/count;
2345 	} else
2346 		memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2347 
2348 }
2349 
2350 static void
2351 update_telemetry(__rte_unused struct rte_timer *tim,
2352 		__rte_unused void *arg)
2353 {
2354 	int ret;
2355 	uint64_t values[NUM_TELSTATS] = {0};
2356 
2357 	get_current_stat_values(values);
2358 	ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2359 					values, RTE_DIM(values));
2360 	if (ret < 0)
2361 		RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
2362 }
2363 
2364 static int
2365 handle_app_stats(const char *cmd __rte_unused,
2366 		const char *params __rte_unused,
2367 		struct rte_tel_data *d)
2368 {
2369 	uint64_t values[NUM_TELSTATS] = {0};
2370 	uint32_t i;
2371 
2372 	rte_tel_data_start_dict(d);
2373 	get_current_stat_values(values);
2374 	for (i = 0; i < NUM_TELSTATS; i++)
2375 		rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2376 				values[i]);
2377 	return 0;
2378 }
2379 
2380 static void
2381 telemetry_setup_timer(void)
2382 {
2383 	int lcore_id = rte_lcore_id();
2384 	uint64_t hz = rte_get_timer_hz();
2385 	uint64_t ticks;
2386 
2387 	ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2388 	rte_timer_reset_sync(&telemetry_timer,
2389 			ticks,
2390 			PERIODICAL,
2391 			lcore_id,
2392 			update_telemetry,
2393 			NULL);
2394 }
2395 static void
2396 empty_poll_setup_timer(void)
2397 {
2398 	int lcore_id = rte_lcore_id();
2399 	uint64_t hz = rte_get_timer_hz();
2400 
2401 	struct  ep_params *ep_ptr = ep_params;
2402 
2403 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2404 
2405 	rte_timer_reset_sync(&ep_ptr->timer0,
2406 			ep_ptr->interval_ticks,
2407 			PERIODICAL,
2408 			lcore_id,
2409 			rte_empty_poll_detection,
2410 			(void *)ep_ptr);
2411 
2412 }
2413 static int
2414 launch_timer(unsigned int lcore_id)
2415 {
2416 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2417 
2418 	RTE_SET_USED(lcore_id);
2419 
2420 
2421 	if (rte_get_main_lcore() != lcore_id) {
2422 		rte_panic("timer on lcore:%d which is not main core:%d\n",
2423 				lcore_id,
2424 				rte_get_main_lcore());
2425 	}
2426 
2427 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2428 
2429 	if (app_mode == APP_MODE_EMPTY_POLL)
2430 		empty_poll_setup_timer();
2431 	else
2432 		telemetry_setup_timer();
2433 
2434 	cycles_10ms = rte_get_timer_hz() / 100;
2435 
2436 	while (!is_done()) {
2437 		cur_tsc = rte_rdtsc();
2438 		diff_tsc = cur_tsc - prev_tsc;
2439 		if (diff_tsc > cycles_10ms) {
2440 			rte_timer_manage();
2441 			prev_tsc = cur_tsc;
2442 			cycles_10ms = rte_get_timer_hz() / 100;
2443 		}
2444 	}
2445 
2446 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2447 
2448 	return 0;
2449 }
2450 
2451 static int
2452 autodetect_mode(void)
2453 {
2454 	RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2455 
2456 	/*
2457 	 * Empty poll and telemetry modes have to be specifically requested to
2458 	 * be enabled, but we can auto-detect between interrupt mode with or
2459 	 * without frequency scaling. Both ACPI and pstate can be used.
