1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_ip.h> 72 #include <rte_tcp.h> 73 #include <rte_udp.h> 74 #include <rte_string_fns.h> 75 #include <rte_timer.h> 76 #include <rte_power.h> 77 #include <rte_eal.h> 78 #include <rte_spinlock.h> 79 80 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 81 82 #define MAX_PKT_BURST 32 83 84 #define MIN_ZERO_POLL_COUNT 10 85 86 /* around 100ms at 2 Ghz */ 87 #define TIMER_RESOLUTION_CYCLES 200000000ULL 88 /* 100 ms interval */ 89 #define TIMER_NUMBER_PER_SECOND 10 90 /* 100000 us */ 91 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 92 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 93 94 #define APP_LOOKUP_EXACT_MATCH 0 95 #define APP_LOOKUP_LPM 1 96 #define DO_RFC_1812_CHECKS 97 98 #ifndef APP_LOOKUP_METHOD 99 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 100 #endif 101 102 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 103 #include <rte_hash.h> 104 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 105 #include <rte_lpm.h> 106 #else 107 #error "APP_LOOKUP_METHOD set to incorrect value" 108 #endif 109 110 #ifndef IPv6_BYTES 111 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 112 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 113 #define IPv6_BYTES(addr) \ 114 addr[0], addr[1], addr[2], addr[3], \ 115 addr[4], addr[5], addr[6], addr[7], \ 116 addr[8], addr[9], addr[10], addr[11],\ 117 addr[12], addr[13],addr[14], addr[15] 118 #endif 119 120 #define MAX_JUMBO_PKT_LEN 9600 121 122 #define IPV6_ADDR_LEN 16 123 124 #define MEMPOOL_CACHE_SIZE 256 125 126 /* 127 * This expression is used to calculate the number of mbufs needed depending on 128 * user input, taking into account memory for rx and tx hardware rings, cache 129 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 130 * NB_MBUF never goes below a minimum value of 8192. 131 */ 132 133 #define NB_MBUF RTE_MAX ( \ 134 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 135 nb_ports*nb_lcores*MAX_PKT_BURST + \ 136 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 137 nb_lcores*MEMPOOL_CACHE_SIZE), \ 138 (unsigned)8192) 139 140 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 141 142 #define NB_SOCKETS 8 143 144 /* Configure how many packets ahead to prefetch, when reading packets */ 145 #define PREFETCH_OFFSET 3 146 147 /* 148 * Configurable number of RX/TX ring descriptors 149 */ 150 #define RTE_TEST_RX_DESC_DEFAULT 128 151 #define RTE_TEST_TX_DESC_DEFAULT 512 152 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 153 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 154 155 /* ethernet addresses of ports */ 156 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 157 158 /* ethernet addresses of ports */ 159 static rte_spinlock_t locks[RTE_MAX_ETHPORTS]; 160 161 /* mask of enabled ports */ 162 static uint32_t enabled_port_mask = 0; 163 /* Ports set in promiscuous mode off by default. */ 164 static int promiscuous_on = 0; 165 /* NUMA is enabled by default. */ 166 static int numa_on = 1; 167 168 enum freq_scale_hint_t 169 { 170 FREQ_LOWER = -1, 171 FREQ_CURRENT = 0, 172 FREQ_HIGHER = 1, 173 FREQ_HIGHEST = 2 174 }; 175 176 struct mbuf_table { 177 uint16_t len; 178 struct rte_mbuf *m_table[MAX_PKT_BURST]; 179 }; 180 181 struct lcore_rx_queue { 182 uint8_t port_id; 183 uint8_t queue_id; 184 enum freq_scale_hint_t freq_up_hint; 185 uint32_t zero_rx_packet_count; 186 uint32_t idle_hint; 187 } __rte_cache_aligned; 188 189 #define MAX_RX_QUEUE_PER_LCORE 16 190 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 191 #define MAX_RX_QUEUE_PER_PORT 128 192 193 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16 194 195 196 #define MAX_LCORE_PARAMS 1024 197 struct lcore_params { 198 uint8_t port_id; 199 uint8_t queue_id; 200 uint8_t lcore_id; 201 } __rte_cache_aligned; 202 203 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 204 static struct lcore_params lcore_params_array_default[] = { 205 {0, 0, 2}, 206 {0, 1, 2}, 207 {0, 2, 2}, 208 {1, 0, 2}, 209 {1, 1, 2}, 210 {1, 2, 2}, 211 {2, 0, 2}, 212 {3, 0, 3}, 213 {3, 1, 3}, 214 }; 215 216 static struct lcore_params * lcore_params = lcore_params_array_default; 217 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 218 sizeof(lcore_params_array_default[0]); 219 220 static struct rte_eth_conf port_conf = { 221 .rxmode = { 222 .mq_mode = ETH_MQ_RX_RSS, 223 .max_rx_pkt_len = ETHER_MAX_LEN, 224 .split_hdr_size = 0, 225 .header_split = 0, /**< Header Split disabled */ 226 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 227 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 228 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 229 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 230 }, 231 .rx_adv_conf = { 232 .rss_conf = { 233 .rss_key = NULL, 234 .rss_hf = ETH_RSS_UDP, 235 }, 236 }, 237 .txmode = { 238 .mq_mode = ETH_MQ_TX_NONE, 239 }, 240 .intr_conf = { 241 .lsc = 1, 242 #ifdef RTE_NEXT_ABI 243 .rxq = 1, 244 #endif 245 }, 246 }; 247 248 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 249 250 251 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 252 253 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 254 #include <rte_hash_crc.h> 255 #define DEFAULT_HASH_FUNC rte_hash_crc 256 #else 257 #include <rte_jhash.h> 258 #define DEFAULT_HASH_FUNC rte_jhash 259 #endif 260 261 struct ipv4_5tuple { 262 uint32_t ip_dst; 263 uint32_t ip_src; 264 uint16_t port_dst; 265 uint16_t port_src; 266 uint8_t proto; 267 } __attribute__((__packed__)); 268 269 struct ipv6_5tuple { 270 uint8_t ip_dst[IPV6_ADDR_LEN]; 271 uint8_t ip_src[IPV6_ADDR_LEN]; 272 uint16_t port_dst; 273 uint16_t port_src; 274 uint8_t proto; 275 } __attribute__((__packed__)); 276 277 struct ipv4_l3fwd_route { 278 struct ipv4_5tuple key; 279 uint8_t if_out; 280 }; 281 282 struct ipv6_l3fwd_route { 283 struct ipv6_5tuple key; 284 uint8_t if_out; 285 }; 286 287 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 288 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 289 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 