xref: /dpdk/examples/l3fwd-power/main.c (revision e9d48c0072d36eb6423b45fba4ec49d0def6c36f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <unistd.h>
45 #include <signal.h>
46 
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_tailq.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_launch.h>
57 #include <rte_atomic.h>
58 #include <rte_cycles.h>
59 #include <rte_prefetch.h>
60 #include <rte_lcore.h>
61 #include <rte_per_lcore.h>
62 #include <rte_branch_prediction.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_random.h>
66 #include <rte_debug.h>
67 #include <rte_ether.h>
68 #include <rte_ethdev.h>
69 #include <rte_ring.h>
70 #include <rte_mempool.h>
71 #include <rte_mbuf.h>
72 #include <rte_ip.h>
73 #include <rte_tcp.h>
74 #include <rte_udp.h>
75 #include <rte_string_fns.h>
76 #include <rte_timer.h>
77 #include <rte_power.h>
78 
79 #include "main.h"
80 
81 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
82 
83 #define MAX_PKT_BURST 32
84 
85 #define MIN_ZERO_POLL_COUNT 5
86 
87 /* around 100ms at 2 Ghz */
88 #define TIMER_RESOLUTION_CYCLES           200000000ULL
89 /* 100 ms interval */
90 #define TIMER_NUMBER_PER_SECOND           10
91 /* 100000 us */
92 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
93 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
94 
95 #define APP_LOOKUP_EXACT_MATCH          0
96 #define APP_LOOKUP_LPM                  1
97 #define DO_RFC_1812_CHECKS
98 
99 #ifndef APP_LOOKUP_METHOD
100 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
101 #endif
102 
103 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
104 #include <rte_hash.h>
105 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
106 #include <rte_lpm.h>
107 #else
108 #error "APP_LOOKUP_METHOD set to incorrect value"
109 #endif
110 
111 #ifndef IPv6_BYTES
112 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
113                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
114 #define IPv6_BYTES(addr) \
115 	addr[0],  addr[1], addr[2],  addr[3], \
116 	addr[4],  addr[5], addr[6],  addr[7], \
117 	addr[8],  addr[9], addr[10], addr[11],\
118 	addr[12], addr[13],addr[14], addr[15]
119 #endif
120 
121 #define MAX_JUMBO_PKT_LEN  9600
122 
123 #define IPV6_ADDR_LEN 16
124 
125 #define MEMPOOL_CACHE_SIZE 256
126 
127 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
128 
129 /*
130  * This expression is used to calculate the number of mbufs needed depending on
131  * user input, taking into account memory for rx and tx hardware rings, cache
132  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
133  * NB_MBUF never goes below a minimum value of 8192.
134  */
135 
136 #define NB_MBUF RTE_MAX	( \
137 	(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
138 	nb_ports*nb_lcores*MAX_PKT_BURST + \
139 	nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
140 	nb_lcores*MEMPOOL_CACHE_SIZE), \
141 	(unsigned)8192)
142 
143 /*
144  * RX and TX Prefetch, Host, and Write-back threshold values should be
145  * carefully set for optimal performance. Consult the network
146  * controller's datasheet and supporting DPDK documentation for guidance
147  * on how these parameters should be set.
148  */
149 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
150 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
151 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
152 
153 /*
154  * These default values are optimized for use with the Intel(R) 82599 10 GbE
155  * Controller and the DPDK ixgbe PMD. Consider using other values for other
156  * network controllers and/or network drivers.
157  */
158 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
159 #define TX_HTHRESH 0  /**< Default values of TX host threshold reg. */
160 #define TX_WTHRESH 0  /**< Default values of TX write-back threshold reg. */
161 
162 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
163 
164 #define NB_SOCKETS 8
165 
166 /* Configure how many packets ahead to prefetch, when reading packets */
167 #define PREFETCH_OFFSET	3
168 
169 /*
170  * Configurable number of RX/TX ring descriptors
171  */
172 #define RTE_TEST_RX_DESC_DEFAULT 128
173 #define RTE_TEST_TX_DESC_DEFAULT 512
174 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
175 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
176 
177 /* ethernet addresses of ports */
178 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
179 
180 /* mask of enabled ports */
181 static uint32_t enabled_port_mask = 0;
182 /* Ports set in promiscuous mode off by default. */
183 static int promiscuous_on = 0;
184 /* NUMA is enabled by default. */
185 static int numa_on = 1;
186 
187 enum freq_scale_hint_t
188 {
189 	FREQ_LOWER    =      -1,
190 	FREQ_CURRENT  =       0,
191 	FREQ_HIGHER   =       1,
192 	FREQ_HIGHEST  =       2
193 };
194 
195 struct mbuf_table {
196 	uint16_t len;
197 	struct rte_mbuf *m_table[MAX_PKT_BURST];
198 };
199 
200 struct lcore_rx_queue {
201 	uint8_t port_id;
202 	uint8_t queue_id;
203 	enum freq_scale_hint_t freq_up_hint;
204 	uint32_t zero_rx_packet_count;
205 	uint32_t idle_hint;
206 } __rte_cache_aligned;
207 
208 #define MAX_RX_QUEUE_PER_LCORE 16
209 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
210 #define MAX_RX_QUEUE_PER_PORT 128
211 
212 #define MAX_LCORE_PARAMS 1024
213 struct lcore_params {
214 	uint8_t port_id;
215 	uint8_t queue_id;
216 	uint8_t lcore_id;
217 } __rte_cache_aligned;
218 
219 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
220 static struct lcore_params lcore_params_array_default[] = {
221 	{0, 0, 2},
222 	{0, 1, 2},
223 	{0, 2, 2},
224 	{1, 0, 2},
225 	{1, 1, 2},
226 	{1, 2, 2},
227 	{2, 0, 2},
228 	{3, 0, 3},
229 	{3, 1, 3},
230 };
231 
232 static struct lcore_params * lcore_params = lcore_params_array_default;
233 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
234 				sizeof(lcore_params_array_default[0]);
235 
236 static struct rte_eth_conf port_conf = {
237 	.rxmode = {
238 		.max_rx_pkt_len = ETHER_MAX_LEN,
239 		.split_hdr_size = 0,
240 		.header_split   = 0, /**< Header Split disabled */
241 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
242 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
243 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
244 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
245 	},
246 	.rx_adv_conf = {
247 		.rss_conf = {