2460 	 */
2461 	if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2462 		return APP_MODE_LEGACY;
2463 	if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2464 		return APP_MODE_LEGACY;
2465 
2466 	RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2467 
2468 	return APP_MODE_INTERRUPT;
2469 }
2470 
2471 static const char *
2472 mode_to_str(enum appmode mode)
2473 {
2474 	switch (mode) {
2475 	case APP_MODE_LEGACY:
2476 		return "legacy";
2477 	case APP_MODE_EMPTY_POLL:
2478 		return "empty poll";
2479 	case APP_MODE_TELEMETRY:
2480 		return "telemetry";
2481 	case APP_MODE_INTERRUPT:
2482 		return "interrupt-only";
2483 	case APP_MODE_PMD_MGMT:
2484 		return "pmd mgmt";
2485 	default:
2486 		return "invalid";
2487 	}
2488 }
2489 
2490 static uint32_t
2491 eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
2492 {
2493 	uint32_t overhead_len;
2494 
2495 	if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
2496 		overhead_len = max_rx_pktlen - max_mtu;
2497 	else
2498 		overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
2499 
2500 	return overhead_len;
2501 }
2502 
2503 static int
2504 config_port_max_pkt_len(struct rte_eth_conf *conf,
2505 		struct rte_eth_dev_info *dev_info)
2506 {
2507 	uint32_t overhead_len;
2508 
2509 	if (max_pkt_len == 0)
2510 		return 0;
2511 
2512 	if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
2513 		return -1;
2514 
2515 	overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
2516 			dev_info->max_mtu);
2517 	conf->rxmode.mtu = max_pkt_len - overhead_len;
2518 
2519 	if (conf->rxmode.mtu > RTE_ETHER_MTU)
2520 		conf->txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2521 
2522 	return 0;
2523 }
2524 
2525 /* Power library initialized in the main routine. 8< */
2526 int
2527 main(int argc, char **argv)
2528 {
2529 	struct lcore_conf *qconf;
2530 	struct rte_eth_dev_info dev_info;
2531 	struct rte_eth_txconf *txconf;
2532 	int ret;
2533 	uint16_t nb_ports;
2534 	uint16_t queueid;
2535 	unsigned lcore_id;
2536 	uint64_t hz;
2537 	uint32_t n_tx_queue, nb_lcores;
2538 	uint32_t dev_rxq_num, dev_txq_num;
2539 	uint8_t nb_rx_queue, queue, socketid;
2540 	uint16_t portid;
2541 	const char *ptr_strings[NUM_TELSTATS];
2542 
2543 	/* init EAL */
2544 	ret = rte_eal_init(argc, argv);
2545 	if (ret < 0)
2546 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2547 	argc -= ret;
2548 	argv += ret;
2549 
2550 	/* catch SIGINT and restore cpufreq governor to ondemand */
2551 	signal(SIGINT, signal_exit_now);
2552 
2553 	/* init RTE timer library to be used late */
2554 	rte_timer_subsystem_init();
2555 
2556 	/* if we're running pmd-mgmt mode, don't default to baseline mode */
2557 	baseline_enabled = false;
2558 
2559 	/* parse application arguments (after the EAL ones) */
2560 	ret = parse_args(argc, argv);
2561 	if (ret < 0)
2562 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2563 
2564 	if (app_mode == APP_MODE_DEFAULT)
2565 		app_mode = autodetect_mode();
2566 
2567 	RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2568 			mode_to_str(app_mode));
2569 
2570 	/* only legacy and empty poll mode rely on power library */
2571 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2572 			init_power_library())
2573 		rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2574 
2575 	if (update_lcore_params() < 0)
2576 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2577 
2578 	if (check_lcore_params() < 0)
2579 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2580 
2581 	ret = init_lcore_rx_queues();
2582 	if (ret < 0)
2583 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2584 
2585 	nb_ports = rte_eth_dev_count_avail();
2586 
2587 	if (check_port_config() < 0)
2588 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2589 
2590 	nb_lcores = rte_lcore_count();
2591 
2592 	/* initialize all ports */
2593 	RTE_ETH_FOREACH_DEV(portid) {
2594 		struct rte_eth_conf local_port_conf = port_conf;
2595 		/* not all app modes need interrupts */