290 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 291 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 292 }; 293 294 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 295 { 296 { 297 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 298 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 299 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 300 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 301 1, 10, IPPROTO_UDP 302 }, 4 303 }, 304 }; 305 306 typedef struct rte_hash lookup_struct_t; 307 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 308 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 309 310 #define L3FWD_HASH_ENTRIES 1024 311 312 #define IPV4_L3FWD_NUM_ROUTES \ 313 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 314 315 #define IPV6_L3FWD_NUM_ROUTES \ 316 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 317 318 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 319 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 320 #endif 321 322 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 323 struct ipv4_l3fwd_route { 324 uint32_t ip; 325 uint8_t depth; 326 uint8_t if_out; 327 }; 328 329 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 330 {IPv4(1,1,1,0), 24, 0}, 331 {IPv4(2,1,1,0), 24, 1}, 332 {IPv4(3,1,1,0), 24, 2}, 333 {IPv4(4,1,1,0), 24, 3}, 334 {IPv4(5,1,1,0), 24, 4}, 335 {IPv4(6,1,1,0), 24, 5}, 336 {IPv4(7,1,1,0), 24, 6}, 337 {IPv4(8,1,1,0), 24, 7}, 338 }; 339 340 #define IPV4_L3FWD_NUM_ROUTES \ 341 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 342 343 #define IPV4_L3FWD_LPM_MAX_RULES 1024 344 345 typedef struct rte_lpm lookup_struct_t; 346 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 347 #endif 348 349 struct lcore_conf { 350 uint16_t n_rx_queue; 351 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 352 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 353 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 354 lookup_struct_t * ipv4_lookup_struct; 355 lookup_struct_t * ipv6_lookup_struct; 356 } __rte_cache_aligned; 357 358 struct lcore_stats { 359 /* total sleep time in ms since last frequency scaling down */ 360 uint32_t sleep_time; 361 /* number of long sleep recently */ 362 uint32_t nb_long_sleep; 363 /* freq. scaling up trend */ 364 uint32_t trend; 365 /* total packet processed recently */ 366 uint64_t nb_rx_processed; 367 /* total iterations looped recently */ 368 uint64_t nb_iteration_looped; 369 uint32_t padding[9]; 370 } __rte_cache_aligned; 371 372 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 373 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 374 static struct rte_timer power_timers[RTE_MAX_LCORE]; 375 376 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 377 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 378 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 379 380 /* exit signal handler */ 381 static void 382 signal_exit_now(int sigtype) 383 { 384 unsigned lcore_id; 385 int ret; 386 387 if (sigtype == SIGINT) { 388 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 389 if (rte_lcore_is_enabled(lcore_id) == 0) 390 continue; 391 392 /* init power management library */ 393 ret = rte_power_exit(lcore_id); 394 if (ret) 395 rte_exit(EXIT_FAILURE, "Power management " 396 "library de-initialization failed on " 397 "core%u\n", lcore_id); 398 } 399 } 400 401 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 402 } 403 404 /* Freqency scale down timer callback */ 405 static void 406 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 407 __attribute__((unused)) void *arg) 408 { 409 uint64_t hz; 410 float sleep_time_ratio; 411 unsigned lcore_id = rte_lcore_id(); 412 413 /* accumulate total execution time in us when callback is invoked */ 414 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 415 (float)SCALING_PERIOD; 416 /** 417 * check whether need to scale down frequency a step if it sleep a lot. 418 */ 419 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) { 420 if (rte_power_freq_down) 421 rte_power_freq_down(lcore_id); 422 } 423 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 424 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) { 425 /** 426 * scale down a step if average packet per iteration less 427 * than expectation. 428 */ 429 if (rte_power_freq_down) 430 rte_power_freq_down(lcore_id); 431 } 432 433 /** 434 * initialize another timer according to current frequency to ensure 435 * timer interval is relatively fixed. 436 */ 437 hz = rte_get_timer_hz(); 438 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 439 SINGLE, lcore_id, power_timer_cb, NULL); 440 441 stats[lcore_id].nb_rx_processed = 0; 442 stats[lcore_id].nb_iteration_looped = 0; 443 444 stats[lcore_id].sleep_time = 0; 445 } 446 447 /* Send burst of packets on an output interface */ 448 static inline int 449 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) 450 { 451 struct rte_mbuf **m_table; 452 int ret; 453 uint16_t queueid; 454 455 queueid = qconf->tx_queue_id[port]; 456 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 457 458 ret = rte_eth_tx_burst(port, queueid, m_table, n); 459 if (unlikely(ret < n)) { 460 do { 461 rte_pktmbuf_free(m_table[ret]); 462 } while (++ret < n); 463 } 464 465 return 0; 466 } 467 468 /* Enqueue a single packet, and send burst if queue is filled */ 469 static inline int 470 send_single_packet(struct rte_mbuf *m, uint8_t port) 471 { 472 uint32_t lcore_id; 473 uint16_t len; 474 struct lcore_conf *qconf; 475 476 lcore_id = rte_lcore_id(); 477 478 qconf = &lcore_conf[lcore_id]; 479 len = qconf->tx_mbufs[port].len; 480 qconf->tx_mbufs[port].m_table[len] = m; 481 len++; 482 483 /* enough pkts to be sent */ 484 if (unlikely(len == MAX_PKT_BURST)) { 485 send_burst(qconf, MAX_PKT_BURST, port); 486 len = 0; 487 } 488 489 qconf->tx_mbufs[port].len = len; 490 return 0; 491 } 492 493 #ifdef DO_RFC_1812_CHECKS 494 static inline int 495 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 496 { 497 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 498 /* 499 * 1. The packet length reported by the Link Layer must be large 500 * enough to hold the minimum length legal IP datagram (20 bytes). 