1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_malloc.h> 51 #include <rte_memory.h> 52 #include <rte_memcpy.h> 53 #include <rte_memzone.h> 54 #include <rte_eal.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_mempool.h> 69 #include <rte_mbuf.h> 70 #include <rte_ip.h> 71 #include <rte_tcp.h> 72 #include <rte_udp.h> 73 #include <rte_string_fns.h> 74 #include <rte_timer.h> 75 #include <rte_power.h> 76 #include <rte_spinlock.h> 77 78 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 79 80 #define MAX_PKT_BURST 32 81 82 #define MIN_ZERO_POLL_COUNT 10 83 84 /* around 100ms at 2 Ghz */ 85 #define TIMER_RESOLUTION_CYCLES 200000000ULL 86 /* 100 ms interval */ 87 #define TIMER_NUMBER_PER_SECOND 10 88 /* 100000 us */ 89 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 90 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 91 92 #define APP_LOOKUP_EXACT_MATCH 0 93 #define APP_LOOKUP_LPM 1 94 #define DO_RFC_1812_CHECKS 95 96 #ifndef APP_LOOKUP_METHOD 97 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 98 #endif 99 100 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 101 #include <rte_hash.h> 102 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 103 #include <rte_lpm.h> 104 #else 105 #error "APP_LOOKUP_METHOD set to incorrect value" 106 #endif 107 108 #ifndef IPv6_BYTES 109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 110 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 111 #define IPv6_BYTES(addr) \ 112 addr[0], addr[1], addr[2], addr[3], \ 113 addr[4], addr[5], addr[6], addr[7], \ 114 addr[8], addr[9], addr[10], addr[11],\ 115 addr[12], addr[13],addr[14], addr[15] 116 #endif 117 118 #define MAX_JUMBO_PKT_LEN 9600 119 120 #define IPV6_ADDR_LEN 16 121 122 #define MEMPOOL_CACHE_SIZE 256 123 124 /* 125 * This expression is used to calculate the number of mbufs needed depending on 126 * user input, taking into account memory for rx and tx hardware rings, cache 127 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 128 * NB_MBUF never goes below a minimum value of 8192. 129 */ 130 131 #define NB_MBUF RTE_MAX ( \ 132 (nb_ports*nb_rx_queue*nb_rxd + \ 133 nb_ports*nb_lcores*MAX_PKT_BURST + \ 134 nb_ports*n_tx_queue*nb_txd + \ 135 nb_lcores*MEMPOOL_CACHE_SIZE), \ 136 (unsigned)8192) 137 138 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 139 140 #define NB_SOCKETS 8 141 142 /* Configure how many packets ahead to prefetch, when reading packets */ 143 #define PREFETCH_OFFSET 3 144 145 /* 146 * Configurable number of RX/TX ring descriptors 147 */ 148 #define RTE_TEST_RX_DESC_DEFAULT 512 149 #define RTE_TEST_TX_DESC_DEFAULT 512 150 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 151 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 152 153 /* ethernet addresses of ports */ 154 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 155 156 /* ethernet addresses of ports */ 157 static rte_spinlock_t locks[RTE_MAX_ETHPORTS]; 158 159 /* mask of enabled ports */ 160 static uint32_t enabled_port_mask = 0; 161 /* Ports set in promiscuous mode off by default. */ 162 static int promiscuous_on = 0; 163 /* NUMA is enabled by default. */ 164 static int numa_on = 1; 165 static int parse_ptype; /**< Parse packet type using rx callback, and */ 166 /**< disabled by default */ 167 168 enum freq_scale_hint_t 169 { 170 FREQ_LOWER = -1, 171 FREQ_CURRENT = 0, 172 FREQ_HIGHER = 1, 173 FREQ_HIGHEST = 2 174 }; 175 176 struct lcore_rx_queue { 177 uint8_t port_id; 178 uint8_t queue_id; 179 enum freq_scale_hint_t freq_up_hint; 180 uint32_t zero_rx_packet_count; 181 uint32_t idle_hint; 182 } __rte_cache_aligned; 183 184 #define MAX_RX_QUEUE_PER_LCORE 16 185 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 186 #define MAX_RX_QUEUE_PER_PORT 128 187 188 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16 189 190 191 #define MAX_LCORE_PARAMS 1024 192 struct lcore_params { 193 uint8_t port_id; 194 uint8_t queue_id; 195 uint8_t lcore_id; 196 } __rte_cache_aligned; 197 198 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 199 static struct lcore_params lcore_params_array_default[] = { 200 {0, 0, 2}, 201 {0, 1, 2}, 202 {0, 2, 2}, 203 {1, 0, 2}, 204 {1, 1, 2}, 205 {1, 2, 2}, 206 {2, 0, 2}, 207 {3, 0, 3}, 208 {3, 1, 3}, 209 }; 210 211 static struct lcore_params * lcore_params = lcore_params_array_default; 212 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 213 sizeof(lcore_params_array_default[0]); 214 215 static struct rte_eth_conf port_conf = { 216 .rxmode = { 217 .mq_mode = ETH_MQ_RX_RSS, 218 .max_rx_pkt_len = ETHER_MAX_LEN, 219 .split_hdr_size = 0, 220 .header_split = 0, /**< Header Split disabled */ 221 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 222 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 223 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 224 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 225 }, 226 .rx_adv_conf = { 227 .rss_conf = { 228 .rss_key = NULL, 229 .rss_hf = ETH_RSS_UDP, 230 }, 231 }, 232 .txmode = { 233 .mq_mode = ETH_MQ_TX_NONE, 234 }, 235 .intr_conf = { 236 .lsc = 1, 237 .rxq = 1, 238 }, 239 }; 240 241 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 242 243 244 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 245 246 #ifdef RTE_ARCH_X86 247 #include <rte_hash_crc.h> 248 #define DEFAULT_HASH_FUNC rte_hash_crc 249 #else 250 #include <rte_jhash.h> 251 #define DEFAULT_HASH_FUNC rte_jhash 252 #endif 253 254 struct ipv4_5tuple { 255 uint32_t ip_dst; 256 uint32_t ip_src; 257 uint16_t port_dst; 258 uint16_t port_src; 259 uint8_t proto; 260 } __attribute__((__packed__)); 261 262 struct ipv6_5tuple { 263 uint8_t ip_dst[IPV6_ADDR_LEN]; 264 uint8_t ip_src[IPV6_ADDR_LEN]; 265 uint16_t port_dst; 266 uint16_t port_src; 267 uint8_t proto; 268 } __attribute__((__packed__)); 269 270 struct ipv4_l3fwd_route { 271 struct ipv4_5tuple key; 272 uint8_t if_out; 273 }; 274 275 struct ipv6_l3fwd_route { 276 struct ipv6_5tuple key; 277 uint8_t if_out; 278 }; 279 280 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 281 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 282 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 283 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 284 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 285 }; 286 287 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 288 { 289 { 290 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 291 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 292 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 