248 			.rss_key = NULL,
249 			.rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6,
250 		},
251 	},
252 	.txmode = {
253 		.mq_mode = ETH_DCB_NONE,
254 	},
255 };
256 
257 static const struct rte_eth_rxconf rx_conf = {
258 	.rx_thresh = {
259 		.pthresh = RX_PTHRESH,
260 		.hthresh = RX_HTHRESH,
261 		.wthresh = RX_WTHRESH,
262 	},
263 	.rx_free_thresh = 32,
264 };
265 
266 static const struct rte_eth_txconf tx_conf = {
267 	.tx_thresh = {
268 		.pthresh = TX_PTHRESH,
269 		.hthresh = TX_HTHRESH,
270 		.wthresh = TX_WTHRESH,
271 	},
272 	.tx_free_thresh = 0, /* Use PMD default values */
273 	.tx_rs_thresh = 0, /* Use PMD default values */
274 	.txq_flags = 0x0,
275 };
276 
277 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
278 
279 
280 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
281 
282 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
283 #include <rte_hash_crc.h>
284 #define DEFAULT_HASH_FUNC       rte_hash_crc
285 #else
286 #include <rte_jhash.h>
287 #define DEFAULT_HASH_FUNC       rte_jhash
288 #endif
289 
290 struct ipv4_5tuple {
291 	uint32_t ip_dst;
292 	uint32_t ip_src;
293 	uint16_t port_dst;
294 	uint16_t port_src;
295 	uint8_t  proto;
296 } __attribute__((__packed__));
297 
298 struct ipv6_5tuple {
299 	uint8_t  ip_dst[IPV6_ADDR_LEN];
300 	uint8_t  ip_src[IPV6_ADDR_LEN];
301 	uint16_t port_dst;
302 	uint16_t port_src;
303 	uint8_t  proto;
304 } __attribute__((__packed__));
305 
306 struct ipv4_l3fwd_route {
307 	struct ipv4_5tuple key;
308 	uint8_t if_out;
309 };
310 
311 struct ipv6_l3fwd_route {
312 	struct ipv6_5tuple key;
313 	uint8_t if_out;
314 };
315 
316 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
317 	{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
318 	{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
319 	{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
320 	{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
321 };
322 
323 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
324 	{
325 		{
326 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
327 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
328 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
329 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
330 			 1, 10, IPPROTO_UDP
331 		}, 4
332 	},
333 };
334 
335 typedef struct rte_hash lookup_struct_t;
336 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
337 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
338 
339 #define L3FWD_HASH_ENTRIES	1024
340 
341 #define IPV4_L3FWD_NUM_ROUTES \
342 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
343 
344 #define IPV6_L3FWD_NUM_ROUTES \
345 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
346 
347 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
348 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
349 #endif
350 
351 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
352 struct ipv4_l3fwd_route {
353 	uint32_t ip;
354 	uint8_t  depth;
355 	uint8_t  if_out;
356 };
357 
358 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
359 	{IPv4(1,1,1,0), 24, 0},
360 	{IPv4(2,1,1,0), 24, 1},
361 	{IPv4(3,1,1,0), 24, 2},
362 	{IPv4(4,1,1,0), 24, 3},
363 	{IPv4(5,1,1,0), 24, 4},
364 	{IPv4(6,1,1,0), 24, 5},
365 	{IPv4(7,1,1,0), 24, 6},
366 	{IPv4(8,1,1,0), 24, 7},
367 };
368 
369 #define IPV4_L3FWD_NUM_ROUTES \
370 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
371 
372 #define IPV4_L3FWD_LPM_MAX_RULES     1024
373 
374 typedef struct rte_lpm lookup_struct_t;
375 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
376 #endif
377 
378 struct lcore_conf {
379 	uint16_t n_rx_queue;
380 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
381 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
382 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
383 	lookup_struct_t * ipv4_lookup_struct;
384 	lookup_struct_t * ipv6_lookup_struct;
385 } __rte_cache_aligned;
386 
387 struct lcore_stats {
388 	/* total sleep time in ms since last frequency scaling down */
389 	uint32_t sleep_time;
390 	/* number of long sleep recently */
391 	uint32_t nb_long_sleep;
392 	/* freq. scaling up trend */
393 	uint32_t trend;
394 	/* total packet processed recently */
395 	uint64_t nb_rx_processed;
396 	/* total iterations looped recently */
397 	uint64_t nb_iteration_looped;
398 	uint32_t padding[9];
399 } __rte_cache_aligned;
400 
401 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
402 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
403 static struct rte_timer power_timers[RTE_MAX_LCORE];
404 
405 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
406 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
407 			unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
408 
409 /* exit signal handler */
410 static void
411 signal_exit_now(int sigtype)
412 {
413 	unsigned lcore_id;
414 	int ret;
415 
416 	if (sigtype == SIGINT) {
417 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
418 			if (rte_lcore_is_enabled(lcore_id) == 0)
419 				continue;
420 
421 			/* init power management library */
422 			ret = rte_power_exit(lcore_id);
423 			if (ret)
424 				rte_exit(EXIT_FAILURE, "Power management "
425 					"library de-initialization failed on "
426 							"core%u\n", lcore_id);
427 		}
428 	}
429 
430 	rte_exit(EXIT_SUCCESS, "User forced exit\n");
431 }
432 
433 /*  Freqency scale down timer callback */
434 static void
435 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
436 			  __attribute__((unused)) void *arg)
437 {
438 	uint64_t hz;
439 	float sleep_time_ratio;
440 	unsigned lcore_id = rte_lcore_id();
441 
442 	/* accumulate total execution time in us when callback is invoked */
443 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
444 					(float)SCALING_PERIOD;
445 
446 	/**
447 	 * check whether need to scale down frequency a step if it sleep a lot.
448 	 */
449 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD)
450 		rte_power_freq_down(lcore_id);
451 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
452 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST)
453 		/**
454 		 * scale down a step if average packet per iteration less
455 		 * than expectation.
456 		 */
457 		rte_power_freq_down(lcore_id);
458 
459 	/**
460 	 * initialize another timer according to current frequency to ensure
461 	 * timer interval is relatively fixed.