501 */ 502 if (link_len < sizeof(struct ipv4_hdr)) 503 return -1; 504 505 /* 2. The IP checksum must be correct. */ 506 /* this is checked in H/W */ 507 508 /* 509 * 3. The IP version number must be 4. If the version number is not 4 510 * then the packet may be another version of IP, such as IPng or 511 * ST-II. 512 */ 513 if (((pkt->version_ihl) >> 4) != 4) 514 return -3; 515 /* 516 * 4. The IP header length field must be large enough to hold the 517 * minimum length legal IP datagram (20 bytes = 5 words). 518 */ 519 if ((pkt->version_ihl & 0xf) < 5) 520 return -4; 521 522 /* 523 * 5. The IP total length field must be large enough to hold the IP 524 * datagram header, whose length is specified in the IP header length 525 * field. 526 */ 527 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 528 return -5; 529 530 return 0; 531 } 532 #endif 533 534 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 535 static void 536 print_ipv4_key(struct ipv4_5tuple key) 537 { 538 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 539 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 540 key.port_dst, key.port_src, key.proto); 541 } 542 static void 543 print_ipv6_key(struct ipv6_5tuple key) 544 { 545 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 546 "port dst = %d, port src = %d, proto = %d\n", 547 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 548 key.port_dst, key.port_src, key.proto); 549 } 550 551 static inline uint8_t 552 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 553 lookup_struct_t * ipv4_l3fwd_lookup_struct) 554 { 555 struct ipv4_5tuple key; 556 struct tcp_hdr *tcp; 557 struct udp_hdr *udp; 558 int ret = 0; 559 560 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 561 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 562 key.proto = ipv4_hdr->next_proto_id; 563 564 switch (ipv4_hdr->next_proto_id) { 565 case IPPROTO_TCP: 566 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 567 sizeof(struct ipv4_hdr)); 568 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 569 key.port_src = rte_be_to_cpu_16(tcp->src_port); 570 break; 571 572 case IPPROTO_UDP: 573 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 574 sizeof(struct ipv4_hdr)); 575 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 576 key.port_src = rte_be_to_cpu_16(udp->src_port); 577 break; 578 579 default: 580 key.port_dst = 0; 581 key.port_src = 0; 582 break; 583 } 584 585 /* Find destination port */ 586 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 587 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 588 } 589 590 static inline uint8_t 591 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 592 lookup_struct_t *ipv6_l3fwd_lookup_struct) 593 { 594 struct ipv6_5tuple key; 595 struct tcp_hdr *tcp; 596 struct udp_hdr *udp; 597 int ret = 0; 598 599 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 600 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 601 602 key.proto = ipv6_hdr->proto; 603 604 switch (ipv6_hdr->proto) { 605 case IPPROTO_TCP: 606 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 607 sizeof(struct ipv6_hdr)); 608 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 609 key.port_src = rte_be_to_cpu_16(tcp->src_port); 610 break; 611 612 case IPPROTO_UDP: 613 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 614 sizeof(struct ipv6_hdr)); 615 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 616 key.port_src = rte_be_to_cpu_16(udp->src_port); 617 break; 618 619 default: 620 key.port_dst = 0; 621 key.port_src = 0; 622 break; 623 } 624 625 /* Find destination port */ 626 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 627 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 628 } 629 #endif 630 631 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 632 static inline uint8_t 633 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 634 lookup_struct_t *ipv4_l3fwd_lookup_struct) 635 { 636 uint8_t next_hop; 637 638 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 639 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 640 next_hop : portid); 641 } 642 #endif 643 644 static inline void 645 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 646 struct lcore_conf *qconf) 647 { 648 struct ether_hdr *eth_hdr; 649 struct ipv4_hdr *ipv4_hdr; 650 void *d_addr_bytes; 651 uint8_t dst_port; 652 653 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 654 655 #ifdef RTE_NEXT_ABI 656 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 657 #else 658 if (m->ol_flags & PKT_RX_IPV4_HDR) { 659 #endif 660 /* Handle IPv4 headers.*/ 661 ipv4_hdr = 662 rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 663 sizeof(struct ether_hdr)); 664 665 #ifdef DO_RFC_1812_CHECKS 666 /* Check to make sure the packet is valid (RFC1812) */ 667 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 668 rte_pktmbuf_free(m); 669 return; 670 } 671 #endif 672 673 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 674 qconf->ipv4_lookup_struct); 675 if (dst_port >= RTE_MAX_ETHPORTS || 676 (enabled_port_mask & 1 << dst_port) == 0) 677 dst_port = portid; 678 679 /* 02:00:00:00:00:xx */ 680 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 681 *((uint64_t *)d_addr_bytes) = 682 0x000000000002 + ((uint64_t)dst_port << 40); 683 684 #ifdef DO_RFC_1812_CHECKS 685 /* Update time to live and header checksum */ 686 --(ipv4_hdr->time_to_live); 687 ++(ipv4_hdr->hdr_checksum); 688 #endif 689 690 /* src addr */ 691 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 692 693 send_single_packet(m, dst_port); 694 #ifdef RTE_NEXT_ABI 695 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 696 #else 697 } 698 else { 699 #endif 700 /* Handle IPv6 headers.