293 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 294 1, 10, IPPROTO_UDP 295 }, 4 296 }, 297 }; 298 299 typedef struct rte_hash lookup_struct_t; 300 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 301 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 302 303 #define L3FWD_HASH_ENTRIES 1024 304 305 #define IPV4_L3FWD_NUM_ROUTES \ 306 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 307 308 #define IPV6_L3FWD_NUM_ROUTES \ 309 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 310 311 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 312 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 313 #endif 314 315 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 316 struct ipv4_l3fwd_route { 317 uint32_t ip; 318 uint8_t depth; 319 uint8_t if_out; 320 }; 321 322 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 323 {IPv4(1,1,1,0), 24, 0}, 324 {IPv4(2,1,1,0), 24, 1}, 325 {IPv4(3,1,1,0), 24, 2}, 326 {IPv4(4,1,1,0), 24, 3}, 327 {IPv4(5,1,1,0), 24, 4}, 328 {IPv4(6,1,1,0), 24, 5}, 329 {IPv4(7,1,1,0), 24, 6}, 330 {IPv4(8,1,1,0), 24, 7}, 331 }; 332 333 #define IPV4_L3FWD_NUM_ROUTES \ 334 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 335 336 #define IPV4_L3FWD_LPM_MAX_RULES 1024 337 338 typedef struct rte_lpm lookup_struct_t; 339 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 340 #endif 341 342 struct lcore_conf { 343 uint16_t n_rx_queue; 344 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 345 uint16_t n_tx_port; 346 uint16_t tx_port_id[RTE_MAX_ETHPORTS]; 347 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 348 struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; 349 lookup_struct_t * ipv4_lookup_struct; 350 lookup_struct_t * ipv6_lookup_struct; 351 } __rte_cache_aligned; 352 353 struct lcore_stats { 354 /* total sleep time in ms since last frequency scaling down */ 355 uint32_t sleep_time; 356 /* number of long sleep recently */ 357 uint32_t nb_long_sleep; 358 /* freq. scaling up trend */ 359 uint32_t trend; 360 /* total packet processed recently */ 361 uint64_t nb_rx_processed; 362 /* total iterations looped recently */ 363 uint64_t nb_iteration_looped; 364 uint32_t padding[9]; 365 } __rte_cache_aligned; 366 367 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 368 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 369 static struct rte_timer power_timers[RTE_MAX_LCORE]; 370 371 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 372 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 373 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 374 375 /* exit signal handler */ 376 static void 377 signal_exit_now(int sigtype) 378 { 379 unsigned lcore_id; 380 unsigned int portid, nb_ports; 381 int ret; 382 383 if (sigtype == SIGINT) { 384 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 385 if (rte_lcore_is_enabled(lcore_id) == 0) 386 continue; 387 388 /* init power management library */ 389 ret = rte_power_exit(lcore_id); 390 if (ret) 391 rte_exit(EXIT_FAILURE, "Power management " 392 "library de-initialization failed on " 393 "core%u\n", lcore_id); 394 } 395 396 nb_ports = rte_eth_dev_count(); 397 for (portid = 0; portid < nb_ports; portid++) { 398 if ((enabled_port_mask & (1 << portid)) == 0) 399 continue; 400 401 rte_eth_dev_stop(portid); 402 rte_eth_dev_close(portid); 403 } 404 } 405 406 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 407 } 408 409 /* Freqency scale down timer callback */ 410 static void 411 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 412 __attribute__((unused)) void *arg) 413 { 414 uint64_t hz; 415 float sleep_time_ratio; 416 unsigned lcore_id = rte_lcore_id(); 417 418 /* accumulate total execution time in us when callback is invoked */ 419 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 420 (float)SCALING_PERIOD; 421 /** 422 * check whether need to scale down frequency a step if it sleep a lot. 423 */ 424 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) { 425 if (rte_power_freq_down) 426 rte_power_freq_down(lcore_id); 427 } 428 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 429 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) { 430 /** 431 * scale down a step if average packet per iteration less 432 * than expectation. 433 */ 434 if (rte_power_freq_down) 435 rte_power_freq_down(lcore_id); 436 } 437 438 /** 439 * initialize another timer according to current frequency to ensure 440 * timer interval is relatively fixed. 441 */ 442 hz = rte_get_timer_hz(); 443 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 444 SINGLE, lcore_id, power_timer_cb, NULL); 445 446 stats[lcore_id].nb_rx_processed = 0; 447 stats[lcore_id].nb_iteration_looped = 0; 448 449 stats[lcore_id].sleep_time = 0; 450 } 451 452 /* Enqueue a single packet, and send burst if queue is filled */ 453 static inline int 454 send_single_packet(struct rte_mbuf *m, uint8_t port) 455 { 456 uint32_t lcore_id; 457 struct lcore_conf *qconf; 458 459 lcore_id = rte_lcore_id(); 460 qconf = &lcore_conf[lcore_id]; 461 462 rte_eth_tx_buffer(port, qconf->tx_queue_id[port], 463 qconf->tx_buffer[port], m); 464 465 return 0; 466 } 467 468 #ifdef DO_RFC_1812_CHECKS 469 static inline int 470 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 471 { 472 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 473 /* 474 * 1. The packet length reported by the Link Layer must be large 475 * enough to hold the minimum length legal IP datagram (20 bytes). 476 */ 477 if (link_len < sizeof(struct ipv4_hdr)) 478 return -1; 479 480 /* 2. The IP checksum must be correct. */ 481 /* this is checked in H/W */ 482 483 /* 484 * 3. The IP version number must be 4. If the version number is not 4 485 * then the packet may be another version of IP, such as IPng or 486 * ST-II. 487 */ 488 if (((pkt->version_ihl) >> 4) != 4) 489 return -3; 490 /* 491 * 4. The IP header length field must be large enough to hold the 492 * minimum length legal IP datagram (20 bytes = 5 words). 493 */ 494 if ((pkt->version_ihl & 0xf) < 5) 495 return -4; 496 497 /* 498 * 5. The IP total length field must be large enough to hold the IP 499 * datagram header, whose length is specified in the IP header length 500 * field. 