xref: /dpdk/examples/l3fwd-power/main.c (revision 98a1648109b8dbaa4e6b821c17d1f6bd86d33a9a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <unistd.h>
45 #include <signal.h>
46 
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_tailq.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_launch.h>
57 #include <rte_atomic.h>
58 #include <rte_cycles.h>
59 #include <rte_prefetch.h>
60 #include <rte_lcore.h>
61 #include <rte_per_lcore.h>
62 #include <rte_branch_prediction.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_random.h>
66 #include <rte_debug.h>
67 #include <rte_ether.h>
68 #include <rte_ethdev.h>
69 #include <rte_ring.h>
70 #include <rte_mempool.h>
71 #include <rte_mbuf.h>
72 #include <rte_ip.h>
73 #include <rte_tcp.h>
74 #include <rte_udp.h>
75 #include <rte_string_fns.h>
76 #include <rte_timer.h>
77 #include <rte_power.h>
78 
79 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
80 
81 #define MAX_PKT_BURST 32
82 
83 #define MIN_ZERO_POLL_COUNT 5
84 
85 /* around 100ms at 2 Ghz */
86 #define TIMER_RESOLUTION_CYCLES           200000000ULL
87 /* 100 ms interval */
88 #define TIMER_NUMBER_PER_SECOND           10
89 /* 100000 us */
90 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
91 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
92 
93 #define APP_LOOKUP_EXACT_MATCH          0
94 #define APP_LOOKUP_LPM                  1
95 #define DO_RFC_1812_CHECKS
96 
97 #ifndef APP_LOOKUP_METHOD
98 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
99 #endif
100 
101 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
102 #include <rte_hash.h>
103 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
104 #include <rte_lpm.h>
105 #else
106 #error "APP_LOOKUP_METHOD set to incorrect value"
107 #endif
108 
109 #ifndef IPv6_BYTES
110 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
111                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
112 #define IPv6_BYTES(addr) \
113 	addr[0],  addr[1], addr[2],  addr[3], \
114 	addr[4],  addr[5], addr[6],  addr[7], \
115 	addr[8],  addr[9], addr[10], addr[11],\
116 	addr[12], addr[13],addr[14], addr[15]
117 #endif
118 
119 #define MAX_JUMBO_PKT_LEN  9600
120 
121 #define IPV6_ADDR_LEN 16
122 
123 #define MEMPOOL_CACHE_SIZE 256
124 
125 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
126 
127 /*
128  * This expression is used to calculate the number of mbufs needed depending on
129  * user input, taking into account memory for rx and tx hardware rings, cache
130  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
131  * NB_MBUF never goes below a minimum value of 8192.
132  */
133 
134 #define NB_MBUF RTE_MAX	( \
135 	(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
136 	nb_ports*nb_lcores*MAX_PKT_BURST + \
137 	nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
138 	nb_lcores*MEMPOOL_CACHE_SIZE), \
139 	(unsigned)8192)
140 
141 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
142 
143 #define NB_SOCKETS 8
144 
145 /* Configure how many packets ahead to prefetch, when reading packets */
146 #define PREFETCH_OFFSET	3
147 
148 /*
149  * Configurable number of RX/TX ring descriptors
150  */
151 #define RTE_TEST_RX_DESC_DEFAULT 128
152 #define RTE_TEST_TX_DESC_DEFAULT 512
153 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
154 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
155 
156 /* ethernet addresses of ports */
157 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
158 
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask = 0;
161 /* Ports set in promiscuous mode off by default. */
162 static int promiscuous_on = 0;
163 /* NUMA is enabled by default. */
164 static int numa_on = 1;
165 
166 enum freq_scale_hint_t
167 {
168 	FREQ_LOWER    =      -1,
169 	FREQ_CURRENT  =       0,
170 	FREQ_HIGHER   =       1,
171 	FREQ_HIGHEST  =       2
172 };
173 
174 struct mbuf_table {
175 	uint16_t len;
176 	struct rte_mbuf *m_table[MAX_PKT_BURST];
177 };
178 
179 struct lcore_rx_queue {
180 	uint8_t port_id;
181 	uint8_t queue_id;
182 	enum freq_scale_hint_t freq_up_hint;
183 	uint32_t zero_rx_packet_count;
184 	uint32_t idle_hint;
185 } __rte_cache_aligned;
186 
187 #define MAX_RX_QUEUE_PER_LCORE 16
188 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
189 #define MAX_RX_QUEUE_PER_PORT 128
190 
191 #define MAX_LCORE_PARAMS 1024
192 struct lcore_params {
193 	uint8_t port_id;
194 	uint8_t queue_id;
195 	uint8_t lcore_id;
196 } __rte_cache_aligned;
197 
198 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
199 static struct lcore_params lcore_params_array_default[] = {
200 	{0, 0, 2},
201 	{0, 1, 2},
202 	{0, 2, 2},
203 	{1, 0, 2},
204 	{1, 1, 2},
205 	{1, 2, 2},
206 	{2, 0, 2},
207 	{3, 0, 3},
208 	{3, 1, 3},
209 };
210 
211 static struct lcore_params * lcore_params = lcore_params_array_default;
212 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
213 				sizeof(lcore_params_array_default[0]);
214 
215 static struct rte_eth_conf port_conf = {
216 	.rxmode = {
217 		.mq_mode	= ETH_MQ_RX_RSS,
218 		.max_rx_pkt_len = ETHER_MAX_LEN,
219 		.split_hdr_size = 0,
220 		.header_split   = 0, /**< Header Split disabled */
221 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
222 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
223 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
224 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
225 	},
226 	.rx_adv_conf = {
227 		.rss_conf = {
228 			.rss_key = NULL,
229 			.rss_hf = ETH_RSS_IP,
230 		},
231 	},
232 	.txmode = {
233 		.mq_mode = ETH_DCB_NONE,
234 	},
235 };
236 
237 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
238 
239 
240 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
241 
242 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
243 #include <rte_hash_crc.h>
244 #define DEFAULT_HASH_FUNC       rte_hash_crc
245 #else
246 #include <rte_jhash.h>
247 #define DEFAULT_HASH_FUNC       rte_jhash
248 #endif
249 
250 struct ipv4_5tuple {
251 	uint32_t ip_dst;
252 	uint32_t ip_src;
253 	uint16_t port_dst;
254 	uint16_t port_src;
255 	uint8_t  proto;
256 } __attribute__((__packed__));
257 
258 struct ipv6_5tuple {
259 	uint8_t  ip_dst[IPV6_ADDR_LEN];
260 	uint8_t  ip_src[IPV6_ADDR_LEN];
261 	uint16_t port_dst;
262 	uint16_t port_src;
263 	uint8_t  proto;
264 } __attribute__((__packed__));
265 
266 struct ipv4_l3fwd_route {
267 	struct ipv4_5tuple key;
268 	uint8_t if_out;
269 };
270 
271 struct ipv6_l3fwd_route {
272 	struct ipv6_5tuple key;
273 	uint8_t if_out;
274 };
