1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_malloc.h> 51 #include <rte_memory.h> 52 #include <rte_memcpy.h> 53 #include <rte_memzone.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_launch.h> 57 #include <rte_atomic.h> 58 #include <rte_cycles.h> 59 #include <rte_prefetch.h> 60 #include <rte_lcore.h> 61 #include <rte_per_lcore.h> 62 #include <rte_branch_prediction.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_random.h> 66 #include <rte_debug.h> 67 #include <rte_ether.h> 68 #include <rte_ethdev.h> 69 #include <rte_ring.h> 70 #include <rte_mempool.h> 71 #include <rte_mbuf.h> 72 #include <rte_ip.h> 73 #include <rte_tcp.h> 74 #include <rte_udp.h> 75 #include <rte_string_fns.h> 76 #include <rte_timer.h> 77 #include <rte_power.h> 78 #include <rte_eal.h> 79 #include <rte_spinlock.h> 80 81 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 82 83 #define MAX_PKT_BURST 32 84 85 #define MIN_ZERO_POLL_COUNT 10 86 87 /* around 100ms at 2 Ghz */ 88 #define TIMER_RESOLUTION_CYCLES 200000000ULL 89 /* 100 ms interval */ 90 #define TIMER_NUMBER_PER_SECOND 10 91 /* 100000 us */ 92 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 93 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 94 95 #define APP_LOOKUP_EXACT_MATCH 0 96 #define APP_LOOKUP_LPM 1 97 #define DO_RFC_1812_CHECKS 98 99 #ifndef APP_LOOKUP_METHOD 100 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 101 #endif 102 103 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 104 #include <rte_hash.h> 105 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 106 #include <rte_lpm.h> 107 #else 108 #error "APP_LOOKUP_METHOD set to incorrect value" 109 #endif 110 111 #ifndef IPv6_BYTES 112 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 113 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 114 #define IPv6_BYTES(addr) \ 115 addr[0], addr[1], addr[2], addr[3], \ 116 addr[4], addr[5], addr[6], addr[7], \ 117 addr[8], addr[9], addr[10], addr[11],\ 118 addr[12], addr[13],addr[14], addr[15] 119 #endif 120 121 #define MAX_JUMBO_PKT_LEN 9600 122 123 #define IPV6_ADDR_LEN 16 124 125 #define MEMPOOL_CACHE_SIZE 256 126 127 /* 128 * This expression is used to calculate the number of mbufs needed depending on 129 * user input, taking into account memory for rx and tx hardware rings, cache 130 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 131 * NB_MBUF never goes below a minimum value of 8192. 132 */ 133 134 #define NB_MBUF RTE_MAX ( \ 135 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 136 nb_ports*nb_lcores*MAX_PKT_BURST + \ 137 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 138 nb_lcores*MEMPOOL_CACHE_SIZE), \ 139 (unsigned)8192) 140 141 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 142 143 #define NB_SOCKETS 8 144 145 /* Configure how many packets ahead to prefetch, when reading packets */ 146 #define PREFETCH_OFFSET 3 147 148 /* 149 * Configurable number of RX/TX ring descriptors 150 */ 151 #define RTE_TEST_RX_DESC_DEFAULT 128 152 #define RTE_TEST_TX_DESC_DEFAULT 512 153 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 154 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 155 156 /* ethernet addresses of ports */ 157 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 158 159 /* ethernet addresses of ports */ 160 static rte_spinlock_t locks[RTE_MAX_ETHPORTS]; 161 162 /* mask of enabled ports */ 163 static uint32_t enabled_port_mask = 0; 164 /* Ports set in promiscuous mode off by default. */ 165 static int promiscuous_on = 0; 166 /* NUMA is enabled by default. */ 167 static int numa_on = 1; 168 169 enum freq_scale_hint_t 170 { 171 FREQ_LOWER = -1, 172 FREQ_CURRENT = 0, 173 FREQ_HIGHER = 1, 174 FREQ_HIGHEST = 2 175 }; 176 177 struct lcore_rx_queue { 178 uint8_t port_id; 179 uint8_t queue_id; 180 enum freq_scale_hint_t freq_up_hint; 181 uint32_t zero_rx_packet_count; 182 uint32_t idle_hint; 183 } __rte_cache_aligned; 184 185 #define MAX_RX_QUEUE_PER_LCORE 16 186 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 187 #define MAX_RX_QUEUE_PER_PORT 128 188 189 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16 190 191 192 #define MAX_LCORE_PARAMS 1024 193 struct lcore_params { 194 uint8_t port_id; 195 uint8_t queue_id; 196 uint8_t lcore_id; 197 } __rte_cache_aligned; 198 199 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 200 static struct lcore_params lcore_params_array_default[] = { 201 {0, 0, 2}, 202 {0, 1, 2}, 203 {0, 2, 2}, 204 {1, 0, 2}, 205 {1, 1, 2}, 206 {1, 2, 2}, 207 {2, 0, 2}, 208 {3, 0, 3}, 209 {3, 1, 3}, 210 }; 211 212 static struct lcore_params * lcore_params = lcore_params_array_default; 213 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 214 sizeof(lcore_params_array_default[0]); 215 216 static struct rte_eth_conf port_conf = { 217 .rxmode = { 218 .mq_mode = ETH_MQ_RX_RSS, 219 .max_rx_pkt_len = ETHER_MAX_LEN, 220 .split_hdr_size = 0, 221 .header_split = 0, /**< Header Split disabled */ 222 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 223 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 224 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 225 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 226 }, 227 .rx_adv_conf = { 228 .rss_conf = { 229 .rss_key = NULL, 230 .rss_hf = ETH_RSS_UDP, 231 }, 232 }, 233 .txmode = { 234 .mq_mode = ETH_MQ_TX_NONE, 235 }, 236 .intr_conf = { 237 .lsc = 1, 238 .rxq = 1, 239 }, 240 }; 241 242 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 243 244 245 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 246 247 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 248 #include <rte_hash_crc.h> 249 #define DEFAULT_HASH_FUNC rte_hash_crc 250 #else 251 #include <rte_jhash.h> 252 #define DEFAULT_HASH_FUNC rte_jhash 253 #endif 254 255 struct ipv4_5tuple { 256 uint32_t ip_dst; 257 uint32_t ip_src; 258 uint16_t port_dst; 259 uint16_t port_src; 260 uint8_t proto; 261 } __attribute__((__packed__)); 262 263 struct ipv6_5tuple { 264 uint8_t ip_dst[IPV6_ADDR_LEN]; 265 uint8_t ip_src[IPV6_ADDR_LEN]; 266 uint16_t port_dst; 267 uint16_t port_src; 