501 */ 502 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 503 return -5; 504 505 return 0; 506 } 507 #endif 508 509 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 510 static void 511 print_ipv4_key(struct ipv4_5tuple key) 512 { 513 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 514 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 515 key.port_dst, key.port_src, key.proto); 516 } 517 static void 518 print_ipv6_key(struct ipv6_5tuple key) 519 { 520 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 521 "port dst = %d, port src = %d, proto = %d\n", 522 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 523 key.port_dst, key.port_src, key.proto); 524 } 525 526 static inline uint8_t 527 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 528 lookup_struct_t * ipv4_l3fwd_lookup_struct) 529 { 530 struct ipv4_5tuple key; 531 struct tcp_hdr *tcp; 532 struct udp_hdr *udp; 533 int ret = 0; 534 535 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 536 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 537 key.proto = ipv4_hdr->next_proto_id; 538 539 switch (ipv4_hdr->next_proto_id) { 540 case IPPROTO_TCP: 541 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 542 sizeof(struct ipv4_hdr)); 543 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 544 key.port_src = rte_be_to_cpu_16(tcp->src_port); 545 break; 546 547 case IPPROTO_UDP: 548 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 549 sizeof(struct ipv4_hdr)); 550 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 551 key.port_src = rte_be_to_cpu_16(udp->src_port); 552 break; 553 554 default: 555 key.port_dst = 0; 556 key.port_src = 0; 557 break; 558 } 559 560 /* Find destination port */ 561 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 562 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 563 } 564 565 static inline uint8_t 566 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 567 lookup_struct_t *ipv6_l3fwd_lookup_struct) 568 { 569 struct ipv6_5tuple key; 570 struct tcp_hdr *tcp; 571 struct udp_hdr *udp; 572 int ret = 0; 573 574 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 575 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 576 577 key.proto = ipv6_hdr->proto; 578 579 switch (ipv6_hdr->proto) { 580 case IPPROTO_TCP: 581 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 582 sizeof(struct ipv6_hdr)); 583 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 584 key.port_src = rte_be_to_cpu_16(tcp->src_port); 585 break; 586 587 case IPPROTO_UDP: 588 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 589 sizeof(struct ipv6_hdr)); 590 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 591 key.port_src = rte_be_to_cpu_16(udp->src_port); 592 break; 593 594 default: 595 key.port_dst = 0; 596 key.port_src = 0; 597 break; 598 } 599 600 /* Find destination port */ 601 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 602 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 603 } 604 #endif 605 606 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 607 static inline uint8_t 608 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 609 lookup_struct_t *ipv4_l3fwd_lookup_struct) 610 { 611 uint32_t next_hop; 612 613 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 614 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 615 next_hop : portid); 616 } 617 #endif 618 619 static inline void 620 parse_ptype_one(struct rte_mbuf *m) 621 { 622 struct ether_hdr *eth_hdr; 623 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 624 uint16_t ether_type; 625 626 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 627 ether_type = eth_hdr->ether_type; 628 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 629 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 630 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 631 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 632 633 m->packet_type = packet_type; 634 } 635 636 static uint16_t 637 cb_parse_ptype(uint8_t port __rte_unused, uint16_t queue __rte_unused, 638 struct rte_mbuf *pkts[], uint16_t nb_pkts, 639 uint16_t max_pkts __rte_unused, 640 void *user_param __rte_unused) 641 { 642 unsigned int i; 643 644 for (i = 0; i < nb_pkts; ++i) 645 parse_ptype_one(pkts[i]); 646 647 return nb_pkts; 648 } 649 650 static int 651 add_cb_parse_ptype(uint8_t portid, uint16_t queueid) 652 { 653 printf("Port %d: softly parse packet type info\n", portid); 654 if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL)) 655 return 0; 656 657 printf("Failed to add rx callback: port=%d\n", portid); 658 return -1; 659 } 660 661 static inline void 662 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 663 struct lcore_conf *qconf) 664 { 665 struct ether_hdr *eth_hdr; 666 struct ipv4_hdr *ipv4_hdr; 667 void *d_addr_bytes; 668 uint8_t dst_port; 669 670 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 671 672 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 673 /* Handle IPv4 headers.*/ 674 ipv4_hdr = 675 rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 676 sizeof(struct ether_hdr)); 677 678 #ifdef DO_RFC_1812_CHECKS 679 /* Check to make sure the packet is valid (RFC1812) */ 680 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 681 rte_pktmbuf_free(m); 682 return; 683 } 684 #endif 685 686 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 687 qconf->ipv4_lookup_struct); 688 if (dst_port >= RTE_MAX_ETHPORTS || 689 (enabled_port_mask & 1 << dst_port) == 0) 690 dst_port = portid; 691 692 /* 02:00:00:00:00:xx */ 693 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 694 *((uint64_t *)d_addr_bytes) = 695 0x000000000002 + ((uint64_t)dst_port << 40); 696 697 #ifdef DO_RFC_1812_CHECKS 698 /* Update time to live and header checksum */ 699 --(ipv4_hdr->time_to_live); 700 ++(ipv4_hdr->hdr_checksum); 701 #endif 702 703 /* src addr */ 704 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 705 706 send_single_packet(m, dst_port); 707 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 708 /* Handle IPv6 headers.