275 
276 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
277 	{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
278 	{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
279 	{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
280 	{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
281 };
282 
283 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
284 	{
285 		{
286 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
287 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
288 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
289 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
290 			 1, 10, IPPROTO_UDP
291 		}, 4
292 	},
293 };
294 
295 typedef struct rte_hash lookup_struct_t;
296 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
297 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
298 
299 #define L3FWD_HASH_ENTRIES	1024
300 
301 #define IPV4_L3FWD_NUM_ROUTES \
302 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
303 
304 #define IPV6_L3FWD_NUM_ROUTES \
305 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
306 
307 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
308 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
309 #endif
310 
311 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
312 struct ipv4_l3fwd_route {
313 	uint32_t ip;
314 	uint8_t  depth;
315 	uint8_t  if_out;
316 };
317 
318 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
319 	{IPv4(1,1,1,0), 24, 0},
320 	{IPv4(2,1,1,0), 24, 1},
321 	{IPv4(3,1,1,0), 24, 2},
322 	{IPv4(4,1,1,0), 24, 3},
323 	{IPv4(5,1,1,0), 24, 4},
324 	{IPv4(6,1,1,0), 24, 5},
325 	{IPv4(7,1,1,0), 24, 6},
326 	{IPv4(8,1,1,0), 24, 7},
327 };
328 
329 #define IPV4_L3FWD_NUM_ROUTES \
330 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
331 
332 #define IPV4_L3FWD_LPM_MAX_RULES     1024
333 
334 typedef struct rte_lpm lookup_struct_t;
335 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
336 #endif
337 
338 struct lcore_conf {
339 	uint16_t n_rx_queue;
340 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
341 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
342 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
343 	lookup_struct_t * ipv4_lookup_struct;
344 	lookup_struct_t * ipv6_lookup_struct;
345 } __rte_cache_aligned;
346 
347 struct lcore_stats {
348 	/* total sleep time in ms since last frequency scaling down */
349 	uint32_t sleep_time;
350 	/* number of long sleep recently */
351 	uint32_t nb_long_sleep;
352 	/* freq. scaling up trend */
353 	uint32_t trend;
354 	/* total packet processed recently */
355 	uint64_t nb_rx_processed;
356 	/* total iterations looped recently */
357 	uint64_t nb_iteration_looped;
358 	uint32_t padding[9];
359 } __rte_cache_aligned;
360 
361 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
362 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
363 static struct rte_timer power_timers[RTE_MAX_LCORE];
364 
365 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
366 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
367 			unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
368 
369 /* exit signal handler */
370 static void
371 signal_exit_now(int sigtype)
372 {
373 	unsigned lcore_id;
374 	int ret;
375 
376 	if (sigtype == SIGINT) {
377 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
378 			if (rte_lcore_is_enabled(lcore_id) == 0)
379 				continue;
380 
381 			/* init power management library */
382 			ret = rte_power_exit(lcore_id);
383 			if (ret)
384 				rte_exit(EXIT_FAILURE, "Power management "
385 					"library de-initialization failed on "
386 							"core%u\n", lcore_id);
387 		}
388 	}
389 
390 	rte_exit(EXIT_SUCCESS, "User forced exit\n");
391 }
392 
393 /*  Freqency scale down timer callback */
394 static void
395 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
396 			  __attribute__((unused)) void *arg)
397 {
398 	uint64_t hz;
399 	float sleep_time_ratio;
400 	unsigned lcore_id = rte_lcore_id();
401 
402 	/* accumulate total execution time in us when callback is invoked */
403 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
404 					(float)SCALING_PERIOD;
405 
406 	/**
407 	 * check whether need to scale down frequency a step if it sleep a lot.
408 	 */
409 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD)
410 		rte_power_freq_down(lcore_id);
411 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
412 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST)
413 		/**
414 		 * scale down a step if average packet per iteration less
415 		 * than expectation.
416 		 */
417 		rte_power_freq_down(lcore_id);
418 
419 	/**
420 	 * initialize another timer according to current frequency to ensure
421 	 * timer interval is relatively fixed.
422 	 */
423 	hz = rte_get_timer_hz();
424 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
425 				SINGLE, lcore_id, power_timer_cb, NULL);
426 
427 	stats[lcore_id].nb_rx_processed = 0;
428 	stats[lcore_id].nb_iteration_looped = 0;
429 
430 	stats[lcore_id].sleep_time = 0;
431 }
432 
433 /* Send burst of packets on an output interface */
434 static inline int
435 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
436 {
437 	struct rte_mbuf **m_table;
438 	int ret;
439 	uint16_t queueid;
440 
441 	queueid = qconf->tx_queue_id[port];
442 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
443 
444 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
445 	if (unlikely(ret < n)) {
446 		do {
447 			rte_pktmbuf_free(m_table[ret]);
448 		} while (++ret < n);
449 	}
450 
451 	return 0;
452 }
453 
454 /* Enqueue a single packet, and send burst if queue is filled */
455 static inline int
456 send_single_packet(struct rte_mbuf *m, uint8_t port)
457 {
458 	uint32_t lcore_id;
459 	uint16_t len;
460 	struct lcore_conf *qconf;
461 
462 	lcore_id = rte_lcore_id();
463 
464 	qconf = &lcore_conf[lcore_id];
465 	len = qconf->tx_mbufs[port].len;
466 	qconf->tx_mbufs[port].m_table[len] = m;
467 	len++;
468 
469 	/* enough pkts to be sent */
470 	if (unlikely(len == MAX_PKT_BURST)) {
471 		send_burst(qconf, MAX_PKT_BURST, port);
472 		len = 0;
473 	}
474 
475 	qconf->tx_mbufs[port].len = len;
476 	return 0;
477 }
478 
479 #ifdef DO_RFC_1812_CHECKS
480 static inline int
481 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
482 {
483 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
484 	/*
485 	 * 1. The packet length reported by the Link Layer must be large
486 	 * enough to hold the minimum length legal IP datagram (20 bytes).
