1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_ip.h> 72 #include <rte_tcp.h> 73 #include <rte_udp.h> 74 #include <rte_string_fns.h> 75 #include <rte_timer.h> 76 #include <rte_power.h> 77 #include <rte_eal.h> 78 #include <rte_spinlock.h> 79 80 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 81 82 #define MAX_PKT_BURST 32 83 84 #define MIN_ZERO_POLL_COUNT 10 85 86 /* around 100ms at 2 Ghz */ 87 #define TIMER_RESOLUTION_CYCLES 200000000ULL 88 /* 100 ms interval */ 89 #define TIMER_NUMBER_PER_SECOND 10 90 /* 100000 us */ 91 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 92 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 93 94 #define APP_LOOKUP_EXACT_MATCH 0 95 #define APP_LOOKUP_LPM 1 96 #define DO_RFC_1812_CHECKS 97 98 #ifndef APP_LOOKUP_METHOD 99 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 100 #endif 101 102 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 103 #include <rte_hash.h> 104 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 105 #include <rte_lpm.h> 106 #else 107 #error "APP_LOOKUP_METHOD set to incorrect value" 108 #endif 109 110 #ifndef IPv6_BYTES 111 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 112 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 113 #define IPv6_BYTES(addr) \ 114 addr[0], addr[1], addr[2], addr[3], \ 115 addr[4], addr[5], addr[6], addr[7], \ 116 addr[8], addr[9], addr[10], addr[11],\ 117 addr[12], addr[13],addr[14], addr[15] 118 #endif 119 120 #define MAX_JUMBO_PKT_LEN 9600 121 122 #define IPV6_ADDR_LEN 16 123 124 #define MEMPOOL_CACHE_SIZE 256 125 126 /* 127 * This expression is used to calculate the number of mbufs needed depending on 128 * user input, taking into account memory for rx and tx hardware rings, cache 129 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 130 * NB_MBUF never goes below a minimum value of 8192. 131 */ 132 133 #define NB_MBUF RTE_MAX ( \ 134 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 135 nb_ports*nb_lcores*MAX_PKT_BURST + \ 136 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 137 nb_lcores*MEMPOOL_CACHE_SIZE), \ 138 (unsigned)8192) 139 140 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 141 142 #define NB_SOCKETS 8 143 144 /* Configure how many packets ahead to prefetch, when reading packets */ 145 #define PREFETCH_OFFSET 3 146 147 /* 148 * Configurable number of RX/TX ring descriptors 149 */ 150 #define RTE_TEST_RX_DESC_DEFAULT 128 151 #define RTE_TEST_TX_DESC_DEFAULT 512 152 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 153 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 154 155 /* ethernet addresses of ports */ 156 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 157 158 /* ethernet addresses of ports */ 159 static rte_spinlock_t locks[RTE_MAX_ETHPORTS]; 160 161 /* mask of enabled ports */ 162 static uint32_t enabled_port_mask = 0; 163 /* Ports set in promiscuous mode off by default. */ 164 static int promiscuous_on = 0; 165 /* NUMA is enabled by default. */ 166 static int numa_on = 1; 167 168 enum freq_scale_hint_t 169 { 170 FREQ_LOWER = -1, 171 FREQ_CURRENT = 0, 172 FREQ_HIGHER = 1, 173 FREQ_HIGHEST = 2 174 }; 175 176 struct mbuf_table { 177 uint16_t len; 178 struct rte_mbuf *m_table[MAX_PKT_BURST]; 179 }; 180 181 struct lcore_rx_queue { 182 uint8_t port_id; 183 uint8_t queue_id; 184 enum freq_scale_hint_t freq_up_hint; 185 uint32_t zero_rx_packet_count; 186 uint32_t idle_hint; 187 } __rte_cache_aligned; 188 189 #define MAX_RX_QUEUE_PER_LCORE 16 190 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 191 #define MAX_RX_QUEUE_PER_PORT 128 192 193 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16 194 195 196 #define MAX_LCORE_PARAMS 1024 197 struct lcore_params { 198 uint8_t port_id; 199 uint8_t queue_id; 200 uint8_t lcore_id; 201 } __rte_cache_aligned; 202 203 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 204 static struct lcore_params lcore_params_array_default[] = { 205 {0, 0, 2}, 206 {0, 1, 2}, 207 {0, 2, 2}, 208 {1, 0, 2}, 209 {1, 1, 2}, 210 {1, 2, 2}, 211 {2, 0, 2}, 212 {3, 0, 3}, 213 {3, 1, 3}, 214 }; 215 216 static struct lcore_params * lcore_params = lcore_params_array_default; 217 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 218 sizeof(lcore_params_array_default[0]); 219 220 static struct rte_eth_conf port_conf = { 221 .rxmode = { 222 .mq_mode = ETH_MQ_RX_RSS, 223 .max_rx_pkt_len = ETHER_MAX_LEN, 224 .split_hdr_size = 0, 225 .header_split = 0, /**< Header Split disabled */ 226 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 227 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 228 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 229 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 230 }, 231 .rx_adv_conf = { 232 .rss_conf = { 233 .rss_key = NULL, 234 .rss_hf = ETH_RSS_UDP, 235 }, 236 }, 237 .txmode = { 238 .mq_mode = ETH_MQ_TX_NONE, 239 }, 240 .intr_conf = { 241 .lsc = 1, 242 .rxq = 1, 243 }, 244 }; 245 246 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 247 248 249 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 250 251 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 252 #include <rte_hash_crc.h> 253 #define DEFAULT_HASH_FUNC rte_hash_crc 254 #else 255 #include <rte_jhash.h> 256 #define DEFAULT_HASH_FUNC rte_jhash 257 #endif 258 259 struct ipv4_5tuple { 260 uint32_t ip_dst; 261 uint32_t ip_src; 262 uint16_t port_dst; 263 uint16_t port_src; 264 uint8_t proto; 265 } __attribute__((__packed__)); 266 267 struct ipv6_5tuple { 268 uint8_t ip_dst[IPV6_ADDR_LEN]; 269 uint8_t ip_src[IPV6_ADDR_LEN]; 270 uint16_t port_dst; 271 uint16_t port_src; 272 uint8_t proto; 273 } __attribute__((__packed__)); 274 275 struct ipv4_l3fwd_route { 276 struct ipv4_5tuple key; 277 uint8_t if_out; 278 }; 279 280 struct ipv6_l3fwd_route { 281 struct ipv6_5tuple key; 282 uint8_t if_out; 283 }; 284 285 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 286 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 