1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_tailq.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_launch.h> 57 #include <rte_atomic.h> 58 #include <rte_cycles.h> 59 #include <rte_prefetch.h> 60 #include <rte_lcore.h> 61 #include <rte_per_lcore.h> 62 #include <rte_branch_prediction.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_random.h> 66 #include <rte_debug.h> 67 #include <rte_ether.h> 68 #include <rte_ethdev.h> 69 #include <rte_ring.h> 70 #include <rte_mempool.h> 71 #include <rte_mbuf.h> 72 #include <rte_ip.h> 73 #include <rte_tcp.h> 74 #include <rte_udp.h> 75 #include <rte_string_fns.h> 76 #include <rte_timer.h> 77 #include <rte_power.h> 78 79 #include "main.h" 80 81 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 82 83 #define MAX_PKT_BURST 32 84 85 #define MIN_ZERO_POLL_COUNT 5 86 87 /* around 100ms at 2 Ghz */ 88 #define TIMER_RESOLUTION_CYCLES 200000000ULL 89 /* 100 ms interval */ 90 #define TIMER_NUMBER_PER_SECOND 10 91 /* 100000 us */ 92 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 93 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 94 95 #define APP_LOOKUP_EXACT_MATCH 0 96 #define APP_LOOKUP_LPM 1 97 #define DO_RFC_1812_CHECKS 98 99 #ifndef APP_LOOKUP_METHOD 100 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 101 #endif 102 103 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 104 #include <rte_hash.h> 105 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 106 #include <rte_lpm.h> 107 #else 108 #error "APP_LOOKUP_METHOD set to incorrect value" 109 #endif 110 111 #ifndef IPv6_BYTES 112 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 113 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 114 #define IPv6_BYTES(addr) \ 115 addr[0], addr[1], addr[2], addr[3], \ 116 addr[4], addr[5], addr[6], addr[7], \ 117 addr[8], addr[9], addr[10], addr[11],\ 118 addr[12], addr[13],addr[14], addr[15] 119 #endif 120 121 #define MAX_JUMBO_PKT_LEN 9600 122 123 #define IPV6_ADDR_LEN 16 124 125 #define MEMPOOL_CACHE_SIZE 256 126 127 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 128 129 /* 130 * This expression is used to calculate the number of mbufs needed depending on 131 * user input, taking into account memory for rx and tx hardware rings, cache 132 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 133 * NB_MBUF never goes below a minimum value of 8192. 134 */ 135 136 #define NB_MBUF RTE_MAX ( \ 137 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 138 nb_ports*nb_lcores*MAX_PKT_BURST + \ 139 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 140 nb_lcores*MEMPOOL_CACHE_SIZE), \ 141 (unsigned)8192) 142 143 /* 144 * RX and TX Prefetch, Host, and Write-back threshold values should be 145 * carefully set for optimal performance. Consult the network 146 * controller's datasheet and supporting DPDK documentation for guidance 147 * on how these parameters should be set. 148 */ 149 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */ 150 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */ 151 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */ 152 153 /* 154 * These default values are optimized for use with the Intel(R) 82599 10 GbE 155 * Controller and the DPDK ixgbe PMD. Consider using other values for other 156 * network controllers and/or network drivers. 157 */ 158 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */ 159 #define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */ 160 #define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */ 161 162 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 163 164 #define NB_SOCKETS 8 165 166 /* Configure how many packets ahead to prefetch, when reading packets */ 167 #define PREFETCH_OFFSET 3 168 169 /* 170 * Configurable number of RX/TX ring descriptors 171 */ 172 #define RTE_TEST_RX_DESC_DEFAULT 128 173 #define RTE_TEST_TX_DESC_DEFAULT 512 174 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 175 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 176 177 /* ethernet addresses of ports */ 178 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 179 180 /* mask of enabled ports */ 181 static uint32_t enabled_port_mask = 0; 182 /* Ports set in promiscuous mode off by default. */ 183 static int promiscuous_on = 0; 184 /* NUMA is enabled by default. */ 185 static int numa_on = 1; 186 187 enum freq_scale_hint_t 188 { 189 FREQ_LOWER = -1, 190 FREQ_CURRENT = 0, 191 FREQ_HIGHER = 1, 192 FREQ_HIGHEST = 2 193 }; 194 195 struct mbuf_table { 196 uint16_t len; 197 struct rte_mbuf *m_table[MAX_PKT_BURST]; 198 }; 199 200 struct lcore_rx_queue { 201 uint8_t port_id; 202 uint8_t queue_id; 203 enum freq_scale_hint_t freq_up_hint; 204 uint32_t zero_rx_packet_count; 205 uint32_t idle_hint; 206 } __rte_cache_aligned; 207 208 #define MAX_RX_QUEUE_PER_LCORE 16 209 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 210 #define MAX_RX_QUEUE_PER_PORT 128 211 212 #define MAX_LCORE_PARAMS 1024 213 struct lcore_params { 214 uint8_t port_id; 215 uint8_t queue_id; 216 uint8_t lcore_id; 217 } __rte_cache_aligned; 218 219 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 220 static struct lcore_params lcore_params_array_default[] = { 221 {0, 0, 2}, 222 {0, 1, 2}, 223 {0, 2, 2}, 224 {1, 0, 2}, 225 {1, 1, 2}, 226 {1, 2, 2}, 227 {2, 0, 2}, 228 {3, 0, 3}, 229 {3, 1, 3}, 230 }; 231 232 static struct lcore_params * lcore_params = lcore_params_array_default; 233 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 234 sizeof(lcore_params_array_default[0]); 235 236 static struct rte_eth_conf port_conf = { 237 .rxmode = { 238 .max_rx_pkt_len = ETHER_MAX_LEN, 239 .split_hdr_size = 0, 240 .header_split = 0, /**< Header Split disabled */ 241 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 242 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 243 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 244 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 