xref: /dpdk/examples/l3fwd-power/main.c (revision cb440babbd45a80c059f8bc80e87c48d09086fd7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_ip.h>
41 #include <rte_tcp.h>
42 #include <rte_udp.h>
43 #include <rte_string_fns.h>
44 #include <rte_timer.h>
45 #include <rte_power.h>
46 #include <rte_spinlock.h>
47 #include <rte_power_empty_poll.h>
48 #include <rte_metrics.h>
49 #include <rte_telemetry.h>
50 
51 #include "perf_core.h"
52 #include "main.h"
53 
54 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
55 
56 #define MAX_PKT_BURST 32
57 
58 #define MIN_ZERO_POLL_COUNT 10
59 
60 /* 100 ms interval */
61 #define TIMER_NUMBER_PER_SECOND           10
62 /* (10ms) */
63 #define INTERVALS_PER_SECOND             100
64 /* 100000 us */
65 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
66 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
67 
68 #define APP_LOOKUP_EXACT_MATCH          0
69 #define APP_LOOKUP_LPM                  1
70 #define DO_RFC_1812_CHECKS
71 
72 #ifndef APP_LOOKUP_METHOD
73 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
74 #endif
75 
76 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
77 #include <rte_hash.h>
78 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
79 #include <rte_lpm.h>
80 #else
81 #error "APP_LOOKUP_METHOD set to incorrect value"
82 #endif
83 
84 #ifndef IPv6_BYTES
85 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
86                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
87 #define IPv6_BYTES(addr) \
88 	addr[0],  addr[1], addr[2],  addr[3], \
89 	addr[4],  addr[5], addr[6],  addr[7], \
90 	addr[8],  addr[9], addr[10], addr[11],\
91 	addr[12], addr[13],addr[14], addr[15]
92 #endif
93 
94 #define MAX_JUMBO_PKT_LEN  9600
95 
96 #define IPV6_ADDR_LEN 16
97 
98 #define MEMPOOL_CACHE_SIZE 256
99 
100 /*
101  * This expression is used to calculate the number of mbufs needed depending on
102  * user input, taking into account memory for rx and tx hardware rings, cache
103  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
104  * NB_MBUF never goes below a minimum value of 8192.
105  */
106 
107 #define NB_MBUF RTE_MAX	( \
108 	(nb_ports*nb_rx_queue*nb_rxd + \
109 	nb_ports*nb_lcores*MAX_PKT_BURST + \
110 	nb_ports*n_tx_queue*nb_txd + \
111 	nb_lcores*MEMPOOL_CACHE_SIZE), \
112 	(unsigned)8192)
113 
114 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
115 
116 #define NB_SOCKETS 8
117 
118 /* Configure how many packets ahead to prefetch, when reading packets */
119 #define PREFETCH_OFFSET	3
120 
121 /*
122  * Configurable number of RX/TX ring descriptors
123  */
124 #define RTE_TEST_RX_DESC_DEFAULT 1024
125 #define RTE_TEST_TX_DESC_DEFAULT 1024
126 
127 /*
128  * These two thresholds were decided on by running the training algorithm on
129  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
130  * for the med_threshold and high_threshold parameters on the command line.
131  */
132 #define EMPTY_POLL_MED_THRESHOLD 350000UL
133 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
134 
135 #define NUM_TELSTATS RTE_DIM(telstats_strings)
136 
137 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
138 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
139 
140 /* ethernet addresses of ports */
141 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
142 
143 /* ethernet addresses of ports */
144 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
145 
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask = 0;
148 /* Ports set in promiscuous mode off by default. */
149 static int promiscuous_on = 0;
150 /* NUMA is enabled by default. */
151 static int numa_on = 1;
152 static bool empty_poll_stop;
153 static bool empty_poll_train;
154 volatile bool quit_signal;
155 static struct  ep_params *ep_params;
156 static struct  ep_policy policy;
157 static long  ep_med_edpi, ep_hgh_edpi;
158 /* timer to update telemetry every 500ms */
159 static struct rte_timer telemetry_timer;
160 
161 /* stats index returned by metrics lib */
162 int telstats_index;
163 
164 struct telstats_name {
165 	char name[RTE_ETH_XSTATS_NAME_SIZE];
166 };
167 
168 /* telemetry stats to be reported */
169 const struct telstats_name telstats_strings[] = {
170 	{"empty_poll"},
171 	{"full_poll"},
172 	{"busy_percent"}
173 };
174 
175 /* core busyness in percentage */
176 enum busy_rate {
177 	ZERO = 0,
178 	PARTIAL = 50,
179 	FULL = 100
180 };
181 
182 /* reference poll count to measure core busyness */
183 #define DEFAULT_COUNT 10000
184 /*
185  * reference CYCLES to be used to
186  * measure core busyness based on poll count
187  */
188 #define MIN_CYCLES  1500000ULL
189 #define MAX_CYCLES 22000000ULL
190 
191 /* (500ms) */
192 #define TELEMETRY_INTERVALS_PER_SEC 2
193 
194 static int parse_ptype; /**< Parse packet type using rx callback, and */
195 			/**< disabled by default */
196 
197 enum appmode {
198 	APP_MODE_DEFAULT = 0,
199 	APP_MODE_LEGACY,
200 	APP_MODE_EMPTY_POLL,
201 	APP_MODE_TELEMETRY,
202 	APP_MODE_INTERRUPT
203 };
204 
205 enum appmode app_mode;
206 
207 enum freq_scale_hint_t
208 {
209 	FREQ_LOWER    =      -1,
210 	FREQ_CURRENT  =       0,
211 	FREQ_HIGHER   =       1,
212 	FREQ_HIGHEST  =       2
213 };
214 
215 struct lcore_rx_queue {
216 	uint16_t port_id;
217 	uint8_t queue_id;
218 	enum freq_scale_hint_t freq_up_hint;
219 	uint32_t zero_rx_packet_count;
220 	uint32_t idle_hint;
221 } __rte_cache_aligned;
222 
223 #define MAX_RX_QUEUE_PER_LCORE 16
224 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
225 #define MAX_RX_QUEUE_PER_PORT 128
226 
227 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
228 
229 
230 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
231 static struct lcore_params lcore_params_array_default[] = {
232 	{0, 0, 2},
233 	{0, 1, 2},
234 	{0, 2, 2},
235 	{1, 0, 2},
236 	{1, 1, 2},
237 	{1, 2, 2},
238 	{2, 0, 2},
239 	{3, 0, 3},
240 	{3, 1, 3},
241 };
242 
243 struct lcore_params *lcore_params = lcore_params_array_default;
244 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
245 
246 static struct rte_eth_conf port_conf = {
247 	.rxmode = {
248 		.mq_mode        = ETH_MQ_RX_RSS,
249 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
250 		.split_hdr_size = 0,
251 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
252 	},
253 	.rx_adv_conf = {
254 		.rss_conf = {
255 			.rss_key = NULL,
256 			.rss_hf = ETH_RSS_UDP,
257 		},
258 	},
259 	.txmode = {
260 		.mq_mode = ETH_MQ_TX_NONE,
261 	}
262 };
263 
264 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
265 
266 
267 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
268 
269 #ifdef RTE_ARCH_X86
270 #include <rte_hash_crc.h>
271 #define DEFAULT_HASH_FUNC       rte_hash_crc
272 #else
273 #include <rte_jhash.h>
274 #define DEFAULT_HASH_FUNC       rte_jhash
275 #endif
276 
277 struct ipv4_5tuple {
278 	uint32_t ip_dst;
279 	uint32_t ip_src;
280 	uint16_t port_dst;
281 	uint16_t port_src;
282 	uint8_t  proto;
283 } __rte_packed;
284 
285 struct ipv6_5tuple {
286 	uint8_t  ip_dst[IPV6_ADDR_LEN];
287 	uint8_t  ip_src[IPV6_ADDR_LEN];
288 	uint16_t port_dst;
289 	uint16_t port_src;
290 	uint8_t  proto;
291 } __rte_packed;
292 
293 struct ipv4_l3fwd_route {
294 	struct ipv4_5tuple key;
295 	uint8_t if_out;
296 };
297 
298 struct ipv6_l3fwd_route {
299 	struct ipv6_5tuple key;
300 	uint8_t if_out;
301 };
302 
303 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
304 	{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
305 	{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
306 	{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
307 	{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
308 };
309 
310 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
311 	{
312 		{
313 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
314 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
315 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
316 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
317 			 1, 10, IPPROTO_UDP
318 		}, 4
319 	},
320 };
321 
322 typedef struct rte_hash lookup_struct_t;
323 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
324 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
325 
326 #define L3FWD_HASH_ENTRIES	1024
327 
328 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
329 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
330 #endif
331 
332 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
333 struct ipv4_l3fwd_route {
334 	uint32_t ip;
335 	uint8_t  depth;
336 	uint8_t  if_out;
337 };
338 
339 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
340 	{RTE_IPV4(1,1,1,0), 24, 0},
341 	{RTE_IPV4(2,1,1,0), 24, 1},
342 	{RTE_IPV4(3,1,1,0), 24, 2},
343 	{RTE_IPV4(4,1,1,0), 24, 3},
344 	{RTE_IPV4(5,1,1,0), 24, 4},
345 	{RTE_IPV4(6,1,1,0), 24, 5},
346 	{RTE_IPV4(7,1,1,0), 24, 6},
347 	{RTE_IPV4(8,1,1,0), 24, 7},
348 };
349 
350 #define IPV4_L3FWD_LPM_MAX_RULES     1024
351 
352 typedef struct rte_lpm lookup_struct_t;
353 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
354 #endif
355 
356 struct lcore_conf {
357 	uint16_t n_rx_queue;
358 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
359 	uint16_t n_tx_port;
360 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
361 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
362 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
363 	lookup_struct_t * ipv4_lookup_struct;
364 	lookup_struct_t * ipv6_lookup_struct;
365 } __rte_cache_aligned;
366 
367 struct lcore_stats {
368 	/* total sleep time in ms since last frequency scaling down */
369 	uint32_t sleep_time;
370 	/* number of long sleep recently */
371 	uint32_t nb_long_sleep;
372 	/* freq. scaling up trend */
373 	uint32_t trend;
374 	/* total packet processed recently */
375 	uint64_t nb_rx_processed;
376 	/* total iterations looped recently */
377 	uint64_t nb_iteration_looped;
378 	/*
379 	 * Represents empty and non empty polls
380 	 * of rte_eth_rx_burst();
381 	 * ep_nep[0] holds non empty polls
382 	 * i.e. 0 < nb_rx <= MAX_BURST
383 	 * ep_nep[1] holds empty polls.
384 	 * i.e. nb_rx == 0
385 	 */
386 	uint64_t ep_nep[2];
387 	/*
388 	 * Represents full and empty+partial
389 	 * polls of rte_eth_rx_burst();
390 	 * ep_nep[0] holds empty+partial polls.