287 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 288 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 289 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 290 }; 291 292 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 293 { 294 { 295 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 296 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 297 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 298 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 299 1, 10, IPPROTO_UDP 300 }, 4 301 }, 302 }; 303 304 typedef struct rte_hash lookup_struct_t; 305 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 306 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 307 308 #define L3FWD_HASH_ENTRIES 1024 309 310 #define IPV4_L3FWD_NUM_ROUTES \ 311 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 312 313 #define IPV6_L3FWD_NUM_ROUTES \ 314 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 315 316 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 317 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 318 #endif 319 320 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 321 struct ipv4_l3fwd_route { 322 uint32_t ip; 323 uint8_t depth; 324 uint8_t if_out; 325 }; 326 327 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 328 {IPv4(1,1,1,0), 24, 0}, 329 {IPv4(2,1,1,0), 24, 1}, 330 {IPv4(3,1,1,0), 24, 2}, 331 {IPv4(4,1,1,0), 24, 3}, 332 {IPv4(5,1,1,0), 24, 4}, 333 {IPv4(6,1,1,0), 24, 5}, 334 {IPv4(7,1,1,0), 24, 6}, 335 {IPv4(8,1,1,0), 24, 7}, 336 }; 337 338 #define IPV4_L3FWD_NUM_ROUTES \ 339 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 340 341 #define IPV4_L3FWD_LPM_MAX_RULES 1024 342 343 typedef struct rte_lpm lookup_struct_t; 344 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 345 #endif 346 347 struct lcore_conf { 348 uint16_t n_rx_queue; 349 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 350 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 351 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 352 lookup_struct_t * ipv4_lookup_struct; 353 lookup_struct_t * ipv6_lookup_struct; 354 } __rte_cache_aligned; 355 356 struct lcore_stats { 357 /* total sleep time in ms since last frequency scaling down */ 358 uint32_t sleep_time; 359 /* number of long sleep recently */ 360 uint32_t nb_long_sleep; 361 /* freq. scaling up trend */ 362 uint32_t trend; 363 /* total packet processed recently */ 364 uint64_t nb_rx_processed; 365 /* total iterations looped recently */ 366 uint64_t nb_iteration_looped; 367 uint32_t padding[9]; 368 } __rte_cache_aligned; 369 370 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 371 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 372 static struct rte_timer power_timers[RTE_MAX_LCORE]; 373 374 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 375 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 376 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 377 378 /* exit signal handler */ 379 static void 380 signal_exit_now(int sigtype) 381 { 382 unsigned lcore_id; 383 int ret; 384 385 if (sigtype == SIGINT) { 386 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 387 if (rte_lcore_is_enabled(lcore_id) == 0) 388 continue; 389 390 /* init power management library */ 391 ret = rte_power_exit(lcore_id); 392 if (ret) 393 rte_exit(EXIT_FAILURE, "Power management " 394 "library de-initialization failed on " 395 "core%u\n", lcore_id); 396 } 397 } 398 399 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 400 } 401 402 /* Freqency scale down timer callback */ 403 static void 404 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 405 __attribute__((unused)) void *arg) 406 { 407 uint64_t hz; 408 float sleep_time_ratio; 409 unsigned lcore_id = rte_lcore_id(); 410 411 /* accumulate total execution time in us when callback is invoked */ 412 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 413 (float)SCALING_PERIOD; 414 /** 415 * check whether need to scale down frequency a step if it sleep a lot. 416 */ 417 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) { 418 if (rte_power_freq_down) 419 rte_power_freq_down(lcore_id); 420 } 421 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 422 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) { 423 /** 424 * scale down a step if average packet per iteration less 425 * than expectation. 426 */ 427 if (rte_power_freq_down) 428 rte_power_freq_down(lcore_id); 429 } 430 431 /** 432 * initialize another timer according to current frequency to ensure 433 * timer interval is relatively fixed. 434 */ 435 hz = rte_get_timer_hz(); 436 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 437 SINGLE, lcore_id, power_timer_cb, NULL); 438 439 stats[lcore_id].nb_rx_processed = 0; 440 stats[lcore_id].nb_iteration_looped = 0; 441 442 stats[lcore_id].sleep_time = 0; 443 } 444 445 /* Send burst of packets on an output interface */ 446 static inline int 447 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) 448 { 449 struct rte_mbuf **m_table; 450 int ret; 451 uint16_t queueid; 452 453 queueid = qconf->tx_queue_id[port]; 454 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 455 456 ret = rte_eth_tx_burst(port, queueid, m_table, n); 457 if (unlikely(ret < n)) { 458 do { 459 rte_pktmbuf_free(m_table[ret]); 460 } while (++ret < n); 461 } 462 463 return 0; 464 } 465 466 /* Enqueue a single packet, and send burst if queue is filled */ 467 static inline int 468 send_single_packet(struct rte_mbuf *m, uint8_t port) 469 { 470 uint32_t lcore_id; 471 uint16_t len; 472 struct lcore_conf *qconf; 473 474 lcore_id = rte_lcore_id(); 475 476 qconf = &lcore_conf[lcore_id]; 477 len = qconf->tx_mbufs[port].len; 478 qconf->tx_mbufs[port].m_table[len] = m; 479 len++; 480 481 /* enough pkts to be sent */ 482 if (unlikely(len == MAX_PKT_BURST)) { 483 send_burst(qconf, MAX_PKT_BURST, port); 484 len = 0; 485 } 486 487 qconf->tx_mbufs[port].len = len; 488 return 0; 489 } 490 491 #ifdef DO_RFC_1812_CHECKS 492 static inline int 493 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 494 { 495 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 496 /* 497 * 1. The packet length reported by the Link Layer must be large 498 * enough to hold the minimum length legal IP datagram (20 bytes). 