487 	 */
488 	if (link_len < sizeof(struct ipv4_hdr))
489 		return -1;
490 
491 	/* 2. The IP checksum must be correct. */
492 	/* this is checked in H/W */
493 
494 	/*
495 	 * 3. The IP version number must be 4. If the version number is not 4
496 	 * then the packet may be another version of IP, such as IPng or
497 	 * ST-II.
498 	 */
499 	if (((pkt->version_ihl) >> 4) != 4)
500 		return -3;
501 	/*
502 	 * 4. The IP header length field must be large enough to hold the
503 	 * minimum length legal IP datagram (20 bytes = 5 words).
504 	 */
505 	if ((pkt->version_ihl & 0xf) < 5)
506 		return -4;
507 
508 	/*
509 	 * 5. The IP total length field must be large enough to hold the IP
510 	 * datagram header, whose length is specified in the IP header length
511 	 * field.
512 	 */
513 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
514 		return -5;
515 
516 	return 0;
517 }
518 #endif
519 
520 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
521 static void
522 print_ipv4_key(struct ipv4_5tuple key)
523 {
524 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
525 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
526 				key.port_dst, key.port_src, key.proto);
527 }
528 static void
529 print_ipv6_key(struct ipv6_5tuple key)
530 {
531 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
532 	        "port dst = %d, port src = %d, proto = %d\n",
533 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
534 	        key.port_dst, key.port_src, key.proto);
535 }
536 
537 static inline uint8_t
538 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
539 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
540 {
541 	struct ipv4_5tuple key;
542 	struct tcp_hdr *tcp;
543 	struct udp_hdr *udp;
544 	int ret = 0;
545 
546 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
547 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
548 	key.proto = ipv4_hdr->next_proto_id;
549 
550 	switch (ipv4_hdr->next_proto_id) {
551 	case IPPROTO_TCP:
552 		tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
553 					sizeof(struct ipv4_hdr));
554 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
555 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
556 		break;
557 
558 	case IPPROTO_UDP:
559 		udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
560 					sizeof(struct ipv4_hdr));
561 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
562 		key.port_src = rte_be_to_cpu_16(udp->src_port);
563 		break;
564 
565 	default:
566 		key.port_dst = 0;
567 		key.port_src = 0;
568 		break;
569 	}
570 
571 	/* Find destination port */
572 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
573 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
574 }
575 
576 static inline uint8_t
577 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid,
578 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
579 {
580 	struct ipv6_5tuple key;
581 	struct tcp_hdr *tcp;
582 	struct udp_hdr *udp;
583 	int ret = 0;
584 
585 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
586 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
587 
588 	key.proto = ipv6_hdr->proto;
589 
590 	switch (ipv6_hdr->proto) {
591 	case IPPROTO_TCP:
592 		tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
593 					sizeof(struct ipv6_hdr));
594 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
595 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
596 		break;
597 
598 	case IPPROTO_UDP:
599 		udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
600 					sizeof(struct ipv6_hdr));
601 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
602 		key.port_src = rte_be_to_cpu_16(udp->src_port);
603 		break;
604 
605 	default:
606 		key.port_dst = 0;
607 		key.port_src = 0;
608 		break;
609 	}
610 
611 	/* Find destination port */
612 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
613 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
614 }
615 #endif
616 
617 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
618 static inline uint8_t
619 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
620 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
621 {
622 	uint8_t next_hop;
623 
624 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
625 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
626 			next_hop : portid);
627 }
628 #endif
629 
630 static inline void
631 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
632 				struct lcore_conf *qconf)
633 {
634 	struct ether_hdr *eth_hdr;
635 	struct ipv4_hdr *ipv4_hdr;
636 	void *d_addr_bytes;
637 	uint8_t dst_port;
638 
639 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
640 
641 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
642 		/* Handle IPv4 headers.*/
643 		ipv4_hdr =
644 			(struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
645 						+ sizeof(struct ether_hdr));
646 
647 #ifdef DO_RFC_1812_CHECKS
648 		/* Check to make sure the packet is valid (RFC1812) */
649 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
650 			rte_pktmbuf_free(m);
651 			return;
652 		}
653 #endif
654 
655 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
656 					qconf->ipv4_lookup_struct);
657 		if (dst_port >= RTE_MAX_ETHPORTS ||
658 				(enabled_port_mask & 1 << dst_port) == 0)
659 			dst_port = portid;
660 
661 		/* 02:00:00:00:00:xx */
662 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
663 		*((uint64_t *)d_addr_bytes) =
664 			0x000000000002 + ((uint64_t)dst_port << 40);
665 
666 #ifdef DO_RFC_1812_CHECKS
667 		/* Update time to live and header checksum */
668 		--(ipv4_hdr->time_to_live);
669 		++(ipv4_hdr->hdr_checksum);
670 #endif
671 
672 		/* src addr */
673 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
674 
675 		send_single_packet(m, dst_port);
676 	}
677 	else {
678 		/* Handle IPv6 headers.*/
679 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
680 		struct ipv6_hdr *ipv6_hdr;
681 
682 		ipv6_hdr =
683 			(struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
684 						+ sizeof(struct ether_hdr));