*/ 701 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 702 struct ipv6_hdr *ipv6_hdr; 703 704 ipv6_hdr = 705 rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, 706 sizeof(struct ether_hdr)); 707 708 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 709 qconf->ipv6_lookup_struct); 710 711 if (dst_port >= RTE_MAX_ETHPORTS || 712 (enabled_port_mask & 1 << dst_port) == 0) 713 dst_port = portid; 714 715 /* 02:00:00:00:00:xx */ 716 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 717 *((uint64_t *)d_addr_bytes) = 718 0x000000000002 + ((uint64_t)dst_port << 40); 719 720 /* src addr */ 721 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 722 723 send_single_packet(m, dst_port); 724 #else 725 /* We don't currently handle IPv6 packets in LPM mode. */ 726 rte_pktmbuf_free(m); 727 #endif 728 } 729 730 } 731 732 #define MINIMUM_SLEEP_TIME 1 733 #define SUSPEND_THRESHOLD 300 734 735 static inline uint32_t 736 power_idle_heuristic(uint32_t zero_rx_packet_count) 737 { 738 /* If zero count is less than 100, sleep 1us */ 739 if (zero_rx_packet_count < SUSPEND_THRESHOLD) 740 return MINIMUM_SLEEP_TIME; 741 /* If zero count is less than 1000, sleep 100 us which is the 742 minimum latency switching from C3/C6 to C0 743 */ 744 else 745 return SUSPEND_THRESHOLD; 746 747 return 0; 748 } 749 750 static inline enum freq_scale_hint_t 751 power_freq_scaleup_heuristic(unsigned lcore_id, 752 uint8_t port_id, 753 uint16_t queue_id) 754 { 755 /** 756 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 757 * per iteration 758 */ 759 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 760 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 761 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 762 #define FREQ_UP_TREND1_ACC 1 763 #define FREQ_UP_TREND2_ACC 100 764 #define FREQ_UP_THRESHOLD 10000 765 766 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 767 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 768 stats[lcore_id].trend = 0; 769 return FREQ_HIGHEST; 770 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 771 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 772 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 773 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 774 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 775 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 776 777 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 778 stats[lcore_id].trend = 0; 779 return FREQ_HIGHER; 780 } 781 782 return FREQ_CURRENT; 783 } 784 785 /** 786 * force polling thread sleep until one-shot rx interrupt triggers 787 * @param port_id 788 * Port id. 789 * @param queue_id 790 * Rx queue id. 791 * @return 792 * 0 on success 793 */ 794 static int 795 sleep_until_rx_interrupt(int num) 796 { 797 struct rte_epoll_event event[num]; 798 int n, i; 799 uint8_t port_id, queue_id; 800 void *data; 801 802 RTE_LOG(INFO, L3FWD_POWER, 803 "lcore %u sleeps until interrupt triggers\n", 804 rte_lcore_id()); 805 806 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1); 807 for (i = 0; i < n; i++) { 808 data = event[i].epdata.data; 809 port_id = ((uintptr_t)data) >> CHAR_BIT; 810 queue_id = ((uintptr_t)data) & 811 RTE_LEN2MASK(CHAR_BIT, uint8_t); 812 RTE_LOG(INFO, L3FWD_POWER, 813 "lcore %u is waked up from rx interrupt on" 814 " port %d queue %d\n", 815 rte_lcore_id(), port_id, queue_id); 816 } 817 818 return 0; 819 } 820 821 static void turn_on_intr(struct lcore_conf *qconf) 822 { 823 int i; 824 struct lcore_rx_queue *rx_queue; 825 uint8_t port_id, queue_id; 826 827 for (i = 0; i < qconf->n_rx_queue; ++i) { 828 rx_queue = &(qconf->rx_queue_list[i]); 829 port_id = rx_queue->port_id; 830 queue_id = rx_queue->queue_id; 831 832 rte_spinlock_lock(&(locks[port_id])); 833 rte_eth_dev_rx_intr_enable(port_id, queue_id); 834 rte_spinlock_unlock(&(locks[port_id])); 835 } 836 } 837 838 static int event_register(struct lcore_conf *qconf) 839 { 840 struct lcore_rx_queue *rx_queue; 841 uint8_t portid, queueid; 842 uint32_t data; 843 int ret; 844 int i; 845 846 for (i = 0; i < qconf->n_rx_queue; ++i) { 847 rx_queue = &(qconf->rx_queue_list[i]); 848 portid = rx_queue->port_id; 849 queueid = rx_queue->queue_id; 850 data = portid << CHAR_BIT | queueid; 851 852 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid, 853 RTE_EPOLL_PER_THREAD, 854 RTE_INTR_EVENT_ADD, 855 (void *)((uintptr_t)data)); 856 if (ret) 857 return ret; 858 } 859 860 return 0; 861 } 862 863 /* main processing loop */ 864 static int 865 main_loop(__attribute__((unused)) void *dummy) 866 { 867 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 868 unsigned lcore_id; 869 uint64_t prev_tsc, diff_tsc, cur_tsc; 870 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 871 int i, j, nb_rx; 872 uint8_t portid, queueid; 873 struct lcore_conf *qconf; 874 struct lcore_rx_queue *rx_queue; 875 enum freq_scale_hint_t lcore_scaleup_hint; 876 uint32_t lcore_rx_idle_count = 0; 877 uint32_t lcore_idle_hint = 0; 878 int intr_en = 0; 879 880 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 881 882 prev_tsc = 0; 883 884 lcore_id = rte_lcore_id(); 885 qconf = &lcore_conf[lcore_id]; 886 887 if (qconf->n_rx_queue == 0) { 888 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 889 return 0; 890 } 891 892 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 893 894 for (i = 0; i < qconf->n_rx_queue; i++) { 895 portid = qconf->rx_queue_list[i].port_id; 896 queueid = qconf->rx_queue_list[i].queue_id; 897 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 898 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 899 } 900 901 /* add into event wait list */ 902 if (event_register(qconf) == 0) 903 intr_en = 1; 904 else 905 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n"); 906 907 while (1) { 908 stats[lcore_id].nb_iteration_looped++; 909 910 cur_tsc = rte_rdtsc(); 911 cur_tsc_power = cur_tsc; 912 913 /* 914 * TX burst queue drain 915 */ 916 diff_tsc = cur_tsc - prev_tsc; 917 if (unlikely(diff_tsc > drain_tsc)) { 918 919 /* 920 * This could be optimized (use queueid instead of 921 * portid), but it is not called so often 922 */ 923 