268 uint8_t proto; 269 } __attribute__((__packed__)); 270 271 struct ipv4_l3fwd_route { 272 struct ipv4_5tuple key; 273 uint8_t if_out; 274 }; 275 276 struct ipv6_l3fwd_route { 277 struct ipv6_5tuple key; 278 uint8_t if_out; 279 }; 280 281 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 282 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 283 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 284 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 285 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 286 }; 287 288 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 289 { 290 { 291 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 292 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 293 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 294 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 295 1, 10, IPPROTO_UDP 296 }, 4 297 }, 298 }; 299 300 typedef struct rte_hash lookup_struct_t; 301 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 302 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 303 304 #define L3FWD_HASH_ENTRIES 1024 305 306 #define IPV4_L3FWD_NUM_ROUTES \ 307 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 308 309 #define IPV6_L3FWD_NUM_ROUTES \ 310 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 311 312 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 313 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 314 #endif 315 316 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 317 struct ipv4_l3fwd_route { 318 uint32_t ip; 319 uint8_t depth; 320 uint8_t if_out; 321 }; 322 323 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 324 {IPv4(1,1,1,0), 24, 0}, 325 {IPv4(2,1,1,0), 24, 1}, 326 {IPv4(3,1,1,0), 24, 2}, 327 {IPv4(4,1,1,0), 24, 3}, 328 {IPv4(5,1,1,0), 24, 4}, 329 {IPv4(6,1,1,0), 24, 5}, 330 {IPv4(7,1,1,0), 24, 6}, 331 {IPv4(8,1,1,0), 24, 7}, 332 }; 333 334 #define IPV4_L3FWD_NUM_ROUTES \ 335 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 336 337 #define IPV4_L3FWD_LPM_MAX_RULES 1024 338 339 typedef struct rte_lpm lookup_struct_t; 340 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 341 #endif 342 343 struct lcore_conf { 344 uint16_t n_rx_queue; 345 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 346 uint16_t n_tx_port; 347 uint16_t tx_port_id[RTE_MAX_ETHPORTS]; 348 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 349 struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; 350 lookup_struct_t * ipv4_lookup_struct; 351 lookup_struct_t * ipv6_lookup_struct; 352 } __rte_cache_aligned; 353 354 struct lcore_stats { 355 /* total sleep time in ms since last frequency scaling down */ 356 uint32_t sleep_time; 357 /* number of long sleep recently */ 358 uint32_t nb_long_sleep; 359 /* freq. scaling up trend */ 360 uint32_t trend; 361 /* total packet processed recently */ 362 uint64_t nb_rx_processed; 363 /* total iterations looped recently */ 364 uint64_t nb_iteration_looped; 365 uint32_t padding[9]; 366 } __rte_cache_aligned; 367 368 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 369 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 370 static struct rte_timer power_timers[RTE_MAX_LCORE]; 371 372 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 373 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 374 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 375 376 /* exit signal handler */ 377 static void 378 signal_exit_now(int sigtype) 379 { 380 unsigned lcore_id; 381 int ret; 382 383 if (sigtype == SIGINT) { 384 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 385 if (rte_lcore_is_enabled(lcore_id) == 0) 386 continue; 387 388 /* init power management library */ 389 ret = rte_power_exit(lcore_id); 390 if (ret) 391 rte_exit(EXIT_FAILURE, "Power management " 392 "library de-initialization failed on " 393 "core%u\n", lcore_id); 394 } 395 } 396 397 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 398 } 399 400 /* Freqency scale down timer callback */ 401 static void 402 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 403 __attribute__((unused)) void *arg) 404 { 405 uint64_t hz; 406 float sleep_time_ratio; 407 unsigned lcore_id = rte_lcore_id(); 408 409 /* accumulate total execution time in us when callback is invoked */ 410 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 411 (float)SCALING_PERIOD; 412 /** 413 * check whether need to scale down frequency a step if it sleep a lot. 414 */ 415 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) { 416 if (rte_power_freq_down) 417 rte_power_freq_down(lcore_id); 418 } 419 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 420 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) { 421 /** 422 * scale down a step if average packet per iteration less 423 * than expectation. 424 */ 425 if (rte_power_freq_down) 426 rte_power_freq_down(lcore_id); 427 } 428 429 /** 430 * initialize another timer according to current frequency to ensure 431 * timer interval is relatively fixed. 432 */ 433 hz = rte_get_timer_hz(); 434 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 435 SINGLE, lcore_id, power_timer_cb, NULL); 436 437 stats[lcore_id].nb_rx_processed = 0; 438 stats[lcore_id].nb_iteration_looped = 0; 439 440 stats[lcore_id].sleep_time = 0; 441 } 442 443 /* Enqueue a single packet, and send burst if queue is filled */ 444 static inline int 445 send_single_packet(struct rte_mbuf *m, uint8_t port) 446 { 447 uint32_t lcore_id; 448 struct lcore_conf *qconf; 449 450 lcore_id = rte_lcore_id(); 451 qconf = &lcore_conf[lcore_id]; 452 453 rte_eth_tx_buffer(port, qconf->tx_queue_id[port], 454 qconf->tx_buffer[port], m); 455 456 return 0; 457 } 458 459 #ifdef DO_RFC_1812_CHECKS 460 static inline int 461 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 462 { 463 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 464 /* 465 * 1. The packet length reported by the Link Layer must be large 466 * enough to hold the minimum length legal IP datagram (20 bytes). 