245 }, 246 .rx_adv_conf = { 247 .rss_conf = { 248 .rss_key = NULL, 249 .rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6, 250 }, 251 }, 252 .txmode = { 253 .mq_mode = ETH_DCB_NONE, 254 }, 255 }; 256 257 static const struct rte_eth_rxconf rx_conf = { 258 .rx_thresh = { 259 .pthresh = RX_PTHRESH, 260 .hthresh = RX_HTHRESH, 261 .wthresh = RX_WTHRESH, 262 }, 263 .rx_free_thresh = 32, 264 }; 265 266 static const struct rte_eth_txconf tx_conf = { 267 .tx_thresh = { 268 .pthresh = TX_PTHRESH, 269 .hthresh = TX_HTHRESH, 270 .wthresh = TX_WTHRESH, 271 }, 272 .tx_free_thresh = 0, /* Use PMD default values */ 273 .tx_rs_thresh = 0, /* Use PMD default values */ 274 .txq_flags = 0x0, 275 }; 276 277 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 278 279 280 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 281 282 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 283 #include <rte_hash_crc.h> 284 #define DEFAULT_HASH_FUNC rte_hash_crc 285 #else 286 #include <rte_jhash.h> 287 #define DEFAULT_HASH_FUNC rte_jhash 288 #endif 289 290 struct ipv4_5tuple { 291 uint32_t ip_dst; 292 uint32_t ip_src; 293 uint16_t port_dst; 294 uint16_t port_src; 295 uint8_t proto; 296 } __attribute__((__packed__)); 297 298 struct ipv6_5tuple { 299 uint8_t ip_dst[IPV6_ADDR_LEN]; 300 uint8_t ip_src[IPV6_ADDR_LEN]; 301 uint16_t port_dst; 302 uint16_t port_src; 303 uint8_t proto; 304 } __attribute__((__packed__)); 305 306 struct ipv4_l3fwd_route { 307 struct ipv4_5tuple key; 308 uint8_t if_out; 309 }; 310 311 struct ipv6_l3fwd_route { 312 struct ipv6_5tuple key; 313 uint8_t if_out; 314 }; 315 316 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 317 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 318 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 319 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 320 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 321 }; 322 323 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 324 { 325 { 326 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 327 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 328 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 329 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 330 1, 10, IPPROTO_UDP 331 }, 4 332 }, 333 }; 334 335 typedef struct rte_hash lookup_struct_t; 336 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 337 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 338 339 #define L3FWD_HASH_ENTRIES 1024 340 341 #define IPV4_L3FWD_NUM_ROUTES \ 342 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 343 344 #define IPV6_L3FWD_NUM_ROUTES \ 345 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 346 347 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 348 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 349 #endif 350 351 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 352 struct ipv4_l3fwd_route { 353 uint32_t ip; 354 uint8_t depth; 355 uint8_t if_out; 356 }; 357 358 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 359 {IPv4(1,1,1,0), 24, 0}, 360 {IPv4(2,1,1,0), 24, 1}, 361 {IPv4(3,1,1,0), 24, 2}, 362 {IPv4(4,1,1,0), 24, 3}, 363 {IPv4(5,1,1,0), 24, 4}, 364 {IPv4(6,1,1,0), 24, 5}, 365 {IPv4(7,1,1,0), 24, 6}, 366 {IPv4(8,1,1,0), 24, 7}, 367 }; 368 369 #define IPV4_L3FWD_NUM_ROUTES \ 370 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 371 372 #define IPV4_L3FWD_LPM_MAX_RULES 1024 373 374 typedef struct rte_lpm lookup_struct_t; 375 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 376 #endif 377 378 struct lcore_conf { 379 uint16_t n_rx_queue; 380 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 381 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 382 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 383 lookup_struct_t * ipv4_lookup_struct; 384 lookup_struct_t * ipv6_lookup_struct; 385 } __rte_cache_aligned; 386 387 struct lcore_stats { 388 /* total sleep time in ms since last frequency scaling down */ 389 uint32_t sleep_time; 390 /* number of long sleep recently */ 391 uint32_t nb_long_sleep; 392 /* freq. scaling up trend */ 393 uint32_t trend; 394 /* total packet processed recently */ 395 uint64_t nb_rx_processed; 396 /* total iterations looped recently */ 397 uint64_t nb_iteration_looped; 398 uint32_t padding[9]; 399 } __rte_cache_aligned; 400 401 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 402 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 403 static struct rte_timer power_timers[RTE_MAX_LCORE]; 404 405 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 406 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 407 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 408 409 /* exit signal handler */ 410 static void 411 signal_exit_now(int sigtype) 412 { 413 unsigned lcore_id; 414 int ret; 415 416 if (sigtype == SIGINT) { 417 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 418 if (rte_lcore_is_enabled(lcore_id) == 0) 419 continue; 420 421 /* init power management library */ 422 ret = rte_power_exit(lcore_id); 423 if (ret) 424 rte_exit(EXIT_FAILURE, "Power management " 425 "library de-initialization failed on " 426 "core%u\n", lcore_id); 427 } 428 } 429 430 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 431 } 432 433 /* Freqency scale down timer callback */ 434 static void 435 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 436 __attribute__((unused)) void *arg) 437 { 438 uint64_t hz; 439 float sleep_time_ratio; 440 unsigned lcore_id = rte_lcore_id(); 441 442 /* accumulate total execution time in us when callback is invoked */ 443 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 444 (float)SCALING_PERIOD; 445 446 /** 447 * check whether need to scale down frequency a step if it sleep a lot. 448 */ 449 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) 450 rte_power_freq_down(lcore_id); 451 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 452 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) 453 /** 454 * scale down a step if average packet per iteration less 455 * than expectation. 