685 
686 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
687 					qconf->ipv6_lookup_struct);
688 
689 		if (dst_port >= RTE_MAX_ETHPORTS ||
690 				(enabled_port_mask & 1 << dst_port) == 0)
691 			dst_port = portid;
692 
693 		/* 02:00:00:00:00:xx */
694 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
695 		*((uint64_t *)d_addr_bytes) =
696 			0x000000000002 + ((uint64_t)dst_port << 40);
697 
698 		/* src addr */
699 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
700 
701 		send_single_packet(m, dst_port);
702 #else
703 		/* We don't currently handle IPv6 packets in LPM mode. */
704 		rte_pktmbuf_free(m);
705 #endif
706 	}
707 
708 }
709 
710 #define SLEEP_GEAR1_THRESHOLD            100
711 #define SLEEP_GEAR2_THRESHOLD            1000
712 
713 static inline uint32_t
714 power_idle_heuristic(uint32_t zero_rx_packet_count)
715 {
716 	/* If zero count is less than 100, use it as the sleep time in us */
717 	if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD)
718 		return zero_rx_packet_count;
719 	/* If zero count is less than 1000, sleep time should be 100 us */
720 	else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) &&
721 			(zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD))
722 		return SLEEP_GEAR1_THRESHOLD;
723 	/* If zero count is greater than 1000, sleep time should be 1000 us */
724 	else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD)
725 		return SLEEP_GEAR2_THRESHOLD;
726 
727 	return 0;
728 }
729 
730 static inline enum freq_scale_hint_t
731 power_freq_scaleup_heuristic(unsigned lcore_id,
732 			     uint8_t port_id,
733 			     uint16_t queue_id)
734 {
735 /**
736  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
737  * per iteration
738  */
739 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
740 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
741 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
742 #define FREQ_UP_TREND1_ACC   1
743 #define FREQ_UP_TREND2_ACC   100
744 #define FREQ_UP_THRESHOLD    10000
745 
746 	if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
747 			FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
748 		stats[lcore_id].trend = 0;
749 		return FREQ_HIGHEST;
750 	} else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
751 			FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
752 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
753 	else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
754 			FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
755 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
756 
757 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
758 		stats[lcore_id].trend = 0;
759 		return FREQ_HIGHER;
760 	}
761 
762 	return FREQ_CURRENT;
763 }
764 
765 /* main processing loop */
766 static int
767 main_loop(__attribute__((unused)) void *dummy)
768 {
769 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
770 	unsigned lcore_id;
771 	uint64_t prev_tsc, diff_tsc, cur_tsc;
772 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
773 	int i, j, nb_rx;
774 	uint8_t portid, queueid;
775 	struct lcore_conf *qconf;
776 	struct lcore_rx_queue *rx_queue;
777 	enum freq_scale_hint_t lcore_scaleup_hint;
778 
779 	uint32_t lcore_rx_idle_count = 0;
780 	uint32_t lcore_idle_hint = 0;
781 
782 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
783 
784 	prev_tsc = 0;
785 
786 	lcore_id = rte_lcore_id();
787 	qconf = &lcore_conf[lcore_id];
788 
789 	if (qconf->n_rx_queue == 0) {
790 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
791 		return 0;
792 	}
793 
794 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
795 
796 	for (i = 0; i < qconf->n_rx_queue; i++) {
797 
798 		portid = qconf->rx_queue_list[i].port_id;
799 		queueid = qconf->rx_queue_list[i].queue_id;
800 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
801 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
802 	}
803 
804 	while (1) {
805 		stats[lcore_id].nb_iteration_looped++;
806 
807 		cur_tsc = rte_rdtsc();
808 		cur_tsc_power = cur_tsc;
809 
810 		/*
811 		 * TX burst queue drain
812 		 */
813 		diff_tsc = cur_tsc - prev_tsc;
814 		if (unlikely(diff_tsc > drain_tsc)) {
815 
816 			/*
817 			 * This could be optimized (use queueid instead of
818 			 * portid), but it is not called so often
819 			 */
820 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
821 				if (qconf->tx_mbufs[portid].len == 0)
822 					continue;
823 				send_burst(&lcore_conf[lcore_id],
824 					qconf->tx_mbufs[portid].len,
825 					portid);
826 				qconf->tx_mbufs[portid].len = 0;
827 			}
828 
829 			prev_tsc = cur_tsc;
830 		}
831 
832 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
833 		if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
834 			rte_timer_manage();
835 			prev_tsc_power = cur_tsc_power;
836 		}
837 
838 		/*
839 		 * Read packet from RX queues
840 		 */
841 		lcore_scaleup_hint = FREQ_CURRENT;
842 		lcore_rx_idle_count = 0;
843 		for (i = 0; i < qconf->n_rx_queue; ++i) {
844 			rx_queue = &(qconf->rx_queue_list[i]);
845 			rx_queue->idle_hint = 0;
846 			portid = rx_queue->port_id;
847 			queueid = rx_queue->queue_id;
848 
849 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
850 								MAX_PKT_BURST);
851 			stats[lcore_id].nb_rx_processed += nb_rx;
852 			if (unlikely(nb_rx == 0)) {
853 				/**
854 				 * no packet received from rx queue, try to
855 				 * sleep for a while forcing CPU enter deeper
856 				 * C states.
857 				 */
858 				rx_queue->zero_rx_packet_count++;
859 
860 				if (rx_queue->zero_rx_packet_count <=
861 							MIN_ZERO_POLL_COUNT)
862 					continue;
863 
864 				rx_queue->idle_hint = power_idle_heuristic(\
865 					rx_queue->zero_rx_packet_count);
866 				lcore_rx_idle_count++;
867 			} else {
868 				rx_queue->zero_rx_packet_count = 0;
869 
870 				/**
871 				 * do not scale up frequency immediately as
872 				 * user to kernel space communication is costly
873 				 * which might impact packet I/O for received
874 				 * packets.