467 */ 468 if (link_len < sizeof(struct ipv4_hdr)) 469 return -1; 470 471 /* 2. The IP checksum must be correct. */ 472 /* this is checked in H/W */ 473 474 /* 475 * 3. The IP version number must be 4. If the version number is not 4 476 * then the packet may be another version of IP, such as IPng or 477 * ST-II. 478 */ 479 if (((pkt->version_ihl) >> 4) != 4) 480 return -3; 481 /* 482 * 4. The IP header length field must be large enough to hold the 483 * minimum length legal IP datagram (20 bytes = 5 words). 484 */ 485 if ((pkt->version_ihl & 0xf) < 5) 486 return -4; 487 488 /* 489 * 5. The IP total length field must be large enough to hold the IP 490 * datagram header, whose length is specified in the IP header length 491 * field. 492 */ 493 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 494 return -5; 495 496 return 0; 497 } 498 #endif 499 500 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 501 static void 502 print_ipv4_key(struct ipv4_5tuple key) 503 { 504 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 505 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 506 key.port_dst, key.port_src, key.proto); 507 } 508 static void 509 print_ipv6_key(struct ipv6_5tuple key) 510 { 511 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 512 "port dst = %d, port src = %d, proto = %d\n", 513 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 514 key.port_dst, key.port_src, key.proto); 515 } 516 517 static inline uint8_t 518 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 519 lookup_struct_t * ipv4_l3fwd_lookup_struct) 520 { 521 struct ipv4_5tuple key; 522 struct tcp_hdr *tcp; 523 struct udp_hdr *udp; 524 int ret = 0; 525 526 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 527 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 528 key.proto = ipv4_hdr->next_proto_id; 529 530 switch (ipv4_hdr->next_proto_id) { 531 case IPPROTO_TCP: 532 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 533 sizeof(struct ipv4_hdr)); 534 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 535 key.port_src = rte_be_to_cpu_16(tcp->src_port); 536 break; 537 538 case IPPROTO_UDP: 539 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 540 sizeof(struct ipv4_hdr)); 541 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 542 key.port_src = rte_be_to_cpu_16(udp->src_port); 543 break; 544 545 default: 546 key.port_dst = 0; 547 key.port_src = 0; 548 break; 549 } 550 551 /* Find destination port */ 552 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 553 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 554 } 555 556 static inline uint8_t 557 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 558 lookup_struct_t *ipv6_l3fwd_lookup_struct) 559 { 560 struct ipv6_5tuple key; 561 struct tcp_hdr *tcp; 562 struct udp_hdr *udp; 563 int ret = 0; 564 565 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 566 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 567 568 key.proto = ipv6_hdr->proto; 569 570 switch (ipv6_hdr->proto) { 571 case IPPROTO_TCP: 572 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 573 sizeof(struct ipv6_hdr)); 574 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 575 key.port_src = rte_be_to_cpu_16(tcp->src_port); 576 break; 577 578 case IPPROTO_UDP: 579 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 580 sizeof(struct ipv6_hdr)); 581 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 582 key.port_src = rte_be_to_cpu_16(udp->src_port); 583 break; 584 585 default: 586 key.port_dst = 0; 587 key.port_src = 0; 588 break; 589 } 590 591 /* Find destination port */ 592 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 593 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 594 } 595 #endif 596 597 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 598 static inline uint8_t 599 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 600 lookup_struct_t *ipv4_l3fwd_lookup_struct) 601 { 602 uint32_t next_hop; 603 604 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 605 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 606 next_hop : portid); 607 } 608 #endif 609 610 static inline void 611 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 612 struct lcore_conf *qconf) 613 { 614 struct ether_hdr *eth_hdr; 615 struct ipv4_hdr *ipv4_hdr; 616 void *d_addr_bytes; 617 uint8_t dst_port; 618 619 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 620 621 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 622 /* Handle IPv4 headers.*/ 623 ipv4_hdr = 624 rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 625 sizeof(struct ether_hdr)); 626 627 #ifdef DO_RFC_1812_CHECKS 628 /* Check to make sure the packet is valid (RFC1812) */ 629 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 630 rte_pktmbuf_free(m); 631 return; 632 } 633 #endif 634 635 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 636 qconf->ipv4_lookup_struct); 637 if (dst_port >= RTE_MAX_ETHPORTS || 638 (enabled_port_mask & 1 << dst_port) == 0) 639 dst_port = portid; 640 641 /* 02:00:00:00:00:xx */ 642 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 643 *((uint64_t *)d_addr_bytes) = 644 0x000000000002 + ((uint64_t)dst_port << 40); 645 646 #ifdef DO_RFC_1812_CHECKS 647 /* Update time to live and header checksum */ 648 --(ipv4_hdr->time_to_live); 649 ++(ipv4_hdr->hdr_checksum); 650 #endif 651 652 /* src addr */ 653 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 654 655 send_single_packet(m, dst_port); 656 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 657 /* Handle IPv6 headers.