456 */ 457 rte_power_freq_down(lcore_id); 458 459 /** 460 * initialize another timer according to current frequency to ensure 461 * timer interval is relatively fixed. 462 */ 463 hz = rte_get_timer_hz(); 464 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 465 SINGLE, lcore_id, power_timer_cb, NULL); 466 467 stats[lcore_id].nb_rx_processed = 0; 468 stats[lcore_id].nb_iteration_looped = 0; 469 470 stats[lcore_id].sleep_time = 0; 471 } 472 473 /* Send burst of packets on an output interface */ 474 static inline int 475 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) 476 { 477 struct rte_mbuf **m_table; 478 int ret; 479 uint16_t queueid; 480 481 queueid = qconf->tx_queue_id[port]; 482 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 483 484 ret = rte_eth_tx_burst(port, queueid, m_table, n); 485 if (unlikely(ret < n)) { 486 do { 487 rte_pktmbuf_free(m_table[ret]); 488 } while (++ret < n); 489 } 490 491 return 0; 492 } 493 494 /* Enqueue a single packet, and send burst if queue is filled */ 495 static inline int 496 send_single_packet(struct rte_mbuf *m, uint8_t port) 497 { 498 uint32_t lcore_id; 499 uint16_t len; 500 struct lcore_conf *qconf; 501 502 lcore_id = rte_lcore_id(); 503 504 qconf = &lcore_conf[lcore_id]; 505 len = qconf->tx_mbufs[port].len; 506 qconf->tx_mbufs[port].m_table[len] = m; 507 len++; 508 509 /* enough pkts to be sent */ 510 if (unlikely(len == MAX_PKT_BURST)) { 511 send_burst(qconf, MAX_PKT_BURST, port); 512 len = 0; 513 } 514 515 qconf->tx_mbufs[port].len = len; 516 return 0; 517 } 518 519 #ifdef DO_RFC_1812_CHECKS 520 static inline int 521 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 522 { 523 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 524 /* 525 * 1. The packet length reported by the Link Layer must be large 526 * enough to hold the minimum length legal IP datagram (20 bytes). 527 */ 528 if (link_len < sizeof(struct ipv4_hdr)) 529 return -1; 530 531 /* 2. The IP checksum must be correct. */ 532 /* this is checked in H/W */ 533 534 /* 535 * 3. The IP version number must be 4. If the version number is not 4 536 * then the packet may be another version of IP, such as IPng or 537 * ST-II. 538 */ 539 if (((pkt->version_ihl) >> 4) != 4) 540 return -3; 541 /* 542 * 4. The IP header length field must be large enough to hold the 543 * minimum length legal IP datagram (20 bytes = 5 words). 544 */ 545 if ((pkt->version_ihl & 0xf) < 5) 546 return -4; 547 548 /* 549 * 5. The IP total length field must be large enough to hold the IP 550 * datagram header, whose length is specified in the IP header length 551 * field. 552 */ 553 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 554 return -5; 555 556 return 0; 557 } 558 #endif 559 560 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 561 static void 562 print_ipv4_key(struct ipv4_5tuple key) 563 { 564 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 565 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 566 key.port_dst, key.port_src, key.proto); 567 } 568 static void 569 print_ipv6_key(struct ipv6_5tuple key) 570 { 571 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 572 "port dst = %d, port src = %d, proto = %d\n", 573 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 574 key.port_dst, key.port_src, key.proto); 575 } 576 577 static inline uint8_t 578 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 579 lookup_struct_t * ipv4_l3fwd_lookup_struct) 580 { 581 struct ipv4_5tuple key; 582 struct tcp_hdr *tcp; 583 struct udp_hdr *udp; 584 int ret = 0; 585 586 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 587 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 588 key.proto = ipv4_hdr->next_proto_id; 589 590 switch (ipv4_hdr->next_proto_id) { 591 case IPPROTO_TCP: 592 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 593 sizeof(struct ipv4_hdr)); 594 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 595 key.port_src = rte_be_to_cpu_16(tcp->src_port); 596 break; 597 598 case IPPROTO_UDP: 599 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 600 sizeof(struct ipv4_hdr)); 601 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 602 key.port_src = rte_be_to_cpu_16(udp->src_port); 603 break; 604 605 default: 606 key.port_dst = 0; 607 key.port_src = 0; 608 break; 609 } 610 611 /* Find destination port */ 612 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 613 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 614 } 615 616 static inline uint8_t 617 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 618 lookup_struct_t *ipv6_l3fwd_lookup_struct) 619 { 620 struct ipv6_5tuple key; 621 struct tcp_hdr *tcp; 622 struct udp_hdr *udp; 623 int ret = 0; 624 625 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 626 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 627 628 key.proto = ipv6_hdr->proto; 629 630 switch (ipv6_hdr->proto) { 631 case IPPROTO_TCP: 632 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 633 sizeof(struct ipv6_hdr)); 634 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 635 key.port_src = rte_be_to_cpu_16(tcp->src_port); 636 break; 637 638 case IPPROTO_UDP: 639 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 640 sizeof(struct ipv6_hdr)); 641 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 642 key.port_src = rte_be_to_cpu_16(udp->src_port); 643 break; 644 645 default: 646 key.port_dst = 0; 647 key.port_src = 0; 648 break; 649 } 650 651 /* Find destination port */ 652 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 653 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 654 } 655 #endif 656 657 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 658 static inline uint8_t 659 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 660 lookup_struct_t *ipv4_l3fwd_lookup_struct) 661 { 662 uint8_t next_hop; 663 664 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 665 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 666 next_hop : portid); 667 } 668 #endif 669 670 static inline void 671 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 672 struct lcore_conf *qconf) 673 { 674 struct ether_hdr *eth_hdr; 675 struct ipv4_hdr *ipv4_hdr; 676 void *d_addr_bytes; 677 uint8_t dst_port; 678 679 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 680 681 if (m->ol_flags & PKT_RX_IPV4_HDR) { 682 /* Handle IPv4 headers.