875 				 */
876 				rx_queue->freq_up_hint =
877 					power_freq_scaleup_heuristic(lcore_id,
878 							portid, queueid);
879  			}
880 
881 			/* Prefetch first packets */
882 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
883 				rte_prefetch0(rte_pktmbuf_mtod(
884 						pkts_burst[j], void *));
885 			}
886 
887 			/* Prefetch and forward already prefetched packets */
888 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
889 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
890 						j + PREFETCH_OFFSET], void *));
891 				l3fwd_simple_forward(pkts_burst[j], portid,
892 								qconf);
893 			}
894 
895 			/* Forward remaining prefetched packets */
896 			for (; j < nb_rx; j++) {
897 				l3fwd_simple_forward(pkts_burst[j], portid,
898 								qconf);
899 			}
900 		}
901 
902 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
903 			for (i = 1, lcore_scaleup_hint =
904 				qconf->rx_queue_list[0].freq_up_hint;
905 					i < qconf->n_rx_queue; ++i) {
906 				rx_queue = &(qconf->rx_queue_list[i]);
907 				if (rx_queue->freq_up_hint >
908 						lcore_scaleup_hint)
909 					lcore_scaleup_hint =
910 						rx_queue->freq_up_hint;
911 			}
912 
913 			if (lcore_scaleup_hint == FREQ_HIGHEST)
914 				rte_power_freq_max(lcore_id);
915 			else if (lcore_scaleup_hint == FREQ_HIGHER)
916 				rte_power_freq_up(lcore_id);
917 		} else {
918 			/**
919 			 * All Rx queues empty in recent consecutive polls,
920 			 * sleep in a conservative manner, meaning sleep as
921  			 * less as possible.
922  			 */
923 			for (i = 1, lcore_idle_hint =
924 				qconf->rx_queue_list[0].idle_hint;
925 					i < qconf->n_rx_queue; ++i) {
926 				rx_queue = &(qconf->rx_queue_list[i]);
927 				if (rx_queue->idle_hint < lcore_idle_hint)
928 					lcore_idle_hint = rx_queue->idle_hint;
929 			}
930 
931 			if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
932 				/**
933 				 * execute "pause" instruction to avoid context
934 				 * switch for short sleep.
935  				 */
936 				rte_delay_us(lcore_idle_hint);
937 			else
938 				/* long sleep force runing thread to suspend */
939 				usleep(lcore_idle_hint);
940 
941 			stats[lcore_id].sleep_time += lcore_idle_hint;
942 		}
943 	}
944 }
945 
946 static int
947 check_lcore_params(void)
948 {
949 	uint8_t queue, lcore;
950 	uint16_t i;
951 	int socketid;
952 
953 	for (i = 0; i < nb_lcore_params; ++i) {
954 		queue = lcore_params[i].queue_id;
955 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
956 			printf("invalid queue number: %hhu\n", queue);
957 			return -1;
958 		}
959 		lcore = lcore_params[i].lcore_id;
960 		if (!rte_lcore_is_enabled(lcore)) {
961 			printf("error: lcore %hhu is not enabled in lcore "
962 							"mask\n", lcore);
963 			return -1;
964 		}
965 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
966 							(numa_on == 0)) {
967 			printf("warning: lcore %hhu is on socket %d with numa "
968 						"off\n", lcore, socketid);
969 		}
970 	}
971 	return 0;
972 }
973 
974 static int
975 check_port_config(const unsigned nb_ports)
976 {
977 	unsigned portid;
978 	uint16_t i;
979 
980 	for (i = 0; i < nb_lcore_params; ++i) {
981 		portid = lcore_params[i].port_id;
982 		if ((enabled_port_mask & (1 << portid)) == 0) {
983 			printf("port %u is not enabled in port mask\n",
984 								portid);
985 			return -1;
986 		}
987 		if (portid >= nb_ports) {
988 			printf("port %u is not present on the board\n",
989 								portid);
990 			return -1;
991 		}
992 	}
993 	return 0;
994 }
995 
996 static uint8_t
997 get_port_n_rx_queues(const uint8_t port)
998 {
999 	int queue = -1;
1000 	uint16_t i;
1001 
1002 	for (i = 0; i < nb_lcore_params; ++i) {
1003 		if (lcore_params[i].port_id == port &&
1004 				lcore_params[i].queue_id > queue)
1005 			queue = lcore_params[i].queue_id;
1006 	}
1007 	return (uint8_t)(++queue);
1008 }
1009 
1010 static int
1011 init_lcore_rx_queues(void)
1012 {
1013 	uint16_t i, nb_rx_queue;
1014 	uint8_t lcore;
1015 
1016 	for (i = 0; i < nb_lcore_params; ++i) {
1017 		lcore = lcore_params[i].lcore_id;
1018 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1019 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1020 			printf("error: too many queues (%u) for lcore: %u\n",
1021 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1022 			return -1;
1023 		} else {
1024 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1025 				lcore_params[i].port_id;
1026 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1027 				lcore_params[i].queue_id;
1028 			lcore_conf[lcore].n_rx_queue++;
1029 		}
1030 	}
1031 	return 0;
1032 }
1033 
1034 /* display usage */
1035 static void
1036 print_usage(const char *prgname)
1037 {
1038 	printf ("%s [EAL options] -- -p PORTMASK -P"
1039 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1040 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1041 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1042 		"  -P : enable promiscuous mode\n"
1043 		"  --config (port,queue,lcore): rx queues configuration\n"
1044 		"  --no-numa: optional, disable numa awareness\n"
1045 		"  --enable-jumbo: enable jumbo frame"
1046 		" which max packet len is PKTLEN in decimal (64-9600)\n",
1047 		prgname);
1048 }
1049 
1050 static int parse_max_pkt_len(const char *pktlen)
1051 {
1052 	char *end = NULL;
1053 	unsigned long len;
1054 
1055 	/* parse decimal string */
1056 	len = strtoul(pktlen, &end, 10);
1057 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1058 		return -1;
1059 
1060 	if (len == 0)
1061 		return -1;
1062 
1063 	return len;
1064 }
1065 
1066 static int
1067 parse_portmask(const char *portmask)
1068 {
1069 	char *end = NULL;
1070 	unsigned long pm;
1071 
1072 	/* parse hexadecimal string */
1073 	pm = strtoul(portmask, &end, 16);
1074 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1075 		return -1;
1076 
1077 	if (pm == 0)
1078 		return -1;