*/ 709 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 710 struct ipv6_hdr *ipv6_hdr; 711 712 ipv6_hdr = 713 rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, 714 sizeof(struct ether_hdr)); 715 716 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 717 qconf->ipv6_lookup_struct); 718 719 if (dst_port >= RTE_MAX_ETHPORTS || 720 (enabled_port_mask & 1 << dst_port) == 0) 721 dst_port = portid; 722 723 /* 02:00:00:00:00:xx */ 724 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 725 *((uint64_t *)d_addr_bytes) = 726 0x000000000002 + ((uint64_t)dst_port << 40); 727 728 /* src addr */ 729 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 730 731 send_single_packet(m, dst_port); 732 #else 733 /* We don't currently handle IPv6 packets in LPM mode. */ 734 rte_pktmbuf_free(m); 735 #endif 736 } else 737 rte_pktmbuf_free(m); 738 739 } 740 741 #define MINIMUM_SLEEP_TIME 1 742 #define SUSPEND_THRESHOLD 300 743 744 static inline uint32_t 745 power_idle_heuristic(uint32_t zero_rx_packet_count) 746 { 747 /* If zero count is less than 100, sleep 1us */ 748 if (zero_rx_packet_count < SUSPEND_THRESHOLD) 749 return MINIMUM_SLEEP_TIME; 750 /* If zero count is less than 1000, sleep 100 us which is the 751 minimum latency switching from C3/C6 to C0 752 */ 753 else 754 return SUSPEND_THRESHOLD; 755 756 return 0; 757 } 758 759 static inline enum freq_scale_hint_t 760 power_freq_scaleup_heuristic(unsigned lcore_id, 761 uint8_t port_id, 762 uint16_t queue_id) 763 { 764 /** 765 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 766 * per iteration 767 */ 768 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 769 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 770 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 771 #define FREQ_UP_TREND1_ACC 1 772 #define FREQ_UP_TREND2_ACC 100 773 #define FREQ_UP_THRESHOLD 10000 774 775 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 776 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 777 stats[lcore_id].trend = 0; 778 return FREQ_HIGHEST; 779 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 780 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 781 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 782 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 783 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 784 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 785 786 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 787 stats[lcore_id].trend = 0; 788 return FREQ_HIGHER; 789 } 790 791 return FREQ_CURRENT; 792 } 793 794 /** 795 * force polling thread sleep until one-shot rx interrupt triggers 796 * @param port_id 797 * Port id. 798 * @param queue_id 799 * Rx queue id. 800 * @return 801 * 0 on success 802 */ 803 static int 804 sleep_until_rx_interrupt(int num) 805 { 806 struct rte_epoll_event event[num]; 807 int n, i; 808 uint8_t port_id, queue_id; 809 void *data; 810 811 RTE_LOG(INFO, L3FWD_POWER, 812 "lcore %u sleeps until interrupt triggers\n", 813 rte_lcore_id()); 814 815 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1); 816 for (i = 0; i < n; i++) { 817 data = event[i].epdata.data; 818 port_id = ((uintptr_t)data) >> CHAR_BIT; 819 queue_id = ((uintptr_t)data) & 820 RTE_LEN2MASK(CHAR_BIT, uint8_t); 821 rte_eth_dev_rx_intr_disable(port_id, queue_id); 822 RTE_LOG(INFO, L3FWD_POWER, 823 "lcore %u is waked up from rx interrupt on" 824 " port %d queue %d\n", 825 rte_lcore_id(), port_id, queue_id); 826 } 827 828 return 0; 829 } 830 831 static void turn_on_intr(struct lcore_conf *qconf) 832 { 833 int i; 834 struct lcore_rx_queue *rx_queue; 835 uint8_t port_id, queue_id; 836 837 for (i = 0; i < qconf->n_rx_queue; ++i) { 838 rx_queue = &(qconf->rx_queue_list[i]); 839 port_id = rx_queue->port_id; 840 queue_id = rx_queue->queue_id; 841 842 rte_spinlock_lock(&(locks[port_id])); 843 rte_eth_dev_rx_intr_enable(port_id, queue_id); 844 rte_spinlock_unlock(&(locks[port_id])); 845 } 846 } 847 848 static int event_register(struct lcore_conf *qconf) 849 { 850 struct lcore_rx_queue *rx_queue; 851 uint8_t portid, queueid; 852 uint32_t data; 853 int ret; 854 int i; 855 856 for (i = 0; i < qconf->n_rx_queue; ++i) { 857 rx_queue = &(qconf->rx_queue_list[i]); 858 portid = rx_queue->port_id; 859 queueid = rx_queue->queue_id; 860 data = portid << CHAR_BIT | queueid; 861 862 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid, 863 RTE_EPOLL_PER_THREAD, 864 RTE_INTR_EVENT_ADD, 865 (void *)((uintptr_t)data)); 866 if (ret) 867 return ret; 868 } 869 870 return 0; 871 } 872 873 /* main processing loop */ 874 static int 875 main_loop(__attribute__((unused)) void *dummy) 876 { 877 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 878 unsigned lcore_id; 879 uint64_t prev_tsc, diff_tsc, cur_tsc; 880 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 881 int i, j, nb_rx; 882 uint8_t portid, queueid; 883 struct lcore_conf *qconf; 884 struct lcore_rx_queue *rx_queue; 885 enum freq_scale_hint_t lcore_scaleup_hint; 886 uint32_t lcore_rx_idle_count = 0; 887 uint32_t lcore_idle_hint = 0; 888 int intr_en = 0; 889 890 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 891 892 prev_tsc = 0; 893 894 lcore_id = rte_lcore_id(); 895 qconf = &lcore_conf[lcore_id]; 896 897 if (qconf->n_rx_queue == 0) { 898 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 899 return 0; 900 } 901 902 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 903 904 for (i = 0; i < qconf->n_rx_queue; i++) { 905 portid = qconf->rx_queue_list[i].port_id; 906 queueid = qconf->rx_queue_list[i].queue_id; 907 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 908 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 909 } 910 911 /* add into event wait list */ 912 if (event_register(qconf) == 0) 913 intr_en = 1; 914 else 915 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n"); 916 917 while (1) { 918 stats[lcore_id].nb_iteration_looped++; 919 920 cur_tsc = rte_rdtsc(); 921 cur_tsc_power = cur_tsc; 922 923 /* 924 * TX burst queue drain 925 */ 926 diff_tsc = cur_tsc - prev_tsc; 927 if (unlikely(diff_tsc > drain_tsc)) { 928 for (i = 0; i < qconf->n_tx_port; ++i) { 929 portid = qconf->tx_port_id[i]; 930 rte_eth_tx_buffer_flush(portid, 931 qconf->tx_queue_id[portid], 932 qconf->tx_buffer[portid]); 933 } 934 prev_tsc = cur_tsc; 935 } 936 937 diff_tsc_power = cur_tsc_power - prev_tsc_power; 938 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 939 rte_timer_manage(); 940 prev_tsc_power = cur_tsc_power; 941 } 942 943 start_rx: 944 /* 945 * Read packet from RX queues 946 */ 947 lcore_scaleup_hint = FREQ_CURRENT; 948 lcore_rx_idle_count = 0; 949 for (i = 0; i < qconf->n_rx_queue; ++i) { 950 rx_queue = &(qconf->rx_queue_list[i]); 951 rx_queue->idle_hint = 0; 952 portid = rx_queue->port_id; 953 queueid = rx_queue->queue_id; 954 955 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 956 MAX_PKT_BURST); 957 958 stats[lcore_id].nb_rx_processed += nb_rx; 959 if (unlikely(nb_rx == 0)) { 960 /** 961 * no packet received from rx queue, try to 962 * sleep for a while forcing CPU enter deeper 963 * C states. 