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 924 if (qconf->tx_mbufs[portid].len == 0) 925 continue; 926 send_burst(&lcore_conf[lcore_id], 927 qconf->tx_mbufs[portid].len, 928 portid); 929 qconf->tx_mbufs[portid].len = 0; 930 } 931 932 prev_tsc = cur_tsc; 933 } 934 935 diff_tsc_power = cur_tsc_power - prev_tsc_power; 936 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 937 rte_timer_manage(); 938 prev_tsc_power = cur_tsc_power; 939 } 940 941 start_rx: 942 /* 943 * Read packet from RX queues 944 */ 945 lcore_scaleup_hint = FREQ_CURRENT; 946 lcore_rx_idle_count = 0; 947 for (i = 0; i < qconf->n_rx_queue; ++i) { 948 rx_queue = &(qconf->rx_queue_list[i]); 949 rx_queue->idle_hint = 0; 950 portid = rx_queue->port_id; 951 queueid = rx_queue->queue_id; 952 953 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 954 MAX_PKT_BURST); 955 956 stats[lcore_id].nb_rx_processed += nb_rx; 957 if (unlikely(nb_rx == 0)) { 958 /** 959 * no packet received from rx queue, try to 960 * sleep for a while forcing CPU enter deeper 961 * C states. 962 */ 963 rx_queue->zero_rx_packet_count++; 964 965 if (rx_queue->zero_rx_packet_count <= 966 MIN_ZERO_POLL_COUNT) 967 continue; 968 969 rx_queue->idle_hint = power_idle_heuristic(\ 970 rx_queue->zero_rx_packet_count); 971 lcore_rx_idle_count++; 972 } else { 973 rx_queue->zero_rx_packet_count = 0; 974 975 /** 976 * do not scale up frequency immediately as 977 * user to kernel space communication is costly 978 * which might impact packet I/O for received 979 * packets. 980 */ 981 rx_queue->freq_up_hint = 982 power_freq_scaleup_heuristic(lcore_id, 983 portid, queueid); 984 } 985 986 /* Prefetch first packets */ 987 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 988 rte_prefetch0(rte_pktmbuf_mtod( 989 pkts_burst[j], void *)); 990 } 991 992 /* Prefetch and forward already prefetched packets */ 993 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 994 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 995 j + PREFETCH_OFFSET], void *)); 996 l3fwd_simple_forward(pkts_burst[j], portid, 997 qconf); 998 } 999 1000 /* Forward remaining prefetched packets */ 1001 for (; j < nb_rx; j++) { 1002 l3fwd_simple_forward(pkts_burst[j], portid, 1003 qconf); 1004 } 1005 } 1006 1007 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 1008 for (i = 1, lcore_scaleup_hint = 1009 qconf->rx_queue_list[0].freq_up_hint; 1010 i < qconf->n_rx_queue; ++i) { 1011 rx_queue = &(qconf->rx_queue_list[i]); 1012 if (rx_queue->freq_up_hint > 1013 lcore_scaleup_hint) 1014 lcore_scaleup_hint = 1015 rx_queue->freq_up_hint; 1016 } 1017 1018 if (lcore_scaleup_hint == FREQ_HIGHEST) { 1019 if (rte_power_freq_max) 1020 rte_power_freq_max(lcore_id); 1021 } else if (lcore_scaleup_hint == FREQ_HIGHER) { 1022 if (rte_power_freq_up) 1023 rte_power_freq_up(lcore_id); 1024 } 1025 } else { 1026 /** 1027 * All Rx queues empty in recent consecutive polls, 1028 * sleep in a conservative manner, meaning sleep as 1029 * less as possible. 1030 */ 1031 for (i = 1, lcore_idle_hint = 1032 qconf->rx_queue_list[0].idle_hint; 1033 i < qconf->n_rx_queue; ++i) { 1034 rx_queue = &(qconf->rx_queue_list[i]); 1035 if (rx_queue->idle_hint < lcore_idle_hint) 1036 lcore_idle_hint = rx_queue->idle_hint; 1037 } 1038 1039 if (lcore_idle_hint < SUSPEND_THRESHOLD) 1040 /** 1041 * execute "pause" instruction to avoid context 1042 * switch which generally take hundred of 1043 * microseconds for short sleep. 1044 */ 1045 rte_delay_us(lcore_idle_hint); 1046 else { 1047 /* suspend until rx interrupt trigges */ 1048 if (intr_en) { 1049 turn_on_intr(qconf); 1050 sleep_until_rx_interrupt( 1051 qconf->n_rx_queue); 1052 } 1053 /* start receiving packets immediately */ 1054 goto start_rx; 1055 } 1056 stats[lcore_id].sleep_time += lcore_idle_hint; 1057 } 1058 } 1059 } 1060 1061 static int 1062 check_lcore_params(void) 1063 { 1064 uint8_t queue, lcore; 1065 uint16_t i; 1066 int socketid; 1067 1068 for (i = 0; i < nb_lcore_params; ++i) { 1069 queue = lcore_params[i].queue_id; 1070 if (queue >= MAX_RX_QUEUE_PER_PORT) { 1071 printf("invalid queue number: %hhu\n", queue); 1072 return -1; 1073 } 1074 lcore = lcore_params[i].lcore_id; 1075 if (!rte_lcore_is_enabled(lcore)) { 1076 printf("error: lcore %hhu is not enabled in lcore " 1077 "mask\n", lcore); 1078 return -1; 1079 } 1080 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 1081 (numa_on == 0)) { 1082 printf("warning: lcore %hhu is on socket %d with numa " 1083 "off\n", lcore, socketid); 1084 } 1085 } 1086 return 0; 1087 } 1088 1089 static int 1090 check_port_config(const unsigned nb_ports) 1091 { 1092 unsigned portid; 1093 uint16_t i; 1094 1095 for (i = 0; i < nb_lcore_params; ++i) { 1096 portid = lcore_params[i].port_id; 1097 if ((enabled_port_mask & (1 << portid)) == 0) { 1098 printf("port %u is not enabled in port mask\n", 1099 portid); 1100 return -1; 1101 } 1102 if (portid >= nb_ports) { 1103 printf("port %u is not present on the board\n", 1104 portid); 1105 return -1; 1106 } 1107 } 1108 return 0; 1109 } 1110 1111 static uint8_t 1112 get_port_n_rx_queues(const uint8_t port) 1113 { 1114 int queue = -1; 1115 uint16_t i; 1116 1117 for (i = 0; i < nb_lcore_params; ++i) { 1118 if (lcore_params[i].port_id == port && 1119 lcore_params[i].queue_id > queue) 1120 queue = lcore_params[i].queue_id; 1121 } 1122 return (uint8_t)(++queue); 1123 } 1124 1125 static int 1126 init_lcore_rx_queues(void) 1127 { 1128 uint16_t i, nb_rx_queue; 1129 uint8_t lcore; 1130 1131 for (i = 0; i < nb_lcore_params; ++i) { 1132 lcore = lcore_params[i].lcore_id; 1133 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1134 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1135 printf("error: too many queues (%u) for lcore: %u\n", 1136 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1137 return -1; 1138 } else { 1139 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1140 lcore_params[i].port_id; 1141 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1142 lcore_params[i].queue_id; 1143 lcore_conf[lcore].n_rx_queue++; 