391 	 * i.e. 0 <= nb_rx < MAX_BURST
392 	 * ep_nep[1] holds full polls
393 	 * i.e. nb_rx == MAX_BURST
394 	 */
395 	uint64_t fp_nfp[2];
396 	enum busy_rate br;
397 	rte_spinlock_t telemetry_lock;
398 } __rte_cache_aligned;
399 
400 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
401 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
402 static struct rte_timer power_timers[RTE_MAX_LCORE];
403 
404 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
405 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
406 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
407 
408 
409 /*
410  * These defaults are using the max frequency index (1), a medium index (9)
411  * and a typical low frequency index (14). These can be adjusted to use
412  * different indexes using the relevant command line parameters.
413  */
414 static uint8_t  freq_tlb[] = {14, 9, 1};
415 
416 static int is_done(void)
417 {
418 	return quit_signal;
419 }
420 
421 /* exit signal handler */
422 static void
423 signal_exit_now(int sigtype)
424 {
425 
426 	if (sigtype == SIGINT)
427 		quit_signal = true;
428 
429 }
430 
431 /*  Freqency scale down timer callback */
432 static void
433 power_timer_cb(__rte_unused struct rte_timer *tim,
434 			  __rte_unused void *arg)
435 {
436 	uint64_t hz;
437 	float sleep_time_ratio;
438 	unsigned lcore_id = rte_lcore_id();
439 
440 	/* accumulate total execution time in us when callback is invoked */
441 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
442 					(float)SCALING_PERIOD;
443 	/**
444 	 * check whether need to scale down frequency a step if it sleep a lot.
445 	 */
446 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
447 		if (rte_power_freq_down)
448 			rte_power_freq_down(lcore_id);
449 	}
450 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
451 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
452 		/**
453 		 * scale down a step if average packet per iteration less
454 		 * than expectation.
455 		 */
456 		if (rte_power_freq_down)
457 			rte_power_freq_down(lcore_id);
458 	}
459 
460 	/**
461 	 * initialize another timer according to current frequency to ensure
462 	 * timer interval is relatively fixed.
463 	 */
464 	hz = rte_get_timer_hz();
465 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
466 				SINGLE, lcore_id, power_timer_cb, NULL);
467 
468 	stats[lcore_id].nb_rx_processed = 0;
469 	stats[lcore_id].nb_iteration_looped = 0;
470 
471 	stats[lcore_id].sleep_time = 0;
472 }
473 
474 /* Enqueue a single packet, and send burst if queue is filled */
475 static inline int
476 send_single_packet(struct rte_mbuf *m, uint16_t port)
477 {
478 	uint32_t lcore_id;
479 	struct lcore_conf *qconf;
480 
481 	lcore_id = rte_lcore_id();
482 	qconf = &lcore_conf[lcore_id];
483 
484 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
485 			qconf->tx_buffer[port], m);
486 
487 	return 0;
488 }
489 
490 #ifdef DO_RFC_1812_CHECKS
491 static inline int
492 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
493 {
494 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
495 	/*
496 	 * 1. The packet length reported by the Link Layer must be large
497 	 * enough to hold the minimum length legal IP datagram (20 bytes).
498 	 */
499 	if (link_len < sizeof(struct rte_ipv4_hdr))
500 		return -1;
501 
502 	/* 2. The IP checksum must be correct. */
503 	/* this is checked in H/W */
504 
505 	/*
506 	 * 3. The IP version number must be 4. If the version number is not 4
507 	 * then the packet may be another version of IP, such as IPng or
508 	 * ST-II.
509 	 */
510 	if (((pkt->version_ihl) >> 4) != 4)
511 		return -3;
512 	/*
513 	 * 4. The IP header length field must be large enough to hold the
514 	 * minimum length legal IP datagram (20 bytes = 5 words).
515 	 */
516 	if ((pkt->version_ihl & 0xf) < 5)
517 		return -4;
518 
519 	/*
520 	 * 5. The IP total length field must be large enough to hold the IP
521 	 * datagram header, whose length is specified in the IP header length
522 	 * field.
523 	 */
524 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
525 		return -5;
526 
527 	return 0;
528 }
529 #endif
530 
531 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
532 static void
533 print_ipv4_key(struct ipv4_5tuple key)
534 {
535 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
536 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
537 				key.port_dst, key.port_src, key.proto);
538 }
539 static void
540 print_ipv6_key(struct ipv6_5tuple key)
541 {
542 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
543 	        "port dst = %d, port src = %d, proto = %d\n",
544 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
545 	        key.port_dst, key.port_src, key.proto);
546 }
547 
548 static inline uint16_t
549 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
550 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
551 {
552 	struct ipv4_5tuple key;
553 	struct rte_tcp_hdr *tcp;
554 	struct rte_udp_hdr *udp;
555 	int ret = 0;
556 
557 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
558 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
559 	key.proto = ipv4_hdr->next_proto_id;
560 
561 	switch (ipv4_hdr->next_proto_id) {
562 	case IPPROTO_TCP:
563 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
564 					sizeof(struct rte_ipv4_hdr));
565 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
566 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
567 		break;
568 
569 	case IPPROTO_UDP:
570 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
571 					sizeof(struct rte_ipv4_hdr));
572 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
573 		key.port_src = rte_be_to_cpu_16(udp->src_port);
574 		break;
575 
576 	default:
577 		key.port_dst = 0;
578 		key.port_src = 0;
579 		break;
580 	}
581 
582 	/* Find destination port */
583 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
584 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
585 }
586 
587 static inline uint16_t
588 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
589 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
590 {
591 	struct ipv6_5tuple key;
592 	struct rte_tcp_hdr *tcp;
593 	struct rte_udp_hdr *udp;
594 	int ret = 0;
595 
596 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
597 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
598 
599 	key.proto = ipv6_hdr->proto;
600 
601 	switch (ipv6_hdr->proto) {
602 	case IPPROTO_TCP:
603 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
604 					sizeof(struct rte_ipv6_hdr));
605 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
606 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
607 		break;
608 
609 	case IPPROTO_UDP:
610 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
611 					sizeof(struct rte_ipv6_hdr));
612 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
613 		key.port_src = rte_be_to_cpu_16(udp->src_port);
614 		break;
615 
616 	default:
617 		key.port_dst = 0;
618 		key.port_src = 0;
619 		break;
620 	}
621 
622 	/* Find destination port */
623 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
624 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
625 }
626 #endif
627 
628 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
629 static inline uint16_t
630 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
631 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
632 {
633 	uint32_t next_hop;
634 
635 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
636 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
637 			next_hop : portid);
638 }
639 #endif
640 
641 static inline void
642 parse_ptype_one(struct rte_mbuf *m)
643 {
644 	struct rte_ether_hdr *eth_hdr;
645 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
646 	uint16_t ether_type;
647 
648 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
649 	ether_type = eth_hdr->ether_type;
650 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
651 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
652 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
653 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
654 
655 	m->packet_type = packet_type;
656 }
657 
658 static uint16_t
659 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
660 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
661 	       uint16_t max_pkts __rte_unused,
662 	       void *user_param __rte_unused)
663 {
664 	unsigned int i;
665 
666 	for (i = 0; i < nb_pkts; ++i)
667 		parse_ptype_one(pkts[i]);
668 
669 	return nb_pkts;
670 }
671 
672 static int
673 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
674 {
675 	printf("Port %d: softly parse packet type info\n", portid);
676 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
677 		return 0;
678 
679 	printf("Failed to add rx callback: port=%d\n", portid);
680 	return -1;
681 }
682 
683 static inline void
684 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
685 				struct lcore_conf *qconf)
686 {
687 	struct rte_ether_hdr *eth_hdr;
688 	struct rte_ipv4_hdr *ipv4_hdr;
689 	void *d_addr_bytes;
690 	uint16_t dst_port;
691 
692 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
693 
694 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
695 		/* Handle IPv4 headers.*/
696 		ipv4_hdr =
697 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
698 						sizeof(struct rte_ether_hdr));
699 
700 #ifdef DO_RFC_1812_CHECKS
701 		/* Check to make sure the packet is valid (RFC1812) */
702 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
703 			rte_pktmbuf_free(m);
704 			return;
705 		}
706 #endif
707 
708 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
709 					qconf->ipv4_lookup_struct);
710 		if (dst_port >= RTE_MAX_ETHPORTS ||
711 				(enabled_port_mask & 1 << dst_port) == 0)
712 			dst_port = portid;
713 
714 		/* 02:00:00:00:00:xx */
715 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
716 		*((uint64_t *)d_addr_bytes) =
717 			0x000000000002 + ((uint64_t)dst_port << 40);
718 
719 #ifdef DO_RFC_1812_CHECKS
720 		/* Update time to live and header checksum */
721 		--(ipv4_hdr->time_to_live);
722 		++(ipv4_hdr->hdr_checksum);
723 #endif
724 
725 		/* src addr */
726 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
727 				&eth_hdr->s_addr);
728 
729 		send_single_packet(m, dst_port);
730 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
731 		/* Handle IPv6 headers.*/
732 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
733 		struct rte_ipv6_hdr *ipv6_hdr;
734 
735 		ipv6_hdr =
736 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
737 						sizeof(struct rte_ether_hdr));
738 
739 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
740 					qconf->ipv6_lookup_struct);
741 
742 		if (dst_port >= RTE_MAX_ETHPORTS ||
743 				(enabled_port_mask & 1 << dst_port) == 0)
744 			dst_port = portid;
745 
746 		/* 02:00:00:00:00:xx */
747 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
748 		*((uint64_t *)d_addr_bytes) =
749 			0x000000000002 + ((uint64_t)dst_port << 40);
750 
751 		/* src addr */
752 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
753 				&eth_hdr->s_addr);
754 
755 		send_single_packet(m, dst_port);
756 #else
757 		/* We don't currently handle IPv6 packets in LPM mode. */
758 		rte_pktmbuf_free(m);
759 #endif
760 	} else
761 		rte_pktmbuf_free(m);
762 
763 }
764 
765 #define MINIMUM_SLEEP_TIME         1
766 #define SUSPEND_THRESHOLD          300
767 
768 static inline uint32_t
769 power_idle_heuristic(uint32_t zero_rx_packet_count)
770 {
771 	/* If zero count is less than 100,  sleep 1us */
772 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
773 		return MINIMUM_SLEEP_TIME;
774 	/* If zero count is less than 1000, sleep 100 us which is the
775 		minimum latency switching from C3/C6 to C0
776 	*/
777 	else
778 		return SUSPEND_THRESHOLD;
779 }
780 
781 static inline enum freq_scale_hint_t
782 power_freq_scaleup_heuristic(unsigned lcore_id,
783 			     uint16_t port_id,
784 			     uint16_t queue_id)
785 {
786 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
787 /**
788  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
789  * per iteration
790  */
791 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
792 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
793 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
794 #define FREQ_UP_TREND1_ACC   1
795 #define FREQ_UP_TREND2_ACC   100
796 #define FREQ_UP_THRESHOLD    10000
797 
798 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
799 		stats[lcore_id].trend = 0;
800 		return FREQ_HIGHEST;
801 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
802 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
803 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
804 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
805 
806 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
807 		stats[lcore_id].trend = 0;
808 		return FREQ_HIGHER;
809 	}
810 
811 	return FREQ_CURRENT;
812 }
813 
814 /**
815  * force polling thread sleep until one-shot rx interrupt triggers
816  * @param port_id
817  *  Port id.