462 	 */
463 	hz = rte_get_timer_hz();
464 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
465 				SINGLE, lcore_id, power_timer_cb, NULL);
466 
467 	stats[lcore_id].nb_rx_processed = 0;
468 	stats[lcore_id].nb_iteration_looped = 0;
469 
470 	stats[lcore_id].sleep_time = 0;
471 }
472 
473 /* Send burst of packets on an output interface */
474 static inline int
475 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
476 {
477 	struct rte_mbuf **m_table;
478 	int ret;
479 	uint16_t queueid;
480 
481 	queueid = qconf->tx_queue_id[port];
482 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
483 
484 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
485 	if (unlikely(ret < n)) {
486 		do {
487 			rte_pktmbuf_free(m_table[ret]);
488 		} while (++ret < n);
489 	}
490 
491 	return 0;
492 }
493 
494 /* Enqueue a single packet, and send burst if queue is filled */
495 static inline int
496 send_single_packet(struct rte_mbuf *m, uint8_t port)
497 {
498 	uint32_t lcore_id;
499 	uint16_t len;
500 	struct lcore_conf *qconf;
501 
502 	lcore_id = rte_lcore_id();
503 
504 	qconf = &lcore_conf[lcore_id];
505 	len = qconf->tx_mbufs[port].len;
506 	qconf->tx_mbufs[port].m_table[len] = m;
507 	len++;
508 
509 	/* enough pkts to be sent */
510 	if (unlikely(len == MAX_PKT_BURST)) {
511 		send_burst(qconf, MAX_PKT_BURST, port);
512 		len = 0;
513 	}
514 
515 	qconf->tx_mbufs[port].len = len;
516 	return 0;
517 }
518 
519 #ifdef DO_RFC_1812_CHECKS
520 static inline int
521 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
522 {
523 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
524 	/*
525 	 * 1. The packet length reported by the Link Layer must be large
526 	 * enough to hold the minimum length legal IP datagram (20 bytes).
527 	 */
528 	if (link_len < sizeof(struct ipv4_hdr))
529 		return -1;
530 
531 	/* 2. The IP checksum must be correct. */
532 	/* this is checked in H/W */
533 
534 	/*
535 	 * 3. The IP version number must be 4. If the version number is not 4
536 	 * then the packet may be another version of IP, such as IPng or
537 	 * ST-II.
538 	 */
539 	if (((pkt->version_ihl) >> 4) != 4)
540 		return -3;
541 	/*
542 	 * 4. The IP header length field must be large enough to hold the
543 	 * minimum length legal IP datagram (20 bytes = 5 words).
544 	 */
545 	if ((pkt->version_ihl & 0xf) < 5)
546 		return -4;
547 
548 	/*
549 	 * 5. The IP total length field must be large enough to hold the IP
550 	 * datagram header, whose length is specified in the IP header length
551 	 * field.
552 	 */
553 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
554 		return -5;
555 
556 	return 0;
557 }
558 #endif
559 
560 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
561 static void
562 print_ipv4_key(struct ipv4_5tuple key)
563 {
564 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
565 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
566 				key.port_dst, key.port_src, key.proto);
567 }
568 static void
569 print_ipv6_key(struct ipv6_5tuple key)
570 {
571 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
572 	        "port dst = %d, port src = %d, proto = %d\n",
573 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
574 	        key.port_dst, key.port_src, key.proto);
575 }
576 
577 static inline uint8_t
578 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
579 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
580 {
581 	struct ipv4_5tuple key;
582 	struct tcp_hdr *tcp;
583 	struct udp_hdr *udp;
584 	int ret = 0;
585 
586 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
587 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
588 	key.proto = ipv4_hdr->next_proto_id;
589 
590 	switch (ipv4_hdr->next_proto_id) {
591 	case IPPROTO_TCP:
592 		tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
593 					sizeof(struct ipv4_hdr));
594 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
595 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
596 		break;
597 
598 	case IPPROTO_UDP:
599 		udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
600 					sizeof(struct ipv4_hdr));
601 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
602 		key.port_src = rte_be_to_cpu_16(udp->src_port);
603 		break;
604 
605 	default:
606 		key.port_dst = 0;
607 		key.port_src = 0;
608 		break;
609 	}
610 
611 	/* Find destination port */
612 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
613 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
614 }
615 
616 static inline uint8_t
617 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid,
618 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
619 {
620 	struct ipv6_5tuple key;
621 	struct tcp_hdr *tcp;
622 	struct udp_hdr *udp;
623 	int ret = 0;
624 
625 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
626 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
627 
628 	key.proto = ipv6_hdr->proto;
629 
630 	switch (ipv6_hdr->proto) {
631 	case IPPROTO_TCP:
632 		tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
633 					sizeof(struct ipv6_hdr));
634 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
635 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
636 		break;
637 
638 	case IPPROTO_UDP:
639 		udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
640 					sizeof(struct ipv6_hdr));
641 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
642 		key.port_src = rte_be_to_cpu_16(udp->src_port);
643 		break;
644 
645 	default:
646 		key.port_dst = 0;
647 		key.port_src = 0;
648 		break;
649 	}
650 
651 	/* Find destination port */
652 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
653 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
654 }
655 #endif
656 
657 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
658 static inline uint8_t
659 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
660 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
661 {
662 	uint8_t next_hop;
663 
664 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
665 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
666 			next_hop : portid);
667 }
668 #endif
669 
670 static inline void
671 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
672 				struct lcore_conf *qconf)
673 {
674 	struct ether_hdr *eth_hdr;
675 	struct ipv4_hdr *ipv4_hdr;
676 	void *d_addr_bytes;
677 	uint8_t dst_port;
678 
679 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
680 
681 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
682 		/* Handle IPv4 headers.*/
683 		ipv4_hdr =
684 			(struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
685 						+ sizeof(struct ether_hdr));
686 
687 #ifdef DO_RFC_1812_CHECKS
688 		/* Check to make sure the packet is valid (RFC1812) */
689 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt.pkt_len) < 0) {
690 			rte_pktmbuf_free(m);
691 			return;
692 		}
693 #endif
694 
695 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