1079 
1080 	return pm;
1081 }
1082 
1083 static int
1084 parse_config(const char *q_arg)
1085 {
1086 	char s[256];
1087 	const char *p, *p0 = q_arg;
1088 	char *end;
1089 	enum fieldnames {
1090 		FLD_PORT = 0,
1091 		FLD_QUEUE,
1092 		FLD_LCORE,
1093 		_NUM_FLD
1094 	};
1095 	unsigned long int_fld[_NUM_FLD];
1096 	char *str_fld[_NUM_FLD];
1097 	int i;
1098 	unsigned size;
1099 
1100 	nb_lcore_params = 0;
1101 
1102 	while ((p = strchr(p0,'(')) != NULL) {
1103 		++p;
1104 		if((p0 = strchr(p,')')) == NULL)
1105 			return -1;
1106 
1107 		size = p0 - p;
1108 		if(size >= sizeof(s))
1109 			return -1;
1110 
1111 		snprintf(s, sizeof(s), "%.*s", size, p);
1112 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1113 								_NUM_FLD)
1114 			return -1;
1115 		for (i = 0; i < _NUM_FLD; i++){
1116 			errno = 0;
1117 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1118 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1119 									255)
1120 				return -1;
1121 		}
1122 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1123 			printf("exceeded max number of lcore params: %hu\n",
1124 				nb_lcore_params);
1125 			return -1;
1126 		}
1127 		lcore_params_array[nb_lcore_params].port_id =
1128 				(uint8_t)int_fld[FLD_PORT];
1129 		lcore_params_array[nb_lcore_params].queue_id =
1130 				(uint8_t)int_fld[FLD_QUEUE];
1131 		lcore_params_array[nb_lcore_params].lcore_id =
1132 				(uint8_t)int_fld[FLD_LCORE];
1133 		++nb_lcore_params;
1134 	}
1135 	lcore_params = lcore_params_array;
1136 
1137 	return 0;
1138 }
1139 
1140 /* Parse the argument given in the command line of the application */
1141 static int
1142 parse_args(int argc, char **argv)
1143 {
1144 	int opt, ret;
1145 	char **argvopt;
1146 	int option_index;
1147 	char *prgname = argv[0];
1148 	static struct option lgopts[] = {
1149 		{"config", 1, 0, 0},
1150 		{"no-numa", 0, 0, 0},
1151 		{"enable-jumbo", 0, 0, 0},
1152 		{NULL, 0, 0, 0}
1153 	};
1154 
1155 	argvopt = argv;
1156 
1157 	while ((opt = getopt_long(argc, argvopt, "p:P",
1158 				lgopts, &option_index)) != EOF) {
1159 
1160 		switch (opt) {
1161 		/* portmask */
1162 		case 'p':
1163 			enabled_port_mask = parse_portmask(optarg);
1164 			if (enabled_port_mask == 0) {
1165 				printf("invalid portmask\n");
1166 				print_usage(prgname);
1167 				return -1;
1168 			}
1169 			break;
1170 		case 'P':
1171 			printf("Promiscuous mode selected\n");
1172 			promiscuous_on = 1;
1173 			break;
1174 
1175 		/* long options */
1176 		case 0:
1177 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1178 				ret = parse_config(optarg);
1179 				if (ret) {
1180 					printf("invalid config\n");
1181 					print_usage(prgname);
1182 					return -1;
1183 				}
1184 			}
1185 
1186 			if (!strncmp(lgopts[option_index].name,
1187 						"no-numa", 7)) {
1188 				printf("numa is disabled \n");
1189 				numa_on = 0;
1190 			}
1191 
1192 			if (!strncmp(lgopts[option_index].name,
1193 					"enable-jumbo", 12)) {
1194 				struct option lenopts =
1195 					{"max-pkt-len", required_argument, \
1196 									0, 0};
1197 
1198 				printf("jumbo frame is enabled \n");
1199 				port_conf.rxmode.jumbo_frame = 1;
1200 
1201 				/**
1202 				 * if no max-pkt-len set, use the default value
1203 				 * ETHER_MAX_LEN
1204 				 */
1205 				if (0 == getopt_long(argc, argvopt, "",
1206 						&lenopts, &option_index)) {
1207 					ret = parse_max_pkt_len(optarg);
1208 					if ((ret < 64) ||
1209 						(ret > MAX_JUMBO_PKT_LEN)){
1210 						printf("invalid packet "
1211 								"length\n");
1212 						print_usage(prgname);
1213 						return -1;
1214 					}
1215 					port_conf.rxmode.max_rx_pkt_len = ret;
1216 				}
1217 				printf("set jumbo frame "
1218 					"max packet length to %u\n",
1219 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1220 			}
1221 
1222 			break;
1223 
1224 		default:
1225 			print_usage(prgname);
1226 			return -1;
1227 		}
1228 	}
1229 
1230 	if (optind >= 0)
1231 		argv[optind-1] = prgname;
1232 
1233 	ret = optind-1;
1234 	optind = 0; /* reset getopt lib */
1235 	return ret;
1236 }
1237 
1238 static void
1239 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1240 {
1241 	char buf[ETHER_ADDR_FMT_SIZE];
1242 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1243 	printf("%s%s", name, buf);
1244 }
1245 
1246 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1247 static void
1248 setup_hash(int socketid)
1249 {
1250 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1251 		.name = NULL,
1252 		.entries = L3FWD_HASH_ENTRIES,
1253 		.bucket_entries = 4,
1254 		.key_len = sizeof(struct ipv4_5tuple),
1255 		.hash_func = DEFAULT_HASH_FUNC,
1256 		.hash_func_init_val = 0,
1257 	};
1258 
1259 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1260 		.name = NULL,
1261 		.entries = L3FWD_HASH_ENTRIES,
1262 		.bucket_entries = 4,
1263 		.key_len = sizeof(struct ipv6_5tuple),
1264 		.hash_func = DEFAULT_HASH_FUNC,
1265 		.hash_func_init_val = 0,
1266 	};
1267 
1268 	unsigned i;
1269 	int ret;
1270 	char s[64];
1271 
1272 	/* create ipv4 hash */
1273 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1274 	ipv4_l3fwd_hash_params.name = s;
1275 	ipv4_l3fwd_hash_params.socket_id = socketid;
1276 	ipv4_l3fwd_lookup_struct[socketid] =
1277 		rte_hash_create(&ipv4_l3fwd_hash_params);
1278 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1279 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1280 				"socket %d\n", socketid);
1281 
1282 	/* create ipv6 hash */
1283 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1284 	ipv6_l3fwd_hash_params.name = s;
1285 	ipv6_l3fwd_hash_params.socket_id = socketid;
1286 	ipv6_l3fwd_lookup_struct[socketid] =
1287 		rte_hash_create(&ipv6_l3fwd_hash_params);
1288 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1289 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1290 				"socket %d\n", socketid);