818  * @param queue_id
819  *  Rx queue id.
820  * @return
821  *  0 on success
822  */
823 static int
824 sleep_until_rx_interrupt(int num)
825 {
826 	/*
827 	 * we want to track when we are woken up by traffic so that we can go
828 	 * back to sleep again without log spamming.
829 	 */
830 	static bool timeout;
831 	struct rte_epoll_event event[num];
832 	int n, i;
833 	uint16_t port_id;
834 	uint8_t queue_id;
835 	void *data;
836 
837 	if (!timeout) {
838 		RTE_LOG(INFO, L3FWD_POWER,
839 				"lcore %u sleeps until interrupt triggers\n",
840 				rte_lcore_id());
841 	}
842 
843 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
844 	for (i = 0; i < n; i++) {
845 		data = event[i].epdata.data;
846 		port_id = ((uintptr_t)data) >> CHAR_BIT;
847 		queue_id = ((uintptr_t)data) &
848 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
849 		RTE_LOG(INFO, L3FWD_POWER,
850 			"lcore %u is waked up from rx interrupt on"
851 			" port %d queue %d\n",
852 			rte_lcore_id(), port_id, queue_id);
853 	}
854 	timeout = n == 0;
855 
856 	return 0;
857 }
858 
859 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
860 {
861 	int i;
862 	struct lcore_rx_queue *rx_queue;
863 	uint8_t queue_id;
864 	uint16_t port_id;
865 
866 	for (i = 0; i < qconf->n_rx_queue; ++i) {
867 		rx_queue = &(qconf->rx_queue_list[i]);
868 		port_id = rx_queue->port_id;
869 		queue_id = rx_queue->queue_id;
870 
871 		rte_spinlock_lock(&(locks[port_id]));
872 		if (on)
873 			rte_eth_dev_rx_intr_enable(port_id, queue_id);
874 		else
875 			rte_eth_dev_rx_intr_disable(port_id, queue_id);
876 		rte_spinlock_unlock(&(locks[port_id]));
877 	}
878 }
879 
880 static int event_register(struct lcore_conf *qconf)
881 {
882 	struct lcore_rx_queue *rx_queue;
883 	uint8_t queueid;
884 	uint16_t portid;
885 	uint32_t data;
886 	int ret;
887 	int i;
888 
889 	for (i = 0; i < qconf->n_rx_queue; ++i) {
890 		rx_queue = &(qconf->rx_queue_list[i]);
891 		portid = rx_queue->port_id;
892 		queueid = rx_queue->queue_id;
893 		data = portid << CHAR_BIT | queueid;
894 
895 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
896 						RTE_EPOLL_PER_THREAD,
897 						RTE_INTR_EVENT_ADD,
898 						(void *)((uintptr_t)data));
899 		if (ret)
900 			return ret;
901 	}
902 
903 	return 0;
904 }
905 
906 /* main processing loop */
907 static int main_intr_loop(__rte_unused void *dummy)
908 {
909 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
910 	unsigned int lcore_id;
911 	uint64_t prev_tsc, diff_tsc, cur_tsc;
912 	int i, j, nb_rx;
913 	uint8_t queueid;
914 	uint16_t portid;
915 	struct lcore_conf *qconf;
916 	struct lcore_rx_queue *rx_queue;
917 	uint32_t lcore_rx_idle_count = 0;
918 	uint32_t lcore_idle_hint = 0;
919 	int intr_en = 0;
920 
921 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
922 				   US_PER_S * BURST_TX_DRAIN_US;
923 
924 	prev_tsc = 0;
925 
926 	lcore_id = rte_lcore_id();
927 	qconf = &lcore_conf[lcore_id];
928 
929 	if (qconf->n_rx_queue == 0) {
930 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
931 				lcore_id);
932 		return 0;
933 	}
934 
935 	RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
936 			lcore_id);
937 
938 	for (i = 0; i < qconf->n_rx_queue; i++) {
939 		portid = qconf->rx_queue_list[i].port_id;
940 		queueid = qconf->rx_queue_list[i].queue_id;
941 		RTE_LOG(INFO, L3FWD_POWER,
942 				" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
943 				lcore_id, portid, queueid);
944 	}
945 
946 	/* add into event wait list */
947 	if (event_register(qconf) == 0)
948 		intr_en = 1;
949 	else
950 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
951 
952 	while (!is_done()) {
953 		stats[lcore_id].nb_iteration_looped++;
954 
955 		cur_tsc = rte_rdtsc();
956 
957 		/*
958 		 * TX burst queue drain
959 		 */
960 		diff_tsc = cur_tsc - prev_tsc;
961 		if (unlikely(diff_tsc > drain_tsc)) {
962 			for (i = 0; i < qconf->n_tx_port; ++i) {
963 				portid = qconf->tx_port_id[i];
964 				rte_eth_tx_buffer_flush(portid,
965 						qconf->tx_queue_id[portid],
966 						qconf->tx_buffer[portid]);
967 			}
968 			prev_tsc = cur_tsc;
969 		}
970 
971 start_rx:
972 		/*
973 		 * Read packet from RX queues
974 		 */
975 		lcore_rx_idle_count = 0;
976 		for (i = 0; i < qconf->n_rx_queue; ++i) {
977 			rx_queue = &(qconf->rx_queue_list[i]);
978 			rx_queue->idle_hint = 0;
979 			portid = rx_queue->port_id;
980 			queueid = rx_queue->queue_id;
981 
982 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
983 					MAX_PKT_BURST);
984 
985 			stats[lcore_id].nb_rx_processed += nb_rx;
986 			if (unlikely(nb_rx == 0)) {
987 				/**
988 				 * no packet received from rx queue, try to
989 				 * sleep for a while forcing CPU enter deeper
990 				 * C states.
991 				 */
992 				rx_queue->zero_rx_packet_count++;
993 
994 				if (rx_queue->zero_rx_packet_count <=
995 						MIN_ZERO_POLL_COUNT)
996 					continue;
997 
998 				rx_queue->idle_hint = power_idle_heuristic(
999 						rx_queue->zero_rx_packet_count);
1000 				lcore_rx_idle_count++;
1001 			} else {
1002 				rx_queue->zero_rx_packet_count = 0;
1003 			}
1004 
1005 			/* Prefetch first packets */
1006 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1007 				rte_prefetch0(rte_pktmbuf_mtod(
1008 						pkts_burst[j], void *));
1009 			}
1010 
1011 			/* Prefetch and forward already prefetched packets */
1012 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1013 				rte_prefetch0(rte_pktmbuf_mtod(
1014 						pkts_burst[j + PREFETCH_OFFSET],
1015 						void *));
1016 				l3fwd_simple_forward(
1017 						pkts_burst[j], portid, qconf);
1018 			}
1019 
1020 			/* Forward remaining prefetched packets */
1021 			for (; j < nb_rx; j++) {
1022 				l3fwd_simple_forward(
1023 						pkts_burst[j], portid, qconf);
1024 			}
1025 		}
1026 
1027 		if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1028 			/**
1029 			 * All Rx queues empty in recent consecutive polls,
1030 			 * sleep in a conservative manner, meaning sleep as
1031 			 * less as possible.
1032 			 */
1033 			for (i = 1,
1034 			    lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1035 					i < qconf->n_rx_queue; ++i) {
1036 				rx_queue = &(qconf->rx_queue_list[i]);
1037 				if (rx_queue->idle_hint < lcore_idle_hint)
1038 					lcore_idle_hint = rx_queue->idle_hint;
1039 			}
1040 
1041 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1042 				/**
1043 				 * execute "pause" instruction to avoid context
1044 				 * switch which generally take hundred of
1045 				 * microseconds for short sleep.