696 					qconf->ipv4_lookup_struct);
697 		if (dst_port >= RTE_MAX_ETHPORTS ||
698 				(enabled_port_mask & 1 << dst_port) == 0)
699 			dst_port = portid;
700 
701 		/* 02:00:00:00:00:xx */
702 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
703 		*((uint64_t *)d_addr_bytes) =
704 			0x000000000002 + ((uint64_t)dst_port << 40);
705 
706 #ifdef DO_RFC_1812_CHECKS
707 		/* Update time to live and header checksum */
708 		--(ipv4_hdr->time_to_live);
709 		++(ipv4_hdr->hdr_checksum);
710 #endif
711 
712 		/* src addr */
713 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
714 
715 		send_single_packet(m, dst_port);
716 	}
717 	else {
718 		/* Handle IPv6 headers.*/
719 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
720 		struct ipv6_hdr *ipv6_hdr;
721 
722 		ipv6_hdr =
723 			(struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
724 						+ sizeof(struct ether_hdr));
725 
726 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
727 					qconf->ipv6_lookup_struct);
728 
729 		if (dst_port >= RTE_MAX_ETHPORTS ||
730 				(enabled_port_mask & 1 << dst_port) == 0)
731 			dst_port = portid;
732 
733 		/* 02:00:00:00:00:xx */
734 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
735 		*((uint64_t *)d_addr_bytes) =
736 			0x000000000002 + ((uint64_t)dst_port << 40);
737 
738 		/* src addr */
739 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
740 
741 		send_single_packet(m, dst_port);
742 #else
743 		/* We don't currently handle IPv6 packets in LPM mode. */
744 		rte_pktmbuf_free(m);
745 #endif
746 	}
747 
748 }
749 
750 #define SLEEP_GEAR1_THRESHOLD            100
751 #define SLEEP_GEAR2_THRESHOLD            1000
752 
753 static inline uint32_t
754 power_idle_heuristic(uint32_t zero_rx_packet_count)
755 {
756 	/* If zero count is less than 100, use it as the sleep time in us */
757 	if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD)
758 		return zero_rx_packet_count;
759 	/* If zero count is less than 1000, sleep time should be 100 us */
760 	else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) &&
761 			(zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD))
762 		return SLEEP_GEAR1_THRESHOLD;
763 	/* If zero count is greater than 1000, sleep time should be 1000 us */
764 	else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD)
765 		return SLEEP_GEAR2_THRESHOLD;
766 
767 	return 0;
768 }
769 
770 static inline enum freq_scale_hint_t
771 power_freq_scaleup_heuristic(unsigned lcore_id,
772 			     uint8_t port_id,
773 			     uint16_t queue_id)
774 {
775 /**
776  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
777  * per iteration
778  */
779 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
780 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
781 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
782 #define FREQ_UP_TREND1_ACC   1
783 #define FREQ_UP_TREND2_ACC   100
784 #define FREQ_UP_THRESHOLD    10000
785 
786 	if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
787 			FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
788 		stats[lcore_id].trend = 0;
789 		return FREQ_HIGHEST;
790 	} else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
791 			FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
792 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
793 	else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
794 			FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
795 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
796 
797 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
798 		stats[lcore_id].trend = 0;
799 		return FREQ_HIGHER;
800 	}
801 
802 	return FREQ_CURRENT;
803 }
804 
805 /* main processing loop */
806 static int
807 main_loop(__attribute__((unused)) void *dummy)
808 {
809 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
810 	unsigned lcore_id;
811 	uint64_t prev_tsc, diff_tsc, cur_tsc;
812 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
813 	int i, j, nb_rx;
814 	uint8_t portid, queueid;
815 	struct lcore_conf *qconf;
816 	struct lcore_rx_queue *rx_queue;
817 	enum freq_scale_hint_t lcore_scaleup_hint;
818 
819 	uint32_t lcore_rx_idle_count = 0;
820 	uint32_t lcore_idle_hint = 0;
821 
822 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
823 
824 	prev_tsc = 0;
825 
826 	lcore_id = rte_lcore_id();
827 	qconf = &lcore_conf[lcore_id];
828 
829 	if (qconf->n_rx_queue == 0) {
830 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
831 		return 0;
832 	}
833 
834 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
835 
836 	for (i = 0; i < qconf->n_rx_queue; i++) {
837 
838 		portid = qconf->rx_queue_list[i].port_id;
839 		queueid = qconf->rx_queue_list[i].queue_id;
840 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
841 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
842 	}
843 
844 	while (1) {
845 		stats[lcore_id].nb_iteration_looped++;
846 
847 		cur_tsc = rte_rdtsc();
848 		cur_tsc_power = cur_tsc;
849 
850 		/*
851 		 * TX burst queue drain
852 		 */
853 		diff_tsc = cur_tsc - prev_tsc;
854 		if (unlikely(diff_tsc > drain_tsc)) {
855 
856 			/*
857 			 * This could be optimized (use queueid instead of
858 			 * portid), but it is not called so often
859 			 */
860 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
861 				if (qconf->tx_mbufs[portid].len == 0)
862 					continue;
863 				send_burst(&lcore_conf[lcore_id],
864 					qconf->tx_mbufs[portid].len,
865 					portid);
866 				qconf->tx_mbufs[portid].len = 0;
867 			}
868 
869 			prev_tsc = cur_tsc;
870 		}
871 
872 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
873 		if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
874 			rte_timer_manage();
875 			prev_tsc_power = cur_tsc_power;
876 		}
877 
878 		/*
879 		 * Read packet from RX queues
880 		 */
881 		lcore_scaleup_hint = FREQ_CURRENT;
882 		lcore_rx_idle_count = 0;
883 		for (i = 0; i < qconf->n_rx_queue; ++i) {
884 			rx_queue = &(qconf->rx_queue_list[i]);
885 			rx_queue->idle_hint = 0;
886 			portid = rx_queue->port_id;
887 			queueid = rx_queue->queue_id;
888 
889 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
890 								MAX_PKT_BURST);
891 			stats[lcore_id].nb_rx_processed += nb_rx;
892 			if (unlikely(nb_rx == 0)) {
893 				/**
894 				 * no packet received from rx queue, try to
895 				 * sleep for a while forcing CPU enter deeper
896 				 * C states.
897 				 */
898 				rx_queue->zero_rx_packet_count++;
899 
900 				if (rx_queue->zero_rx_packet_count <=
901 							MIN_ZERO_POLL_COUNT)
902 					continue;
903 
904 				rx_queue->idle_hint = power_idle_heuristic(\
905 					rx_queue->zero_rx_packet_count);
906 				lcore_rx_idle_count++;
907 			} else {
908 				rx_queue->zero_rx_packet_count = 0;
909 
910 				/**
911 				 * do not scale up frequency immediately as
912 				 * user to kernel space communication is costly
913 				 * which might impact packet I/O for received
914 				 * packets.