2596 		bool need_intr = app_mode == APP_MODE_LEGACY ||
2597 				app_mode == APP_MODE_INTERRUPT;
2598 
2599 		/* skip ports that are not enabled */
2600 		if ((enabled_port_mask & (1 << portid)) == 0) {
2601 			printf("\nSkipping disabled port %d\n", portid);
2602 			continue;
2603 		}
2604 
2605 		/* init port */
2606 		printf("Initializing port %d ... ", portid );
2607 		fflush(stdout);
2608 
2609 		ret = rte_eth_dev_info_get(portid, &dev_info);
2610 		if (ret != 0)
2611 			rte_exit(EXIT_FAILURE,
2612 				"Error during getting device (port %u) info: %s\n",
2613 				portid, strerror(-ret));
2614 
2615 		dev_rxq_num = dev_info.max_rx_queues;
2616 		dev_txq_num = dev_info.max_tx_queues;
2617 
2618 		nb_rx_queue = get_port_n_rx_queues(portid);
2619 		if (nb_rx_queue > dev_rxq_num)
2620 			rte_exit(EXIT_FAILURE,
2621 				"Cannot configure not existed rxq: "
2622 				"port=%d\n", portid);
2623 
2624 		n_tx_queue = nb_lcores;
2625 		if (n_tx_queue > dev_txq_num)
2626 			n_tx_queue = dev_txq_num;
2627 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2628 			nb_rx_queue, (unsigned)n_tx_queue );
2629 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2630 		if (nb_rx_queue == 0)
2631 			need_intr = false;
2632 
2633 		if (need_intr)
2634 			local_port_conf.intr_conf.rxq = 1;
2635 
2636 		ret = rte_eth_dev_info_get(portid, &dev_info);
2637 		if (ret != 0)
2638 			rte_exit(EXIT_FAILURE,
2639 				"Error during getting device (port %u) info: %s\n",
2640 				portid, strerror(-ret));
2641 
2642 		ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
2643 		if (ret != 0)
2644 			rte_exit(EXIT_FAILURE,
2645 				"Invalid max packet length: %u (port %u)\n",
2646 				max_pkt_len, portid);
2647 
2648 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
2649 			local_port_conf.txmode.offloads |=
2650 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2651 
2652 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2653 			dev_info.flow_type_rss_offloads;
2654 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2655 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2656 			printf("Port %u modified RSS hash function based on hardware support,"
2657 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2658 				portid,
2659 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2660 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2661 		}
2662 
2663 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf == 0)
2664 			local_port_conf.rxmode.mq_mode = RTE_ETH_MQ_RX_NONE;
2665 		local_port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
2666 		port_conf.rxmode.offloads = local_port_conf.rxmode.offloads;
2667 
2668 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2669 					(uint16_t)n_tx_queue, &local_port_conf);
2670 		if (ret < 0)
2671 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2672 					"err=%d, port=%d\n", ret, portid);
2673 
2674 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2675 						       &nb_txd);
2676 		if (ret < 0)
2677 			rte_exit(EXIT_FAILURE,
2678 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2679 				 ret, portid);
2680 
2681 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2682 		if (ret < 0)
2683 			rte_exit(EXIT_FAILURE,
2684 				 "Cannot get MAC address: err=%d, port=%d\n",
2685 				 ret, portid);
2686 
2687 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2688 		printf(", ");
2689 
2690 		/* init memory */
2691 		ret = init_mem(NB_MBUF);
2692 		if (ret < 0)
2693 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2694 
2695 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2696 			if (rte_lcore_is_enabled(lcore_id) == 0)
2697 				continue;
2698 
2699 			/* Initialize TX buffers */
2700 			qconf = &lcore_conf[lcore_id];
2701 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2702 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2703 				rte_eth_dev_socket_id(portid));
2704 			if (qconf->tx_buffer[portid] == NULL)
2705 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2706 						 portid);