1144 } 1145 } 1146 return 0; 1147 } 1148 1149 /* display usage */ 1150 static void 1151 print_usage(const char *prgname) 1152 { 1153 printf ("%s [EAL options] -- -p PORTMASK -P" 1154 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1155 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1156 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1157 " -P : enable promiscuous mode\n" 1158 " --config (port,queue,lcore): rx queues configuration\n" 1159 " --no-numa: optional, disable numa awareness\n" 1160 " --enable-jumbo: enable jumbo frame" 1161 " which max packet len is PKTLEN in decimal (64-9600)\n", 1162 prgname); 1163 } 1164 1165 static int parse_max_pkt_len(const char *pktlen) 1166 { 1167 char *end = NULL; 1168 unsigned long len; 1169 1170 /* parse decimal string */ 1171 len = strtoul(pktlen, &end, 10); 1172 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1173 return -1; 1174 1175 if (len == 0) 1176 return -1; 1177 1178 return len; 1179 } 1180 1181 static int 1182 parse_portmask(const char *portmask) 1183 { 1184 char *end = NULL; 1185 unsigned long pm; 1186 1187 /* parse hexadecimal string */ 1188 pm = strtoul(portmask, &end, 16); 1189 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1190 return -1; 1191 1192 if (pm == 0) 1193 return -1; 1194 1195 return pm; 1196 } 1197 1198 static int 1199 parse_config(const char *q_arg) 1200 { 1201 char s[256]; 1202 const char *p, *p0 = q_arg; 1203 char *end; 1204 enum fieldnames { 1205 FLD_PORT = 0, 1206 FLD_QUEUE, 1207 FLD_LCORE, 1208 _NUM_FLD 1209 }; 1210 unsigned long int_fld[_NUM_FLD]; 1211 char *str_fld[_NUM_FLD]; 1212 int i; 1213 unsigned size; 1214 1215 nb_lcore_params = 0; 1216 1217 while ((p = strchr(p0,'(')) != NULL) { 1218 ++p; 1219 if((p0 = strchr(p,')')) == NULL) 1220 return -1; 1221 1222 size = p0 - p; 1223 if(size >= sizeof(s)) 1224 return -1; 1225 1226 snprintf(s, sizeof(s), "%.*s", size, p); 1227 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1228 _NUM_FLD) 1229 return -1; 1230 for (i = 0; i < _NUM_FLD; i++){ 1231 errno = 0; 1232 int_fld[i] = strtoul(str_fld[i], &end, 0); 1233 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1234 255) 1235 return -1; 1236 } 1237 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1238 printf("exceeded max number of lcore params: %hu\n", 1239 nb_lcore_params); 1240 return -1; 1241 } 1242 lcore_params_array[nb_lcore_params].port_id = 1243 (uint8_t)int_fld[FLD_PORT]; 1244 lcore_params_array[nb_lcore_params].queue_id = 1245 (uint8_t)int_fld[FLD_QUEUE]; 1246 lcore_params_array[nb_lcore_params].lcore_id = 1247 (uint8_t)int_fld[FLD_LCORE]; 1248 ++nb_lcore_params; 1249 } 1250 lcore_params = lcore_params_array; 1251 1252 return 0; 1253 } 1254 1255 /* Parse the argument given in the command line of the application */ 1256 static int 1257 parse_args(int argc, char **argv) 1258 { 1259 int opt, ret; 1260 char **argvopt; 1261 int option_index; 1262 char *prgname = argv[0]; 1263 static struct option lgopts[] = { 1264 {"config", 1, 0, 0}, 1265 {"no-numa", 0, 0, 0}, 1266 {"enable-jumbo", 0, 0, 0}, 1267 {NULL, 0, 0, 0} 1268 }; 1269 1270 argvopt = argv; 1271 1272 while ((opt = getopt_long(argc, argvopt, "p:P", 1273 lgopts, &option_index)) != EOF) { 1274 1275 switch (opt) { 1276 /* portmask */ 1277 case 'p': 1278 enabled_port_mask = parse_portmask(optarg); 1279 if (enabled_port_mask == 0) { 1280 printf("invalid portmask\n"); 1281 print_usage(prgname); 1282 return -1; 1283 } 1284 break; 1285 case 'P': 1286 printf("Promiscuous mode selected\n"); 1287 promiscuous_on = 1; 1288 break; 1289 1290 /* long options */ 1291 case 0: 1292 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1293 ret = parse_config(optarg); 1294 if (ret) { 1295 printf("invalid config\n"); 1296 print_usage(prgname); 1297 return -1; 1298 } 1299 } 1300 1301 if (!strncmp(lgopts[option_index].name, 1302 "no-numa", 7)) { 1303 printf("numa is disabled \n"); 1304 numa_on = 0; 1305 } 1306 1307 if (!strncmp(lgopts[option_index].name, 1308 "enable-jumbo", 12)) { 1309 struct option lenopts = 1310 {"max-pkt-len", required_argument, \ 1311 0, 0}; 1312 1313 printf("jumbo frame is enabled \n"); 1314 port_conf.rxmode.jumbo_frame = 1; 1315 1316 /** 1317 * if no max-pkt-len set, use the default value 1318 * ETHER_MAX_LEN 1319 */ 1320 if (0 == getopt_long(argc, argvopt, "", 1321 &lenopts, &option_index)) { 1322 ret = parse_max_pkt_len(optarg); 1323 if ((ret < 64) || 1324 (ret > MAX_JUMBO_PKT_LEN)){ 1325 printf("invalid packet " 1326 "length\n"); 1327 print_usage(prgname); 1328 return -1; 1329 } 1330 port_conf.rxmode.max_rx_pkt_len = ret; 1331 } 1332 printf("set jumbo frame " 1333 "max packet length to %u\n", 1334 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1335 } 1336 1337 break; 1338 1339 default: 1340 print_usage(prgname); 1341 return -1; 1342 } 1343 } 1344 1345 if (optind >= 0) 1346 argv[optind-1] = prgname; 1347 1348 ret = optind-1; 1349 optind = 0; /* reset getopt lib */ 1350 return ret; 1351 } 1352 1353 static void 1354 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1355 { 1356 char buf[ETHER_ADDR_FMT_SIZE]; 1357 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1358 printf("%s%s", name, buf); 1359 } 1360 1361 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1362 static void 1363 setup_hash(int socketid) 1364 { 1365 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1366 .name = NULL, 1367 .entries = L3FWD_HASH_ENTRIES, 1368 .key_len = sizeof(struct ipv4_5tuple), 1369 .hash_func = DEFAULT_HASH_FUNC, 1370 .hash_func_init_val = 0, 1371 }; 1372 1373 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1374 .name = NULL, 1375 .entries = L3FWD_HASH_ENTRIES, 1376 .key_len = sizeof(struct ipv6_5tuple), 1377 .hash_func = DEFAULT_HASH_FUNC, 1378 .hash_func_init_val = 0, 1379 }; 1380 1381 unsigned i; 1382 int ret; 1383 char s[64]; 1384 1385 /* create ipv4 hash */ 1386 rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1387 ipv4_l3fwd_hash_params.name = s; 1388 ipv4_l3fwd_hash_params.socket_id = socketid; 