499 */ 500 if (link_len < sizeof(struct ipv4_hdr)) 501 return -1; 502 503 /* 2. The IP checksum must be correct. */ 504 /* this is checked in H/W */ 505 506 /* 507 * 3. The IP version number must be 4. If the version number is not 4 508 * then the packet may be another version of IP, such as IPng or 509 * ST-II. 510 */ 511 if (((pkt->version_ihl) >> 4) != 4) 512 return -3; 513 /* 514 * 4. The IP header length field must be large enough to hold the 515 * minimum length legal IP datagram (20 bytes = 5 words). 516 */ 517 if ((pkt->version_ihl & 0xf) < 5) 518 return -4; 519 520 /* 521 * 5. The IP total length field must be large enough to hold the IP 522 * datagram header, whose length is specified in the IP header length 523 * field. 524 */ 525 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 526 return -5; 527 528 return 0; 529 } 530 #endif 531 532 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 533 static void 534 print_ipv4_key(struct ipv4_5tuple key) 535 { 536 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 537 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 538 key.port_dst, key.port_src, key.proto); 539 } 540 static void 541 print_ipv6_key(struct ipv6_5tuple key) 542 { 543 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 544 "port dst = %d, port src = %d, proto = %d\n", 545 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 546 key.port_dst, key.port_src, key.proto); 547 } 548 549 static inline uint8_t 550 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 551 lookup_struct_t * ipv4_l3fwd_lookup_struct) 552 { 553 struct ipv4_5tuple key; 554 struct tcp_hdr *tcp; 555 struct udp_hdr *udp; 556 int ret = 0; 557 558 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 559 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 560 key.proto = ipv4_hdr->next_proto_id; 561 562 switch (ipv4_hdr->next_proto_id) { 563 case IPPROTO_TCP: 564 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 565 sizeof(struct ipv4_hdr)); 566 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 567 key.port_src = rte_be_to_cpu_16(tcp->src_port); 568 break; 569 570 case IPPROTO_UDP: 571 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 572 sizeof(struct ipv4_hdr)); 573 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 574 key.port_src = rte_be_to_cpu_16(udp->src_port); 575 break; 576 577 default: 578 key.port_dst = 0; 579 key.port_src = 0; 580 break; 581 } 582 583 /* Find destination port */ 584 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 585 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 586 } 587 588 static inline uint8_t 589 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 590 lookup_struct_t *ipv6_l3fwd_lookup_struct) 591 { 592 struct ipv6_5tuple key; 593 struct tcp_hdr *tcp; 594 struct udp_hdr *udp; 595 int ret = 0; 596 597 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 598 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 599 600 key.proto = ipv6_hdr->proto; 601 602 switch (ipv6_hdr->proto) { 603 case IPPROTO_TCP: 604 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 605 sizeof(struct ipv6_hdr)); 606 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 607 key.port_src = rte_be_to_cpu_16(tcp->src_port); 608 break; 609 610 case IPPROTO_UDP: 611 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 612 sizeof(struct ipv6_hdr)); 613 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 614 key.port_src = rte_be_to_cpu_16(udp->src_port); 615 break; 616 617 default: 618 key.port_dst = 0; 619 key.port_src = 0; 620 break; 621 } 622 623 /* Find destination port */ 624 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 625 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 626 } 627 #endif 628 629 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 630 static inline uint8_t 631 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 632 lookup_struct_t *ipv4_l3fwd_lookup_struct) 633 { 634 uint8_t next_hop; 635 636 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 637 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 638 next_hop : portid); 639 } 640 #endif 641 642 static inline void 643 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 644 struct lcore_conf *qconf) 645 { 646 struct ether_hdr *eth_hdr; 647 struct ipv4_hdr *ipv4_hdr; 648 void *d_addr_bytes; 649 uint8_t dst_port; 650 651 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 652 653 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 654 /* Handle IPv4 headers.*/ 655 ipv4_hdr = 656 rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 657 sizeof(struct ether_hdr)); 658 659 #ifdef DO_RFC_1812_CHECKS 660 /* Check to make sure the packet is valid (RFC1812) */ 661 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 662 rte_pktmbuf_free(m); 663 return; 664 } 665 #endif 666 667 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 668 qconf->ipv4_lookup_struct); 669 if (dst_port >= RTE_MAX_ETHPORTS || 670 (enabled_port_mask & 1 << dst_port) == 0) 671 dst_port = portid; 672 673 /* 02:00:00:00:00:xx */ 674 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 675 *((uint64_t *)d_addr_bytes) = 676 0x000000000002 + ((uint64_t)dst_port << 40); 677 678 #ifdef DO_RFC_1812_CHECKS 679 /* Update time to live and header checksum */ 680 --(ipv4_hdr->time_to_live); 681 ++(ipv4_hdr->hdr_checksum); 682 #endif 683 684 /* src addr */ 685 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 686 687 send_single_packet(m, dst_port); 688 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 689 /* Handle IPv6 headers.