1046 				 */
1047 				rte_delay_us(lcore_idle_hint);
1048 			else {
1049 				/* suspend until rx interrupt triggers */
1050 				if (intr_en) {
1051 					turn_on_off_intr(qconf, 1);
1052 					sleep_until_rx_interrupt(
1053 							qconf->n_rx_queue);
1054 					turn_on_off_intr(qconf, 0);
1055 					/**
1056 					 * start receiving packets immediately
1057 					 */
1058 					if (likely(!is_done()))
1059 						goto start_rx;
1060 				}
1061 			}
1062 			stats[lcore_id].sleep_time += lcore_idle_hint;
1063 		}
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 /* main processing loop */
1070 static int
1071 main_telemetry_loop(__rte_unused void *dummy)
1072 {
1073 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1074 	unsigned int lcore_id;
1075 	uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1076 	int i, j, nb_rx;
1077 	uint8_t queueid;
1078 	uint16_t portid;
1079 	struct lcore_conf *qconf;
1080 	struct lcore_rx_queue *rx_queue;
1081 	uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1082 	uint64_t poll_count;
1083 	enum busy_rate br;
1084 
1085 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1086 					US_PER_S * BURST_TX_DRAIN_US;
1087 
1088 	poll_count = 0;
1089 	prev_tsc = 0;
1090 	prev_tel_tsc = 0;
1091 
1092 	lcore_id = rte_lcore_id();
1093 	qconf = &lcore_conf[lcore_id];
1094 
1095 	if (qconf->n_rx_queue == 0) {
1096 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1097 			lcore_id);
1098 		return 0;
1099 	}
1100 
1101 	RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1102 		lcore_id);
1103 
1104 	for (i = 0; i < qconf->n_rx_queue; i++) {
1105 		portid = qconf->rx_queue_list[i].port_id;
1106 		queueid = qconf->rx_queue_list[i].queue_id;
1107 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1108 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1109 	}
1110 
1111 	while (!is_done()) {
1112 
1113 		cur_tsc = rte_rdtsc();
1114 		/*
1115 		 * TX burst queue drain
1116 		 */
1117 		diff_tsc = cur_tsc - prev_tsc;
1118 		if (unlikely(diff_tsc > drain_tsc)) {
1119 			for (i = 0; i < qconf->n_tx_port; ++i) {
1120 				portid = qconf->tx_port_id[i];
1121 				rte_eth_tx_buffer_flush(portid,
1122 						qconf->tx_queue_id[portid],
1123 						qconf->tx_buffer[portid]);
1124 			}
1125 			prev_tsc = cur_tsc;
1126 		}
1127 
1128 		/*
1129 		 * Read packet from RX queues
1130 		 */
1131 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1132 			rx_queue = &(qconf->rx_queue_list[i]);
1133 			portid = rx_queue->port_id;
1134 			queueid = rx_queue->queue_id;
1135 
1136 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1137 								MAX_PKT_BURST);
1138 			ep_nep[nb_rx == 0]++;
1139 			fp_nfp[nb_rx == MAX_PKT_BURST]++;
1140 			poll_count++;
1141 			if (unlikely(nb_rx == 0))
1142 				continue;
1143 
1144 			/* Prefetch first packets */
1145 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1146 				rte_prefetch0(rte_pktmbuf_mtod(
1147 						pkts_burst[j], void *));
1148 			}
1149 
1150 			/* Prefetch and forward already prefetched packets */
1151 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1152 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1153 						j + PREFETCH_OFFSET], void *));
1154 				l3fwd_simple_forward(pkts_burst[j], portid,
1155 								qconf);
1156 			}
1157 
1158 			/* Forward remaining prefetched packets */
1159 			for (; j < nb_rx; j++) {
1160 				l3fwd_simple_forward(pkts_burst[j], portid,
1161 								qconf);
1162 			}
1163 		}
1164 		if (unlikely(poll_count >= DEFAULT_COUNT)) {
1165 			diff_tsc = cur_tsc - prev_tel_tsc;
1166 			if (diff_tsc >= MAX_CYCLES) {
1167 				br = FULL;
1168 			} else if (diff_tsc > MIN_CYCLES &&
1169 					diff_tsc < MAX_CYCLES) {
1170 				br = (diff_tsc * 100) / MAX_CYCLES;
1171 			} else {
1172 				br = ZERO;
1173 			}
1174 			poll_count = 0;
1175 			prev_tel_tsc = cur_tsc;
1176 			/* update stats for telemetry */
1177 			rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1178 			stats[lcore_id].ep_nep[0] = ep_nep[0];
1179 			stats[lcore_id].ep_nep[1] = ep_nep[1];
1180 			stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1181 			stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1182 			stats[lcore_id].br = br;
1183 			rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1184 		}
1185 	}
1186 
1187 	return 0;
1188 }
1189 /* main processing loop */
1190 static int
1191 main_empty_poll_loop(__rte_unused void *dummy)
1192 {
1193 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1194 	unsigned int lcore_id;
1195 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1196 	int i, j, nb_rx;
1197 	uint8_t queueid;
1198 	uint16_t portid;
1199 	struct lcore_conf *qconf;
1200 	struct lcore_rx_queue *rx_queue;
1201 
1202 	const uint64_t drain_tsc =
1203 		(rte_get_tsc_hz() + US_PER_S - 1) /
1204 		US_PER_S * BURST_TX_DRAIN_US;
1205 
1206 	prev_tsc = 0;
1207 
1208 	lcore_id = rte_lcore_id();
1209 	qconf = &lcore_conf[lcore_id];
1210 
1211 	if (qconf->n_rx_queue == 0) {
1212 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1213 			lcore_id);
1214 		return 0;
1215 	}
1216 
1217 	for (i = 0; i < qconf->n_rx_queue; i++) {
1218 		portid = qconf->rx_queue_list[i].port_id;
1219 		queueid = qconf->rx_queue_list[i].queue_id;
1220 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1221 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1222 	}
1223 
1224 	while (!is_done()) {
1225 		stats[lcore_id].nb_iteration_looped++;
1226 
1227 		cur_tsc = rte_rdtsc();
1228 		/*
1229 		 * TX burst queue drain
1230 		 */
1231 		diff_tsc = cur_tsc - prev_tsc;
1232 		if (unlikely(diff_tsc > drain_tsc)) {
1233 			for (i = 0; i < qconf->n_tx_port; ++i) {
1234 				portid = qconf->tx_port_id[i];
1235 				rte_eth_tx_buffer_flush(portid,
1236 						qconf->tx_queue_id[portid],
1237 						qconf->tx_buffer[portid]);
1238 			}
1239 			prev_tsc = cur_tsc;
1240 		}
1241 
1242 		/*
1243 		 * Read packet from RX queues
1244 		 */
1245 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1246 			rx_queue = &(qconf->rx_queue_list[i]);
1247 			rx_queue->idle_hint = 0;
1248 			portid = rx_queue->port_id;
1249 			queueid = rx_queue->queue_id;
1250 
1251 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1252 					MAX_PKT_BURST);
1253 
1254 			stats[lcore_id].nb_rx_processed += nb_rx;
1255 
1256 			if (nb_rx == 0) {
1257 
1258 				rte_power_empty_poll_stat_update(lcore_id);
1259 
1260 				continue;
1261 			} else {
1262 				rte_power_poll_stat_update(lcore_id, nb_rx);
1263 			}
1264 
1265 
1266 			/* Prefetch first packets */
1267 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1268 				rte_prefetch0(rte_pktmbuf_mtod(
1269 							pkts_burst[j], void *));
1270 			}
1271 
1272 			/* Prefetch and forward already prefetched packets */
1273 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1274 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1275 							j + PREFETCH_OFFSET],
1276 							void *));
1277 				l3fwd_simple_forward(pkts_burst[j], portid,
1278 						qconf);
1279 			}
1280 
1281 			/* Forward remaining prefetched packets */
1282 			for (; j < nb_rx; j++) {
1283 				l3fwd_simple_forward(pkts_burst[j], portid,
1284 						qconf);
1285 			}
1286 
1287 		}
1288 
1289 	}
1290 
1291 	return 0;
1292 }
1293 /* main processing loop */
1294 static int
1295 main_legacy_loop(__rte_unused void *dummy)
1296 {
1297 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1298 	unsigned lcore_id;
1299 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1300 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1301 	int i, j, nb_rx;
1302 	uint8_t queueid;
1303 	uint16_t portid;
1304 	struct lcore_conf *qconf;
1305 	struct lcore_rx_queue *rx_queue;
1306 	enum freq_scale_hint_t lcore_scaleup_hint;
1307 	uint32_t lcore_rx_idle_count = 0;
1308 	uint32_t lcore_idle_hint = 0;
1309 	int intr_en = 0;
1310 
1311 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1312 
1313 	prev_tsc = 0;
1314 	hz = rte_get_timer_hz();
1315 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1316 
1317 	lcore_id = rte_lcore_id();
1318 	qconf = &lcore_conf[lcore_id];
1319 
1320 	if (qconf->n_rx_queue == 0) {
1321 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1322 		return 0;
1323 	}
1324 
1325 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1326 
1327 	for (i = 0; i < qconf->n_rx_queue; i++) {
1328 		portid = qconf->rx_queue_list[i].port_id;
1329 		queueid = qconf->rx_queue_list[i].queue_id;
1330 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1331 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1332 	}
1333 
1334 	/* add into event wait list */
1335 	if (event_register(qconf) == 0)
1336 		intr_en = 1;
1337 	else
1338 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1339 
1340 	while (!is_done()) {
1341 		stats[lcore_id].nb_iteration_looped++;
1342 
1343 		cur_tsc = rte_rdtsc();
1344 		cur_tsc_power = cur_tsc;
1345 
1346 		/*
1347 		 * TX burst queue drain
1348 		 */
1349 		diff_tsc = cur_tsc - prev_tsc;
1350 		if (unlikely(diff_tsc > drain_tsc)) {
1351 			for (i = 0; i < qconf->n_tx_port; ++i) {
1352 				portid = qconf->tx_port_id[i];
1353 				rte_eth_tx_buffer_flush(portid,
1354 						qconf->tx_queue_id[portid],
1355 						qconf->tx_buffer[portid]);
1356 			}
1357 			prev_tsc = cur_tsc;
1358 		}
1359 
1360 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1361 		if (diff_tsc_power > tim_res_tsc) {
1362 			rte_timer_manage();
1363 			prev_tsc_power = cur_tsc_power;
1364 		}
1365 
1366 start_rx:
1367 		/*
1368 		 * Read packet from RX queues
1369 		 */
1370 		lcore_scaleup_hint = FREQ_CURRENT;
1371 		lcore_rx_idle_count = 0;
1372 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1373 			rx_queue = &(qconf->rx_queue_list[i]);
1374 			rx_queue->idle_hint = 0;
1375 			portid = rx_queue->port_id;
1376 			queueid = rx_queue->queue_id;
1377 
1378 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1379 								MAX_PKT_BURST);
1380 
1381 			stats[lcore_id].nb_rx_processed += nb_rx;
1382 			if (unlikely(nb_rx == 0)) {
1383 				/**
1384 				 * no packet received from rx queue, try to
1385 				 * sleep for a while forcing CPU enter deeper
1386 				 * C states.
1387 				 */
1388 				rx_queue->zero_rx_packet_count++;
1389 
1390 				if (rx_queue->zero_rx_packet_count <=
1391 							MIN_ZERO_POLL_COUNT)
1392 					continue;
1393 
1394 				rx_queue->idle_hint = power_idle_heuristic(\
1395 					rx_queue->zero_rx_packet_count);
1396 				lcore_rx_idle_count++;
1397 			} else {
1398 				rx_queue->zero_rx_packet_count = 0;
1399 
1400 				/**
1401 				 * do not scale up frequency immediately as
1402 				 * user to kernel space communication is costly
1403 				 * which might impact packet I/O for received
1404 				 * packets.
1405 				 */
1406 				rx_queue->freq_up_hint =
1407 					power_freq_scaleup_heuristic(lcore_id,
1408 							portid, queueid);
1409 			}
1410 
1411 			/* Prefetch first packets */
1412 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1413 				rte_prefetch0(rte_pktmbuf_mtod(
1414 						pkts_burst[j], void *));
1415 			}
1416 
1417 			/* Prefetch and forward already prefetched packets */
1418 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1419 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1420 						j + PREFETCH_OFFSET], void *));
1421 				l3fwd_simple_forward(pkts_burst[j], portid,
1422 								qconf);
1423 			}
1424 
1425 			/* Forward remaining prefetched packets */
1426 			for (; j < nb_rx; j++) {
1427 				l3fwd_simple_forward(pkts_burst[j], portid,
1428 								qconf);
1429 			}
1430 		}
1431 
1432 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1433 			for (i = 1, lcore_scaleup_hint =
1434 				qconf->rx_queue_list[0].freq_up_hint;
1435 					i < qconf->n_rx_queue; ++i) {
1436 				rx_queue = &(qconf->rx_queue_list[i]);
1437 				if (rx_queue->freq_up_hint >
1438 						lcore_scaleup_hint)
1439 					lcore_scaleup_hint =
1440 						rx_queue->freq_up_hint;
1441 			}
1442 
1443 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1444 				if (rte_power_freq_max)
1445 					rte_power_freq_max(lcore_id);
1446 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1447 				if (rte_power_freq_up)
1448 					rte_power_freq_up(lcore_id);
1449 			}
1450 		} else {
1451 			/**
1452 			 * All Rx queues empty in recent consecutive polls,
1453 			 * sleep in a conservative manner, meaning sleep as
1454 			 * less as possible.