*/ 683 ipv4_hdr = 684 (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 685 + sizeof(struct ether_hdr)); 686 687 #ifdef DO_RFC_1812_CHECKS 688 /* Check to make sure the packet is valid (RFC1812) */ 689 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt.pkt_len) < 0) { 690 rte_pktmbuf_free(m); 691 return; 692 } 693 #endif 694 695 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 696 qconf->ipv4_lookup_struct); 697 if (dst_port >= RTE_MAX_ETHPORTS || 698 (enabled_port_mask & 1 << dst_port) == 0) 699 dst_port = portid; 700 701 /* 02:00:00:00:00:xx */ 702 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 703 *((uint64_t *)d_addr_bytes) = 704 0x000000000002 + ((uint64_t)dst_port << 40); 705 706 #ifdef DO_RFC_1812_CHECKS 707 /* Update time to live and header checksum */ 708 --(ipv4_hdr->time_to_live); 709 ++(ipv4_hdr->hdr_checksum); 710 #endif 711 712 /* src addr */ 713 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 714 715 send_single_packet(m, dst_port); 716 } 717 else { 718 /* Handle IPv6 headers.*/ 719 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 720 struct ipv6_hdr *ipv6_hdr; 721 722 ipv6_hdr = 723 (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 724 + sizeof(struct ether_hdr)); 725 726 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 727 qconf->ipv6_lookup_struct); 728 729 if (dst_port >= RTE_MAX_ETHPORTS || 730 (enabled_port_mask & 1 << dst_port) == 0) 731 dst_port = portid; 732 733 /* 02:00:00:00:00:xx */ 734 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 735 *((uint64_t *)d_addr_bytes) = 736 0x000000000002 + ((uint64_t)dst_port << 40); 737 738 /* src addr */ 739 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 740 741 send_single_packet(m, dst_port); 742 #else 743 /* We don't currently handle IPv6 packets in LPM mode. */ 744 rte_pktmbuf_free(m); 745 #endif 746 } 747 748 } 749 750 #define SLEEP_GEAR1_THRESHOLD 100 751 #define SLEEP_GEAR2_THRESHOLD 1000 752 753 static inline uint32_t 754 power_idle_heuristic(uint32_t zero_rx_packet_count) 755 { 756 /* If zero count is less than 100, use it as the sleep time in us */ 757 if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD) 758 return zero_rx_packet_count; 759 /* If zero count is less than 1000, sleep time should be 100 us */ 760 else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) && 761 (zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD)) 762 return SLEEP_GEAR1_THRESHOLD; 763 /* If zero count is greater than 1000, sleep time should be 1000 us */ 764 else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD) 765 return SLEEP_GEAR2_THRESHOLD; 766 767 return 0; 768 } 769 770 static inline enum freq_scale_hint_t 771 power_freq_scaleup_heuristic(unsigned lcore_id, 772 uint8_t port_id, 773 uint16_t queue_id) 774 { 775 /** 776 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 777 * per iteration 778 */ 779 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 780 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 781 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 782 #define FREQ_UP_TREND1_ACC 1 783 #define FREQ_UP_TREND2_ACC 100 784 #define FREQ_UP_THRESHOLD 10000 785 786 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 787 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 788 stats[lcore_id].trend = 0; 789 return FREQ_HIGHEST; 790 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 791 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 792 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 793 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 794 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 795 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 796 797 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 798 stats[lcore_id].trend = 0; 799 return FREQ_HIGHER; 800 } 801 802 return FREQ_CURRENT; 803 } 804 805 /* main processing loop */ 806 static int 807 main_loop(__attribute__((unused)) void *dummy) 808 { 809 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 810 unsigned lcore_id; 811 uint64_t prev_tsc, diff_tsc, cur_tsc; 812 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 813 int i, j, nb_rx; 814 uint8_t portid, queueid; 815 struct lcore_conf *qconf; 816 struct lcore_rx_queue *rx_queue; 817 enum freq_scale_hint_t lcore_scaleup_hint; 818 819 uint32_t lcore_rx_idle_count = 0; 820 uint32_t lcore_idle_hint = 0; 821 822 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 823 824 prev_tsc = 0; 825 826 lcore_id = rte_lcore_id(); 827 qconf = &lcore_conf[lcore_id]; 828 829 if (qconf->n_rx_queue == 0) { 830 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 831 return 0; 832 } 833 834 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 835 836 for (i = 0; i < qconf->n_rx_queue; i++) { 837 838 portid = qconf->rx_queue_list[i].port_id; 839 queueid = qconf->rx_queue_list[i].queue_id; 840 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 841 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 842 } 843 844 while (1) { 845 stats[lcore_id].nb_iteration_looped++; 846 847 cur_tsc = rte_rdtsc(); 848 cur_tsc_power = cur_tsc; 849 850 /* 851 * TX burst queue drain 852 */ 853 diff_tsc = cur_tsc - prev_tsc; 854 if (unlikely(diff_tsc > drain_tsc)) { 855 856 /* 857 * This could be optimized (use queueid instead of 858 * portid), but it is not