*/ 658 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 659 struct ipv6_hdr *ipv6_hdr; 660 661 ipv6_hdr = 662 rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, 663 sizeof(struct ether_hdr)); 664 665 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 666 qconf->ipv6_lookup_struct); 667 668 if (dst_port >= RTE_MAX_ETHPORTS || 669 (enabled_port_mask & 1 << dst_port) == 0) 670 dst_port = portid; 671 672 /* 02:00:00:00:00:xx */ 673 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 674 *((uint64_t *)d_addr_bytes) = 675 0x000000000002 + ((uint64_t)dst_port << 40); 676 677 /* src addr */ 678 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 679 680 send_single_packet(m, dst_port); 681 #else 682 /* We don't currently handle IPv6 packets in LPM mode. */ 683 rte_pktmbuf_free(m); 684 #endif 685 } else 686 rte_pktmbuf_free(m); 687 688 } 689 690 #define MINIMUM_SLEEP_TIME 1 691 #define SUSPEND_THRESHOLD 300 692 693 static inline uint32_t 694 power_idle_heuristic(uint32_t zero_rx_packet_count) 695 { 696 /* If zero count is less than 100, sleep 1us */ 697 if (zero_rx_packet_count < SUSPEND_THRESHOLD) 698 return MINIMUM_SLEEP_TIME; 699 /* If zero count is less than 1000, sleep 100 us which is the 700 minimum latency switching from C3/C6 to C0 701 */ 702 else 703 return SUSPEND_THRESHOLD; 704 705 return 0; 706 } 707 708 static inline enum freq_scale_hint_t 709 power_freq_scaleup_heuristic(unsigned lcore_id, 710 uint8_t port_id, 711 uint16_t queue_id) 712 { 713 /** 714 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 715 * per iteration 716 */ 717 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 718 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 719 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 720 #define FREQ_UP_TREND1_ACC 1 721 #define FREQ_UP_TREND2_ACC 100 722 #define FREQ_UP_THRESHOLD 10000 723 724 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 725 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 726 stats[lcore_id].trend = 0; 727 return FREQ_HIGHEST; 728 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 729 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 730 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 731 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 732 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 733 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 734 735 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 736 stats[lcore_id].trend = 0; 737 return FREQ_HIGHER; 738 } 739 740 return FREQ_CURRENT; 741 } 742 743 /** 744 * force polling thread sleep until one-shot rx interrupt triggers 745 * @param port_id 746 * Port id. 747 * @param queue_id 748 * Rx queue id. 749 * @return 750 * 0 on success 751 */ 752 static int 753 sleep_until_rx_interrupt(int num) 754 { 755 struct rte_epoll_event event[num]; 756 int n, i; 757 uint8_t port_id, queue_id; 758 void *data; 759 760 RTE_LOG(INFO, L3FWD_POWER, 761 "lcore %u sleeps until interrupt triggers\n", 762 rte_lcore_id()); 763 764 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1); 765 for (i = 0; i < n; i++) { 766 data = event[i].epdata.data; 767 port_id = ((uintptr_t)data) >> CHAR_BIT; 768 queue_id = ((uintptr_t)data) & 769 RTE_LEN2MASK(CHAR_BIT, uint8_t); 770 rte_eth_dev_rx_intr_disable(port_id, queue_id); 771 RTE_LOG(INFO, L3FWD_POWER, 772 "lcore %u is waked up from rx interrupt on" 773 " port %d queue %d\n", 774 rte_lcore_id(), port_id, queue_id); 775 } 776 777 return 0; 778 } 779 780 static void turn_on_intr(struct lcore_conf *qconf) 781 { 782 int i; 783 struct lcore_rx_queue *rx_queue; 784 uint8_t port_id, queue_id; 785 786 for (i = 0; i < qconf->n_rx_queue; ++i) { 787 rx_queue = &(qconf->rx_queue_list[i]); 788 port_id = rx_queue->port_id; 789 queue_id = rx_queue->queue_id; 790 791 rte_spinlock_lock(&(locks[port_id])); 792 rte_eth_dev_rx_intr_enable(port_id, queue_id); 793 rte_spinlock_unlock(&(locks[port_id])); 794 } 795 } 796 797 static int event_register(struct lcore_conf *qconf) 798 { 799 struct lcore_rx_queue *rx_queue; 800 uint8_t portid, queueid; 801 uint32_t data; 802 int ret; 803 int i; 804 805 for (i = 0; i < qconf->n_rx_queue; ++i) { 806 rx_queue = &(qconf->rx_queue_list[i]); 807 portid = rx_queue->port_id; 808 queueid = rx_queue->queue_id; 809 data = portid << CHAR_BIT | queueid; 810 811 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid, 812 RTE_EPOLL_PER_THREAD, 813 RTE_INTR_EVENT_ADD, 814 (void *)((uintptr_t)data)); 815 if (ret) 816 return ret; 817 } 818 819 return 0; 820 } 821 822 /* main processing loop */ 823 static int 824 main_loop(__attribute__((unused)) void *dummy) 825 { 826 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 827 unsigned lcore_id; 828 uint64_t prev_tsc, diff_tsc, cur_tsc; 829 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 830 int i, j, nb_rx; 831 uint8_t portid, queueid; 832 struct lcore_conf *qconf; 833 struct lcore_rx_queue *rx_queue; 834 enum freq_scale_hint_t lcore_scaleup_hint; 835 uint32_t lcore_rx_idle_count = 0; 836 uint32_t lcore_idle_hint = 0; 837 int intr_en = 0; 838 839 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 840 841 prev_tsc = 0; 842 843 lcore_id = rte_lcore_id(); 844 qconf = &lcore_conf[lcore_id]; 845 846 if (qconf->n_rx_queue == 0) { 847 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 848 return 0; 849 } 850 851 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 852 853 for (i = 0; i < qconf->n_rx_queue; i++) { 854 portid = qconf->rx_queue_list[i].port_id; 855 queueid = qconf->rx_queue_list[i].queue_id; 856 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 857 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 858 } 859 860 /* add into event wait list */ 861 if (event_register(qconf) == 0) 862 intr_en = 1; 863 else 864 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n"); 865 866 while (1) { 867 stats[lcore_id].nb_iteration_looped++; 868 869 cur_tsc = rte_rdtsc(); 870 cur_tsc_power = cur_tsc; 871 872 /* 873 * TX burst queue drain 874 */ 875 diff_tsc = cur_tsc - prev_tsc; 876 if (unlikely(diff_tsc > drain_tsc)) { 877 for (i = 0; i < qconf->n_tx_port; ++i) { 878 portid = qconf->tx_port_id[i]; 879 rte_eth_tx_buffer_flush(portid, 880 qconf->tx_queue_id[portid], 881 qconf->tx_buffer[portid]); 882 } 883 prev_tsc = cur_tsc; 884 } 885 886 diff_tsc_power = cur_tsc_power - prev_tsc_power; 887 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 888 rte_timer_manage(); 889 prev_tsc_power = cur_tsc_power; 890 } 891 892 start_rx: 893 /* 894 * Read packet from RX queues 895 */ 896 lcore_scaleup_hint = FREQ_CURRENT; 897 lcore_rx_idle_count = 0; 898 for (i = 0; i < qconf->n_rx_queue; ++i) { 899 rx_queue = &(qconf->rx_queue_list[i]); 900 rx_queue->idle_hint = 0; 901 portid = rx_queue->port_id; 902 queueid = rx_queue->queue_id; 903 904 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 905 MAX_PKT_BURST); 906 907 stats[lcore_id].nb_rx_processed += nb_rx; 908 if (unlikely(nb_rx == 0)) { 909 /** 910 * no packet received from rx queue, try to 911 * sleep for a while forcing CPU enter deeper 912 * C states. 