1455 			 */
1456 			for (i = 1, lcore_idle_hint =
1457 				qconf->rx_queue_list[0].idle_hint;
1458 					i < qconf->n_rx_queue; ++i) {
1459 				rx_queue = &(qconf->rx_queue_list[i]);
1460 				if (rx_queue->idle_hint < lcore_idle_hint)
1461 					lcore_idle_hint = rx_queue->idle_hint;
1462 			}
1463 
1464 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1465 				/**
1466 				 * execute "pause" instruction to avoid context
1467 				 * switch which generally take hundred of
1468 				 * microseconds for short sleep.
1469 				 */
1470 				rte_delay_us(lcore_idle_hint);
1471 			else {
1472 				/* suspend until rx interrupt triggers */
1473 				if (intr_en) {
1474 					turn_on_off_intr(qconf, 1);
1475 					sleep_until_rx_interrupt(
1476 						qconf->n_rx_queue);
1477 					turn_on_off_intr(qconf, 0);
1478 					/**
1479 					 * start receiving packets immediately
1480 					 */
1481 					if (likely(!is_done()))
1482 						goto start_rx;
1483 				}
1484 			}
1485 			stats[lcore_id].sleep_time += lcore_idle_hint;
1486 		}
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static int
1493 check_lcore_params(void)
1494 {
1495 	uint8_t queue, lcore;
1496 	uint16_t i;
1497 	int socketid;
1498 
1499 	for (i = 0; i < nb_lcore_params; ++i) {
1500 		queue = lcore_params[i].queue_id;
1501 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1502 			printf("invalid queue number: %hhu\n", queue);
1503 			return -1;
1504 		}
1505 		lcore = lcore_params[i].lcore_id;
1506 		if (!rte_lcore_is_enabled(lcore)) {
1507 			printf("error: lcore %hhu is not enabled in lcore "
1508 							"mask\n", lcore);
1509 			return -1;
1510 		}
1511 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1512 							(numa_on == 0)) {
1513 			printf("warning: lcore %hhu is on socket %d with numa "
1514 						"off\n", lcore, socketid);
1515 		}
1516 		if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1517 			printf("cannot enable master core %d in config for telemetry mode\n",
1518 				rte_lcore_id());
1519 			return -1;
1520 		}
1521 	}
1522 	return 0;
1523 }
1524 
1525 static int
1526 check_port_config(void)
1527 {
1528 	unsigned portid;
1529 	uint16_t i;
1530 
1531 	for (i = 0; i < nb_lcore_params; ++i) {
1532 		portid = lcore_params[i].port_id;
1533 		if ((enabled_port_mask & (1 << portid)) == 0) {
1534 			printf("port %u is not enabled in port mask\n",
1535 								portid);
1536 			return -1;
1537 		}
1538 		if (!rte_eth_dev_is_valid_port(portid)) {
1539 			printf("port %u is not present on the board\n",
1540 								portid);
1541 			return -1;
1542 		}
1543 	}
1544 	return 0;
1545 }
1546 
1547 static uint8_t
1548 get_port_n_rx_queues(const uint16_t port)
1549 {
1550 	int queue = -1;
1551 	uint16_t i;
1552 
1553 	for (i = 0; i < nb_lcore_params; ++i) {
1554 		if (lcore_params[i].port_id == port &&
1555 				lcore_params[i].queue_id > queue)
1556 			queue = lcore_params[i].queue_id;
1557 	}
1558 	return (uint8_t)(++queue);
1559 }
1560 
1561 static int
1562 init_lcore_rx_queues(void)
1563 {
1564 	uint16_t i, nb_rx_queue;
1565 	uint8_t lcore;
1566 
1567 	for (i = 0; i < nb_lcore_params; ++i) {
1568 		lcore = lcore_params[i].lcore_id;
1569 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1570 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1571 			printf("error: too many queues (%u) for lcore: %u\n",
1572 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1573 			return -1;
1574 		} else {
1575 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1576 				lcore_params[i].port_id;
1577 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1578 				lcore_params[i].queue_id;
1579 			lcore_conf[lcore].n_rx_queue++;
1580 		}
1581 	}
1582 	return 0;
1583 }
1584 
1585 /* display usage */
1586 static void
1587 print_usage(const char *prgname)
1588 {
1589 	printf ("%s [EAL options] -- -p PORTMASK -P"
1590 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1591 		"  [--high-perf-cores CORELIST"
1592 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1593 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1594 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1595 		"  -P : enable promiscuous mode\n"
1596 		"  --config (port,queue,lcore): rx queues configuration\n"
1597 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1598 		"  --perf-config: similar as config, cores specified as indices"
1599 		" for bins containing high or regular performance cores\n"
1600 		"  --no-numa: optional, disable numa awareness\n"
1601 		"  --enable-jumbo: enable jumbo frame"
1602 		" which max packet len is PKTLEN in decimal (64-9600)\n"
1603 		"  --parse-ptype: parse packet type by software\n"
1604 		"  --legacy: use legacy interrupt-based scaling\n"
1605 		"  --empty-poll: enable empty poll detection"
1606 		" follow (training_flag, high_threshold, med_threshold)\n"
1607 		" --telemetry: enable telemetry mode, to update"
1608 		" empty polls, full polls, and core busyness to telemetry\n"
1609 		" --interrupt-only: enable interrupt-only mode\n",
1610 		prgname);
1611 }
1612 
1613 static int parse_max_pkt_len(const char *pktlen)
1614 {
1615 	char *end = NULL;
1616 	unsigned long len;
1617 
1618 	/* parse decimal string */
1619 	len = strtoul(pktlen, &end, 10);
1620 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1621 		return -1;
1622 
1623 	if (len == 0)
1624 		return -1;
1625 
1626 	return len;
1627 }
1628 
1629 static int
1630 parse_portmask(const char *portmask)
1631 {
1632 	char *end = NULL;
1633 	unsigned long pm;
1634 
1635 	/* parse hexadecimal string */
1636 	pm = strtoul(portmask, &end, 16);
1637 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1638 		return -1;
1639 
1640 	if (pm == 0)
1641 		return -1;
1642 
1643 	return pm;
1644 }
1645 
1646 static int
1647 parse_config(const char *q_arg)
1648 {
1649 	char s[256];
1650 	const char *p, *p0 = q_arg;
1651 	char *end;
1652 	enum fieldnames {
1653 		FLD_PORT = 0,
1654 		FLD_QUEUE,
1655 		FLD_LCORE,
1656 		_NUM_FLD
1657 	};
1658 	unsigned long int_fld[_NUM_FLD];
1659 	char *str_fld[_NUM_FLD];
1660 	int i;
1661 	unsigned size;
1662 
1663 	nb_lcore_params = 0;
1664 
1665 	while ((p = strchr(p0,'(')) != NULL) {
1666 		++p;
1667 		if((p0 = strchr(p,')')) == NULL)
1668 			return -1;
1669 
1670 		size = p0 - p;
1671 		if(size >= sizeof(s))
1672 			return -1;
1673 
1674 		snprintf(s, sizeof(s), "%.*s", size, p);
1675 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1676 								_NUM_FLD)
1677 			return -1;
1678 		for (i = 0; i < _NUM_FLD; i++){
1679 			errno = 0;
1680 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1681 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1682 									255)
1683 				return -1;
1684 		}
1685 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1686 			printf("exceeded max number of lcore params: %hu\n",
1687 				nb_lcore_params);
1688 			return -1;
1689 		}
1690 		lcore_params_array[nb_lcore_params].port_id =
1691 				(uint8_t)int_fld[FLD_PORT];
1692 		lcore_params_array[nb_lcore_params].queue_id =
1693 				(uint8_t)int_fld[FLD_QUEUE];
1694 		lcore_params_array[nb_lcore_params].lcore_id =
1695 				(uint8_t)int_fld[FLD_LCORE];
1696 		++nb_lcore_params;
1697 	}
1698 	lcore_params = lcore_params_array;
1699 
1700 	return 0;
1701 }
1702 static int
1703 parse_ep_config(const char *q_arg)
1704 {
1705 	char s[256];
1706 	const char *p = q_arg;
1707 	char *end;
1708 	int  num_arg;
1709 
1710 	char *str_fld[3];
1711 
1712 	int training_flag;
1713 	int med_edpi;
1714 	int hgh_edpi;
1715 
1716 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1717 	ep_hgh_edpi = EMPTY_POLL_MED_THRESHOLD;
1718 
1719 	strlcpy(s, p, sizeof(s));
1720 
1721 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1722 
1723 	empty_poll_train = false;
1724 
1725 	if (num_arg == 0)
1726 		return 0;
1727 
1728 	if (num_arg == 3) {
1729 
1730 		training_flag = strtoul(str_fld[0], &end, 0);
1731 		med_edpi = strtoul(str_fld[1], &end, 0);
1732 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1733 
1734 		if (training_flag == 1)
1735 			empty_poll_train = true;
1736 
1737 		if (med_edpi > 0)
1738 			ep_med_edpi = med_edpi;
1739 
1740 		if (med_edpi > 0)
1741 			ep_hgh_edpi = hgh_edpi;
1742 
1743 	} else {
1744 
1745 		return -1;
1746 	}
1747 
1748 	return 0;
1749 
1750 }
1751 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1752 #define CMD_LINE_OPT_LEGACY "legacy"
1753 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1754 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1755 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1756 
1757 /* Parse the argument given in the command line of the application */
1758 static int
1759 parse_args(int argc, char **argv)
1760 {
1761 	int opt, ret;
1762 	char **argvopt;
1763 	int option_index;
1764 	uint32_t limit;
1765 	char *prgname = argv[0];
1766 	static struct option lgopts[] = {
1767 		{"config", 1, 0, 0},
1768 		{"perf-config", 1, 0, 0},
1769 		{"high-perf-cores", 1, 0, 0},
1770 		{"no-numa", 0, 0, 0},
1771 		{"enable-jumbo", 0, 0, 0},
1772 		{CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1773 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1774 		{CMD_LINE_OPT_LEGACY, 0, 0, 0},
1775 		{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1776 		{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1777 		{NULL, 0, 0, 0}
1778 	};
1779 
1780 	argvopt = argv;
1781 
1782 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1783 				lgopts, &option_index)) != EOF) {