915 				 */
916 				rx_queue->freq_up_hint =
917 					power_freq_scaleup_heuristic(lcore_id,
918 							portid, queueid);
919  			}
920 
921 			/* Prefetch first packets */
922 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
923 				rte_prefetch0(rte_pktmbuf_mtod(
924 						pkts_burst[j], void *));
925 			}
926 
927 			/* Prefetch and forward already prefetched packets */
928 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
929 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
930 						j + PREFETCH_OFFSET], void *));
931 				l3fwd_simple_forward(pkts_burst[j], portid,
932 								qconf);
933 			}
934 
935 			/* Forward remaining prefetched packets */
936 			for (; j < nb_rx; j++) {
937 				l3fwd_simple_forward(pkts_burst[j], portid,
938 								qconf);
939 			}
940 		}
941 
942 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
943 			for (i = 1, lcore_scaleup_hint =
944 				qconf->rx_queue_list[0].freq_up_hint;
945 					i < qconf->n_rx_queue; ++i) {
946 				rx_queue = &(qconf->rx_queue_list[i]);
947 				if (rx_queue->freq_up_hint >
948 						lcore_scaleup_hint)
949 					lcore_scaleup_hint =
950 						rx_queue->freq_up_hint;
951 			}
952 
953 			if (lcore_scaleup_hint == FREQ_HIGHEST)
954 				rte_power_freq_max(lcore_id);
955 			else if (lcore_scaleup_hint == FREQ_HIGHER)
956 				rte_power_freq_up(lcore_id);
957 		} else {
958 			/**
959 			 * All Rx queues empty in recent consecutive polls,
960 			 * sleep in a conservative manner, meaning sleep as
961  			 * less as possible.
962  			 */
963 			for (i = 1, lcore_idle_hint =
964 				qconf->rx_queue_list[0].idle_hint;
965 					i < qconf->n_rx_queue; ++i) {
966 				rx_queue = &(qconf->rx_queue_list[i]);
967 				if (rx_queue->idle_hint < lcore_idle_hint)
968 					lcore_idle_hint = rx_queue->idle_hint;
969 			}
970 
971 			if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
972 				/**
973 				 * execute "pause" instruction to avoid context
974 				 * switch for short sleep.
975  				 */
976 				rte_delay_us(lcore_idle_hint);
977 			else
978 				/* long sleep force runing thread to suspend */
979 				usleep(lcore_idle_hint);
980 
981 			stats[lcore_id].sleep_time += lcore_idle_hint;
982 		}
983 	}
984 }
985 
986 static int
987 check_lcore_params(void)
988 {
989 	uint8_t queue, lcore;
990 	uint16_t i;
991 	int socketid;
992 
993 	for (i = 0; i < nb_lcore_params; ++i) {
994 		queue = lcore_params[i].queue_id;
995 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
996 			printf("invalid queue number: %hhu\n", queue);
997 			return -1;
998 		}
999 		lcore = lcore_params[i].lcore_id;
1000 		if (!rte_lcore_is_enabled(lcore)) {
1001 			printf("error: lcore %hhu is not enabled in lcore "
1002 							"mask\n", lcore);
1003 			return -1;
1004 		}
1005 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1006 							(numa_on == 0)) {
1007 			printf("warning: lcore %hhu is on socket %d with numa "
1008 						"off\n", lcore, socketid);
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 
1014 static int
1015 check_port_config(const unsigned nb_ports)
1016 {
1017 	unsigned portid;
1018 	uint16_t i;
1019 
1020 	for (i = 0; i < nb_lcore_params; ++i) {
1021 		portid = lcore_params[i].port_id;
1022 		if ((enabled_port_mask & (1 << portid)) == 0) {
1023 			printf("port %u is not enabled in port mask\n",
1024 								portid);
1025 			return -1;
1026 		}
1027 		if (portid >= nb_ports) {
1028 			printf("port %u is not present on the board\n",
1029 								portid);
1030 			return -1;
1031 		}
1032 	}
1033 	return 0;
1034 }
1035 
1036 static uint8_t
1037 get_port_n_rx_queues(const uint8_t port)
1038 {
1039 	int queue = -1;
1040 	uint16_t i;
1041 
1042 	for (i = 0; i < nb_lcore_params; ++i) {
1043 		if (lcore_params[i].port_id == port &&
1044 				lcore_params[i].queue_id > queue)
1045 			queue = lcore_params[i].queue_id;
1046 	}
1047 	return (uint8_t)(++queue);
1048 }
1049 
1050 static int
1051 init_lcore_rx_queues(void)
1052 {
1053 	uint16_t i, nb_rx_queue;
1054 	uint8_t lcore;
1055 
1056 	for (i = 0; i < nb_lcore_params; ++i) {
1057 		lcore = lcore_params[i].lcore_id;
1058 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1059 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1060 			printf("error: too many queues (%u) for lcore: %u\n",
1061 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1062 			return -1;
1063 		} else {
1064 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1065 				lcore_params[i].port_id;
1066 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1067 				lcore_params[i].queue_id;
1068 			lcore_conf[lcore].n_rx_queue++;
1069 		}
1070 	}
1071 	return 0;
1072 }
1073 
1074 /* display usage */
1075 static void
1076 print_usage(const char *prgname)
1077 {
1078 	printf ("%s [EAL options] -- -p PORTMASK -P"
1079 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1080 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1081 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1082 		"  -P : enable promiscuous mode\n"
1083 		"  --config (port,queue,lcore): rx queues configuration\n"
1084 		"  --no-numa: optional, disable numa awareness\n"
1085 		"  --enable-jumbo: enable jumbo frame"
1086 		" which max packet len is PKTLEN in decimal (64-9600)\n",
1087 		prgname);
1088 }
1089 
1090 static int parse_max_pkt_len(const char *pktlen)
1091 {
1092 	char *end = NULL;
1093 	unsigned long len;
1094 
1095 	/* parse decimal string */
1096 	len = strtoul(pktlen, &end, 10);
1097 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1098 		return -1;
1099 
1100 	if (len == 0)
1101 		return -1;
1102 
1103 	return len;
1104 }
1105 
1106 static int
1107 parse_portmask(const char *portmask)
1108 {
1109 	char *end = NULL;
1110 	unsigned long pm;
1111 
1112 	/* parse hexadecimal string */
1113 	pm = strtoul(portmask, &end, 16);
1114 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1115 		return -1;
1116 
1117 	if (pm == 0)