*/ 690 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 691 struct ipv6_hdr *ipv6_hdr; 692 693 ipv6_hdr = 694 rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, 695 sizeof(struct ether_hdr)); 696 697 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 698 qconf->ipv6_lookup_struct); 699 700 if (dst_port >= RTE_MAX_ETHPORTS || 701 (enabled_port_mask & 1 << dst_port) == 0) 702 dst_port = portid; 703 704 /* 02:00:00:00:00:xx */ 705 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 706 *((uint64_t *)d_addr_bytes) = 707 0x000000000002 + ((uint64_t)dst_port << 40); 708 709 /* src addr */ 710 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 711 712 send_single_packet(m, dst_port); 713 #else 714 /* We don't currently handle IPv6 packets in LPM mode. */ 715 rte_pktmbuf_free(m); 716 #endif 717 } 718 719 } 720 721 #define MINIMUM_SLEEP_TIME 1 722 #define SUSPEND_THRESHOLD 300 723 724 static inline uint32_t 725 power_idle_heuristic(uint32_t zero_rx_packet_count) 726 { 727 /* If zero count is less than 100, sleep 1us */ 728 if (zero_rx_packet_count < SUSPEND_THRESHOLD) 729 return MINIMUM_SLEEP_TIME; 730 /* If zero count is less than 1000, sleep 100 us which is the 731 minimum latency switching from C3/C6 to C0 732 */ 733 else 734 return SUSPEND_THRESHOLD; 735 736 return 0; 737 } 738 739 static inline enum freq_scale_hint_t 740 power_freq_scaleup_heuristic(unsigned lcore_id, 741 uint8_t port_id, 742 uint16_t queue_id) 743 { 744 /** 745 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 746 * per iteration 747 */ 748 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 749 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 750 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 751 #define FREQ_UP_TREND1_ACC 1 752 #define FREQ_UP_TREND2_ACC 100 753 #define FREQ_UP_THRESHOLD 10000 754 755 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 756 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 757 stats[lcore_id].trend = 0; 758 return FREQ_HIGHEST; 759 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 760 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 761 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 762 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 763 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 764 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 765 766 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 767 stats[lcore_id].trend = 0; 768 return FREQ_HIGHER; 769 } 770 771 return FREQ_CURRENT; 772 } 773 774 /** 775 * force polling thread sleep until one-shot rx interrupt triggers 776 * @param port_id 777 * Port id. 778 * @param queue_id 779 * Rx queue id. 780 * @return 781 * 0 on success 782 */ 783 static int 784 sleep_until_rx_interrupt(int num) 785 { 786 struct rte_epoll_event event[num]; 787 int n, i; 788 uint8_t port_id, queue_id; 789 void *data; 790 791 RTE_LOG(INFO, L3FWD_POWER, 792 "lcore %u sleeps until interrupt triggers\n", 793 rte_lcore_id()); 794 795 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1); 796 for (i = 0; i < n; i++) { 797 data = event[i].epdata.data; 798 port_id = ((uintptr_t)data) >> CHAR_BIT; 799 queue_id = ((uintptr_t)data) & 800 RTE_LEN2MASK(CHAR_BIT, uint8_t); 801 rte_eth_dev_rx_intr_disable(port_id, queue_id); 802 RTE_LOG(INFO, L3FWD_POWER, 803 "lcore %u is waked up from rx interrupt on" 804 " port %d queue %d\n", 805 rte_lcore_id(), port_id, queue_id); 806 } 807 808 return 0; 809 } 810 811 static void turn_on_intr(struct lcore_conf *qconf) 812 { 813 int i; 814 struct lcore_rx_queue *rx_queue; 815 uint8_t port_id, queue_id; 816 817 for (i = 0; i < qconf->n_rx_queue; ++i) { 818 rx_queue = &(qconf->rx_queue_list[i]); 819 port_id = rx_queue->port_id; 820 queue_id = rx_queue->queue_id; 821 822 rte_spinlock_lock(&(locks[port_id])); 823 rte_eth_dev_rx_intr_enable(port_id, queue_id); 824 rte_spinlock_unlock(&(locks[port_id])); 825 } 826 } 827 828 static int event_register(struct lcore_conf *qconf) 829 { 830 struct lcore_rx_queue *rx_queue; 831 uint8_t portid, queueid; 832 uint32_t data; 833 int ret; 834 int i; 835 836 for (i = 0; i < qconf->n_rx_queue; ++i) { 837 rx_queue = &(qconf->rx_queue_list[i]); 838 portid = rx_queue->port_id; 839 queueid = rx_queue->queue_id; 840 data = portid << CHAR_BIT | queueid; 841 842 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid, 843 RTE_EPOLL_PER_THREAD, 844 RTE_INTR_EVENT_ADD, 845 (void *)((uintptr_t)data)); 846 if (ret) 847 return ret; 848 } 849 850 return 0; 851 } 852 853 /* main processing loop */ 854 static int 855 main_loop(__attribute__((unused)) void *dummy) 856 { 857 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 858 unsigned lcore_id; 859 uint64_t prev_tsc, diff_tsc, cur_tsc; 860 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 861 int i, j, nb_rx; 862 uint8_t portid, queueid; 863 struct lcore_conf *qconf; 864 struct lcore_rx_queue *rx_queue; 865 enum freq_scale_hint_t lcore_scaleup_hint; 866 uint32_t lcore_rx_idle_count = 0; 867 uint32_t lcore_idle_hint = 0; 868 int intr_en = 0; 869 870 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 871 872 prev_tsc = 0; 873 874 lcore_id = rte_lcore_id(); 875 qconf = &lcore_conf[lcore_id]; 876 877 if (qconf->n_rx_queue == 0) { 878 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 879 return 0; 880 } 881 882 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 883 884 for (i = 0; i < qconf->n_rx_queue; i++) { 885 portid = qconf->rx_queue_list[i].port_id; 886 queueid = qconf->rx_queue_list[i].queue_id; 887 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 888 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 889 } 890 891 /* add into event wait list */ 892 if (event_register(qconf) == 0) 893 intr_en = 1; 894 else 895 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n"); 896 897 while (1) { 898 stats[lcore_id].nb_iteration_looped++; 899 900 cur_tsc = rte_rdtsc(); 901 cur_tsc_power = cur_tsc; 902 903 /* 904 * TX burst queue drain 905 */ 906 diff_tsc = cur_tsc - prev_tsc; 907 if (unlikely(diff_tsc > drain_tsc)) { 908 909 /* 910 * This could be optimized (use queueid instead of 911 * portid), but it is not called so often 912 */ 913 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 914 if (qconf->tx_mbufs[portid].len == 0) 915 continue; 916 send_burst(&lcore_conf[lcore_id], 917 qconf->tx_mbufs[portid].len, 918 portid); 919 qconf->tx_mbufs[portid].len = 0; 920 } 921 922 prev_tsc = cur_tsc; 923 } 924 925 diff_tsc_power = cur_tsc_power - prev_tsc_power; 926 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 927 rte_timer_manage(); 928 prev_tsc_power = cur_tsc_power; 929 } 930 931 start_rx: 932 /* 933 * Read packet from RX queues 934 */ 935 lcore_scaleup_hint = FREQ_CURRENT; 936 lcore_rx_idle_count = 0; 937 for (i = 0; i < qconf->n_rx_queue; ++i) { 938 rx_queue = &(qconf->rx_queue_list[i]); 939 rx_queue->idle_hint = 0; 940 portid = rx_queue->port_id; 941 queueid = rx_queue->queue_id; 942 943 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 944 MAX_PKT_BURST); 945 946 stats[lcore_id].nb_rx_processed += nb_rx; 947 if (unlikely(nb_rx == 0)) { 948 /** 949 * no packet received from rx queue, try to 950 * sleep for a while forcing CPU enter deeper 951 * C states. 952 */ 953 rx_queue->zero_rx_packet_count++; 954 955 if (rx_queue->zero_rx_packet_count <= 956 MIN_ZERO_POLL_COUNT) 957 continue; 958 959 rx_queue->idle_hint = power_idle_heuristic(\ 960 rx_queue->zero_rx_packet_count); 961 lcore_rx_idle_count++; 962 } else { 963 rx_queue->zero_rx_packet_count = 0; 964 965 /** 966 * do not scale up frequency immediately as 967 * user to kernel space communication is costly 968 * which might impact packet I/O for received 969 * packets. 970 */ 971 rx_queue->freq_up_hint = 972 power_freq_scaleup_heuristic(lcore_id, 973 portid, queueid); 974 } 975 976 /* Prefetch first packets */ 977 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 978 rte_prefetch0(rte_pktmbuf_mtod( 979 pkts_burst[j], void *)); 980 } 981 982 /* Prefetch and forward already prefetched packets */ 983 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 984 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 985 j + PREFETCH_OFFSET], void *)); 986 l3fwd_simple_forward(pkts_burst[j], portid, 987 qconf); 988 } 989 990 /* Forward remaining prefetched packets */ 991 for (; j < nb_rx; j++) { 992 l3fwd_simple_forward(pkts_burst[j], portid, 993 qconf); 994 } 995 } 996 997 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 998 for (i = 1, lcore_scaleup_hint = 999 qconf->rx_queue_list[0].freq_up_hint; 1000 i < qconf->n_rx_queue; ++i) { 1001 rx_queue = &(qconf->rx_queue_list[i]); 1002 if (rx_queue->freq_up_hint > 1003 lcore_scaleup_hint) 1004 lcore_scaleup_hint = 1005 rx_queue->freq_up_hint; 1006 } 1007 1008 if (lcore_scaleup_hint == FREQ_HIGHEST) { 1009 if (rte_power_freq_max) 1010 rte_power_freq_max(lcore_id); 1011 } else if (lcore_scaleup_hint == FREQ_HIGHER) { 1012 if (rte_power_freq_up) 1013 rte_power_freq_up(lcore_id); 1014 } 1015 } else { 1016 /** 1017 * All Rx queues empty in recent consecutive polls, 1018 * sleep in a conservative manner, meaning sleep as 1019 * less as possible. 1020 */ 1021 for (i = 1, lcore_idle_hint = 1022 qconf->rx_queue_list[0].idle_hint; 1023 i < qconf->n_rx_queue; ++i) { 1024 rx_queue = &(qconf->rx_queue_list[i]); 1025 if (rx_queue->idle_hint < lcore_idle_hint) 1026 lcore_idle_hint = rx_queue->idle_hint; 1027 } 1028 1029 if (lcore_idle_hint < SUSPEND_THRESHOLD) 1030 /** 1031 * execute "pause" instruction to avoid context 1032 * switch which generally take hundred of 1033 * microseconds for short sleep. 1034 */ 1035 rte_delay_us(lcore_idle_hint); 1036 else { 1037 /* suspend until rx interrupt trigges */ 1038 if (intr_en) { 1039 turn_on_intr(qconf); 1040 sleep_until_rx_interrupt( 1041 qconf->n_rx_queue); 1042 } 1043 /* start receiving packets immediately */ 1044 goto start_rx; 1045 } 1046 stats[lcore_id].sleep_time += lcore_idle_hint; 1047 } 1048 } 1049 } 1050 1051 static int 1052 check_lcore_params(void) 1053 { 1054 uint8_t queue, lcore; 1055 uint16_t i; 1056 int socketid; 1057 1058 for (i = 0; i < nb_lcore_params; ++i) { 1059 queue = lcore_params[i].queue_id; 1060 if (queue >= MAX_RX_QUEUE_PER_PORT) { 1061 printf("invalid queue number: %hhu\n", queue); 1062 return -1; 1063 } 1064 lcore = lcore_params[i].lcore_id; 1065 if (!rte_lcore_is_enabled(lcore)) { 1066 printf("error: lcore %hhu is not enabled in lcore " 1067 "mask\n", lcore); 1068 return -1; 1069 } 1070 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 1071 (numa_on == 0)) { 1072 printf("warning: lcore %hhu is on socket %d with numa " 1073 "off\n", lcore, socketid); 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 static int 1080 check_port_config(const unsigned nb_ports) 1081 { 1082 unsigned portid; 1083 uint16_t i; 1084 1085 for (i = 0; i < nb_lcore_params; ++i) { 1086 portid = lcore_params[i].port_id; 1087 if ((enabled_port_mask & (1 << portid)) == 0) { 1088 printf("port %u is not enabled in port mask\n", 1089 portid); 1090 return -1; 1091 } 1092 if (portid >= nb_ports) { 1093 printf("port %u is not present on the board\n", 1094 portid); 1095 return -1; 1096 } 1097 } 1098 return 0; 1099 } 1100 1101 static uint8_t 1102 get_port_n_rx_queues(const uint8_t port) 1103 { 1104 int queue = -1; 1105 uint16_t i; 1106 1107 for (i = 0; i < nb_lcore_params; ++i) { 1108 if (lcore_params[i].port_id == port && 1109 lcore_params[i].queue_id > queue) 1110 queue = lcore_params[i].queue_id; 1111 } 1112 return (uint8_t)(++queue); 1113 } 1114 1115 static int 1116 init_lcore_rx_queues(void) 1117 { 1118 uint16_t i, nb_rx_queue; 1119 uint8_t lcore; 1120 1121 for (i = 0; i < nb_lcore_params; ++i) { 1122 lcore = lcore_params[i].lcore_id; 1123 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1124 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1125 printf("error: too many queues (%u) for lcore: %u\n", 1126 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1127 return -1; 1128 } else { 1129 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1130 lcore_params[i].port_id; 1131 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1132 lcore_params[i].queue_id; 1133 lcore_conf[lcore].n_rx_queue++; 1134 } 1135 } 1136 return 0; 1137 } 1138 1139 /* display usage */ 1140 static void 1141 print_usage(const char *prgname) 1142 { 1143 printf ("%s [EAL options] -- -p PORTMASK -P" 1144 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1145 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1146 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1147 " -P : enable promiscuous mode\n" 1148 " --config (port,queue,lcore): rx queues configuration\n" 1149 " --no-numa: optional, disable numa awareness\n" 1150 " --enable-jumbo: enable jumbo frame" 1151 " which max packet len is PKTLEN in decimal (64-9600)\n", 1152 prgname); 1153 } 1154 1155 static int parse_max_pkt_len(const char *pktlen) 1156 { 1157 char *end = NULL; 1158 unsigned long len; 1159 1160 /* parse decimal string */ 1161 len = strtoul(pktlen, &end, 10); 1162 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1163 return -1; 1164 1165 if (len == 0) 1166 return -1; 1167 1168 return len; 1169 } 1170 1171 static int 1172 parse_portmask(const char *portmask) 1173 { 1174 char *end = NULL; 1175 unsigned long pm; 1176 1177 /* parse hexadecimal string */ 1178 pm = strtoul(portmask, &end, 16); 1179 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1180 return -1; 1181 1182 if (pm == 0) 1183 return -1; 1184 1185 return pm; 1186 } 1187 1188 static int 1189 parse_config(const char *q_arg) 1190 { 1191 char s[256]; 1192 const char *p, *p0 = q_arg; 1193 char *end; 1194 enum fieldnames { 1195 FLD_PORT = 0, 1196 FLD_QUEUE, 1197 FLD_LCORE, 1198 _NUM_FLD 1199 }; 1200 unsigned long int_fld[_NUM_FLD]; 1201 char *str_fld[_NUM_FLD]; 1202 int i; 1203 unsigned size; 1204 1205 nb_lcore_params = 0; 1206 1207 while ((p = strchr(p0,'(')) != NULL) { 1208 ++p; 1209 if((p0 = strchr(p,')')) == NULL) 1210 return -1; 1211 1212 size = p0 - p; 1213 if(size >= sizeof(s)) 1214 return -1; 1215 1216 snprintf(s, sizeof(s), "%.*s", size, p); 1217 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1218 _NUM_FLD) 1219 return -1; 1220 for (i = 0; i < _NUM_FLD; i++){ 1221 errno = 0; 1222 int_fld[i] = strtoul(str_fld[i], &end, 0); 1223 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1224 255) 1225 return -1; 1226 } 1227 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1228 printf("exceeded max number of lcore params: %hu\n", 1229 nb_lcore_params); 1230 return -1; 1231 } 1232 lcore_params_array[nb_lcore_params].port_id = 1233 (uint8_t)int_fld[FLD_PORT]; 1234 lcore_params_array[nb_lcore_params].queue_id = 1235 (uint8_t)int_fld[FLD_QUEUE]; 1236 lcore_params_array[nb_lcore_params].lcore_id = 1237 (uint8_t)int_fld[FLD_LCORE]; 1238 ++nb_lcore_params; 1239 } 1240 lcore_params = lcore_params_array; 1241 1242 return 0; 1243 } 1244 1245 /* Parse the argument given in the command line of the application */ 1246 static int 1247 parse_args(int argc, char **argv) 1248 { 1249 int opt, ret; 1250 char **argvopt; 1251 int option_index; 1252 char *prgname = argv[0]; 1253 static struct option lgopts[] = { 1254 {"config", 1, 0, 0}, 1255 {"no-numa", 0, 0, 0}, 1256 {"enable-jumbo", 0, 0, 0}, 1257 {NULL, 0, 0, 0} 1258 }; 1259 1260 argvopt = argv; 1261 1262 while ((opt = getopt_long(argc, argvopt, "p:P", 1263 lgopts, &option_index)) != EOF) { 1264 1265 switch (opt) { 1266 /* portmask */ 1267 case 'p': 1268 enabled_port_mask = parse_portmask(optarg); 1269 if (enabled_port_mask == 0) { 1270 printf("invalid portmask\n"); 1271 print_usage(prgname); 1272 return -1; 1273 } 1274 break; 1275 case 'P': 1276 printf("Promiscuous mode selected\n"); 1277 promiscuous_on = 1; 1278 break; 1279 1280 /* long options */ 1281 case 0: 1282 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1283 ret = parse_config(optarg); 1284 if (ret) { 1285 printf("invalid config\n"); 1286 print_usage(prgname); 1287 return -1; 1288 } 1289 } 1290 1291 if (!strncmp(lgopts[option_index].name, 1292 "no-numa", 7)) { 1293 printf("numa is disabled \n"); 1294 numa_on = 0; 1295 } 1296 1297 if (!strncmp(lgopts[option_index].name, 1298 "enable-jumbo", 12)) { 1299 struct option lenopts = 1300 {"max-pkt-len", required_argument, \ 1301 0, 0}; 1302 1303 printf("jumbo frame is enabled \n"); 1304 port_conf.rxmode.jumbo_frame = 1; 1305 1306 /** 1307 * if no max-pkt-len set, use the default value 1308 * ETHER_MAX_LEN 1309 */ 1310 if (0 == getopt_long(argc, argvopt, "", 1311 &lenopts, &option_index)) { 1312 ret = parse_max_pkt_len(optarg); 1313 if ((ret < 64) || 1314 (ret > MAX_JUMBO_PKT_LEN)){ 1315 printf("invalid packet " 1316 "length\n"); 1317 print_usage(prgname); 1318 return -1; 1319 } 1320 port_conf.rxmode.max_rx_pkt_len = ret; 1321 } 1322 printf("set jumbo frame " 1323 "max packet length to %u\n", 1324 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1325 } 1326 1327 break; 1328 1329 default: 1330 print_usage(prgname); 1331 return -1; 1332 } 1333 } 1334 1335 if (optind >= 0) 1336 argv[optind-1] = prgname; 1337 1338 ret = optind-1; 1339 optind = 0; /* reset getopt lib */ 1340 return ret; 1341 } 1342 1343 static void 1344 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1345 { 1346 char buf[ETHER_ADDR_FMT_SIZE]; 1347 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1348 printf("%s%s", name, buf); 1349 } 1350 1351 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1352 static void 1353 setup_hash(int socketid) 1354 { 1355 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1356 .name = NULL, 1357 .entries = L3FWD_HASH_ENTRIES, 1358 .key_len = sizeof(struct ipv4_5tuple), 1359 .hash_func = DEFAULT_HASH_FUNC, 1360 .hash_func_init_val = 0, 1361 }; 1362 1363 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1364 .name = NULL, 