called so often 859 */ 860 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 861 if (qconf->tx_mbufs[portid].len == 0) 862 continue; 863 send_burst(&lcore_conf[lcore_id], 864 qconf->tx_mbufs[portid].len, 865 portid); 866 qconf->tx_mbufs[portid].len = 0; 867 } 868 869 prev_tsc = cur_tsc; 870 } 871 872 diff_tsc_power = cur_tsc_power - prev_tsc_power; 873 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 874 rte_timer_manage(); 875 prev_tsc_power = cur_tsc_power; 876 } 877 878 /* 879 * Read packet from RX queues 880 */ 881 lcore_scaleup_hint = FREQ_CURRENT; 882 lcore_rx_idle_count = 0; 883 for (i = 0; i < qconf->n_rx_queue; ++i) { 884 rx_queue = &(qconf->rx_queue_list[i]); 885 rx_queue->idle_hint = 0; 886 portid = rx_queue->port_id; 887 queueid = rx_queue->queue_id; 888 889 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 890 MAX_PKT_BURST); 891 stats[lcore_id].nb_rx_processed += nb_rx; 892 if (unlikely(nb_rx == 0)) { 893 /** 894 * no packet received from rx queue, try to 895 * sleep for a while forcing CPU enter deeper 896 * C states. 897 */ 898 rx_queue->zero_rx_packet_count++; 899 900 if (rx_queue->zero_rx_packet_count <= 901 MIN_ZERO_POLL_COUNT) 902 continue; 903 904 rx_queue->idle_hint = power_idle_heuristic(\ 905 rx_queue->zero_rx_packet_count); 906 lcore_rx_idle_count++; 907 } else { 908 rx_queue->zero_rx_packet_count = 0; 909 910 /** 911 * do not scale up frequency immediately as 912 * user to kernel space communication is costly 913 * which might impact packet I/O for received 914 * packets. 915 */ 916 rx_queue->freq_up_hint = 917 power_freq_scaleup_heuristic(lcore_id, 918 portid, queueid); 919 } 920 921 /* Prefetch first packets */ 922 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 923 rte_prefetch0(rte_pktmbuf_mtod( 924 pkts_burst[j], void *)); 925 } 926 927 /* Prefetch and forward already prefetched packets */ 928 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 929 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 930 j + PREFETCH_OFFSET], void *)); 931 l3fwd_simple_forward(pkts_burst[j], portid, 932 qconf); 933 } 934 935 /* Forward remaining prefetched packets */ 936 for (; j < nb_rx; j++) { 937 l3fwd_simple_forward(pkts_burst[j], portid, 938 qconf); 939 } 940 } 941 942 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 943 for (i = 1, lcore_scaleup_hint = 944 qconf->rx_queue_list[0].freq_up_hint; 945 i < qconf->n_rx_queue; ++i) { 946 rx_queue = &(qconf->rx_queue_list[i]); 947 if (rx_queue->freq_up_hint > 948 lcore_scaleup_hint) 949 lcore_scaleup_hint = 950 rx_queue->freq_up_hint; 951 } 952 953 if (lcore_scaleup_hint == FREQ_HIGHEST) 954 rte_power_freq_max(lcore_id); 955 else if (lcore_scaleup_hint == FREQ_HIGHER) 956 rte_power_freq_up(lcore_id); 957 } else { 958 /** 959 * All Rx queues empty in recent consecutive polls, 960 * sleep in a conservative manner, meaning sleep as 961 * less as possible. 962 */ 963 for (i = 1, lcore_idle_hint = 964 qconf->rx_queue_list[0].idle_hint; 965 i < qconf->n_rx_queue; ++i) { 966 rx_queue = &(qconf->rx_queue_list[i]); 967 if (rx_queue->idle_hint < lcore_idle_hint) 968 lcore_idle_hint = rx_queue->idle_hint; 969 } 970 971 if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD) 972 /** 973 * execute "pause" instruction to avoid context 974 * switch for short sleep. 975 */ 976 rte_delay_us(lcore_idle_hint); 977 else 978 /* long sleep force runing thread to suspend */ 979 usleep(lcore_idle_hint); 980 981 stats[lcore_id].sleep_time += lcore_idle_hint; 982 } 983 } 984 } 985 986 static int 987 check_lcore_params(void) 988 { 989 uint8_t queue, lcore; 990 uint16_t i; 991 int socketid; 992 993 for (i = 0; i < nb_lcore_params; ++i) { 994 queue = lcore_params[i].queue_id; 995 if (queue >= MAX_RX_QUEUE_PER_PORT) { 996 printf("invalid queue number: %hhu\n", queue); 997 return -1; 998 } 999 lcore = lcore_params[i].lcore_id; 1000 if (!rte_lcore_is_enabled(lcore)) { 1001 printf("error: lcore %hhu is not enabled in lcore " 1002 "mask\n", lcore); 1003 return -1; 1004 } 1005 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 1006 (numa_on == 0)) { 1007 printf("warning: lcore %hhu is on socket %d with numa " 1008 "off\n", lcore, socketid); 1009 } 1010 } 1011 return 0; 1012 } 1013 1014 static int 1015 check_port_config(const unsigned nb_ports) 1016 { 1017 unsigned portid; 1018 uint16_t i; 1019 1020 for (i = 0; i < nb_lcore_params; ++i) { 1021 portid = lcore_params[i].port_id; 1022 if ((enabled_port_mask & (1 << portid)) == 0) { 1023 printf("port %u is not enabled in port mask\n", 1024 portid); 1025 return -1; 1026 } 1027 if (portid >= nb_ports) { 1028 printf("port %u is not present on the board\n", 1029 portid); 1030 return -1; 1031 } 1032 } 1033 return 0; 1034 } 1035 1036 static uint8_t 1037 get_port_n_rx_queues(const uint8_t port) 1038 { 1039 int queue = -1; 1040 uint16_t i; 1041 1042 for (i = 0; i < nb_lcore_params; ++i) { 1043 if (lcore_params[i].port_id == port && 1044 lcore_params[i].queue_id > queue) 1045 queue = lcore_params[i].queue_id; 1046 } 1047 return (uint8_t)(++queue); 1048 } 1049 1050 static int 1051 init_lcore_rx_queues(void) 1052 { 1053 uint16_t i, nb_rx_queue; 1054 uint8_t lcore; 1055 1056 for (i = 0; i < nb_lcore_params; ++i) { 1057 lcore = lcore_params[i].lcore_id; 1058 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1059 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1060 printf("error: too many queues (%u) for lcore: %u\n", 1061 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1062 return -1; 1063 } else { 1064 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1065 lcore_params[i].port_id; 1066 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1067 lcore_params[i].queue_id; 1068 lcore_conf[lcore].n_rx_queue++; 1069 } 1070 } 1071 return 0; 1072 } 1073 1074 /* display usage */ 1075 static void 1076 print_usage(const char *prgname) 1077 { 1078 printf ("%s [EAL options] -- -p