1784 
1785 		switch (opt) {
1786 		/* portmask */
1787 		case 'p':
1788 			enabled_port_mask = parse_portmask(optarg);
1789 			if (enabled_port_mask == 0) {
1790 				printf("invalid portmask\n");
1791 				print_usage(prgname);
1792 				return -1;
1793 			}
1794 			break;
1795 		case 'P':
1796 			printf("Promiscuous mode selected\n");
1797 			promiscuous_on = 1;
1798 			break;
1799 		case 'l':
1800 			limit = parse_max_pkt_len(optarg);
1801 			freq_tlb[LOW] = limit;
1802 			break;
1803 		case 'm':
1804 			limit = parse_max_pkt_len(optarg);
1805 			freq_tlb[MED] = limit;
1806 			break;
1807 		case 'h':
1808 			limit = parse_max_pkt_len(optarg);
1809 			freq_tlb[HGH] = limit;
1810 			break;
1811 		/* long options */
1812 		case 0:
1813 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1814 				ret = parse_config(optarg);
1815 				if (ret) {
1816 					printf("invalid config\n");
1817 					print_usage(prgname);
1818 					return -1;
1819 				}
1820 			}
1821 
1822 			if (!strncmp(lgopts[option_index].name,
1823 					"perf-config", 11)) {
1824 				ret = parse_perf_config(optarg);
1825 				if (ret) {
1826 					printf("invalid perf-config\n");
1827 					print_usage(prgname);
1828 					return -1;
1829 				}
1830 			}
1831 
1832 			if (!strncmp(lgopts[option_index].name,
1833 					"high-perf-cores", 15)) {
1834 				ret = parse_perf_core_list(optarg);
1835 				if (ret) {
1836 					printf("invalid high-perf-cores\n");
1837 					print_usage(prgname);
1838 					return -1;
1839 				}
1840 			}
1841 
1842 			if (!strncmp(lgopts[option_index].name,
1843 						"no-numa", 7)) {
1844 				printf("numa is disabled \n");
1845 				numa_on = 0;
1846 			}
1847 
1848 			if (!strncmp(lgopts[option_index].name,
1849 					CMD_LINE_OPT_LEGACY,
1850 					sizeof(CMD_LINE_OPT_LEGACY))) {
1851 				if (app_mode != APP_MODE_DEFAULT) {
1852 					printf(" legacy mode is mutually exclusive with other modes\n");
1853 					return -1;
1854 				}
1855 				app_mode = APP_MODE_LEGACY;
1856 				printf("legacy mode is enabled\n");
1857 			}
1858 
1859 			if (!strncmp(lgopts[option_index].name,
1860 					CMD_LINE_OPT_EMPTY_POLL, 10)) {
1861 				if (app_mode != APP_MODE_DEFAULT) {
1862 					printf(" empty-poll mode is mutually exclusive with other modes\n");
1863 					return -1;
1864 				}
1865 				app_mode = APP_MODE_EMPTY_POLL;
1866 				ret = parse_ep_config(optarg);
1867 
1868 				if (ret) {
1869 					printf("invalid empty poll config\n");
1870 					print_usage(prgname);
1871 					return -1;
1872 				}
1873 				printf("empty-poll is enabled\n");
1874 			}
1875 
1876 			if (!strncmp(lgopts[option_index].name,
1877 					CMD_LINE_OPT_TELEMETRY,
1878 					sizeof(CMD_LINE_OPT_TELEMETRY))) {
1879 				if (app_mode != APP_MODE_DEFAULT) {
1880 					printf(" telemetry mode is mutually exclusive with other modes\n");
1881 					return -1;
1882 				}
1883 				app_mode = APP_MODE_TELEMETRY;
1884 				printf("telemetry mode is enabled\n");
1885 			}
1886 
1887 			if (!strncmp(lgopts[option_index].name,
1888 					CMD_LINE_OPT_INTERRUPT_ONLY,
1889 					sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1890 				if (app_mode != APP_MODE_DEFAULT) {
1891 					printf(" interrupt-only mode is mutually exclusive with other modes\n");
1892 					return -1;
1893 				}
1894 				app_mode = APP_MODE_INTERRUPT;
1895 				printf("interrupt-only mode is enabled\n");
1896 			}
1897 
1898 			if (!strncmp(lgopts[option_index].name,
1899 					"enable-jumbo", 12)) {
1900 				struct option lenopts =
1901 					{"max-pkt-len", required_argument, \
1902 									0, 0};
1903 
1904 				printf("jumbo frame is enabled \n");
1905 				port_conf.rxmode.offloads |=
1906 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1907 				port_conf.txmode.offloads |=
1908 						DEV_TX_OFFLOAD_MULTI_SEGS;
1909 
1910 				/**
1911 				 * if no max-pkt-len set, use the default value
1912 				 * RTE_ETHER_MAX_LEN
1913 				 */
1914 				if (0 == getopt_long(argc, argvopt, "",
1915 						&lenopts, &option_index)) {
1916 					ret = parse_max_pkt_len(optarg);
1917 					if ((ret < 64) ||
1918 						(ret > MAX_JUMBO_PKT_LEN)){
1919 						printf("invalid packet "
1920 								"length\n");
1921 						print_usage(prgname);
1922 						return -1;
1923 					}
1924 					port_conf.rxmode.max_rx_pkt_len = ret;
1925 				}
1926 				printf("set jumbo frame "
1927 					"max packet length to %u\n",
1928 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1929 			}
1930 
1931 			if (!strncmp(lgopts[option_index].name,
1932 				     CMD_LINE_OPT_PARSE_PTYPE,
1933 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1934 				printf("soft parse-ptype is enabled\n");
1935 				parse_ptype = 1;
1936 			}
1937 
1938 			break;
1939 
1940 		default:
1941 			print_usage(prgname);
1942 			return -1;
1943 		}
1944 	}
1945 
1946 	if (optind >= 0)
1947 		argv[optind-1] = prgname;
1948 
1949 	ret = optind-1;
1950 	optind = 1; /* reset getopt lib */
1951 	return ret;
1952 }
1953 
1954 static void
1955 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1956 {
1957 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
1958 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1959 	printf("%s%s", name, buf);
1960 }
1961 
1962 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1963 static void
1964 setup_hash(int socketid)
1965 {
1966 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1967 		.name = NULL,
1968 		.entries = L3FWD_HASH_ENTRIES,
1969 		.key_len = sizeof(struct ipv4_5tuple),
1970 		.hash_func = DEFAULT_HASH_FUNC,
1971 		.hash_func_init_val = 0,
1972 	};
1973 
1974 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1975 		.name = NULL,
1976 		.entries = L3FWD_HASH_ENTRIES,
1977 		.key_len = sizeof(struct ipv6_5tuple),
1978 		.hash_func = DEFAULT_HASH_FUNC,
1979 		.hash_func_init_val = 0,
1980 	};
1981 
1982 	unsigned i;
1983 	int ret;
1984 	char s[64];
1985 
1986 	/* create ipv4 hash */
1987 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1988 	ipv4_l3fwd_hash_params.name = s;
1989 	ipv4_l3fwd_hash_params.socket_id = socketid;
1990 	ipv4_l3fwd_lookup_struct[socketid] =
1991 		rte_hash_create(&ipv4_l3fwd_hash_params);
1992 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1993 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1994 				"socket %d\n", socketid);
1995 
1996 	/* create ipv6 hash */
1997 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1998 	ipv6_l3fwd_hash_params.name = s;
1999 	ipv6_l3fwd_hash_params.socket_id = socketid;
2000 	ipv6_l3fwd_lookup_struct[socketid] =
2001 		rte_hash_create(&ipv6_l3fwd_hash_params);
2002 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2003 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2004 				"socket %d\n", socketid);
2005 
2006 
2007 	/* populate the ipv4 hash */
2008 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2009 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2010 				(void *) &ipv4_l3fwd_route_array[i].key);
2011 		if (ret < 0) {
2012 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2013 				"l3fwd hash on socket %d\n", i, socketid);
2014 		}
2015 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2016 		printf("Hash: Adding key\n");
2017 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2018 	}
2019 
2020 	/* populate the ipv6 hash */
2021 	for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2022 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2023 				(void *) &ipv6_l3fwd_route_array[i].key);
2024 		if (ret < 0) {
2025 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2026 				"l3fwd hash on socket %d\n", i, socketid);
2027 		}
2028 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2029 		printf("Hash: Adding key\n");
2030 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2031 	}
2032 }
2033 #endif
2034 
2035 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2036 static void
2037 setup_lpm(int socketid)
2038 {
2039 	unsigned i;
2040 	int ret;
2041 	char s[64];
2042 
2043 	/* create the LPM table */
2044 	struct rte_lpm_config lpm_ipv4_config;
2045 
2046 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2047 	lpm_ipv4_config.number_tbl8s = 256;
2048 	lpm_ipv4_config.flags = 0;
2049 
2050 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2051 	ipv4_l3fwd_lookup_struct[socketid] =
2052 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
2053 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2054 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2055 				" on socket %d\n", socketid);
2056 
2057 	/* populate the LPM table */
2058 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2059 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2060 			ipv4_l3fwd_route_array[i].ip,
2061 			ipv4_l3fwd_route_array[i].depth,
2062 			ipv4_l3fwd_route_array[i].if_out);
2063 
2064 		if (ret < 0) {
2065 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2066 				"l3fwd LPM table on socket %d\n",
2067 				i, socketid);
2068 		}
2069 
2070 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2071 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2072 			ipv4_l3fwd_route_array[i].depth,
2073 			ipv4_l3fwd_route_array[i].if_out);
2074 	}
2075 }
2076 #endif
2077 
2078 static int
2079 init_mem(unsigned nb_mbuf)
2080 {
2081 	struct lcore_conf *qconf;
2082 	int socketid;
2083 	unsigned lcore_id;
2084 	char s[64];
2085 
2086 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2087 		if (rte_lcore_is_enabled(lcore_id) == 0)
2088 			continue;
2089 
2090 		if (numa_on)