1291 
1292 
1293 	/* populate the ipv4 hash */
1294 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1295 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1296 				(void *) &ipv4_l3fwd_route_array[i].key);
1297 		if (ret < 0) {
1298 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1299 				"l3fwd hash on socket %d\n", i, socketid);
1300 		}
1301 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1302 		printf("Hash: Adding key\n");
1303 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1304 	}
1305 
1306 	/* populate the ipv6 hash */
1307 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1308 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1309 				(void *) &ipv6_l3fwd_route_array[i].key);
1310 		if (ret < 0) {
1311 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1312 				"l3fwd hash on socket %d\n", i, socketid);
1313 		}
1314 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1315 		printf("Hash: Adding key\n");
1316 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1317 	}
1318 }
1319 #endif
1320 
1321 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1322 static void
1323 setup_lpm(int socketid)
1324 {
1325 	unsigned i;
1326 	int ret;
1327 	char s[64];
1328 
1329 	/* create the LPM table */
1330 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1331 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1332 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1333 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1334 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1335 				" on socket %d\n", socketid);
1336 
1337 	/* populate the LPM table */
1338 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1339 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1340 			ipv4_l3fwd_route_array[i].ip,
1341 			ipv4_l3fwd_route_array[i].depth,
1342 			ipv4_l3fwd_route_array[i].if_out);
1343 
1344 		if (ret < 0) {
1345 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1346 				"l3fwd LPM table on socket %d\n",
1347 				i, socketid);
1348 		}
1349 
1350 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1351 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1352 			ipv4_l3fwd_route_array[i].depth,
1353 			ipv4_l3fwd_route_array[i].if_out);
1354 	}
1355 }
1356 #endif
1357 
1358 static int
1359 init_mem(unsigned nb_mbuf)
1360 {
1361 	struct lcore_conf *qconf;
1362 	int socketid;
1363 	unsigned lcore_id;
1364 	char s[64];
1365 
1366 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1367 		if (rte_lcore_is_enabled(lcore_id) == 0)
1368 			continue;
1369 
1370 		if (numa_on)
1371 			socketid = rte_lcore_to_socket_id(lcore_id);
1372 		else
1373 			socketid = 0;
1374 
1375 		if (socketid >= NB_SOCKETS) {
1376 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1377 					"out of range %d\n", socketid,
1378 						lcore_id, NB_SOCKETS);
1379 		}
1380 		if (pktmbuf_pool[socketid] == NULL) {
1381 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1382 			pktmbuf_pool[socketid] =
1383 				rte_mempool_create(s, nb_mbuf,
1384 					MBUF_SIZE, MEMPOOL_CACHE_SIZE,
1385 					sizeof(struct rte_pktmbuf_pool_private),
1386 					rte_pktmbuf_pool_init, NULL,
1387 					rte_pktmbuf_init, NULL,
1388 					socketid, 0);
1389 			if (pktmbuf_pool[socketid] == NULL)
1390 				rte_exit(EXIT_FAILURE,
1391 					"Cannot init mbuf pool on socket %d\n",
1392 								socketid);
1393 			else
1394 				printf("Allocated mbuf pool on socket %d\n",
1395 								socketid);
1396 
1397 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1398 			setup_lpm(socketid);
1399 #else
1400 			setup_hash(socketid);
1401 #endif
1402 		}
1403 		qconf = &lcore_conf[lcore_id];
1404 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1405 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1406 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1407 #endif
1408 	}
1409 	return 0;
1410 }
1411 
1412 /* Check the link status of all ports in up to 9s, and print them finally */
1413 static void
1414 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1415 {
1416 #define CHECK_INTERVAL 100 /* 100ms */
1417 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1418 	uint8_t portid, count, all_ports_up, print_flag = 0;
1419 	struct rte_eth_link link;
1420 
1421 	printf("\nChecking link status");
1422 	fflush(stdout);
1423 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1424 		all_ports_up = 1;
1425 		for (portid = 0; portid < port_num; portid++) {
1426 			if ((port_mask & (1 << portid)) == 0)
1427 				continue;
1428 			memset(&link, 0, sizeof(link));
1429 			rte_eth_link_get_nowait(portid, &link);
1430 			/* print link status if flag set */
1431 			if (print_flag == 1) {
1432 				if (link.link_status)
1433 					printf("Port %d Link Up - speed %u "
1434 						"Mbps - %s\n", (uint8_t)portid,
1435 						(unsigned)link.link_speed,
1436 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1437 					("full-duplex") : ("half-duplex\n"));
1438 				else
1439 					printf("Port %d Link Down\n",
1440 						(uint8_t)portid);
1441 				continue;
1442 			}
1443 			/* clear all_ports_up flag if any link down */
1444 			if (link.link_status == 0) {
1445 				all_ports_up = 0;
1446 				break;
1447 			}
1448 		}
1449 		/* after finally printing all link status, get out */
1450 		if (print_flag == 1)
1451 			break;
1452 
1453 		if (all_ports_up == 0) {
1454 			printf(".");
1455 			fflush(stdout);
1456 			rte_delay_ms(CHECK_INTERVAL);
1457 		}
1458 
1459 		/* set the print_flag if all ports up or timeout */
1460 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1461 			print_flag = 1;
1462 			printf("done\n");
1463 		}
1464 	}
1465 }
1466 
1467 int
1468 main(int argc, char **argv)
1469 {
1470 	struct lcore_conf *qconf;
1471 	struct rte_eth_dev_info dev_info;
1472 	struct rte_eth_txconf *txconf;
1473 	int ret;
1474 	unsigned nb_ports;
1475 	uint16_t queueid;