1118 		return -1;
1119 
1120 	return pm;
1121 }
1122 
1123 static int
1124 parse_config(const char *q_arg)
1125 {
1126 	char s[256];
1127 	const char *p, *p0 = q_arg;
1128 	char *end;
1129 	enum fieldnames {
1130 		FLD_PORT = 0,
1131 		FLD_QUEUE,
1132 		FLD_LCORE,
1133 		_NUM_FLD
1134 	};
1135 	unsigned long int_fld[_NUM_FLD];
1136 	char *str_fld[_NUM_FLD];
1137 	int i;
1138 	unsigned size;
1139 
1140 	nb_lcore_params = 0;
1141 
1142 	while ((p = strchr(p0,'(')) != NULL) {
1143 		++p;
1144 		if((p0 = strchr(p,')')) == NULL)
1145 			return -1;
1146 
1147 		size = p0 - p;
1148 		if(size >= sizeof(s))
1149 			return -1;
1150 
1151 		rte_snprintf(s, sizeof(s), "%.*s", size, p);
1152 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1153 								_NUM_FLD)
1154 			return -1;
1155 		for (i = 0; i < _NUM_FLD; i++){
1156 			errno = 0;
1157 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1158 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1159 									255)
1160 				return -1;
1161 		}
1162 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1163 			printf("exceeded max number of lcore params: %hu\n",
1164 				nb_lcore_params);
1165 			return -1;
1166 		}
1167 		lcore_params_array[nb_lcore_params].port_id =
1168 				(uint8_t)int_fld[FLD_PORT];
1169 		lcore_params_array[nb_lcore_params].queue_id =
1170 				(uint8_t)int_fld[FLD_QUEUE];
1171 		lcore_params_array[nb_lcore_params].lcore_id =
1172 				(uint8_t)int_fld[FLD_LCORE];
1173 		++nb_lcore_params;
1174 	}
1175 	lcore_params = lcore_params_array;
1176 
1177 	return 0;
1178 }
1179 
1180 /* Parse the argument given in the command line of the application */
1181 static int
1182 parse_args(int argc, char **argv)
1183 {
1184 	int opt, ret;
1185 	char **argvopt;
1186 	int option_index;
1187 	char *prgname = argv[0];
1188 	static struct option lgopts[] = {
1189 		{"config", 1, 0, 0},
1190 		{"no-numa", 0, 0, 0},
1191 		{"enable-jumbo", 0, 0, 0},
1192 		{NULL, 0, 0, 0}
1193 	};
1194 
1195 	argvopt = argv;
1196 
1197 	while ((opt = getopt_long(argc, argvopt, "p:P",
1198 				lgopts, &option_index)) != EOF) {
1199 
1200 		switch (opt) {
1201 		/* portmask */
1202 		case 'p':
1203 			enabled_port_mask = parse_portmask(optarg);
1204 			if (enabled_port_mask == 0) {
1205 				printf("invalid portmask\n");
1206 				print_usage(prgname);
1207 				return -1;
1208 			}
1209 			break;
1210 		case 'P':
1211 			printf("Promiscuous mode selected\n");
1212 			promiscuous_on = 1;
1213 			break;
1214 
1215 		/* long options */
1216 		case 0:
1217 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1218 				ret = parse_config(optarg);
1219 				if (ret) {
1220 					printf("invalid config\n");
1221 					print_usage(prgname);
1222 					return -1;
1223 				}
1224 			}
1225 
1226 			if (!strncmp(lgopts[option_index].name,
1227 						"no-numa", 7)) {
1228 				printf("numa is disabled \n");
1229 				numa_on = 0;
1230 			}
1231 
1232 			if (!strncmp(lgopts[option_index].name,
1233 					"enable-jumbo", 12)) {
1234 				struct option lenopts =
1235 					{"max-pkt-len", required_argument, \
1236 									0, 0};
1237 
1238 				printf("jumbo frame is enabled \n");
1239 				port_conf.rxmode.jumbo_frame = 1;
1240 
1241 				/**
1242 				 * if no max-pkt-len set, use the default value
1243 				 * ETHER_MAX_LEN
1244 				 */
1245 				if (0 == getopt_long(argc, argvopt, "",
1246 						&lenopts, &option_index)) {
1247 					ret = parse_max_pkt_len(optarg);
1248 					if ((ret < 64) ||
1249 						(ret > MAX_JUMBO_PKT_LEN)){
1250 						printf("invalid packet "
1251 								"length\n");
1252 						print_usage(prgname);
1253 						return -1;
1254 					}
1255 					port_conf.rxmode.max_rx_pkt_len = ret;
1256 				}
1257 				printf("set jumbo frame "
1258 					"max packet length to %u\n",
1259 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1260 			}
1261 
1262 			break;
1263 
1264 		default:
1265 			print_usage(prgname);
1266 			return -1;
1267 		}
1268 	}
1269 
1270 	if (optind >= 0)
1271 		argv[optind-1] = prgname;
1272 
1273 	ret = optind-1;
1274 	optind = 0; /* reset getopt lib */
1275 	return ret;
1276 }
1277 
1278 static void
1279 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1280 {
1281 	printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
1282 		eth_addr->addr_bytes[0],
1283 		eth_addr->addr_bytes[1],
1284 		eth_addr->addr_bytes[2],
1285 		eth_addr->addr_bytes[3],
1286 		eth_addr->addr_bytes[4],
1287 		eth_addr->addr_bytes[5]);
1288 }
1289 
1290 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1291 static void
1292 setup_hash(int socketid)
1293 {
1294 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1295 		.name = NULL,
1296 		.entries = L3FWD_HASH_ENTRIES,
1297 		.bucket_entries = 4,
1298 		.key_len = sizeof(struct ipv4_5tuple),
1299 		.hash_func = DEFAULT_HASH_FUNC,
1300 		.hash_func_init_val = 0,
1301 	};
1302 
1303 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1304 		.name = NULL,
1305 		.entries = L3FWD_HASH_ENTRIES,
1306 		.bucket_entries = 4,
1307 		.key_len = sizeof(struct ipv6_5tuple),
1308 		.hash_func = DEFAULT_HASH_FUNC,
1309 		.hash_func_init_val = 0,
1310 	};
1311 
1312 	unsigned i;
1313 	int ret;
1314 	char s[64];
1315 
1316 	/* create ipv4 hash */
1317 	rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1318 	ipv4_l3fwd_hash_params.name = s;
1319 	ipv4_l3fwd_hash_params.socket_id = socketid;
1320 	ipv4_l3fwd_lookup_struct[socketid] =
1321 		rte_hash_create(&ipv4_l3fwd_hash_params);
1322 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1323 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1324 				"socket %d\n", socketid);
1325 
1326 	/* create ipv6 hash */
1327 	rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1328 	ipv6_l3fwd_hash_params.name = s;
1329 	ipv6_l3fwd_hash_params.socket_id = socketid;
1330 	ipv6_l3fwd_lookup_struct[socketid] =
1331 		rte_hash_create(&ipv6_l3fwd_hash_params);