PORTMASK -P" 1079 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1080 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1081 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1082 " -P : enable promiscuous mode\n" 1083 " --config (port,queue,lcore): rx queues configuration\n" 1084 " --no-numa: optional, disable numa awareness\n" 1085 " --enable-jumbo: enable jumbo frame" 1086 " which max packet len is PKTLEN in decimal (64-9600)\n", 1087 prgname); 1088 } 1089 1090 static int parse_max_pkt_len(const char *pktlen) 1091 { 1092 char *end = NULL; 1093 unsigned long len; 1094 1095 /* parse decimal string */ 1096 len = strtoul(pktlen, &end, 10); 1097 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1098 return -1; 1099 1100 if (len == 0) 1101 return -1; 1102 1103 return len; 1104 } 1105 1106 static int 1107 parse_portmask(const char *portmask) 1108 { 1109 char *end = NULL; 1110 unsigned long pm; 1111 1112 /* parse hexadecimal string */ 1113 pm = strtoul(portmask, &end, 16); 1114 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1115 return -1; 1116 1117 if (pm == 0) 1118 return -1; 1119 1120 return pm; 1121 } 1122 1123 static int 1124 parse_config(const char *q_arg) 1125 { 1126 char s[256]; 1127 const char *p, *p0 = q_arg; 1128 char *end; 1129 enum fieldnames { 1130 FLD_PORT = 0, 1131 FLD_QUEUE, 1132 FLD_LCORE, 1133 _NUM_FLD 1134 }; 1135 unsigned long int_fld[_NUM_FLD]; 1136 char *str_fld[_NUM_FLD]; 1137 int i; 1138 unsigned size; 1139 1140 nb_lcore_params = 0; 1141 1142 while ((p = strchr(p0,'(')) != NULL) { 1143 ++p; 1144 if((p0 = strchr(p,')')) == NULL) 1145 return -1; 1146 1147 size = p0 - p; 1148 if(size >= sizeof(s)) 1149 return -1; 1150 1151 rte_snprintf(s, sizeof(s), "%.*s", size, p); 1152 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1153 _NUM_FLD) 1154 return -1; 1155 for (i = 0; i < _NUM_FLD; i++){ 1156 errno = 0; 1157 int_fld[i] = strtoul(str_fld[i], &end, 0); 1158 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1159 255) 1160 return -1; 1161 } 1162 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1163 printf("exceeded max number of lcore params: %hu\n", 1164 nb_lcore_params); 1165 return -1; 1166 } 1167 lcore_params_array[nb_lcore_params].port_id = 1168 (uint8_t)int_fld[FLD_PORT]; 1169 lcore_params_array[nb_lcore_params].queue_id = 1170 (uint8_t)int_fld[FLD_QUEUE]; 1171 lcore_params_array[nb_lcore_params].lcore_id = 1172 (uint8_t)int_fld[FLD_LCORE]; 1173 ++nb_lcore_params; 1174 } 1175 lcore_params = lcore_params_array; 1176 1177 return 0; 1178 } 1179 1180 /* Parse the argument given in the command line of the application */ 1181 static int 1182 parse_args(int argc, char **argv) 1183 { 1184 int opt, ret; 1185 char **argvopt; 1186 int option_index; 1187 char *prgname = argv[0]; 1188 static struct option lgopts[] = { 1189 {"config", 1, 0, 0}, 1190 {"no-numa", 0, 0, 0}, 1191 {"enable-jumbo", 0, 0, 0}, 1192 {NULL, 0, 0, 0} 1193 }; 1194 1195 argvopt = argv; 1196 1197 while ((opt = getopt_long(argc, argvopt, "p:P", 1198 lgopts, &option_index)) != EOF) { 1199 1200 switch (opt) { 1201 /* portmask */ 1202 case 'p': 1203 enabled_port_mask = parse_portmask(optarg); 1204 if (enabled_port_mask == 0) { 1205 printf("invalid portmask\n"); 1206 print_usage(prgname); 1207 return -1; 1208 } 1209 break; 1210 case 'P': 1211 printf("Promiscuous mode selected\n"); 1212 promiscuous_on = 1; 1213 break; 1214 1215 /* long options */ 1216 case 0: 1217 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1218 ret = parse_config(optarg); 1219 if (ret) { 1220 printf("invalid config\n"); 1221 print_usage(prgname); 1222 return -1; 1223 } 1224 } 1225 1226 if (!strncmp(lgopts[option_index].name, 1227 "no-numa", 7)) { 1228 printf("numa is disabled \n"); 1229 numa_on = 0; 1230 } 1231 1232 if (!strncmp(lgopts[option_index].name, 1233 "enable-jumbo", 12)) { 1234 struct option lenopts = 1235 {"max-pkt-len", required_argument, \ 1236 0, 0}; 1237 1238 printf("jumbo frame is enabled \n"); 1239 port_conf.rxmode.jumbo_frame = 1; 1240 1241 /** 1242 * if no max-pkt-len set, use the default value 1243 * ETHER_MAX_LEN 1244 */ 1245 if (0 == getopt_long(argc, argvopt, "", 1246 &lenopts, &option_index)) { 1247 ret = parse_max_pkt_len(optarg); 1248 if ((ret < 64) || 1249 (ret > MAX_JUMBO_PKT_LEN)){ 1250 printf("invalid packet " 1251 "length\n"); 1252 print_usage(prgname); 1253 return -1; 1254 } 1255 port_conf.rxmode.max_rx_pkt_len = ret; 1256 } 1257 printf("set jumbo frame " 1258 "max packet length to %u\n", 1259 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1260 } 1261 1262 break; 1263 1264 default: 1265 print_usage(prgname); 1266 return -1; 1267 } 1268 } 1269 1270 if (optind >= 0) 1271 argv[optind-1] = prgname; 1272 1273 ret = optind-1; 1274 optind = 0; /* reset getopt lib */ 1275 return ret; 1276 } 1277 1278 static void 1279 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1280 { 1281 printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name, 1282 eth_addr->addr_bytes[0], 1283 eth_addr->addr_bytes[1], 1284 eth_addr->addr_bytes[2], 1285 eth_addr->addr_bytes[3], 1286 eth_addr->addr_bytes[4], 1287 eth_addr->addr_bytes[5]); 1288 } 1289 1290 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1291 static void 1292 setup_hash(int socketid) 1293 { 1294 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1295 .name = NULL, 1296 .entries = L3FWD_HASH_ENTRIES, 1297 .bucket_entries = 4, 1298 .key_len = sizeof(struct ipv4_5tuple), 1299 .hash_func = DEFAULT_HASH_FUNC, 1300 .hash_func_init_val = 0, 1301 }; 1302 1303 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1304 .name = NULL, 1305 .entries = L3FWD_HASH_ENTRIES, 1306 .bucket_entries = 4, 1307 .key_len = sizeof(struct ipv6_5tuple), 1308 .hash_func = DEFAULT_HASH_FUNC, 1309 .hash_func_init_val = 0, 1310 }; 1311 1312 unsigned i; 1313 int ret; 1314 char s[64]; 1315 1316 /* create ipv4 hash */ 1317 rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1318 ipv4_l3fwd_hash_params.name = s; 1319 ipv4_l3fwd_hash_params.socket_id = socketid; 1320 ipv4_l3fwd_lookup_struct[socketid] = 1321 rte_hash_create(&ipv4_l3fwd_hash_params); 1322 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1323 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1324 "socket %d\n", socketid); 1325 1326 /* create ipv6 hash */ 1327 rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1328 ipv6_l3fwd_hash_params.name = s; 1329 ipv6_l3fwd_hash_params.socket_id = socketid; 1330 ipv6_l3fwd_lookup_struct[socketid] = 1331 rte_hash_create(&ipv6_l3fwd_hash_params); 1332 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1333 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1334 "socket %d\n", socketid); 1335 1336 1337 /* populate the ipv4 hash */ 1338 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1339 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1340 (void *) &ipv4_l3fwd_route_array[i].key); 1341 if (ret < 0) { 1342 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1343 "l3fwd hash on socket %d\n", i, socketid); 1344 } 1345 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1346 printf("Hash: Adding key\n"); 1347 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1348 } 1349 1350 /* populate the ipv6 hash */ 1351 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1352 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1353 (void *) &ipv6_l3fwd_route_array[i].key); 1354 if (ret < 0) { 1355 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1356 "l3fwd hash on socket %d\n", i, socketid); 1357 } 1358 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1359 printf("Hash: Adding key\n"); 1360 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1361 } 1362 } 1363 #endif 1364 1365 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1366 static void 1367 setup_lpm(int socketid) 1368 { 1369 unsigned i; 1370 int ret; 1371 char s[64]; 1372 1373 /* create the LPM table */ 1374 rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1375 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, 1376 IPV4_L3FWD_LPM_MAX_RULES, 0); 1377 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1378 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1379 " on socket %d\n", socketid); 1380 1381 /* populate the LPM table */ 1382 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1383 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1384 ipv4_l3fwd_route_array[i].ip, 1385 ipv4_l3fwd_route_array[i].depth, 1386 ipv4_l3fwd_route_array[i].if_out); 1387 1388 if (ret < 0) { 1389 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1390 "l3fwd LPM table on socket %d\n", 1391 i, socketid); 1392 } 1393 1394 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1395 (unsigned)ipv4_l3fwd_route_array[i].ip, 1396 ipv4_l3fwd_route_array[i].depth, 1397 ipv4_l3fwd_route_array[i].if_out); 1398 } 1399 } 1400 #endif 1401 1402 static int 1403 init_mem(unsigned nb_mbuf) 1404 { 1405 struct lcore_conf *qconf; 1406 int socketid; 1407 unsigned lcore_id; 1408 char s[64]; 1409 1410 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1411 if (rte_lcore_is_enabled(lcore_id) == 0) 1412 continue; 1413 1414 if (numa_on) 1415 socketid = rte_lcore_to_socket_id(lcore_id); 1416 else 1417 socketid = 0; 1418 1419 if (socketid >= NB_SOCKETS) { 1420 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1421 "out of range %d\n", socketid, 1422 lcore_id, NB_SOCKETS); 1423 } 1424 if (pktmbuf_pool[socketid] == NULL) { 1425 rte_snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1426 pktmbuf_pool[socketid] = 1427 rte_mempool_create(s, nb_mbuf, 1428 MBUF_SIZE, MEMPOOL_CACHE_SIZE, 1429 sizeof(struct rte_pktmbuf_pool_private), 1430 rte_pktmbuf_pool_init, NULL, 1431 rte_pktmbuf_init, NULL, 1432 socketid, 0); 1433 if (pktmbuf_pool[socketid] == NULL) 1434 rte_exit(EXIT_FAILURE, 1435 "Cannot init mbuf pool on socket %d\n", 1436 socketid); 1437 else 1438 printf("Allocated mbuf pool on socket %d\n", 1439 socketid); 1440 1441 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1442 setup_lpm(socketid); 1443 #else 1444 setup_hash(socketid); 1445 #endif 1446 } 1447 qconf = &lcore_conf[lcore_id]; 1448 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1449 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1450 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1451 #endif 1452 } 1453 return 0; 1454 } 1455 1456 /* Check the link status of all ports in up to 9s, and print them finally */ 1457 static void 1458 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1459 { 1460 #define CHECK_INTERVAL 100 /* 100ms */ 1461 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1462 uint8_t portid, count, all_ports_up, print_flag = 0; 1463 struct rte_eth_link link; 1464 1465 printf("\nChecking link status"); 1466 fflush(stdout); 1467 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1468 all_ports_up = 1; 1469 for (portid = 0; portid < port_num; portid++) { 1470 if ((port_mask & (1 << portid)) == 0) 1471 continue; 1472 memset(&link, 0, sizeof(link)); 1473 rte_eth_link_get_nowait(portid, &link); 1474 /* print link status if flag set */ 1475 if (print_flag == 1) { 1476 if (link.link_status) 1477 printf("Port %d Link Up - speed %u " 1478 "Mbps - %s\n", (uint8_t)portid, 1479 (unsigned)link.link_speed, 1480 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1481 ("full-duplex") : ("half-duplex\n")); 1482 else 1483 printf("Port %d Link Down\n", 1484 (uint8_t)portid); 1485 continue; 1486 } 1487 /* clear all_ports_up flag if any link down */ 1488 if (link.link_status == 0) { 1489 all_ports_up = 0; 1490 break; 1491 } 1492 } 1493 /* after finally printing all link status, get out */ 1494 if (print_flag == 1) 1495 break; 1496 1497 if (all_ports_up == 0) { 1498 printf("."); 1499 fflush(stdout); 1500 rte_delay_ms(CHECK_INTERVAL); 1501 } 1502 1503 /* set the print_flag