1476 	unsigned lcore_id;
1477 	uint64_t hz;
1478 	uint32_t n_tx_queue, nb_lcores;
1479 	uint8_t portid, nb_rx_queue, queue, socketid;
1480 
1481 	/* catch SIGINT and restore cpufreq governor to ondemand */
1482 	signal(SIGINT, signal_exit_now);
1483 
1484 	/* init EAL */
1485 	ret = rte_eal_init(argc, argv);
1486 	if (ret < 0)
1487 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1488 	argc -= ret;
1489 	argv += ret;
1490 
1491 	/* init RTE timer library to be used late */
1492 	rte_timer_subsystem_init();
1493 
1494 	/* parse application arguments (after the EAL ones) */
1495 	ret = parse_args(argc, argv);
1496 	if (ret < 0)
1497 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1498 
1499 	if (check_lcore_params() < 0)
1500 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1501 
1502 	ret = init_lcore_rx_queues();
1503 	if (ret < 0)
1504 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1505 
1506 
1507 	nb_ports = rte_eth_dev_count();
1508 	if (nb_ports > RTE_MAX_ETHPORTS)
1509 		nb_ports = RTE_MAX_ETHPORTS;
1510 
1511 	if (check_port_config(nb_ports) < 0)
1512 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1513 
1514 	nb_lcores = rte_lcore_count();
1515 
1516 	/* initialize all ports */
1517 	for (portid = 0; portid < nb_ports; portid++) {
1518 		/* skip ports that are not enabled */
1519 		if ((enabled_port_mask & (1 << portid)) == 0) {
1520 			printf("\nSkipping disabled port %d\n", portid);
1521 			continue;
1522 		}
1523 
1524 		/* init port */
1525 		printf("Initializing port %d ... ", portid );
1526 		fflush(stdout);
1527 
1528 		nb_rx_queue = get_port_n_rx_queues(portid);
1529 		n_tx_queue = nb_lcores;
1530 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1531 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1532 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1533 			nb_rx_queue, (unsigned)n_tx_queue );
1534 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1535 					(uint16_t)n_tx_queue, &port_conf);
1536 		if (ret < 0)
1537 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1538 					"err=%d, port=%d\n", ret, portid);
1539 
1540 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1541 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1542 		printf(", ");
1543 
1544 		/* init memory */
1545 		ret = init_mem(NB_MBUF);
1546 		if (ret < 0)
1547 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1548 
1549 		/* init one TX queue per couple (lcore,port) */
1550 		queueid = 0;
1551 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1552 			if (rte_lcore_is_enabled(lcore_id) == 0)
1553 				continue;
1554 
1555 			if (numa_on)
1556 				socketid = \
1557 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1558 			else
1559 				socketid = 0;
1560 
1561 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1562 			fflush(stdout);
1563 
1564 			rte_eth_dev_info_get(portid, &dev_info);
1565 			txconf = &dev_info.default_txconf;
1566 			if (port_conf.rxmode.jumbo_frame)
1567 				txconf->txq_flags = 0;
1568 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1569 						     socketid, txconf);
1570 			if (ret < 0)
1571 				rte_exit(EXIT_FAILURE,
1572 					"rte_eth_tx_queue_setup: err=%d, "
1573 						"port=%d\n", ret, portid);
1574 
1575 			qconf = &lcore_conf[lcore_id];
1576 			qconf->tx_queue_id[portid] = queueid;
1577 			queueid++;
1578 		}
1579 		printf("\n");
1580 	}
1581 
1582 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1583 		if (rte_lcore_is_enabled(lcore_id) == 0)
1584 			continue;
1585 
1586 		/* init power management library */
1587 		ret = rte_power_init(lcore_id);
1588 		if (ret)
1589 			rte_exit(EXIT_FAILURE, "Power management library "
1590 				"initialization failed on core%u\n", lcore_id);
1591 
1592 		/* init timer structures for each enabled lcore */
1593 		rte_timer_init(&power_timers[lcore_id]);
1594 		hz = rte_get_timer_hz();
1595 		rte_timer_reset(&power_timers[lcore_id],
1596 			hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1597 						power_timer_cb, NULL);
1598 
1599 		qconf = &lcore_conf[lcore_id];
1600 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1601 		fflush(stdout);
1602 		/* init RX queues */
1603 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1604 			portid = qconf->rx_queue_list[queue].port_id;
1605 			queueid = qconf->rx_queue_list[queue].queue_id;
1606 
1607 			if (numa_on)
1608 				socketid = \
1609 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1610 			else
1611 				socketid = 0;
1612 
1613 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1614 			fflush(stdout);
1615 
1616 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1617 				socketid, NULL,
1618 				pktmbuf_pool[socketid]);
1619 			if (ret < 0)
1620 				rte_exit(EXIT_FAILURE,
1621 					"rte_eth_rx_queue_setup: err=%d, "
1622 						"port=%d\n", ret, portid);
1623 		}
1624 	}
1625 
1626 	printf("\n");
1627 
1628 	/* start ports */
1629 	for (portid = 0; portid < nb_ports; portid++) {
1630 		if ((enabled_port_mask & (1 << portid)) == 0) {
1631 			continue;
1632 		}
1633 		/* Start device */
1634 		ret = rte_eth_dev_start(portid);
1635 		if (ret < 0)
1636 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1637 						"port=%d\n", ret, portid);
1638 
1639 		/*
1640 		 * If enabled, put device in promiscuous mode.
1641 		 * This allows IO forwarding mode to forward packets
1642 		 * to itself through 2 cross-connected  ports of the
1643 		 * target machine.
1644 		 */
1645 		if (promiscuous_on)
1646 			rte_eth_promiscuous_enable(portid);
1647 	}
1648 
1649 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1650 
1651 	/* launch per-lcore init on every lcore */
1652 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1653 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1654 		if (rte_eal_wait_lcore(lcore_id) < 0)
1655 			return -1;
1656 	}
1657 
1658 	return 0;
1659 }
1660