913 */ 914 rx_queue->zero_rx_packet_count++; 915 916 if (rx_queue->zero_rx_packet_count <= 917 MIN_ZERO_POLL_COUNT) 918 continue; 919 920 rx_queue->idle_hint = power_idle_heuristic(\ 921 rx_queue->zero_rx_packet_count); 922 lcore_rx_idle_count++; 923 } else { 924 rx_queue->zero_rx_packet_count = 0; 925 926 /** 927 * do not scale up frequency immediately as 928 * user to kernel space communication is costly 929 * which might impact packet I/O for received 930 * packets. 931 */ 932 rx_queue->freq_up_hint = 933 power_freq_scaleup_heuristic(lcore_id, 934 portid, queueid); 935 } 936 937 /* Prefetch first packets */ 938 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 939 rte_prefetch0(rte_pktmbuf_mtod( 940 pkts_burst[j], void *)); 941 } 942 943 /* Prefetch and forward already prefetched packets */ 944 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 945 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 946 j + PREFETCH_OFFSET], void *)); 947 l3fwd_simple_forward(pkts_burst[j], portid, 948 qconf); 949 } 950 951 /* Forward remaining prefetched packets */ 952 for (; j < nb_rx; j++) { 953 l3fwd_simple_forward(pkts_burst[j], portid, 954 qconf); 955 } 956 } 957 958 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 959 for (i = 1, lcore_scaleup_hint = 960 qconf->rx_queue_list[0].freq_up_hint; 961 i < qconf->n_rx_queue; ++i) { 962 rx_queue = &(qconf->rx_queue_list[i]); 963 if (rx_queue->freq_up_hint > 964 lcore_scaleup_hint) 965 lcore_scaleup_hint = 966 rx_queue->freq_up_hint; 967 } 968 969 if (lcore_scaleup_hint == FREQ_HIGHEST) { 970 if (rte_power_freq_max) 971 rte_power_freq_max(lcore_id); 972 } else if (lcore_scaleup_hint == FREQ_HIGHER) { 973 if (rte_power_freq_up) 974 rte_power_freq_up(lcore_id); 975 } 976 } else { 977 /** 978 * All Rx queues empty in recent consecutive polls, 979 * sleep in a conservative manner, meaning sleep as 980 * less as possible. 981 */ 982 for (i = 1, lcore_idle_hint = 983 qconf->rx_queue_list[0].idle_hint; 984 i < qconf->n_rx_queue; ++i) { 985 rx_queue = &(qconf->rx_queue_list[i]); 986 if (rx_queue->idle_hint < lcore_idle_hint) 987 lcore_idle_hint = rx_queue->idle_hint; 988 } 989 990 if (lcore_idle_hint < SUSPEND_THRESHOLD) 991 /** 992 * execute "pause" instruction to avoid context 993 * switch which generally take hundred of 994 * microseconds for short sleep. 995 */ 996 rte_delay_us(lcore_idle_hint); 997 else { 998 /* suspend until rx interrupt trigges */ 999 if (intr_en) { 1000 turn_on_intr(qconf); 1001 sleep_until_rx_interrupt( 1002 qconf->n_rx_queue); 1003 } 1004 /* start receiving packets immediately */ 1005 goto start_rx; 1006 } 1007 stats[lcore_id].sleep_time += lcore_idle_hint; 1008 } 1009 } 1010 } 1011 1012 static int 1013 check_lcore_params(void) 1014 { 1015 uint8_t queue, lcore; 1016 uint16_t i; 1017 int socketid; 1018 1019 for (i = 0; i < nb_lcore_params; ++i) { 1020 queue = lcore_params[i].queue_id; 1021 if (queue >= MAX_RX_QUEUE_PER_PORT) { 1022 printf("invalid queue number: %hhu\n", queue); 1023 return -1; 1024 } 1025 lcore = lcore_params[i].lcore_id; 1026 if (!rte_lcore_is_enabled(lcore)) { 1027 printf("error: lcore %hhu is not enabled in lcore " 1028 "mask\n", lcore); 1029 return -1; 1030 } 1031 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 1032 (numa_on == 0)) { 1033 printf("warning: lcore %hhu is on socket %d with numa " 1034 "off\n", lcore, socketid); 1035 } 1036 } 1037 return 0; 1038 } 1039 1040 static int 1041 check_port_config(const unsigned nb_ports) 1042 { 1043 unsigned portid; 1044 uint16_t i; 1045 1046 for (i = 0; i < nb_lcore_params; ++i) { 1047 portid = lcore_params[i].port_id; 1048 if ((enabled_port_mask & (1 << portid)) == 0) { 1049 printf("port %u is not enabled in port mask\n", 1050 portid); 1051 return -1; 1052 } 1053 if (portid >= nb_ports) { 1054 printf("port %u is not present on the board\n", 1055 portid); 1056 return -1; 1057 } 1058 } 1059 return 0; 1060 } 1061 1062 static uint8_t 1063 get_port_n_rx_queues(const uint8_t port) 1064 { 1065 int queue = -1; 1066 uint16_t i; 1067 1068 for (i = 0; i < nb_lcore_params; ++i) { 1069 if (lcore_params[i].port_id == port && 1070 lcore_params[i].queue_id > queue) 1071 queue = lcore_params[i].queue_id; 1072 } 1073 return (uint8_t)(++queue); 1074 } 1075 1076 static int 1077 init_lcore_rx_queues(void) 1078 { 1079 uint16_t i, nb_rx_queue; 1080 uint8_t lcore; 1081 1082 for (i = 0; i < nb_lcore_params; ++i) { 1083 lcore = lcore_params[i].lcore_id; 1084 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1085 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1086 printf("error: too many queues (%u) for lcore: %u\n", 1087 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1088 return -1; 1089 } else { 1090 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1091 lcore_params[i].port_id; 1092 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1093 lcore_params[i].queue_id; 1094 lcore_conf[lcore].n_rx_queue++; 1095 } 1096 } 1097 return 0; 1098 } 1099 1100 /* display usage */ 1101 static void 1102 print_usage(const char *prgname) 1103 { 1104 printf ("%s [EAL options] -- -p PORTMASK -P" 1105 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1106 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1107 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1108 " -P : enable promiscuous mode\n" 1109 " --config (port,queue,lcore): rx queues configuration\n" 1110 " --no-numa: optional, disable numa awareness\n" 1111 " --enable-jumbo: enable jumbo frame" 1112 " which max packet len is PKTLEN in decimal (64-9600)\n", 1113 prgname); 1114 } 1115 1116 static int parse_max_pkt_len(const char *pktlen) 1117 { 1118 char *end = NULL; 1119 unsigned long len; 1120 1121 /* parse decimal string */ 1122 len = strtoul(pktlen, &end, 10); 1123 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1124 return -1; 1125 1126 if (len == 0) 1127 return -1; 1128 1129 return len; 1130 } 1131 1132 static int 1133 parse_portmask(const char *portmask) 1134 { 1135 char *end = NULL; 1136 unsigned long pm; 1137 1138 /* parse hexadecimal string */ 1139 pm = strtoul(portmask, &end, 16); 1140 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1141 return -1; 1142 1143 if (pm == 0) 1144 return -1; 1145 1146 return pm; 1147 } 1148 1149 static int 1150 parse_config(const char *q_arg) 1151 { 1152 char s[256]; 1153 const char *p, *p0 = q_arg; 1154 char *end; 1155 enum fieldnames { 1156 FLD_PORT = 0, 1157 FLD_QUEUE, 1158 FLD_LCORE, 1159 _NUM_FLD 1160 }; 1161 unsigned long int_fld[_NUM_FLD]; 1162 char *str_fld[_NUM_FLD]; 1163 int i; 1164 unsigned size; 1165 1166 nb_lcore_params = 0; 1167 1168 while ((p = strchr(p0,'(')) != NULL) { 1169 ++p; 1170 if((p0 = strchr(p,')')) == NULL) 1171 return -1; 1172 1173 size = p0 - p; 1174 if(size >= sizeof(s)) 1175 return -1; 1176 1177 snprintf(s, sizeof(s), "%.*s", size, p); 1178 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1179 _NUM_FLD) 1180 return -1; 1181 for (i = 0; i < _NUM_FLD; i++){ 1182 errno = 0; 1183 int_fld[i] = strtoul(str_fld[i], &end, 0); 1184 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1185 255) 1186 return -1; 1187 } 1188 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1189 printf("exceeded max number of lcore params: %hu\n", 1190 nb_lcore_params); 1191 return -1; 1192 } 1193 lcore_params_array[nb_lcore_params].port_id = 1194 (uint8_t)int_fld[FLD_PORT]; 1195 lcore_params_array[nb_lcore_params].queue_id = 1196 (uint8_t)int_fld[FLD_QUEUE]; 1197 lcore_params_array[nb_lcore_params].lcore_id = 1198 (uint8_t)int_fld[FLD_LCORE]; 1199 ++nb_lcore_params; 1200 } 1201 lcore_params = lcore_params_array; 1202 1203 return 0; 1204 } 1205 1206 /* Parse the argument given in the command line of the application */ 1207 static int 1208 parse_args(int argc, char **argv) 1209 { 1210 int opt, ret; 1211 char **argvopt; 1212 int option_index; 1213 char *prgname = argv[0]; 1214 static struct option lgopts[] = { 1215 {"config", 1, 0, 0}, 1216 {"no-numa", 0, 0, 0}, 1217 {"enable-jumbo", 0, 0, 0}, 1218 {NULL, 0, 0, 0} 1219 }; 1220 1221 argvopt = argv; 1222 1223 while ((opt = getopt_long(argc, argvopt, "p:P", 1224 lgopts, &option_index)) != EOF) { 1225 1226 switch (opt) { 1227 /* portmask */ 1228 case 'p': 1229 enabled_port_mask = parse_portmask(optarg); 1230 if (enabled_port_mask == 0) { 1231 printf("invalid portmask\n"); 1232 print_usage(prgname); 1233 return -1; 1234 } 1235 break; 1236 case 'P': 1237 printf("Promiscuous mode selected\n"); 1238 promiscuous_on = 1; 1239 break; 1240 1241 /* long options */ 1242 case 0: 1243 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1244 ret = parse_config(optarg); 1245 if (ret) { 1246 printf("invalid config\n"); 1247 print_usage(prgname); 1248 return -1; 1249 } 1250 } 1251 1252 if (!strncmp(lgopts[option_index].name, 1253 "no-numa", 7)) { 1254 printf("numa is disabled \n"); 1255 numa_on = 0; 1256 } 1257 1258 if (!strncmp(lgopts[option_index].name, 1259 "enable-jumbo", 12)) { 1260 struct option lenopts = 1261 {"max-pkt-len", required_argument, \ 1262 0, 0}; 1263 1264 printf("jumbo frame is enabled \n"); 1265 port_conf.rxmode.jumbo_frame = 1; 1266 1267 /** 1268 * if no max-pkt-len set, use the default value 1269 * ETHER_MAX_LEN 1270 */ 1271 if (0 == getopt_long(argc, argvopt, "", 1272 &lenopts, &option_index)) { 1273 ret = parse_max_pkt_len(optarg); 1274 if ((ret < 64) || 1275 (ret > MAX_JUMBO_PKT_LEN)){ 1276 printf("invalid packet " 1277 "length\n"); 1278 print_usage(prgname); 1279 return -1; 1280 } 1281 port_conf.rxmode.max_rx_pkt_len = ret; 1282 } 1283 printf("set jumbo frame " 1284 "max packet length to %u\n", 1285 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1286 } 1287 1288 break; 1289 1290 default: 1291 print_usage(prgname); 1292 return -1; 1293 } 1294 } 1295 1296 if (optind >= 0) 1297 argv[optind-1] = prgname; 1298 1299 ret = optind-1; 1300 optind = 0; /* reset getopt lib */ 1301 return ret; 1302 } 1303 1304 static void 1305 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1306 { 1307 char buf[ETHER_ADDR_FMT_SIZE]; 1308 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1309 printf("%s%s", name, buf); 1310 } 1311 1312 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1313 static void 1314 setup_hash(int socketid) 1315 { 1316 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1317 .name = NULL, 1318 .entries = L3FWD_HASH_ENTRIES, 1319 .key_len = sizeof(struct ipv4_5tuple), 1320 .hash_func = DEFAULT_HASH_FUNC, 1321 .hash_func_init_val = 0, 1322 }; 1323 1324 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1325 .name = NULL, 1326 .entries = L3FWD_HASH_ENTRIES, 1327 .key_len = sizeof(struct ipv6_5tuple), 1328 .hash_func = DEFAULT_HASH_FUNC, 1329 .hash_func_init_val = 0, 1330 }; 1331 1332 unsigned i; 1333 int ret; 1334 char s[64]; 1335 1336 /* create ipv4 hash */ 1337 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1338 ipv4_l3fwd_hash_params.name = s; 1339 ipv4_l3fwd_hash_params.socket_id = socketid; 1340 ipv4_l3fwd_lookup_struct[socketid] = 1341 rte_hash_create(&ipv4_l3fwd_hash_params); 1342 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1343 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1344 "socket %d\n", socketid); 1345 1346 /* create ipv6 hash */ 1347 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1348 ipv6_l3fwd_hash_params.name = s; 1349 ipv6_l3fwd_hash_params.socket_id = socketid; 1350 ipv6_l3fwd_lookup_struct[socketid] = 1351 rte_hash_create(&ipv6_l3fwd_hash_params); 1352 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1353 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1354 "socket %d\n", socketid); 1355 1356 1357 /* populate the ipv4 hash */ 1358 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1359 