2707 
2708 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2709 		}
2710 
2711 		/* init one TX queue per couple (lcore,port) */
2712 		queueid = 0;
2713 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2714 			if (rte_lcore_is_enabled(lcore_id) == 0)
2715 				continue;
2716 
2717 			if (queueid >= dev_txq_num)
2718 				continue;
2719 
2720 			if (numa_on)
2721 				socketid = \
2722 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2723 			else
2724 				socketid = 0;
2725 
2726 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2727 			fflush(stdout);
2728 
2729 			txconf = &dev_info.default_txconf;
2730 			txconf->offloads = local_port_conf.txmode.offloads;
2731 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2732 						     socketid, txconf);
2733 			if (ret < 0)
2734 				rte_exit(EXIT_FAILURE,
2735 					"rte_eth_tx_queue_setup: err=%d, "
2736 						"port=%d\n", ret, portid);
2737 
2738 			qconf = &lcore_conf[lcore_id];
2739 			qconf->tx_queue_id[portid] = queueid;
2740 			queueid++;
2741 
2742 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2743 			qconf->n_tx_port++;
2744 		}
2745 		printf("\n");
2746 	}
2747 
2748 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2749 		if (rte_lcore_is_enabled(lcore_id) == 0)
2750 			continue;
2751 
2752 		if (app_mode == APP_MODE_LEGACY) {
2753 			/* init timer structures for each enabled lcore */
2754 			rte_timer_init(&power_timers[lcore_id]);
2755 			hz = rte_get_timer_hz();
2756 			rte_timer_reset(&power_timers[lcore_id],
2757 					hz/TIMER_NUMBER_PER_SECOND,
2758 					SINGLE, lcore_id,
2759 					power_timer_cb, NULL);
2760 		}
2761 		qconf = &lcore_conf[lcore_id];
2762 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2763 		fflush(stdout);
2764 
2765 		/* init RX queues */
2766 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2767 			struct rte_eth_rxconf rxq_conf;
2768 
2769 			portid = qconf->rx_queue_list[queue].port_id;
2770 			queueid = qconf->rx_queue_list[queue].queue_id;
2771 
2772 			if (numa_on)
2773 				socketid = \
2774 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2775 			else
2776 				socketid = 0;
2777 
2778 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2779 			fflush(stdout);
2780 
2781 			ret = rte_eth_dev_info_get(portid, &dev_info);
2782 			if (ret != 0)
2783 				rte_exit(EXIT_FAILURE,
2784 					"Error during getting device (port %u) info: %s\n",
2785 					portid, strerror(-ret));
2786 
2787 			rxq_conf = dev_info.default_rxconf;
2788 			rxq_conf.offloads = port_conf.rxmode.offloads;
2789 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2790 				socketid, &rxq_conf,
2791 				pktmbuf_pool[socketid]);
2792 			if (ret < 0)
2793 				rte_exit(EXIT_FAILURE,
2794 					"rte_eth_rx_queue_setup: err=%d, "
2795 						"port=%d\n", ret, portid);
2796 
2797 			if (parse_ptype) {
2798 				if (add_cb_parse_ptype(portid, queueid) < 0)
2799 					rte_exit(EXIT_FAILURE,
2800 						 "Fail to add ptype cb\n");
2801 			}
2802 
2803 			if (app_mode == APP_MODE_PMD_MGMT && !baseline_enabled) {
2804 				ret = rte_power_ethdev_pmgmt_queue_enable(
2805 						lcore_id, portid, queueid,
2806 						pmgmt_type);
2807 				if (ret < 0)
2808 					rte_exit(EXIT_FAILURE,
2809 						"rte_power_ethdev_pmgmt_queue_enable: err=%d, port=%d\n",
2810 							ret, portid);
2811 			}
2812 		}
2813 	}
2814 	/* >8 End of power library initialization. */
2815 
2816 	printf("\n");
2817 
2818 	/* start ports */
2819 	RTE_ETH_FOREACH_DEV(portid) {
2820 		if ((enabled_port_mask & (1 << portid)) == 0) {
2821 			continue;
2822 		}
2823 		/* Start device */
2824 		ret = rte_eth_dev_start(portid);
2825 		if (ret < 0)
2826 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2827 						"port=%d\n", ret, portid);
2828 		/*
2829 		 * If enabled, put device in promiscuous mode.
2830 		 * This allows IO forwarding mode to forward packets
2831 		 * to itself through 2 cross-connected  ports of the
2832 		 * target machine.