2091 			socketid = rte_lcore_to_socket_id(lcore_id);
2092 		else
2093 			socketid = 0;
2094 
2095 		if (socketid >= NB_SOCKETS) {
2096 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2097 					"out of range %d\n", socketid,
2098 						lcore_id, NB_SOCKETS);
2099 		}
2100 		if (pktmbuf_pool[socketid] == NULL) {
2101 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2102 			pktmbuf_pool[socketid] =
2103 				rte_pktmbuf_pool_create(s, nb_mbuf,
2104 					MEMPOOL_CACHE_SIZE, 0,
2105 					RTE_MBUF_DEFAULT_BUF_SIZE,
2106 					socketid);
2107 			if (pktmbuf_pool[socketid] == NULL)
2108 				rte_exit(EXIT_FAILURE,
2109 					"Cannot init mbuf pool on socket %d\n",
2110 								socketid);
2111 			else
2112 				printf("Allocated mbuf pool on socket %d\n",
2113 								socketid);
2114 
2115 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2116 			setup_lpm(socketid);
2117 #else
2118 			setup_hash(socketid);
2119 #endif
2120 		}
2121 		qconf = &lcore_conf[lcore_id];
2122 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2123 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2124 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2125 #endif
2126 	}
2127 	return 0;
2128 }
2129 
2130 /* Check the link status of all ports in up to 9s, and print them finally */
2131 static void
2132 check_all_ports_link_status(uint32_t port_mask)
2133 {
2134 #define CHECK_INTERVAL 100 /* 100ms */
2135 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2136 	uint8_t count, all_ports_up, print_flag = 0;
2137 	uint16_t portid;
2138 	struct rte_eth_link link;
2139 	int ret;
2140 
2141 	printf("\nChecking link status");
2142 	fflush(stdout);
2143 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2144 		all_ports_up = 1;
2145 		RTE_ETH_FOREACH_DEV(portid) {
2146 			if ((port_mask & (1 << portid)) == 0)
2147 				continue;
2148 			memset(&link, 0, sizeof(link));
2149 			ret = rte_eth_link_get_nowait(portid, &link);
2150 			if (ret < 0) {
2151 				all_ports_up = 0;
2152 				if (print_flag == 1)
2153 					printf("Port %u link get failed: %s\n",
2154 						portid, rte_strerror(-ret));
2155 				continue;
2156 			}
2157 			/* print link status if flag set */
2158 			if (print_flag == 1) {
2159 				if (link.link_status)
2160 					printf("Port %d Link Up - speed %u "
2161 						"Mbps - %s\n", (uint8_t)portid,
2162 						(unsigned)link.link_speed,
2163 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
2164 					("full-duplex") : ("half-duplex"));
2165 				else
2166 					printf("Port %d Link Down\n",
2167 						(uint8_t)portid);
2168 				continue;
2169 			}
2170 			/* clear all_ports_up flag if any link down */
2171 			if (link.link_status == ETH_LINK_DOWN) {
2172 				all_ports_up = 0;
2173 				break;
2174 			}
2175 		}
2176 		/* after finally printing all link status, get out */
2177 		if (print_flag == 1)
2178 			break;
2179 
2180 		if (all_ports_up == 0) {
2181 			printf(".");
2182 			fflush(stdout);
2183 			rte_delay_ms(CHECK_INTERVAL);
2184 		}
2185 
2186 		/* set the print_flag if all ports up or timeout */
2187 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2188 			print_flag = 1;
2189 			printf("done\n");
2190 		}
2191 	}
2192 }
2193 
2194 static int check_ptype(uint16_t portid)
2195 {
2196 	int i, ret;
2197 	int ptype_l3_ipv4 = 0;
2198 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2199 	int ptype_l3_ipv6 = 0;
2200 #endif
2201 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2202 
2203 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2204 	if (ret <= 0)
2205 		return 0;
2206 
2207 	uint32_t ptypes[ret];
2208 
2209 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2210 	for (i = 0; i < ret; ++i) {
2211 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2212 			ptype_l3_ipv4 = 1;
2213 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2214 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2215 			ptype_l3_ipv6 = 1;
2216 #endif
2217 	}
2218 
2219 	if (ptype_l3_ipv4 == 0)
2220 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2221 
2222 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2223 	if (ptype_l3_ipv6 == 0)
2224 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2225 #endif
2226 
2227 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2228 	if (ptype_l3_ipv4)
2229 #else /* APP_LOOKUP_EXACT_MATCH */
2230 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
2231 #endif
2232 		return 1;
2233 
2234 	return 0;
2235 
2236 }
2237 
2238 static int
2239 init_power_library(void)
2240 {
2241 	enum power_management_env env;
2242 	unsigned int lcore_id;
2243 	int ret = 0;
2244 
2245 	RTE_LCORE_FOREACH(lcore_id) {
2246 		/* init power management library */
2247 		ret = rte_power_init(lcore_id);
2248 		if (ret) {
2249 			RTE_LOG(ERR, POWER,
2250 				"Library initialization failed on core %u\n",
2251 				lcore_id);
2252 			return ret;
2253 		}
2254 		/* we're not supporting the VM channel mode */
2255 		env = rte_power_get_env();
2256 		if (env != PM_ENV_ACPI_CPUFREQ &&
2257 				env != PM_ENV_PSTATE_CPUFREQ) {
2258 			RTE_LOG(ERR, POWER,
2259 				"Only ACPI and PSTATE mode are supported\n");
2260 			return -1;
2261 		}
2262 	}
2263 	return ret;
2264 }
2265 
2266 static int
2267 deinit_power_library(void)
2268 {
2269 	unsigned int lcore_id;
2270 	int ret = 0;
2271 
2272 	RTE_LCORE_FOREACH(lcore_id) {
2273 		/* deinit power management library */
2274 		ret = rte_power_exit(lcore_id);
2275 		if (ret) {
2276 			RTE_LOG(ERR, POWER,
2277 				"Library deinitialization failed on core %u\n",
2278 				lcore_id);
2279 			return ret;
2280 		}
2281 	}
2282 	return ret;
2283 }
2284 
2285 static void
2286 get_current_stat_values(uint64_t *values)
2287 {
2288 	unsigned int lcore_id = rte_lcore_id();
2289 	struct lcore_conf *qconf;
2290 	uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2291 	uint64_t count = 0;
2292 
2293 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2294 		qconf = &lcore_conf[lcore_id];
2295 		if (qconf->n_rx_queue == 0)
2296 			continue;
2297 		count++;
2298 		rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2299 		app_eps += stats[lcore_id].ep_nep[1];
2300 		app_fps += stats[lcore_id].fp_nfp[1];
2301 		app_br += stats[lcore_id].br;
2302 		rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2303 	}
2304 
2305 	if (count > 0) {
2306 		values[0] = app_eps/count;
2307 		values[1] = app_fps/count;
2308 		values[2] = app_br/count;
2309 	} else
2310 		memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2311 
2312 }
2313 
2314 static void
2315 update_telemetry(__rte_unused struct rte_timer *tim,
2316 		__rte_unused void *arg)
2317 {
2318 	int ret;
2319 	uint64_t values[NUM_TELSTATS] = {0};
2320 
2321 	get_current_stat_values(values);
2322 	ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2323 					values, RTE_DIM(values));
2324 	if (ret < 0)
2325 		RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
2326 }
2327 
2328 static int
2329 handle_app_stats(const char *cmd __rte_unused,
2330 		const char *params __rte_unused,
2331 		struct rte_tel_data *d)
2332 {
2333 	uint64_t values[NUM_TELSTATS] = {0};
2334 	uint32_t i;
2335 
2336 	rte_tel_data_start_dict(d);
2337 	get_current_stat_values(values);
2338 	for (i = 0; i < NUM_TELSTATS; i++)
2339 		rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2340 				values[i]);
2341 	return 0;
2342 }
2343 
2344 static void
2345 telemetry_setup_timer(void)
2346 {
2347 	int lcore_id = rte_lcore_id();
2348 	uint64_t hz = rte_get_timer_hz();
2349 	uint64_t ticks;
2350 
2351 	ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2352 	rte_timer_reset_sync(&telemetry_timer,
2353 			ticks,
2354 			PERIODICAL,
2355 			lcore_id,
2356 			update_telemetry,
2357 			NULL);
2358 }
2359 static void
2360 empty_poll_setup_timer(void)
2361 {
2362 	int lcore_id = rte_lcore_id();
2363 	uint64_t hz = rte_get_timer_hz();
2364 
2365 	struct  ep_params *ep_ptr = ep_params;
2366 
2367 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2368 
2369 	rte_timer_reset_sync(&ep_ptr->timer0,
2370 			ep_ptr->interval_ticks,
2371 			PERIODICAL,
2372 			lcore_id,
2373 			rte_empty_poll_detection,
2374 			(void *)ep_ptr);
2375 
2376 }
2377 static int
2378 launch_timer(unsigned int lcore_id)
2379 {
2380 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2381 
2382 	RTE_SET_USED(lcore_id);
2383 
2384 
2385 	if (rte_get_master_lcore() != lcore_id) {
2386 		rte_panic("timer on lcore:%d which is not master core:%d\n",
2387 				lcore_id,
2388 				rte_get_master_lcore());
2389 	}
2390 
2391 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2392 
2393 	if (app_mode == APP_MODE_EMPTY_POLL)
2394 		empty_poll_setup_timer();
2395 	else
2396 		telemetry_setup_timer();
2397 
2398 	cycles_10ms = rte_get_timer_hz() / 100;
2399 
2400 	while (!is_done()) {
2401 		cur_tsc = rte_rdtsc();
2402 		diff_tsc = cur_tsc - prev_tsc;
2403 		if (diff_tsc > cycles_10ms) {
2404 			rte_timer_manage();
2405 			prev_tsc = cur_tsc;
2406 			cycles_10ms = rte_get_timer_hz() / 100;
2407 		}
2408 	}
2409 
2410 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2411 
2412 	return 0;
2413 }
2414 
2415 static int
2416 autodetect_mode(void)
2417 {
2418 	RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2419 
2420 	/*
2421 	 * Empty poll and telemetry modes have to be specifically requested to
2422 	 * be enabled, but we can auto-detect between interrupt mode with or
2423 	 * without frequency scaling. Both ACPI and pstate can be used.