1332 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1333 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1334 				"socket %d\n", socketid);
1335 
1336 
1337 	/* populate the ipv4 hash */
1338 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1339 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1340 				(void *) &ipv4_l3fwd_route_array[i].key);
1341 		if (ret < 0) {
1342 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1343 				"l3fwd hash on socket %d\n", i, socketid);
1344 		}
1345 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1346 		printf("Hash: Adding key\n");
1347 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1348 	}
1349 
1350 	/* populate the ipv6 hash */
1351 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1352 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1353 				(void *) &ipv6_l3fwd_route_array[i].key);
1354 		if (ret < 0) {
1355 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1356 				"l3fwd hash on socket %d\n", i, socketid);
1357 		}
1358 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1359 		printf("Hash: Adding key\n");
1360 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1361 	}
1362 }
1363 #endif
1364 
1365 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1366 static void
1367 setup_lpm(int socketid)
1368 {
1369 	unsigned i;
1370 	int ret;
1371 	char s[64];
1372 
1373 	/* create the LPM table */
1374 	rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1375 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1376 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1377 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1378 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1379 				" on socket %d\n", socketid);
1380 
1381 	/* populate the LPM table */
1382 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1383 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1384 			ipv4_l3fwd_route_array[i].ip,
1385 			ipv4_l3fwd_route_array[i].depth,
1386 			ipv4_l3fwd_route_array[i].if_out);
1387 
1388 		if (ret < 0) {
1389 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1390 				"l3fwd LPM table on socket %d\n",
1391 				i, socketid);
1392 		}
1393 
1394 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1395 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1396 			ipv4_l3fwd_route_array[i].depth,
1397 			ipv4_l3fwd_route_array[i].if_out);
1398 	}
1399 }
1400 #endif
1401 
1402 static int
1403 init_mem(unsigned nb_mbuf)
1404 {
1405 	struct lcore_conf *qconf;
1406 	int socketid;
1407 	unsigned lcore_id;
1408 	char s[64];
1409 
1410 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1411 		if (rte_lcore_is_enabled(lcore_id) == 0)
1412 			continue;
1413 
1414 		if (numa_on)
1415 			socketid = rte_lcore_to_socket_id(lcore_id);
1416 		else
1417 			socketid = 0;
1418 
1419 		if (socketid >= NB_SOCKETS) {
1420 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1421 					"out of range %d\n", socketid,
1422 						lcore_id, NB_SOCKETS);
1423 		}
1424 		if (pktmbuf_pool[socketid] == NULL) {
1425 			rte_snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1426 			pktmbuf_pool[socketid] =
1427 				rte_mempool_create(s, nb_mbuf,
1428 					MBUF_SIZE, MEMPOOL_CACHE_SIZE,
1429 					sizeof(struct rte_pktmbuf_pool_private),
1430 					rte_pktmbuf_pool_init, NULL,
1431 					rte_pktmbuf_init, NULL,
1432 					socketid, 0);
1433 			if (pktmbuf_pool[socketid] == NULL)
1434 				rte_exit(EXIT_FAILURE,
1435 					"Cannot init mbuf pool on socket %d\n",
1436 								socketid);
1437 			else
1438 				printf("Allocated mbuf pool on socket %d\n",
1439 								socketid);
1440 
1441 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1442 			setup_lpm(socketid);
1443 #else
1444 			setup_hash(socketid);
1445 #endif
1446 		}
1447 		qconf = &lcore_conf[lcore_id];
1448 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1449 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1450 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1451 #endif
1452 	}
1453 	return 0;
1454 }
1455 
1456 /* Check the link status of all ports in up to 9s, and print them finally */
1457 static void
1458 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1459 {
1460 #define CHECK_INTERVAL 100 /* 100ms */
1461 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1462 	uint8_t portid, count, all_ports_up, print_flag = 0;
1463 	struct rte_eth_link link;
1464 
1465 	printf("\nChecking link status");
1466 	fflush(stdout);
1467 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1468 		all_ports_up = 1;
1469 		for (portid = 0; portid < port_num; portid++) {
1470 			if ((port_mask & (1 << portid)) == 0)
1471 				continue;
1472 			memset(&link, 0, sizeof(link));
1473 			rte_eth_link_get_nowait(portid, &link);
1474 			/* print link status if flag set */
1475 			if (print_flag == 1) {
1476 				if (link.link_status)
1477 					printf("Port %d Link Up - speed %u "
1478 						"Mbps - %s\n", (uint8_t)portid,
1479 						(unsigned)link.link_speed,
1480 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1481 					("full-duplex") : ("half-duplex\n"));
1482 				else
1483 					printf("Port %d Link Down\n",
1484 						(uint8_t)portid);
1485 				continue;
1486 			}
1487 			/* clear all_ports_up flag if any link down */
1488 			if (link.link_status == 0) {
1489 				all_ports_up = 0;
1490 				break;
1491 			}
1492 		}
1493 		/* after finally printing all link status, get out */
1494 		if (print_flag == 1)
1495 			break;
1496 
1497 		if (all_ports_up == 0) {
1498 			printf(".");
1499 			fflush(stdout);
1500 			rte_delay_ms(CHECK_INTERVAL);
1501 		}
1502 
1503 		/* set the print_flag if all ports up or timeout */
1504 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1505 			print_flag = 1;
1506 			printf("done\n");
1507 		}
1508 	}
1509 }
1510 
1511 int
1512 MAIN(int argc, char **argv)
1513 {
1514 	struct lcore_conf *qconf;
1515 	int ret;
1516 	unsigned nb_ports;
1517 	uint16_t queueid;