964 */ 965 rx_queue->zero_rx_packet_count++; 966 967 if (rx_queue->zero_rx_packet_count <= 968 MIN_ZERO_POLL_COUNT) 969 continue; 970 971 rx_queue->idle_hint = power_idle_heuristic(\ 972 rx_queue->zero_rx_packet_count); 973 lcore_rx_idle_count++; 974 } else { 975 rx_queue->zero_rx_packet_count = 0; 976 977 /** 978 * do not scale up frequency immediately as 979 * user to kernel space communication is costly 980 * which might impact packet I/O for received 981 * packets. 982 */ 983 rx_queue->freq_up_hint = 984 power_freq_scaleup_heuristic(lcore_id, 985 portid, queueid); 986 } 987 988 /* Prefetch first packets */ 989 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 990 rte_prefetch0(rte_pktmbuf_mtod( 991 pkts_burst[j], void *)); 992 } 993 994 /* Prefetch and forward already prefetched packets */ 995 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 996 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 997 j + PREFETCH_OFFSET], void *)); 998 l3fwd_simple_forward(pkts_burst[j], portid, 999 qconf); 1000 } 1001 1002 /* Forward remaining prefetched packets */ 1003 for (; j < nb_rx; j++) { 1004 l3fwd_simple_forward(pkts_burst[j], portid, 1005 qconf); 1006 } 1007 } 1008 1009 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 1010 for (i = 1, lcore_scaleup_hint = 1011 qconf->rx_queue_list[0].freq_up_hint; 1012 i < qconf->n_rx_queue; ++i) { 1013 rx_queue = &(qconf->rx_queue_list[i]); 1014 if (rx_queue->freq_up_hint > 1015 lcore_scaleup_hint) 1016 lcore_scaleup_hint = 1017 rx_queue->freq_up_hint; 1018 } 1019 1020 if (lcore_scaleup_hint == FREQ_HIGHEST) { 1021 if (rte_power_freq_max) 1022 rte_power_freq_max(lcore_id); 1023 } else if (lcore_scaleup_hint == FREQ_HIGHER) { 1024 if (rte_power_freq_up) 1025 rte_power_freq_up(lcore_id); 1026 } 1027 } else { 1028 /** 1029 * All Rx queues empty in recent consecutive polls, 1030 * sleep in a conservative manner, meaning sleep as 1031 * less as possible. 1032 */ 1033 for (i = 1, lcore_idle_hint = 1034 qconf->rx_queue_list[0].idle_hint; 1035 i < qconf->n_rx_queue; ++i) { 1036 rx_queue = &(qconf->rx_queue_list[i]); 1037 if (rx_queue->idle_hint < lcore_idle_hint) 1038 lcore_idle_hint = rx_queue->idle_hint; 1039 } 1040 1041 if (lcore_idle_hint < SUSPEND_THRESHOLD) 1042 /** 1043 * execute "pause" instruction to avoid context 1044 * switch which generally take hundred of 1045 * microseconds for short sleep. 1046 */ 1047 rte_delay_us(lcore_idle_hint); 1048 else { 1049 /* suspend until rx interrupt trigges */ 1050 if (intr_en) { 1051 turn_on_intr(qconf); 1052 sleep_until_rx_interrupt( 1053 qconf->n_rx_queue); 1054 } 1055 /* start receiving packets immediately */ 1056 goto start_rx; 1057 } 1058 stats[lcore_id].sleep_time += lcore_idle_hint; 1059 } 1060 } 1061 } 1062 1063 static int 1064 check_lcore_params(void) 1065 { 1066 uint8_t queue, lcore; 1067 uint16_t i; 1068 int socketid; 1069 1070 for (i = 0; i < nb_lcore_params; ++i) { 1071 queue = lcore_params[i].queue_id; 1072 if (queue >= MAX_RX_QUEUE_PER_PORT) { 1073 printf("invalid queue number: %hhu\n", queue); 1074 return -1; 1075 } 1076 lcore = lcore_params[i].lcore_id; 1077 if (!rte_lcore_is_enabled(lcore)) { 1078 printf("error: lcore %hhu is not enabled in lcore " 1079 "mask\n", lcore); 1080 return -1; 1081 } 1082 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 1083 (numa_on == 0)) { 1084 printf("warning: lcore %hhu is on socket %d with numa " 1085 "off\n", lcore, socketid); 1086 } 1087 } 1088 return 0; 1089 } 1090 1091 static int 1092 check_port_config(const unsigned nb_ports) 1093 { 1094 unsigned portid; 1095 uint16_t i; 1096 1097 for (i = 0; i < nb_lcore_params; ++i) { 1098 portid = lcore_params[i].port_id; 1099 if ((enabled_port_mask & (1 << portid)) == 0) { 1100 printf("port %u is not enabled in port mask\n", 1101 portid); 1102 return -1; 1103 } 1104 if (portid >= nb_ports) { 1105 printf("port %u is not present on the board\n", 1106 portid); 1107 return -1; 1108 } 1109 } 1110 return 0; 1111 } 1112 1113 static uint8_t 1114 get_port_n_rx_queues(const uint8_t port) 1115 { 1116 int queue = -1; 1117 uint16_t i; 1118 1119 for (i = 0; i < nb_lcore_params; ++i) { 1120 if (lcore_params[i].port_id == port && 1121 lcore_params[i].queue_id > queue) 1122 queue = lcore_params[i].queue_id; 1123 } 1124 return (uint8_t)(++queue); 1125 } 1126 1127 static int 1128 init_lcore_rx_queues(void) 1129 { 1130 uint16_t i, nb_rx_queue; 1131 uint8_t lcore; 1132 1133 for (i = 0; i < nb_lcore_params; ++i) { 1134 lcore = lcore_params[i].lcore_id; 1135 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1136 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1137 printf("error: too many queues (%u) for lcore: %u\n", 1138 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1139 return -1; 1140 } else { 1141 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1142 lcore_params[i].port_id; 1143 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1144 lcore_params[i].queue_id; 1145 lcore_conf[lcore].n_rx_queue++; 1146 } 1147 } 1148 return 0; 1149 } 1150 1151 /* display usage */ 1152 static void 1153 print_usage(const char *prgname) 1154 { 1155 printf ("%s [EAL options] -- -p PORTMASK -P" 1156 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1157 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1158 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1159 " -P : enable promiscuous mode\n" 1160 " --config (port,queue,lcore): rx queues configuration\n" 1161 " --no-numa: optional, disable numa awareness\n" 1162 " --enable-jumbo: enable jumbo frame" 1163 " which max packet len is PKTLEN in decimal (64-9600)\n" 1164 " --parse-ptype: parse packet type by software\n", 1165 prgname); 1166 } 1167 1168 static int parse_max_pkt_len(const char *pktlen) 1169 { 1170 char *end = NULL; 1171 unsigned long len; 1172 1173 /* parse decimal string */ 1174 len = strtoul(pktlen, &end, 10); 1175 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1176 return -1; 1177 1178 if (len == 0) 1179 return -1; 1180 1181 return len; 1182 } 1183 1184 static int 1185 parse_portmask(const char *portmask) 1186 { 1187 char *end = NULL; 1188 unsigned long pm; 1189 1190 /* parse hexadecimal string */ 1191 pm = strtoul(portmask, &end, 16); 1192 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1193 return -1; 1194 1195 if (pm == 0) 1196 return -1; 1197 1198 return pm; 1199 } 1200 1201 static int 1202 parse_config(const char *q_arg) 1203 { 1204 char s[256]; 1205 const char *p, *p0 = q_arg; 1206 char *end; 1207 enum fieldnames { 1208 FLD_PORT = 0, 1209 FLD_QUEUE, 1210 FLD_LCORE, 1211 _NUM_FLD 1212 }; 1213 unsigned long int_fld[_NUM_FLD]; 1214 char *str_fld[_NUM_FLD]; 1215 int i; 1216 unsigned size; 1217 1218 nb_lcore_params = 0; 1219 1220 while ((p = strchr(p0,'(')) != NULL) { 1221 ++p; 1222 if((p0 = strchr(p,')')) == NULL) 1223 return -1; 1224 1225 size = p0 - p; 1226 if(size >= sizeof(s)) 1227 return -1; 1228 1229 snprintf(s, sizeof(s), "%.