2833 		 */
2834 		if (promiscuous_on) {
2835 			ret = rte_eth_promiscuous_enable(portid);
2836 			if (ret != 0)
2837 				rte_exit(EXIT_FAILURE,
2838 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2839 					rte_strerror(-ret), portid);
2840 		}
2841 		/* initialize spinlock for each port */
2842 		rte_spinlock_init(&(locks[portid]));
2843 
2844 		if (!parse_ptype)
2845 			if (!check_ptype(portid))
2846 				rte_exit(EXIT_FAILURE,
2847 					"PMD can not provide needed ptypes\n");
2848 	}
2849 
2850 	check_all_ports_link_status(enabled_port_mask);
2851 
2852 	if (app_mode == APP_MODE_EMPTY_POLL) {
2853 
2854 		if (empty_poll_train) {
2855 			policy.state = TRAINING;
2856 		} else {
2857 			policy.state = MED_NORMAL;
2858 			policy.med_base_edpi = ep_med_edpi;
2859 			policy.hgh_base_edpi = ep_hgh_edpi;
2860 		}
2861 
2862 		ret = rte_power_empty_poll_stat_init(&ep_params,
2863 				freq_tlb,
2864 				&policy);
2865 		if (ret < 0)
2866 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2867 	}
2868 
2869 
2870 	/* launch per-lcore init on every lcore */
2871 	if (app_mode == APP_MODE_LEGACY) {
2872 		rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
2873 	} else if (app_mode == APP_MODE_EMPTY_POLL) {
2874 		empty_poll_stop = false;
2875 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2876 				SKIP_MAIN);
2877 	} else if (app_mode == APP_MODE_TELEMETRY) {
2878 		unsigned int i;
2879 
2880 		/* Init metrics library */
2881 		rte_metrics_init(rte_socket_id());
2882 		/** Register stats with metrics library */
2883 		for (i = 0; i < NUM_TELSTATS; i++)
2884 			ptr_strings[i] = telstats_strings[i].name;
2885 
2886 		ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2887 		if (ret >= 0)
2888 			telstats_index = ret;
2889 		else
2890 			rte_exit(EXIT_FAILURE, "failed to register metrics names");
2891 
2892 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
2893 			rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2894 		}
2895 		rte_timer_init(&telemetry_timer);
2896 		rte_telemetry_register_cmd("/l3fwd-power/stats",
2897 				handle_app_stats,
2898 				"Returns global power stats. Parameters: None");
2899 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2900 						SKIP_MAIN);
2901 	} else if (app_mode == APP_MODE_INTERRUPT) {
2902 		rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
2903 	} else if (app_mode == APP_MODE_PMD_MGMT) {
2904 		/* reuse telemetry loop for PMD power management mode */
2905 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL, CALL_MAIN);
2906 	}
2907 
2908 	if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2909 		launch_timer(rte_lcore_id());
2910 
2911 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2912 		if (rte_eal_wait_lcore(lcore_id) < 0)
2913 			return -1;
2914 	}
2915 
2916 	if (app_mode == APP_MODE_PMD_MGMT) {
2917 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2918 			if (rte_lcore_is_enabled(lcore_id) == 0)
2919 				continue;
2920 			qconf = &lcore_conf[lcore_id];
2921 			for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
2922 				portid = qconf->rx_queue_list[queue].port_id;
2923 				queueid = qconf->rx_queue_list[queue].queue_id;
2924 
2925 				rte_power_ethdev_pmgmt_queue_disable(lcore_id,
2926 						portid, queueid);
2927 			}
2928 		}
2929 	}
2930 
2931 	RTE_ETH_FOREACH_DEV(portid)
2932 	{
2933 		if ((enabled_port_mask & (1 << portid)) == 0)
2934 			continue;
2935 
2936 		ret = rte_eth_dev_stop(portid);
2937 		if (ret != 0)
2938 			RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
2939 				ret, portid);
2940 
2941 		rte_eth_dev_close(portid);
2942 	}
2943 
2944 	if (app_mode == APP_MODE_EMPTY_POLL)
2945 		rte_power_empty_poll_stat_free();
2946 
2947 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2948 			deinit_power_library())
2949 		rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
2950 
2951 	if (rte_eal_cleanup() < 0)
2952 		RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
2953 
2954 	return 0;
2955 }
2956