if all ports up or timeout */ 1504 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1505 print_flag = 1; 1506 printf("done\n"); 1507 } 1508 } 1509 } 1510 1511 int 1512 MAIN(int argc, char **argv) 1513 { 1514 struct lcore_conf *qconf; 1515 int ret; 1516 unsigned nb_ports; 1517 uint16_t queueid; 1518 unsigned lcore_id; 1519 uint64_t hz; 1520 uint32_t n_tx_queue, nb_lcores; 1521 uint8_t portid, nb_rx_queue, queue, socketid; 1522 1523 /* catch SIGINT and restore cpufreq governor to ondemand */ 1524 signal(SIGINT, signal_exit_now); 1525 1526 /* init EAL */ 1527 ret = rte_eal_init(argc, argv); 1528 if (ret < 0) 1529 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1530 argc -= ret; 1531 argv += ret; 1532 1533 /* init RTE timer library to be used late */ 1534 rte_timer_subsystem_init(); 1535 1536 /* parse application arguments (after the EAL ones) */ 1537 ret = parse_args(argc, argv); 1538 if (ret < 0) 1539 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1540 1541 if (check_lcore_params() < 0) 1542 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1543 1544 ret = init_lcore_rx_queues(); 1545 if (ret < 0) 1546 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1547 1548 1549 /* init driver(s) */ 1550 if (rte_pmd_init_all() < 0) 1551 rte_exit(EXIT_FAILURE, "Cannot init pmd\n"); 1552 1553 if (rte_eal_pci_probe() < 0) 1554 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 1555 1556 nb_ports = rte_eth_dev_count(); 1557 if (nb_ports > RTE_MAX_ETHPORTS) 1558 nb_ports = RTE_MAX_ETHPORTS; 1559 1560 if (check_port_config(nb_ports) < 0) 1561 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1562 1563 nb_lcores = rte_lcore_count(); 1564 1565 /* initialize all ports */ 1566 for (portid = 0; portid < nb_ports; portid++) { 1567 /* skip ports that are not enabled */ 1568 if ((enabled_port_mask & (1 << portid)) == 0) { 1569 printf("\nSkipping disabled port %d\n", portid); 1570 continue; 1571 } 1572 1573 /* init port */ 1574 printf("Initializing port %d ... ", portid ); 1575 fflush(stdout); 1576 1577 nb_rx_queue = get_port_n_rx_queues(portid); 1578 n_tx_queue = nb_lcores; 1579 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1580 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1581 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1582 nb_rx_queue, (unsigned)n_tx_queue ); 1583 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1584 (uint16_t)n_tx_queue, &port_conf); 1585 if (ret < 0) 1586 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1587 "err=%d, port=%d\n", ret, portid); 1588 1589 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1590 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1591 printf(", "); 1592 1593 /* init memory */ 1594 ret = init_mem(NB_MBUF); 1595 if (ret < 0) 1596 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1597 1598 /* init one TX queue per couple (lcore,port) */ 1599 queueid = 0; 1600 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1601 if (rte_lcore_is_enabled(lcore_id) == 0) 1602 continue; 1603 1604 if (numa_on) 1605 socketid = \ 1606 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1607 else 1608 socketid = 0; 1609 1610 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1611 fflush(stdout); 1612 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1613 socketid, &tx_conf); 1614 if (ret < 0) 1615 rte_exit(EXIT_FAILURE, 1616 "rte_eth_tx_queue_setup: err=%d, " 1617 "port=%d\n", ret, portid); 1618 1619 qconf = &lcore_conf[lcore_id]; 1620 qconf->tx_queue_id[portid] = queueid; 1621 queueid++; 1622 } 1623 printf("\n"); 1624 } 1625 1626 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1627 if (rte_lcore_is_enabled(lcore_id) == 0) 1628 continue; 1629 1630 /* init power management library */ 1631 ret = rte_power_init(lcore_id); 1632 if (ret) 1633 rte_exit(EXIT_FAILURE, "Power management library " 1634 "initialization failed on core%u\n", lcore_id); 1635 1636 /* init timer structures for each enabled lcore */ 1637 rte_timer_init(&power_timers[lcore_id]); 1638 hz = rte_get_timer_hz(); 1639 rte_timer_reset(&power_timers[lcore_id], 1640 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1641 power_timer_cb, NULL); 1642 1643 qconf = &lcore_conf[lcore_id]; 1644 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1645 fflush(stdout); 1646 /* init RX queues */ 1647 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1648 portid = qconf->rx_queue_list[queue].port_id; 1649 queueid = qconf->rx_queue_list[queue].queue_id; 1650 1651 if (numa_on) 1652 socketid = \ 1653 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1654 else 1655 socketid = 0; 1656 1657 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1658 fflush(stdout); 1659 1660 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1661 socketid, &rx_conf, pktmbuf_pool[socketid]); 1662 if (ret < 0) 1663 rte_exit(EXIT_FAILURE, 1664 "rte_eth_rx_queue_setup: err=%d, " 1665 "port=%d\n", ret, portid); 1666 } 1667 } 1668 1669 printf("\n"); 1670 1671 /* start ports */ 1672 for (portid = 0; portid < nb_ports; portid++) { 1673 if ((enabled_port_mask & (1 << portid)) == 0) { 1674 continue; 1675 } 1676 /* Start device */ 1677 ret = rte_eth_dev_start(portid); 1678 if (ret < 0) 1679 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1680 "port=%d\n", ret, portid); 1681 1682 /* 1683 * If enabled, put device in promiscuous mode. 1684 * This allows IO forwarding mode to forward packets 1685 * to itself through 2 cross-connected ports of the 1686 * target machine. 1687 */ 1688 if (promiscuous_on) 1689 rte_eth_promiscuous_enable(portid); 1690 } 1691 1692 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1693 1694 /* launch per-lcore init on every lcore */ 1695 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1696 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1697 if (rte_eal_wait_lcore(lcore_id) < 0) 1698 return -1; 1699 } 1700 1701 return 0; 1702 } 1703