*s", size, p); 1230 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1231 _NUM_FLD) 1232 return -1; 1233 for (i = 0; i < _NUM_FLD; i++){ 1234 errno = 0; 1235 int_fld[i] = strtoul(str_fld[i], &end, 0); 1236 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1237 255) 1238 return -1; 1239 } 1240 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1241 printf("exceeded max number of lcore params: %hu\n", 1242 nb_lcore_params); 1243 return -1; 1244 } 1245 lcore_params_array[nb_lcore_params].port_id = 1246 (uint8_t)int_fld[FLD_PORT]; 1247 lcore_params_array[nb_lcore_params].queue_id = 1248 (uint8_t)int_fld[FLD_QUEUE]; 1249 lcore_params_array[nb_lcore_params].lcore_id = 1250 (uint8_t)int_fld[FLD_LCORE]; 1251 ++nb_lcore_params; 1252 } 1253 lcore_params = lcore_params_array; 1254 1255 return 0; 1256 } 1257 1258 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype" 1259 1260 /* Parse the argument given in the command line of the application */ 1261 static int 1262 parse_args(int argc, char **argv) 1263 { 1264 int opt, ret; 1265 char **argvopt; 1266 int option_index; 1267 char *prgname = argv[0]; 1268 static struct option lgopts[] = { 1269 {"config", 1, 0, 0}, 1270 {"no-numa", 0, 0, 0}, 1271 {"enable-jumbo", 0, 0, 0}, 1272 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0}, 1273 {NULL, 0, 0, 0} 1274 }; 1275 1276 argvopt = argv; 1277 1278 while ((opt = getopt_long(argc, argvopt, "p:P", 1279 lgopts, &option_index)) != EOF) { 1280 1281 switch (opt) { 1282 /* portmask */ 1283 case 'p': 1284 enabled_port_mask = parse_portmask(optarg); 1285 if (enabled_port_mask == 0) { 1286 printf("invalid portmask\n"); 1287 print_usage(prgname); 1288 return -1; 1289 } 1290 break; 1291 case 'P': 1292 printf("Promiscuous mode selected\n"); 1293 promiscuous_on = 1; 1294 break; 1295 1296 /* long options */ 1297 case 0: 1298 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1299 ret = parse_config(optarg); 1300 if (ret) { 1301 printf("invalid config\n"); 1302 print_usage(prgname); 1303 return -1; 1304 } 1305 } 1306 1307 if (!strncmp(lgopts[option_index].name, 1308 "no-numa", 7)) { 1309 printf("numa is disabled \n"); 1310 numa_on = 0; 1311 } 1312 1313 if (!strncmp(lgopts[option_index].name, 1314 "enable-jumbo", 12)) { 1315 struct option lenopts = 1316 {"max-pkt-len", required_argument, \ 1317 0, 0}; 1318 1319 printf("jumbo frame is enabled \n"); 1320 port_conf.rxmode.jumbo_frame = 1; 1321 1322 /** 1323 * if no max-pkt-len set, use the default value 1324 * ETHER_MAX_LEN 1325 */ 1326 if (0 == getopt_long(argc, argvopt, "", 1327 &lenopts, &option_index)) { 1328 ret = parse_max_pkt_len(optarg); 1329 if ((ret < 64) || 1330 (ret > MAX_JUMBO_PKT_LEN)){ 1331 printf("invalid packet " 1332 "length\n"); 1333 print_usage(prgname); 1334 return -1; 1335 } 1336 port_conf.rxmode.max_rx_pkt_len = ret; 1337 } 1338 printf("set jumbo frame " 1339 "max packet length to %u\n", 1340 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1341 } 1342 1343 if (!strncmp(lgopts[option_index].name, 1344 CMD_LINE_OPT_PARSE_PTYPE, 1345 sizeof(CMD_LINE_OPT_PARSE_PTYPE))) { 1346 printf("soft parse-ptype is enabled\n"); 1347 parse_ptype = 1; 1348 } 1349 1350 break; 1351 1352 default: 1353 print_usage(prgname); 1354 return -1; 1355 } 1356 } 1357 1358 if (optind >= 0) 1359 argv[optind-1] = prgname; 1360 1361 ret = optind-1; 1362 optind = 1; /* reset getopt lib */ 1363 return ret; 1364 } 1365 1366 static void 1367 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1368 { 1369 char buf[ETHER_ADDR_FMT_SIZE]; 1370 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1371 printf("%s%s", name, buf); 1372 } 1373 1374 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1375 static void 1376 setup_hash(int socketid) 1377 { 1378 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1379 .name = NULL, 1380 .entries = L3FWD_HASH_ENTRIES, 1381 .key_len = sizeof(struct ipv4_5tuple), 1382 .hash_func = DEFAULT_HASH_FUNC, 1383 .hash_func_init_val = 0, 1384 }; 1385 1386 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1387 .name = NULL, 1388 .entries = L3FWD_HASH_ENTRIES, 1389 .key_len = sizeof(struct ipv6_5tuple), 1390 .hash_func = DEFAULT_HASH_FUNC, 1391 .hash_func_init_val = 0, 1392 }; 1393 1394 unsigned i; 1395 int ret; 1396 char s[64]; 1397 1398 /* create ipv4 hash */ 1399 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1400 ipv4_l3fwd_hash_params.name = s; 1401 ipv4_l3fwd_hash_params.socket_id = socketid; 1402 ipv4_l3fwd_lookup_struct[socketid] = 1403 rte_hash_create(&ipv4_l3fwd_hash_params); 1404 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1405 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1406 "socket %d\n", socketid); 1407 1408 /* create ipv6 hash */ 1409 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1410 ipv6_l3fwd_hash_params.name = s; 1411 ipv6_l3fwd_hash_params.socket_id = socketid; 1412 ipv6_l3fwd_lookup_struct[socketid] = 1413 rte_hash_create(&ipv6_l3fwd_hash_params); 1414 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1415 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1416 "socket %d\n", socketid); 1417 1418 1419 /* populate the ipv4 hash */ 1420 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1421 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1422 (void *) &ipv4_l3fwd_route_array[i].key); 1423 if (ret < 0) { 1424 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1425 "l3fwd hash on socket %d\n", i, socketid); 1426 } 1427 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1428 printf("Hash: Adding key\n"); 1429 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1430 } 1431 1432 /* populate the ipv6 hash */ 1433 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1434 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1435 (void *) &ipv6_l3fwd_route_array[i].key); 1436 if (ret < 0) { 1437 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1438 "l3fwd hash on socket %d\n", i, socketid); 1439 } 1440 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1441 printf("Hash: Adding key\n"); 1442 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1443 } 1444 } 1445 #endif 1446 1447 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1448 