1518 	unsigned lcore_id;
1519 	uint64_t hz;
1520 	uint32_t n_tx_queue, nb_lcores;
1521 	uint8_t portid, nb_rx_queue, queue, socketid;
1522 
1523 	/* catch SIGINT and restore cpufreq governor to ondemand */
1524 	signal(SIGINT, signal_exit_now);
1525 
1526 	/* init EAL */
1527 	ret = rte_eal_init(argc, argv);
1528 	if (ret < 0)
1529 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1530 	argc -= ret;
1531 	argv += ret;
1532 
1533 	/* init RTE timer library to be used late */
1534 	rte_timer_subsystem_init();
1535 
1536 	/* parse application arguments (after the EAL ones) */
1537 	ret = parse_args(argc, argv);
1538 	if (ret < 0)
1539 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1540 
1541 	if (check_lcore_params() < 0)
1542 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1543 
1544 	ret = init_lcore_rx_queues();
1545 	if (ret < 0)
1546 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1547 
1548 
1549 	/* init driver(s) */
1550 	if (rte_pmd_init_all() < 0)
1551 		rte_exit(EXIT_FAILURE, "Cannot init pmd\n");
1552 
1553 	if (rte_eal_pci_probe() < 0)
1554 		rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
1555 
1556 	nb_ports = rte_eth_dev_count();
1557 	if (nb_ports > RTE_MAX_ETHPORTS)
1558 		nb_ports = RTE_MAX_ETHPORTS;
1559 
1560 	if (check_port_config(nb_ports) < 0)
1561 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1562 
1563 	nb_lcores = rte_lcore_count();
1564 
1565 	/* initialize all ports */
1566 	for (portid = 0; portid < nb_ports; portid++) {
1567 		/* skip ports that are not enabled */
1568 		if ((enabled_port_mask & (1 << portid)) == 0) {
1569 			printf("\nSkipping disabled port %d\n", portid);
1570 			continue;
1571 		}
1572 
1573 		/* init port */
1574 		printf("Initializing port %d ... ", portid );
1575 		fflush(stdout);
1576 
1577 		nb_rx_queue = get_port_n_rx_queues(portid);
1578 		n_tx_queue = nb_lcores;
1579 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1580 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1581 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1582 			nb_rx_queue, (unsigned)n_tx_queue );
1583 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1584 					(uint16_t)n_tx_queue, &port_conf);
1585 		if (ret < 0)
1586 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1587 					"err=%d, port=%d\n", ret, portid);
1588 
1589 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1590 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1591 		printf(", ");
1592 
1593 		/* init memory */
1594 		ret = init_mem(NB_MBUF);
1595 		if (ret < 0)
1596 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1597 
1598 		/* init one TX queue per couple (lcore,port) */
1599 		queueid = 0;
1600 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1601 			if (rte_lcore_is_enabled(lcore_id) == 0)
1602 				continue;
1603 
1604 			if (numa_on)
1605 				socketid = \
1606 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1607 			else
1608 				socketid = 0;
1609 
1610 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1611 			fflush(stdout);
1612 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1613 						     socketid, &tx_conf);
1614 			if (ret < 0)
1615 				rte_exit(EXIT_FAILURE,
1616 					"rte_eth_tx_queue_setup: err=%d, "
1617 						"port=%d\n", ret, portid);
1618 
1619 			qconf = &lcore_conf[lcore_id];
1620 			qconf->tx_queue_id[portid] = queueid;
1621 			queueid++;
1622 		}
1623 		printf("\n");
1624 	}
1625 
1626 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1627 		if (rte_lcore_is_enabled(lcore_id) == 0)
1628 			continue;
1629 
1630 		/* init power management library */
1631 		ret = rte_power_init(lcore_id);
1632 		if (ret)
1633 			rte_exit(EXIT_FAILURE, "Power management library "
1634 				"initialization failed on core%u\n", lcore_id);
1635 
1636 		/* init timer structures for each enabled lcore */
1637 		rte_timer_init(&power_timers[lcore_id]);
1638 		hz = rte_get_timer_hz();
1639 		rte_timer_reset(&power_timers[lcore_id],
1640 			hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1641 						power_timer_cb, NULL);
1642 
1643 		qconf = &lcore_conf[lcore_id];
1644 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1645 		fflush(stdout);
1646 		/* init RX queues */
1647 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1648 			portid = qconf->rx_queue_list[queue].port_id;
1649 			queueid = qconf->rx_queue_list[queue].queue_id;
1650 
1651 			if (numa_on)
1652 				socketid = \
1653 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1654 			else
1655 				socketid = 0;
1656 
1657 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1658 			fflush(stdout);
1659 
1660 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1661 				socketid, &rx_conf, pktmbuf_pool[socketid]);
1662 			if (ret < 0)
1663 				rte_exit(EXIT_FAILURE,
1664 					"rte_eth_rx_queue_setup: err=%d, "
1665 						"port=%d\n", ret, portid);
1666 		}
1667 	}
1668 
1669 	printf("\n");
1670 
1671 	/* start ports */
1672 	for (portid = 0; portid < nb_ports; portid++) {
1673 		if ((enabled_port_mask & (1 << portid)) == 0) {
1674 			continue;
1675 		}
1676 		/* Start device */
1677 		ret = rte_eth_dev_start(portid);
1678 		if (ret < 0)
1679 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1680 						"port=%d\n", ret, portid);
1681 
1682 		/*
1683 		 * If enabled, put device in promiscuous mode.
1684 		 * This allows IO forwarding mode to forward packets
1685 		 * to itself through 2 cross-connected  ports of the
1686 		 * target machine.
1687 		 */
1688 		if (promiscuous_on)
1689 			rte_eth_promiscuous_enable(portid);
1690 	}
1691 
1692 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1693 
1694 	/* launch per-lcore init on every lcore */
1695 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1696 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1697 		if (rte_eal_wait_lcore(lcore_id) < 0)
1698 			return -1;
1699 	}
1700 
1701 	return 0;
1702 }
1703