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1360 (void *) &ipv4_l3fwd_route_array[i].key); 1361 if (ret < 0) { 1362 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1363 "l3fwd hash on socket %d\n", i, socketid); 1364 } 1365 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1366 printf("Hash: Adding key\n"); 1367 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1368 } 1369 1370 /* populate the ipv6 hash */ 1371 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1372 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1373 (void *) &ipv6_l3fwd_route_array[i].key); 1374 if (ret < 0) { 1375 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1376 "l3fwd hash on socket %d\n", i, socketid); 1377 } 1378 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1379 printf("Hash: Adding key\n"); 1380 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1381 } 1382 } 1383 #endif 1384 1385 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1386 static void 1387 setup_lpm(int socketid) 1388 { 1389 unsigned i; 1390 int ret; 1391 char s[64]; 1392 1393 /* create the LPM table */ 1394 struct rte_lpm_config lpm_ipv4_config; 1395 1396 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES; 1397 lpm_ipv4_config.number_tbl8s = 256; 1398 lpm_ipv4_config.flags = 0; 1399 1400 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1401 ipv4_l3fwd_lookup_struct[socketid] = 1402 rte_lpm_create(s, socketid, &lpm_ipv4_config); 1403 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1404 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1405 " on socket %d\n", socketid); 1406 1407 /* populate the LPM table */ 1408 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1409 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1410 ipv4_l3fwd_route_array[i].ip, 1411 ipv4_l3fwd_route_array[i].depth, 1412 ipv4_l3fwd_route_array[i].if_out); 1413 1414 if (ret < 0) { 1415 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1416 "l3fwd LPM table on socket %d\n", 1417 i, socketid); 1418 } 1419 1420 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1421 (unsigned)ipv4_l3fwd_route_array[i].ip, 1422 ipv4_l3fwd_route_array[i].depth, 1423 ipv4_l3fwd_route_array[i].if_out); 1424 } 1425 } 1426 #endif 1427 1428 static int 1429 init_mem(unsigned nb_mbuf) 1430 { 1431 struct lcore_conf *qconf; 1432 int socketid; 1433 unsigned lcore_id; 1434 char s[64]; 1435 1436 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1437 if (rte_lcore_is_enabled(lcore_id) == 0) 1438 continue; 1439 1440 if (numa_on) 1441 socketid = rte_lcore_to_socket_id(lcore_id); 1442 else 1443 socketid = 0; 1444 1445 if (socketid >= NB_SOCKETS) { 1446 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1447 "out of range %d\n", socketid, 1448 lcore_id, NB_SOCKETS); 1449 } 1450 if (pktmbuf_pool[socketid] == NULL) { 1451 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1452 pktmbuf_pool[socketid] = 1453 rte_pktmbuf_pool_create(s, nb_mbuf, 1454 MEMPOOL_CACHE_SIZE, 0, 1455 RTE_MBUF_DEFAULT_BUF_SIZE, 1456 socketid); 1457 if (pktmbuf_pool[socketid] == NULL) 1458 rte_exit(EXIT_FAILURE, 1459 "Cannot init mbuf pool on socket %d\n", 1460 socketid); 1461 else 1462 printf("Allocated mbuf pool on socket %d\n", 1463 socketid); 1464 1465 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1466 setup_lpm(socketid); 1467 #else 1468 setup_hash(socketid); 1469 #endif 1470 } 1471 qconf = &lcore_conf[lcore_id]; 1472 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1473 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1474 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1475 #endif 1476 } 1477 return 0; 1478 } 1479 1480 /* Check the link status of all ports in up to 9s, and print them finally */ 1481 static void 1482 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1483 { 1484 #define CHECK_INTERVAL 100 /* 100ms */ 1485 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1486 uint8_t portid, count, all_ports_up, print_flag = 0; 1487 struct rte_eth_link link; 1488 1489 printf("\nChecking link status"); 1490 fflush(stdout); 1491 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1492 all_ports_up = 1; 1493 for (portid = 0; portid < port_num; portid++) { 1494 if ((port_mask & (1 << portid)) == 0) 1495 continue; 1496 memset(&link, 0, sizeof(link)); 1497 rte_eth_link_get_nowait(portid, &link); 1498 /* print link status if flag set */ 1499 if (print_flag == 1) { 1500 if (link.link_status) 1501 printf("Port %d Link Up - speed %u " 1502 "Mbps - %s\n", (uint8_t)portid, 1503 (unsigned)link.link_speed, 1504 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1505 ("full-duplex") : ("half-duplex\n")); 1506 else 1507 printf("Port %d Link Down\n", 1508 (uint8_t)portid); 1509 continue; 1510 } 1511 /* clear all_ports_up flag if any link down */ 1512 if (link.link_status == 0) { 1513 all_ports_up = 0; 1514 break; 1515 } 1516 } 1517 /* after finally printing all link status, get out */ 1518 if (print_flag == 1) 1519 break; 1520 1521 if (all_ports_up == 0) { 1522 printf("."); 1523 fflush(stdout); 1524 rte_delay_ms(CHECK_INTERVAL); 1525 } 1526 1527 /* set the print_flag if all ports up or timeout */ 1528 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1529 print_flag = 1; 1530 printf("done\n"); 1531 } 1532 } 1533 } 1534 1535 int 1536 main(int argc, char **argv) 1537 { 1538 struct lcore_conf *qconf; 1539 struct rte_eth_dev_info dev_info; 1540 struct rte_eth_txconf *txconf; 1541 int ret; 1542 unsigned nb_ports; 1543 uint16_t queueid; 1544 unsigned lcore_id; 1545 uint64_t hz; 1546 uint32_t n_tx_queue, nb_lcores; 1547 uint32_t dev_rxq_num, dev_txq_num; 1548 uint8_t portid, nb_rx_queue, queue, socketid; 1549 uint8_t nb_tx_port; 1550 1551 /* catch SIGINT and restore cpufreq governor to ondemand */ 1552 signal(SIGINT, signal_exit_now); 1553 1554 /* init EAL */ 1555 ret = rte_eal_init(argc, argv); 1556 if (ret < 0) 1557 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1558 argc -= ret; 1559 argv += ret; 1560 1561 /* init RTE timer library to be used late */ 1562 rte_timer_subsystem_init(); 1563 1564 /* parse