static void 1449 setup_lpm(int socketid) 1450 { 1451 unsigned i; 1452 int ret; 1453 char s[64]; 1454 1455 /* create the LPM table */ 1456 struct rte_lpm_config lpm_ipv4_config; 1457 1458 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES; 1459 lpm_ipv4_config.number_tbl8s = 256; 1460 lpm_ipv4_config.flags = 0; 1461 1462 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1463 ipv4_l3fwd_lookup_struct[socketid] = 1464 rte_lpm_create(s, socketid, &lpm_ipv4_config); 1465 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1466 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1467 " on socket %d\n", socketid); 1468 1469 /* populate the LPM table */ 1470 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1471 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1472 ipv4_l3fwd_route_array[i].ip, 1473 ipv4_l3fwd_route_array[i].depth, 1474 ipv4_l3fwd_route_array[i].if_out); 1475 1476 if (ret < 0) { 1477 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1478 "l3fwd LPM table on socket %d\n", 1479 i, socketid); 1480 } 1481 1482 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1483 (unsigned)ipv4_l3fwd_route_array[i].ip, 1484 ipv4_l3fwd_route_array[i].depth, 1485 ipv4_l3fwd_route_array[i].if_out); 1486 } 1487 } 1488 #endif 1489 1490 static int 1491 init_mem(unsigned nb_mbuf) 1492 { 1493 struct lcore_conf *qconf; 1494 int socketid; 1495 unsigned lcore_id; 1496 char s[64]; 1497 1498 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1499 if (rte_lcore_is_enabled(lcore_id) == 0) 1500 continue; 1501 1502 if (numa_on) 1503 socketid = rte_lcore_to_socket_id(lcore_id); 1504 else 1505 socketid = 0; 1506 1507 if (socketid >= NB_SOCKETS) { 1508 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1509 "out of range %d\n", socketid, 1510 lcore_id, NB_SOCKETS); 1511 } 1512 if (pktmbuf_pool[socketid] == NULL) { 1513 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1514 pktmbuf_pool[socketid] = 1515 rte_pktmbuf_pool_create(s, nb_mbuf, 1516 MEMPOOL_CACHE_SIZE, 0, 1517 RTE_MBUF_DEFAULT_BUF_SIZE, 1518 socketid); 1519 if (pktmbuf_pool[socketid] == NULL) 1520 rte_exit(EXIT_FAILURE, 1521 "Cannot init mbuf pool on socket %d\n", 1522 socketid); 1523 else 1524 printf("Allocated mbuf pool on socket %d\n", 1525 socketid); 1526 1527 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1528 setup_lpm(socketid); 1529 #else 1530 setup_hash(socketid); 1531 #endif 1532 } 1533 qconf = &lcore_conf[lcore_id]; 1534 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1535 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1536 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1537 #endif 1538 } 1539 return 0; 1540 } 1541 1542 /* Check the link status of all ports in up to 9s, and print them finally */ 1543 static void 1544 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1545 { 1546 #define CHECK_INTERVAL 100 /* 100ms */ 1547 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1548 uint8_t portid, count, all_ports_up, print_flag = 0; 1549 struct rte_eth_link link; 1550 1551 printf("\nChecking link status"); 1552 fflush(stdout); 1553 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1554 all_ports_up = 1; 1555 for (portid = 0; portid < port_num; portid++) { 1556 if ((port_mask & (1 << portid)) == 0) 1557 continue; 1558 memset(&link, 0, sizeof(link)); 1559 rte_eth_link_get_nowait(portid, &link); 1560 /* print link status if flag set */ 1561 if (print_flag == 1) { 1562 if (link.link_status) 1563 printf("Port %d Link Up - speed %u " 1564 "Mbps - %s\n", (uint8_t)portid, 1565 (unsigned)link.link_speed, 1566 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1567 ("full-duplex") : ("half-duplex\n")); 1568 else 1569 printf("Port %d Link Down\n", 1570 (uint8_t)portid); 1571 continue; 1572 } 1573 /* clear all_ports_up flag if any link down */ 1574 if (link.link_status == ETH_LINK_DOWN) { 1575 all_ports_up = 0; 1576 break; 1577 } 1578 } 1579 /* after finally printing all link status, get out */ 1580 if (print_flag == 1) 1581 break; 1582 1583 if (all_ports_up == 0) { 1584 printf("."); 1585 fflush(stdout); 1586 rte_delay_ms(CHECK_INTERVAL); 1587 } 1588 1589 /* set the print_flag if all ports up or timeout */ 1590 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1591 print_flag = 1; 1592 printf("done\n"); 1593 } 1594 } 1595 } 1596 1597 static int check_ptype(uint8_t portid) 1598 { 1599 int i, ret; 1600 int ptype_l3_ipv4 = 0; 1601 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1602 int ptype_l3_ipv6 = 0; 1603 #endif 1604 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 1605 1606 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 1607 if (ret <= 0) 1608 return 0; 1609 1610 uint32_t ptypes[ret]; 1611 1612 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 1613 for (i = 0; i < ret; ++i) { 1614 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 1615 ptype_l3_ipv4 = 1; 1616 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1617 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 1618 ptype_l3_ipv6 = 1; 1619 #endif 1620 } 1621 1622 if (ptype_l3_ipv4 == 0) 1623 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 1624 1625 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1626 if (ptype_l3_ipv6 == 0) 1627 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 1628 #endif 1629 1630 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1631 if (ptype_l3_ipv4) 1632 #else /* APP_LOOKUP_EXACT_MATCH */ 1633 if (ptype_l3_ipv4 && ptype_l3_ipv6) 1634 #endif 1635 return 1; 1636 1637 return 0; 1638 1639 } 1640 1641 int 1642 main(int argc, char **argv) 1643 { 1644 struct lcore_conf *qconf; 1645 struct rte_eth_dev_info dev_info; 1646 struct rte_eth_txconf *txconf; 1647 int ret; 1648 unsigned nb_ports; 1649 uint16_t queueid; 1650 unsigned lcore_id; 1651 uint64_t hz; 1652 uint32_t n_tx_queue, nb_lcores; 1653 uint32_t dev_rxq_num, dev_txq_num; 1654 uint8_t portid, nb_rx_queue, queue, socketid; 1655 uint16_t org_rxq_intr = port_conf.intr_conf.rxq; 1656 1657 /* catch SIGINT and restore cpufreq governor to ondemand */ 1658 signal(SIGINT, signal_exit_now); 1659 1660 /* init EAL */ 1661 ret = rte_eal_init(argc, argv); 1662 if (ret < 0) 1663 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1664 argc -= ret; 1665 argv += ret; 1666 1667 /* init RTE timer library to be used late */ 1668 rte_timer_subsystem_init(); 1669 1670 /* parse application arguments (after the EAL ones) */ 1671 ret = parse_args(argc, argv); 1672 if (ret < 0) 1673 