1365 .entries = L3FWD_HASH_ENTRIES, 1366 .key_len = sizeof(struct ipv6_5tuple), 1367 .hash_func = DEFAULT_HASH_FUNC, 1368 .hash_func_init_val = 0, 1369 }; 1370 1371 unsigned i; 1372 int ret; 1373 char s[64]; 1374 1375 /* create ipv4 hash */ 1376 rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1377 ipv4_l3fwd_hash_params.name = s; 1378 ipv4_l3fwd_hash_params.socket_id = socketid; 1379 ipv4_l3fwd_lookup_struct[socketid] = 1380 rte_hash_create(&ipv4_l3fwd_hash_params); 1381 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1382 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1383 "socket %d\n", socketid); 1384 1385 /* create ipv6 hash */ 1386 rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1387 ipv6_l3fwd_hash_params.name = s; 1388 ipv6_l3fwd_hash_params.socket_id = socketid; 1389 ipv6_l3fwd_lookup_struct[socketid] = 1390 rte_hash_create(&ipv6_l3fwd_hash_params); 1391 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1392 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1393 "socket %d\n", socketid); 1394 1395 1396 /* populate the ipv4 hash */ 1397 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1398 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1399 (void *) &ipv4_l3fwd_route_array[i].key); 1400 if (ret < 0) { 1401 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1402 "l3fwd hash on socket %d\n", i, socketid); 1403 } 1404 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1405 printf("Hash: Adding key\n"); 1406 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1407 } 1408 1409 /* populate the ipv6 hash */ 1410 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1411 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1412 (void *) &ipv6_l3fwd_route_array[i].key); 1413 if (ret < 0) { 1414 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1415 "l3fwd hash on socket %d\n", i, socketid); 1416 } 1417 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1418 printf("Hash: Adding key\n"); 1419 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1420 } 1421 } 1422 #endif 1423 1424 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1425 static void 1426 setup_lpm(int socketid) 1427 { 1428 unsigned i; 1429 int ret; 1430 char s[64]; 1431 1432 /* create the LPM table */ 1433 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1434 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, 1435 IPV4_L3FWD_LPM_MAX_RULES, 0); 1436 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1437 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1438 " on socket %d\n", socketid); 1439 1440 /* populate the LPM table */ 1441 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1442 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1443 ipv4_l3fwd_route_array[i].ip, 1444 ipv4_l3fwd_route_array[i].depth, 1445 ipv4_l3fwd_route_array[i].if_out); 1446 1447 if (ret < 0) { 1448 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1449 "l3fwd LPM table on socket %d\n", 1450 i, socketid); 1451 } 1452 1453 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1454 (unsigned)ipv4_l3fwd_route_array[i].ip, 1455 ipv4_l3fwd_route_array[i].depth, 1456 ipv4_l3fwd_route_array[i].if_out); 1457 } 1458 } 1459 #endif 1460 1461 static int 1462 init_mem(unsigned nb_mbuf) 1463 { 1464 struct lcore_conf *qconf; 1465 int socketid; 1466 unsigned lcore_id; 1467 char s[64]; 1468 1469 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1470 if (rte_lcore_is_enabled(lcore_id) == 0) 1471 continue; 1472 1473 if (numa_on) 1474 socketid = rte_lcore_to_socket_id(lcore_id); 1475 else 1476 socketid = 0; 1477 1478 if (socketid >= NB_SOCKETS) { 1479 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1480 "out of range %d\n", socketid, 1481 lcore_id, NB_SOCKETS); 1482 } 1483 if (pktmbuf_pool[socketid] == NULL) { 1484 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1485 pktmbuf_pool[socketid] = 1486 rte_pktmbuf_pool_create(s, nb_mbuf, 1487 MEMPOOL_CACHE_SIZE, 0, 1488 RTE_MBUF_DEFAULT_BUF_SIZE, 1489 socketid); 1490 if (pktmbuf_pool[socketid] == NULL) 1491 rte_exit(EXIT_FAILURE, 1492 "Cannot init mbuf pool on socket %d\n", 1493 socketid); 1494 else 1495 printf("Allocated mbuf pool on socket %d\n", 1496 socketid); 1497 1498 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1499 setup_lpm(socketid); 1500 #else 1501 setup_hash(socketid); 1502 #endif 1503 } 1504 qconf = &lcore_conf[lcore_id]; 1505 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1506 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1507 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1508 #endif 1509 } 1510 return 0; 1511 } 1512 1513 /* Check the link status of all ports in up to 9s, and print them finally */ 1514 static void 1515 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1516 { 1517 #define CHECK_INTERVAL 100 /* 100ms */ 1518 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1519 uint8_t portid, count, all_ports_up, print_flag = 0; 1520 struct rte_eth_link link; 1521 1522 printf("\nChecking link status"); 1523 fflush(stdout); 1524 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1525 all_ports_up = 1; 1526 for (portid = 0; portid < port_num; portid++) { 1527 if ((port_mask & (1 << portid)) == 0) 1528 continue; 1529 memset(&link, 0, sizeof(link)); 1530 rte_eth_link_get_nowait(portid, &link); 1531 /* print link status if flag set */ 1532 if (print_flag == 1) { 1533 if (link.link_status) 1534 printf("Port %d Link Up - speed %u " 1535 "Mbps - %s\n", (uint8_t)portid, 1536 (unsigned)link.link_speed, 1537 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1538 ("full-duplex") : ("half-duplex\n")); 1539 else 1540 printf("Port %d Link Down\n", 1541 (uint8_t)portid); 1542 continue; 1543 } 1544 /* clear all_ports_up flag if any link down */ 1545 if (link.link_status == 0) { 1546 all_ports_up = 0; 1547 break; 1548 } 1549 } 1550 /* after finally printing all link status, get out */ 1551 if (print_flag == 1) 1552 break; 