1389 ipv4_l3fwd_lookup_struct[socketid] = 1390 rte_hash_create(&ipv4_l3fwd_hash_params); 1391 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1392 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1393 "socket %d\n", socketid); 1394 1395 /* create ipv6 hash */ 1396 rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1397 ipv6_l3fwd_hash_params.name = s; 1398 ipv6_l3fwd_hash_params.socket_id = socketid; 1399 ipv6_l3fwd_lookup_struct[socketid] = 1400 rte_hash_create(&ipv6_l3fwd_hash_params); 1401 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1402 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1403 "socket %d\n", socketid); 1404 1405 1406 /* populate the ipv4 hash */ 1407 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1408 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1409 (void *) &ipv4_l3fwd_route_array[i].key); 1410 if (ret < 0) { 1411 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1412 "l3fwd hash on socket %d\n", i, socketid); 1413 } 1414 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1415 printf("Hash: Adding key\n"); 1416 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1417 } 1418 1419 /* populate the ipv6 hash */ 1420 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1421 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1422 (void *) &ipv6_l3fwd_route_array[i].key); 1423 if (ret < 0) { 1424 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1425 "l3fwd hash on socket %d\n", i, socketid); 1426 } 1427 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1428 printf("Hash: Adding key\n"); 1429 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1430 } 1431 } 1432 #endif 1433 1434 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1435 static void 1436 setup_lpm(int socketid) 1437 { 1438 unsigned i; 1439 int ret; 1440 char s[64]; 1441 1442 /* create the LPM table */ 1443 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1444 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, 1445 IPV4_L3FWD_LPM_MAX_RULES, 0); 1446 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1447 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1448 " on socket %d\n", socketid); 1449 1450 /* populate the LPM table */ 1451 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1452 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1453 ipv4_l3fwd_route_array[i].ip, 1454 ipv4_l3fwd_route_array[i].depth, 1455 ipv4_l3fwd_route_array[i].if_out); 1456 1457 if (ret < 0) { 1458 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1459 "l3fwd LPM table on socket %d\n", 1460 i, socketid); 1461 } 1462 1463 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1464 (unsigned)ipv4_l3fwd_route_array[i].ip, 1465 ipv4_l3fwd_route_array[i].depth, 1466 ipv4_l3fwd_route_array[i].if_out); 1467 } 1468 } 1469 #endif 1470 1471 static int 1472 init_mem(unsigned nb_mbuf) 1473 { 1474 struct lcore_conf *qconf; 1475 int socketid; 1476 unsigned lcore_id; 1477 char s[64]; 1478 1479 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1480 if (rte_lcore_is_enabled(lcore_id) == 0) 1481 continue; 1482 1483 if (numa_on) 1484 socketid = rte_lcore_to_socket_id(lcore_id); 1485 else 1486 socketid = 0; 1487 1488 if (socketid >= NB_SOCKETS) { 1489 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1490 "out of range %d\n", socketid, 1491 lcore_id, NB_SOCKETS); 1492 } 1493 if (pktmbuf_pool[socketid] == NULL) { 1494 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1495 pktmbuf_pool[socketid] = 1496 rte_pktmbuf_pool_create(s, nb_mbuf, 1497 MEMPOOL_CACHE_SIZE, 0, 1498 RTE_MBUF_DEFAULT_BUF_SIZE, 1499 socketid); 1500 if (pktmbuf_pool[socketid] == NULL) 1501 rte_exit(EXIT_FAILURE, 1502 "Cannot init mbuf pool on socket %d\n", 1503 socketid); 1504 else 1505 printf("Allocated mbuf pool on socket %d\n", 1506 socketid); 1507 1508 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1509 setup_lpm(socketid); 1510 #else 1511 setup_hash(socketid); 1512 #endif 1513 } 1514 qconf = &lcore_conf[lcore_id]; 1515 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1516 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1517 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1518 #endif 1519 } 1520 return 0; 1521 } 1522 1523 /* Check the link status of all ports in up to 9s, and print them finally */ 1524 static void 1525 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1526 { 1527 #define CHECK_INTERVAL 100 /* 100ms */ 1528 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1529 uint8_t portid, count, all_ports_up, print_flag = 0; 1530 struct rte_eth_link link; 1531 1532 printf("\nChecking link status"); 1533 fflush(stdout); 1534 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1535 all_ports_up = 1; 1536 for (portid = 0; portid < port_num; portid++) { 1537 if ((port_mask & (1 << portid)) == 0) 1538 continue; 1539 memset(&link, 0, sizeof(link)); 1540 rte_eth_link_get_nowait(portid, &link); 1541 /* print link status if flag set */ 1542 if (print_flag == 1) { 1543 if (link.link_status) 1544 printf("Port %d Link Up - speed %u " 1545 "Mbps - %s\n", (uint8_t)portid, 1546 (unsigned)link.link_speed, 1547 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1548 ("full-duplex") : ("half-duplex\n")); 1549 else 1550 printf("Port %d Link Down\n", 1551 (uint8_t)portid); 1552 continue; 1553 } 1554 /* clear all_ports_up flag if any link down */ 1555 if (link.link_status == 0) { 1556 all_ports_up = 0; 1557 break; 1558 } 1559 } 1560 /* after finally printing all link status, get out */ 1561 if (print_flag == 1) 1562 break; 1563 1564 if (all_ports_up == 0) { 1565 printf("."); 1566 fflush(stdout); 1567 rte_delay_ms(CHECK_INTERVAL); 1568 } 1569 1570 /* set the print_flag if all ports up or timeout */ 1571 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1572 print_flag = 1; 1573 printf("done\n"); 1574 } 1575 } 1576 } 1577 1578 int 1579 main(int argc, char **argv) 1580 { 1581 struct lcore_conf *qconf; 1582 struct rte_eth_dev_info dev_info; 1583 struct rte_eth_txconf *txconf; 1584 int