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1674 1675 if (check_lcore_params() < 0) 1676 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1677 1678 ret = init_lcore_rx_queues(); 1679 if (ret < 0) 1680 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1681 1682 nb_ports = rte_eth_dev_count(); 1683 1684 if (check_port_config(nb_ports) < 0) 1685 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1686 1687 nb_lcores = rte_lcore_count(); 1688 1689 /* initialize all ports */ 1690 for (portid = 0; portid < nb_ports; portid++) { 1691 /* skip ports that are not enabled */ 1692 if ((enabled_port_mask & (1 << portid)) == 0) { 1693 printf("\nSkipping disabled port %d\n", portid); 1694 continue; 1695 } 1696 1697 /* init port */ 1698 printf("Initializing port %d ... ", portid ); 1699 fflush(stdout); 1700 1701 rte_eth_dev_info_get(portid, &dev_info); 1702 dev_rxq_num = dev_info.max_rx_queues; 1703 dev_txq_num = dev_info.max_tx_queues; 1704 1705 nb_rx_queue = get_port_n_rx_queues(portid); 1706 if (nb_rx_queue > dev_rxq_num) 1707 rte_exit(EXIT_FAILURE, 1708 "Cannot configure not existed rxq: " 1709 "port=%d\n", portid); 1710 1711 n_tx_queue = nb_lcores; 1712 if (n_tx_queue > dev_txq_num) 1713 n_tx_queue = dev_txq_num; 1714 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1715 nb_rx_queue, (unsigned)n_tx_queue ); 1716 /* If number of Rx queue is 0, no need to enable Rx interrupt */ 1717 if (nb_rx_queue == 0) 1718 port_conf.intr_conf.rxq = 0; 1719 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1720 (uint16_t)n_tx_queue, &port_conf); 1721 /* Revert to original value */ 1722 port_conf.intr_conf.rxq = org_rxq_intr; 1723 if (ret < 0) 1724 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1725 "err=%d, port=%d\n", ret, portid); 1726 1727 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 1728 &nb_txd); 1729 if (ret < 0) 1730 rte_exit(EXIT_FAILURE, 1731 "Cannot adjust number of descriptors: err=%d, port=%d\n", 1732 ret, portid); 1733 1734 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1735 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1736 printf(", "); 1737 1738 /* init memory */ 1739 ret = init_mem(NB_MBUF); 1740 if (ret < 0) 1741 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1742 1743 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1744 if (rte_lcore_is_enabled(lcore_id) == 0) 1745 continue; 1746 1747 /* Initialize TX buffers */ 1748 qconf = &lcore_conf[lcore_id]; 1749 qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer", 1750 RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0, 1751 rte_eth_dev_socket_id(portid)); 1752 if (qconf->tx_buffer[portid] == NULL) 1753 rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n", 1754 (unsigned) portid); 1755 1756 rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST); 1757 } 1758 1759 /* init one TX queue per couple (lcore,port) */ 1760 queueid = 0; 1761 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1762 if (rte_lcore_is_enabled(lcore_id) == 0) 1763 continue; 1764 1765 if (queueid >= dev_txq_num) 1766 continue; 1767 1768 if (numa_on) 1769 socketid = \ 1770 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1771 else 1772 socketid = 0; 1773 1774 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1775 fflush(stdout); 1776 1777 rte_eth_dev_info_get(portid, &dev_info); 1778 txconf = &dev_info.default_txconf; 1779 if (port_conf.rxmode.jumbo_frame) 1780 txconf->txq_flags = 0; 1781 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1782 socketid, txconf); 1783 if (ret < 0) 1784 rte_exit(EXIT_FAILURE, 1785 "rte_eth_tx_queue_setup: err=%d, " 1786 "port=%d\n", ret, portid); 1787 1788 qconf = &lcore_conf[lcore_id]; 1789 qconf->tx_queue_id[portid] = queueid; 1790 queueid++; 1791 1792 qconf->tx_port_id[qconf->n_tx_port] = portid; 1793 qconf->n_tx_port++; 1794 } 1795 printf("\n"); 1796 } 1797 1798 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1799 if (rte_lcore_is_enabled(lcore_id) == 0) 1800 continue; 1801 1802 /* init power management library */ 1803 ret = rte_power_init(lcore_id); 1804 if (ret) 1805 RTE_LOG(ERR, POWER, 1806 "Library initialization failed on core %u\n", lcore_id); 1807 1808 /* init timer structures for each enabled lcore */ 1809 rte_timer_init(&power_timers[lcore_id]); 1810 hz = rte_get_timer_hz(); 1811 rte_timer_reset(&power_timers[lcore_id], 1812 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1813 power_timer_cb, NULL); 1814 1815 qconf = &lcore_conf[lcore_id]; 1816 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1817 fflush(stdout); 1818 /* init RX queues */ 1819 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1820 portid = qconf->rx_queue_list[queue].port_id; 1821 queueid = qconf->rx_queue_list[queue].queue_id; 1822 1823 if (numa_on) 1824 socketid = \ 1825 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1826 else 1827 socketid = 0; 1828 1829 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1830 fflush(stdout); 1831 1832 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1833 socketid, NULL, 1834 pktmbuf_pool[socketid]); 1835 if (ret < 0) 1836 rte_exit(EXIT_FAILURE, 1837 "rte_eth_rx_queue_setup: err=%d, " 1838 "port=%d\n", ret, portid); 1839 1840 if (parse_ptype) { 1841 if (add_cb_parse_ptype(portid, queueid) < 0) 1842 rte_exit(EXIT_FAILURE, 1843 "Fail to add ptype cb\n"); 1844 } else if (!check_ptype(portid)) 1845 rte_exit(EXIT_FAILURE, 1846 "PMD can not provide needed ptypes\n"); 1847 } 1848 } 1849 1850 printf("\n"); 1851 1852 /* start ports */ 1853 for (portid = 0; portid < nb_ports; portid++) { 1854 if ((enabled_port_mask & (1 << portid)) == 0) { 1855 continue; 1856 } 1857 /* Start device */ 1858 ret = rte_eth_dev_start(portid); 1859 if (ret < 0) 1860 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1861 "port=%d\n", ret, portid); 1862 /* 1863 * If enabled, put device in promiscuous mode. 1864 * This allows IO forwarding mode to forward packets 1865 * to itself through 2 cross-connected ports of the 1866 * target machine. 1867 */ 1868 if (promiscuous_on) 1869 rte_eth_promiscuous_enable(portid); 1870 /* initialize spinlock for each port */ 1871 rte_spinlock_init(&(locks[portid])); 1872 } 1873 1874 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1875 1876 /* launch per-lcore init on every lcore */ 1877 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1878 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1879 if (rte_eal_wait_lcore(lcore_id) < 0) 1880 return -1; 1881 } 1882 1883 return 0; 1884 } 1885