application arguments (after the EAL ones) */ 1565 ret = parse_args(argc, argv); 1566 if (ret < 0) 1567 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1568 1569 if (check_lcore_params() < 0) 1570 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1571 1572 ret = init_lcore_rx_queues(); 1573 if (ret < 0) 1574 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1575 1576 1577 nb_ports = rte_eth_dev_count(); 1578 if (nb_ports > RTE_MAX_ETHPORTS) 1579 nb_ports = RTE_MAX_ETHPORTS; 1580 1581 if (check_port_config(nb_ports) < 0) 1582 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1583 1584 nb_lcores = rte_lcore_count(); 1585 nb_tx_port = 0; 1586 1587 /* initialize all ports */ 1588 for (portid = 0; portid < nb_ports; portid++) { 1589 /* skip ports that are not enabled */ 1590 if ((enabled_port_mask & (1 << portid)) == 0) { 1591 printf("\nSkipping disabled port %d\n", portid); 1592 continue; 1593 } 1594 1595 /* init port */ 1596 printf("Initializing port %d ... ", portid ); 1597 fflush(stdout); 1598 1599 rte_eth_dev_info_get(portid, &dev_info); 1600 dev_rxq_num = dev_info.max_rx_queues; 1601 dev_txq_num = dev_info.max_tx_queues; 1602 1603 nb_rx_queue = get_port_n_rx_queues(portid); 1604 if (nb_rx_queue > dev_rxq_num) 1605 rte_exit(EXIT_FAILURE, 1606 "Cannot configure not existed rxq: " 1607 "port=%d\n", portid); 1608 1609 n_tx_queue = nb_lcores; 1610 if (n_tx_queue > dev_txq_num) 1611 n_tx_queue = dev_txq_num; 1612 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1613 nb_rx_queue, (unsigned)n_tx_queue ); 1614 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1615 (uint16_t)n_tx_queue, &port_conf); 1616 if (ret < 0) 1617 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1618 "err=%d, port=%d\n", ret, portid); 1619 1620 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1621 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1622 printf(", "); 1623 1624 /* init memory */ 1625 ret = init_mem(NB_MBUF); 1626 if (ret < 0) 1627 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1628 1629 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1630 if (rte_lcore_is_enabled(lcore_id) == 0) 1631 continue; 1632 1633 /* Initialize TX buffers */ 1634 qconf = &lcore_conf[lcore_id]; 1635 qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer", 1636 RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0, 1637 rte_eth_dev_socket_id(portid)); 1638 if (qconf->tx_buffer[portid] == NULL) 1639 rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n", 1640 (unsigned) portid); 1641 1642 rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST); 1643 } 1644 1645 /* init one TX queue per couple (lcore,port) */ 1646 queueid = 0; 1647 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1648 if (rte_lcore_is_enabled(lcore_id) == 0) 1649 continue; 1650 1651 if (queueid >= dev_txq_num) 1652 continue; 1653 1654 if (numa_on) 1655 socketid = \ 1656 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1657 else 1658 socketid = 0; 1659 1660 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1661 fflush(stdout); 1662 1663 rte_eth_dev_info_get(portid, &dev_info); 1664 txconf = &dev_info.default_txconf; 1665 if (port_conf.rxmode.jumbo_frame) 1666 txconf->txq_flags = 0; 1667 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1668 socketid, txconf); 1669 if (ret < 0) 1670 rte_exit(EXIT_FAILURE, 1671 "rte_eth_tx_queue_setup: err=%d, " 1672 "port=%d\n", ret, portid); 1673 1674 qconf = &lcore_conf[lcore_id]; 1675 qconf->tx_queue_id[portid] = queueid; 1676 queueid++; 1677 1678 qconf->n_tx_port = nb_tx_port; 1679 qconf->tx_port_id[qconf->n_tx_port] = portid; 1680 } 1681 printf("\n"); 1682 1683 nb_tx_port++; 1684 } 1685 1686 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1687 if (rte_lcore_is_enabled(lcore_id) == 0) 1688 continue; 1689 1690 /* init power management library */ 1691 ret = rte_power_init(lcore_id); 1692 if (ret) 1693 RTE_LOG(ERR, POWER, 1694 "Library initialization failed on core %u\n", lcore_id); 1695 1696 /* init timer structures for each enabled lcore */ 1697 rte_timer_init(&power_timers[lcore_id]); 1698 hz = rte_get_timer_hz(); 1699 rte_timer_reset(&power_timers[lcore_id], 1700 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1701 power_timer_cb, NULL); 1702 1703 qconf = &lcore_conf[lcore_id]; 1704 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1705 fflush(stdout); 1706 /* init RX queues */ 1707 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1708 portid = qconf->rx_queue_list[queue].port_id; 1709 queueid = qconf->rx_queue_list[queue].queue_id; 1710 1711 if (numa_on) 1712 socketid = \ 1713 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1714 else 1715 socketid = 0; 1716 1717 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1718 fflush(stdout); 1719 1720 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1721 socketid, NULL, 1722 pktmbuf_pool[socketid]); 1723 if (ret < 0) 1724 rte_exit(EXIT_FAILURE, 1725 "rte_eth_rx_queue_setup: err=%d, " 1726 "port=%d\n", ret, portid); 1727 } 1728 } 1729 1730 printf("\n"); 1731 1732 /* start ports */ 1733 for (portid = 0; portid < nb_ports; portid++) { 1734 if ((enabled_port_mask & (1 << portid)) == 0) { 1735 continue; 1736 } 1737 /* Start device */ 1738 ret = rte_eth_dev_start(portid); 1739 if (ret < 0) 1740 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1741 "port=%d\n", ret, portid); 1742 /* 1743 * If enabled, put device in promiscuous mode. 1744 * This allows IO forwarding mode to forward packets 1745 * to itself through 2 cross-connected ports of the 1746 * target machine. 1747 */ 1748 if (promiscuous_on) 1749 rte_eth_promiscuous_enable(portid); 1750 /* initialize spinlock for each port */ 1751 rte_spinlock_init(&(locks[portid])); 1752 } 1753 1754 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1755 1756 /* launch per-lcore init on every lcore */ 1757 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1758 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1759 if (rte_eal_wait_lcore(lcore_id) < 0) 1760 return -1; 1761 } 1762 1763 return 0; 1764 } 1765