ret; 1585 unsigned nb_ports; 1586 uint16_t queueid; 1587 unsigned lcore_id; 1588 uint64_t hz; 1589 uint32_t n_tx_queue, nb_lcores; 1590 uint32_t dev_rxq_num, dev_txq_num; 1591 uint8_t portid, nb_rx_queue, queue, socketid; 1592 1593 /* catch SIGINT and restore cpufreq governor to ondemand */ 1594 signal(SIGINT, signal_exit_now); 1595 1596 /* init EAL */ 1597 ret = rte_eal_init(argc, argv); 1598 if (ret < 0) 1599 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1600 argc -= ret; 1601 argv += ret; 1602 1603 /* init RTE timer library to be used late */ 1604 rte_timer_subsystem_init(); 1605 1606 /* parse application arguments (after the EAL ones) */ 1607 ret = parse_args(argc, argv); 1608 if (ret < 0) 1609 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1610 1611 if (check_lcore_params() < 0) 1612 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1613 1614 ret = init_lcore_rx_queues(); 1615 if (ret < 0) 1616 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1617 1618 1619 nb_ports = rte_eth_dev_count(); 1620 if (nb_ports > RTE_MAX_ETHPORTS) 1621 nb_ports = RTE_MAX_ETHPORTS; 1622 1623 if (check_port_config(nb_ports) < 0) 1624 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1625 1626 nb_lcores = rte_lcore_count(); 1627 1628 /* initialize all ports */ 1629 for (portid = 0; portid < nb_ports; portid++) { 1630 /* skip ports that are not enabled */ 1631 if ((enabled_port_mask & (1 << portid)) == 0) { 1632 printf("\nSkipping disabled port %d\n", portid); 1633 continue; 1634 } 1635 1636 /* init port */ 1637 printf("Initializing port %d ... ", portid ); 1638 fflush(stdout); 1639 1640 rte_eth_dev_info_get(portid, &dev_info); 1641 dev_rxq_num = dev_info.max_rx_queues; 1642 dev_txq_num = dev_info.max_tx_queues; 1643 1644 nb_rx_queue = get_port_n_rx_queues(portid); 1645 if (nb_rx_queue > dev_rxq_num) 1646 rte_exit(EXIT_FAILURE, 1647 "Cannot configure not existed rxq: " 1648 "port=%d\n", portid); 1649 1650 n_tx_queue = nb_lcores; 1651 if (n_tx_queue > dev_txq_num) 1652 n_tx_queue = dev_txq_num; 1653 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1654 nb_rx_queue, (unsigned)n_tx_queue ); 1655 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1656 (uint16_t)n_tx_queue, &port_conf); 1657 if (ret < 0) 1658 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1659 "err=%d, port=%d\n", ret, portid); 1660 1661 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1662 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1663 printf(", "); 1664 1665 /* init memory */ 1666 ret = init_mem(NB_MBUF); 1667 if (ret < 0) 1668 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1669 1670 /* init one TX queue per couple (lcore,port) */ 1671 queueid = 0; 1672 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1673 if (rte_lcore_is_enabled(lcore_id) == 0) 1674 continue; 1675 1676 if (queueid >= dev_txq_num) 1677 continue; 1678 1679 if (numa_on) 1680 socketid = \ 1681 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1682 else 1683 socketid = 0; 1684 1685 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1686 fflush(stdout); 1687 1688 rte_eth_dev_info_get(portid, &dev_info); 1689 txconf = &dev_info.default_txconf; 1690 if (port_conf.rxmode.jumbo_frame) 1691 txconf->txq_flags = 0; 1692 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1693 socketid, txconf); 1694 if (ret < 0) 1695 rte_exit(EXIT_FAILURE, 1696 "rte_eth_tx_queue_setup: err=%d, " 1697 "port=%d\n", ret, portid); 1698 1699 qconf = &lcore_conf[lcore_id]; 1700 qconf->tx_queue_id[portid] = queueid; 1701 queueid++; 1702 } 1703 printf("\n"); 1704 } 1705 1706 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1707 if (rte_lcore_is_enabled(lcore_id) == 0) 1708 continue; 1709 1710 /* init power management library */ 1711 ret = rte_power_init(lcore_id); 1712 if (ret) 1713 rte_log(RTE_LOG_ERR, RTE_LOGTYPE_POWER, 1714 "Power management library initialization " 1715 "failed on core%u", lcore_id); 1716 1717 /* init timer structures for each enabled lcore */ 1718 rte_timer_init(&power_timers[lcore_id]); 1719 hz = rte_get_timer_hz(); 1720 rte_timer_reset(&power_timers[lcore_id], 1721 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1722 power_timer_cb, NULL); 1723 1724 qconf = &lcore_conf[lcore_id]; 1725 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1726 fflush(stdout); 1727 /* init RX queues */ 1728 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1729 portid = qconf->rx_queue_list[queue].port_id; 1730 queueid = qconf->rx_queue_list[queue].queue_id; 1731 1732 if (numa_on) 1733 socketid = \ 1734 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1735 else 1736 socketid = 0; 1737 1738 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1739 fflush(stdout); 1740 1741 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1742 socketid, NULL, 1743 pktmbuf_pool[socketid]); 1744 if (ret < 0) 1745 rte_exit(EXIT_FAILURE, 1746 "rte_eth_rx_queue_setup: err=%d, " 1747 "port=%d\n", ret, portid); 1748 } 1749 } 1750 1751 printf("\n"); 1752 1753 /* start ports */ 1754 for (portid = 0; portid < nb_ports; portid++) { 1755 if ((enabled_port_mask & (1 << portid)) == 0) { 1756 continue; 1757 } 1758 /* Start device */ 1759 ret = rte_eth_dev_start(portid); 1760 if (ret < 0) 1761 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1762 "port=%d\n", ret, portid); 1763 /* 1764 * If enabled, put device in promiscuous mode. 1765 * This allows IO forwarding mode to forward packets 1766 * to itself through 2 cross-connected ports of the 1767 * target machine. 1768 */ 1769 if (promiscuous_on) 1770 rte_eth_promiscuous_enable(portid); 1771 /* initialize spinlock for each port */ 1772 rte_spinlock_init(&(locks[portid])); 1773 } 1774 1775 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1776 1777 /* launch per-lcore init on every lcore */ 1778 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1779 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1780 if (rte_eal_wait_lcore(lcore_id) < 0) 1781 return -1; 1782 } 1783 1784 return 0; 1785 } 1786