2424 	 */
2425 	if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2426 		return APP_MODE_LEGACY;
2427 	if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2428 		return APP_MODE_LEGACY;
2429 
2430 	RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2431 
2432 	return APP_MODE_INTERRUPT;
2433 }
2434 
2435 static const char *
2436 mode_to_str(enum appmode mode)
2437 {
2438 	switch (mode) {
2439 	case APP_MODE_LEGACY:
2440 		return "legacy";
2441 	case APP_MODE_EMPTY_POLL:
2442 		return "empty poll";
2443 	case APP_MODE_TELEMETRY:
2444 		return "telemetry";
2445 	case APP_MODE_INTERRUPT:
2446 		return "interrupt-only";
2447 	default:
2448 		return "invalid";
2449 	}
2450 }
2451 
2452 int
2453 main(int argc, char **argv)
2454 {
2455 	struct lcore_conf *qconf;
2456 	struct rte_eth_dev_info dev_info;
2457 	struct rte_eth_txconf *txconf;
2458 	int ret;
2459 	uint16_t nb_ports;
2460 	uint16_t queueid;
2461 	unsigned lcore_id;
2462 	uint64_t hz;
2463 	uint32_t n_tx_queue, nb_lcores;
2464 	uint32_t dev_rxq_num, dev_txq_num;
2465 	uint8_t nb_rx_queue, queue, socketid;
2466 	uint16_t portid;
2467 	const char *ptr_strings[NUM_TELSTATS];
2468 
2469 	/* catch SIGINT and restore cpufreq governor to ondemand */
2470 	signal(SIGINT, signal_exit_now);
2471 
2472 	/* init EAL */
2473 	ret = rte_eal_init(argc, argv);
2474 	if (ret < 0)
2475 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2476 	argc -= ret;
2477 	argv += ret;
2478 
2479 	/* init RTE timer library to be used late */
2480 	rte_timer_subsystem_init();
2481 
2482 	/* parse application arguments (after the EAL ones) */
2483 	ret = parse_args(argc, argv);
2484 	if (ret < 0)
2485 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2486 
2487 	if (app_mode == APP_MODE_DEFAULT)
2488 		app_mode = autodetect_mode();
2489 
2490 	RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2491 			mode_to_str(app_mode));
2492 
2493 	/* only legacy and empty poll mode rely on power library */
2494 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2495 			init_power_library())
2496 		rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2497 
2498 	if (update_lcore_params() < 0)
2499 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2500 
2501 	if (check_lcore_params() < 0)
2502 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2503 
2504 	ret = init_lcore_rx_queues();
2505 	if (ret < 0)
2506 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2507 
2508 	nb_ports = rte_eth_dev_count_avail();
2509 
2510 	if (check_port_config() < 0)
2511 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2512 
2513 	nb_lcores = rte_lcore_count();
2514 
2515 	/* initialize all ports */
2516 	RTE_ETH_FOREACH_DEV(portid) {
2517 		struct rte_eth_conf local_port_conf = port_conf;
2518 		/* not all app modes need interrupts */
2519 		bool need_intr = app_mode == APP_MODE_LEGACY ||
2520 				app_mode == APP_MODE_INTERRUPT;
2521 
2522 		/* skip ports that are not enabled */
2523 		if ((enabled_port_mask & (1 << portid)) == 0) {
2524 			printf("\nSkipping disabled port %d\n", portid);
2525 			continue;
2526 		}
2527 
2528 		/* init port */
2529 		printf("Initializing port %d ... ", portid );
2530 		fflush(stdout);
2531 
2532 		ret = rte_eth_dev_info_get(portid, &dev_info);
2533 		if (ret != 0)
2534 			rte_exit(EXIT_FAILURE,
2535 				"Error during getting device (port %u) info: %s\n",
2536 				portid, strerror(-ret));
2537 
2538 		dev_rxq_num = dev_info.max_rx_queues;
2539 		dev_txq_num = dev_info.max_tx_queues;
2540 
2541 		nb_rx_queue = get_port_n_rx_queues(portid);
2542 		if (nb_rx_queue > dev_rxq_num)
2543 			rte_exit(EXIT_FAILURE,
2544 				"Cannot configure not existed rxq: "
2545 				"port=%d\n", portid);
2546 
2547 		n_tx_queue = nb_lcores;
2548 		if (n_tx_queue > dev_txq_num)
2549 			n_tx_queue = dev_txq_num;
2550 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2551 			nb_rx_queue, (unsigned)n_tx_queue );
2552 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2553 		if (nb_rx_queue == 0)
2554 			need_intr = false;
2555 
2556 		if (need_intr)
2557 			local_port_conf.intr_conf.rxq = 1;
2558 
2559 		ret = rte_eth_dev_info_get(portid, &dev_info);
2560 		if (ret != 0)
2561 			rte_exit(EXIT_FAILURE,
2562 				"Error during getting device (port %u) info: %s\n",
2563 				portid, strerror(-ret));
2564 
2565 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2566 			local_port_conf.txmode.offloads |=
2567 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2568 
2569 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2570 			dev_info.flow_type_rss_offloads;
2571 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2572 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2573 			printf("Port %u modified RSS hash function based on hardware support,"
2574 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2575 				portid,
2576 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2577 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2578 		}
2579 
2580 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2581 					(uint16_t)n_tx_queue, &local_port_conf);
2582 		if (ret < 0)
2583 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2584 					"err=%d, port=%d\n", ret, portid);
2585 
2586 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2587 						       &nb_txd);
2588 		if (ret < 0)
2589 			rte_exit(EXIT_FAILURE,
2590 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2591 				 ret, portid);
2592 
2593 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2594 		if (ret < 0)
2595 			rte_exit(EXIT_FAILURE,
2596 				 "Cannot get MAC address: err=%d, port=%d\n",
2597 				 ret, portid);
2598 
2599 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2600 		printf(", ");
2601 
2602 		/* init memory */
2603 		ret = init_mem(NB_MBUF);
2604 		if (ret < 0)
2605 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2606 
2607 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2608 			if (rte_lcore_is_enabled(lcore_id) == 0)
2609 				continue;
2610 
2611 			/* Initialize TX buffers */
2612 			qconf = &lcore_conf[lcore_id];
2613 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2614 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2615 				rte_eth_dev_socket_id(portid));
2616 			if (qconf->tx_buffer[portid] == NULL)
2617 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2618 						 portid);
2619 
2620 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2621 		}
2622 
2623 		/* init one TX queue per couple (lcore,port) */
2624 		queueid = 0;
2625 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2626 			if (rte_lcore_is_enabled(lcore_id) == 0)
2627 				continue;
2628 
2629 			if (queueid >= dev_txq_num)
2630 				continue;
2631 
2632 			if (numa_on)
2633 				socketid = \
2634 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2635 			else
2636 				socketid = 0;
2637 
2638 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2639 			fflush(stdout);
2640 
2641 			txconf = &dev_info.default_txconf;
2642 			txconf->offloads = local_port_conf.txmode.offloads;
2643 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2644 						     socketid, txconf);
2645 			if (ret < 0)
2646 				rte_exit(EXIT_FAILURE,
2647 					"rte_eth_tx_queue_setup: err=%d, "
2648 						"port=%d\n", ret, portid);
2649 
2650 			qconf = &lcore_conf[lcore_id];
2651 			qconf->tx_queue_id[portid] = queueid;
2652 			queueid++;
2653 
2654 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2655 			qconf->n_tx_port++;
2656 		}
2657 		printf("\n");
2658 	}
2659 
2660 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2661 		if (rte_lcore_is_enabled(lcore_id) == 0)
2662 			continue;
2663 
2664 		if (app_mode == APP_MODE_LEGACY) {
2665 			/* init timer structures for each enabled lcore */
2666 			rte_timer_init(&power_timers[lcore_id]);
2667 			hz = rte_get_timer_hz();
2668 			rte_timer_reset(&power_timers[lcore_id],
2669 					hz/TIMER_NUMBER_PER_SECOND,
2670 					SINGLE, lcore_id,
2671 					power_timer_cb, NULL);
2672 		}
2673 		qconf = &lcore_conf[lcore_id];
2674 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2675 		fflush(stdout);
2676 		/* init RX queues */
2677 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2678 			struct rte_eth_rxconf rxq_conf;
2679 
2680 			portid = qconf->rx_queue_list[queue].port_id;
2681 			queueid = qconf->rx_queue_list[queue].queue_id;
2682 
2683 			if (numa_on)
2684 				socketid = \
2685 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2686 			else
2687 				socketid = 0;
2688 
2689 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2690 			fflush(stdout);
2691 
2692 			ret = rte_eth_dev_info_get(portid, &dev_info);
2693 			if (ret != 0)
2694 				rte_exit(EXIT_FAILURE,
2695 					"Error during getting device (port %u) info: %s\n",
2696 					portid, strerror(-ret));
2697 
2698 			rxq_conf = dev_info.default_rxconf;
2699 			rxq_conf.offloads = port_conf.rxmode.offloads;
2700 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2701 				socketid, &rxq_conf,
2702 				pktmbuf_pool[socketid]);
2703 			if (ret < 0)
2704 				rte_exit(EXIT_FAILURE,
2705 					"rte_eth_rx_queue_setup: err=%d, "
2706 						"port=%d\n", ret, portid);
2707 
2708 			if (parse_ptype) {
2709 				if (add_cb_parse_ptype(portid, queueid) < 0)
2710 					rte_exit(EXIT_FAILURE,
2711 						 "Fail to add ptype cb\n");
2712 			} else if (!check_ptype(portid))
2713 				rte_exit(EXIT_FAILURE,
2714 					 "PMD can not provide needed ptypes\n");
2715 		}
2716 	}
2717 
2718 	printf("\n");
2719 
2720 	/* start ports */
2721 	RTE_ETH_FOREACH_DEV(portid) {
2722 		if ((enabled_port_mask & (1 << portid)) == 0) {
2723 			continue;
2724 		}
2725 		/* Start device */
2726 		ret = rte_eth_dev_start(portid);
2727 		if (ret < 0)
2728 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2729 						"port=%d\n", ret, portid);
2730 		/*
2731 		 * If enabled, put device in promiscuous mode.
2732 		 * This allows IO forwarding mode to forward packets
2733 		 * to itself through 2 cross-connected  ports of the
2734 		 * target machine.
2735 		 */
2736 		if (promiscuous_on) {
2737 			ret = rte_eth_promiscuous_enable(portid);
2738 			if (ret != 0)
2739 				rte_exit(EXIT_FAILURE,
2740 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2741 					rte_strerror(-ret), portid);
2742 		}
2743 		/* initialize spinlock for each port */
2744 		rte_spinlock_init(&(locks[portid]));
2745 	}
2746 
2747 	check_all_ports_link_status(enabled_port_mask);
2748 
2749 	if (app_mode == APP_MODE_EMPTY_POLL) {
2750 
2751 		if (empty_poll_train) {
2752 			policy.state = TRAINING;
2753 		} else {
2754 			policy.state = MED_NORMAL;
2755 			policy.med_base_edpi = ep_med_edpi;
2756 			policy.hgh_base_edpi = ep_hgh_edpi;
2757 		}
2758 
2759 		ret = rte_power_empty_poll_stat_init(&ep_params,
2760 				freq_tlb,
2761 				&policy);
2762 		if (ret < 0)
2763 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2764 	}
2765 
2766 
2767 	/* launch per-lcore init on every lcore */
2768 	if (app_mode == APP_MODE_LEGACY) {
2769 		rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MASTER);
2770 	} else if (app_mode == APP_MODE_EMPTY_POLL) {
2771 		empty_poll_stop = false;
2772 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2773 				SKIP_MASTER);
2774 	} else if (app_mode == APP_MODE_TELEMETRY) {
2775 		unsigned int i;
2776 
2777 		/* Init metrics library */
2778 		rte_metrics_init(rte_socket_id());
2779 		/** Register stats with metrics library */
2780 		for (i = 0; i < NUM_TELSTATS; i++)
2781 			ptr_strings[i] = telstats_strings[i].name;
2782 
2783 		ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2784 		if (ret >= 0)
2785 			telstats_index = ret;
2786 		else
2787 			rte_exit(EXIT_FAILURE, "failed to register metrics names");
2788 
2789 		RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2790 			rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2791 		}
2792 		rte_timer_init(&telemetry_timer);
2793 		rte_telemetry_register_cmd("/l3fwd-power/stats",
2794 				handle_app_stats,
2795 				"Returns global power stats. Parameters: None");
2796 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2797 						SKIP_MASTER);
2798 	} else if (app_mode == APP_MODE_INTERRUPT) {
2799 		rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MASTER);
2800 	}
2801 
2802 	if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2803 		launch_timer(rte_lcore_id());
2804 
2805 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2806 		if (rte_eal_wait_lcore(lcore_id) < 0)
2807 			return -1;
2808 	}
2809 
2810 	RTE_ETH_FOREACH_DEV(portid)
2811 	{
2812 		if ((enabled_port_mask & (1 << portid)) == 0)
2813 			continue;
2814 
2815 		rte_eth_dev_stop(portid);
2816 		rte_eth_dev_close(portid);
2817 	}
2818 
2819 	if (app_mode == APP_MODE_EMPTY_POLL)
2820 		rte_power_empty_poll_stat_free();
2821 
2822 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2823 			deinit_power_library())
2824 		rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
2825 
2826 	if (rte_eal_cleanup() < 0)
2827 		RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
2828 
2829 	return 0;
2830 }
2831