1553 1554 if (all_ports_up == 0) { 1555 printf("."); 1556 fflush(stdout); 1557 rte_delay_ms(CHECK_INTERVAL); 1558 } 1559 1560 /* set the print_flag if all ports up or timeout */ 1561 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1562 print_flag = 1; 1563 printf("done\n"); 1564 } 1565 } 1566 } 1567 1568 int 1569 main(int argc, char **argv) 1570 { 1571 struct lcore_conf *qconf; 1572 struct rte_eth_dev_info dev_info; 1573 struct rte_eth_txconf *txconf; 1574 int ret; 1575 unsigned nb_ports; 1576 uint16_t queueid; 1577 unsigned lcore_id; 1578 uint64_t hz; 1579 uint32_t n_tx_queue, nb_lcores; 1580 uint32_t dev_rxq_num, dev_txq_num; 1581 uint8_t portid, nb_rx_queue, queue, socketid; 1582 1583 /* catch SIGINT and restore cpufreq governor to ondemand */ 1584 signal(SIGINT, signal_exit_now); 1585 1586 /* init EAL */ 1587 ret = rte_eal_init(argc, argv); 1588 if (ret < 0) 1589 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1590 argc -= ret; 1591 argv += ret; 1592 1593 /* init RTE timer library to be used late */ 1594 rte_timer_subsystem_init(); 1595 1596 /* parse application arguments (after the EAL ones) */ 1597 ret = parse_args(argc, argv); 1598 if (ret < 0) 1599 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1600 1601 if (check_lcore_params() < 0) 1602 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1603 1604 ret = init_lcore_rx_queues(); 1605 if (ret < 0) 1606 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1607 1608 1609 nb_ports = rte_eth_dev_count(); 1610 if (nb_ports > RTE_MAX_ETHPORTS) 1611 nb_ports = RTE_MAX_ETHPORTS; 1612 1613 if (check_port_config(nb_ports) < 0) 1614 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1615 1616 nb_lcores = rte_lcore_count(); 1617 1618 /* initialize all ports */ 1619 for (portid = 0; portid < nb_ports; portid++) { 1620 /* skip ports that are not enabled */ 1621 if ((enabled_port_mask & (1 << portid)) == 0) { 1622 printf("\nSkipping disabled port %d\n", portid); 1623 continue; 1624 } 1625 1626 /* init port */ 1627 printf("Initializing port %d ... ", portid ); 1628 fflush(stdout); 1629 1630 rte_eth_dev_info_get(portid, &dev_info); 1631 dev_rxq_num = dev_info.max_rx_queues; 1632 dev_txq_num = dev_info.max_tx_queues; 1633 1634 nb_rx_queue = get_port_n_rx_queues(portid); 1635 if (nb_rx_queue > dev_rxq_num) 1636 rte_exit(EXIT_FAILURE, 1637 "Cannot configure not existed rxq: " 1638 "port=%d\n", portid); 1639 1640 n_tx_queue = nb_lcores; 1641 if (n_tx_queue > dev_txq_num) 1642 n_tx_queue = dev_txq_num; 1643 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1644 nb_rx_queue, (unsigned)n_tx_queue ); 1645 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1646 (uint16_t)n_tx_queue, &port_conf); 1647 if (ret < 0) 1648 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1649 "err=%d, port=%d\n", ret, portid); 1650 1651 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1652 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1653 printf(", "); 1654 1655 /* init memory */ 1656 ret = init_mem(NB_MBUF); 1657 if (ret < 0) 1658 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1659 1660 /* init one TX queue per couple (lcore,port) */ 1661 queueid = 0; 1662 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1663 if (rte_lcore_is_enabled(lcore_id) == 0) 1664 continue; 1665 1666 if (queueid >= dev_txq_num) 1667 continue; 1668 1669 if (numa_on) 1670 socketid = \ 1671 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1672 else 1673 socketid = 0; 1674 1675 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1676 fflush(stdout); 1677 1678 rte_eth_dev_info_get(portid, &dev_info); 1679 txconf = &dev_info.default_txconf; 1680 if (port_conf.rxmode.jumbo_frame) 1681 txconf->txq_flags = 0; 1682 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1683 socketid, txconf); 1684 if (ret < 0) 1685 rte_exit(EXIT_FAILURE, 1686 "rte_eth_tx_queue_setup: err=%d, " 1687 "port=%d\n", ret, portid); 1688 1689 qconf = &lcore_conf[lcore_id]; 1690 qconf->tx_queue_id[portid] = queueid; 1691 queueid++; 1692 } 1693 printf("\n"); 1694 } 1695 1696 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1697 if (rte_lcore_is_enabled(lcore_id) == 0) 1698 continue; 1699 1700 /* init power management library */ 1701 ret = rte_power_init(lcore_id); 1702 if (ret) 1703 RTE_LOG(ERR, POWER, 1704 "Library initialization failed on core %u\n", lcore_id); 1705 1706 /* init timer structures for each enabled lcore */ 1707 rte_timer_init(&power_timers[lcore_id]); 1708 hz = rte_get_timer_hz(); 1709 rte_timer_reset(&power_timers[lcore_id], 1710 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1711 power_timer_cb, NULL); 1712 1713 qconf = &lcore_conf[lcore_id]; 1714 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1715 fflush(stdout); 1716 /* init RX queues */ 1717 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1718 portid = qconf->rx_queue_list[queue].port_id; 1719 queueid = qconf->rx_queue_list[queue].queue_id; 1720 1721 if (numa_on) 1722 socketid = \ 1723 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1724 else 1725 socketid = 0; 1726 1727 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1728 fflush(stdout); 1729 1730 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1731 socketid, NULL, 1732 pktmbuf_pool[socketid]); 1733 if (ret < 0) 1734 rte_exit(EXIT_FAILURE, 1735 "rte_eth_rx_queue_setup: err=%d, " 1736 "port=%d\n", ret, portid); 1737 } 1738 } 1739 1740 printf("\n"); 1741 1742 /* start ports */ 1743 for (portid = 0; portid < nb_ports; portid++) { 1744 if ((enabled_port_mask & (1 << portid)) == 0) { 1745 continue; 1746 } 1747 /* Start device */ 1748 ret = rte_eth_dev_start(portid); 1749 if (ret < 0) 1750 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1751 "port=%d\n", ret, portid); 1752 /* 1753 * If enabled, put device in promiscuous mode. 1754 * This allows IO forwarding mode to forward packets 1755 * to itself through 2 cross-connected ports of the 1756 * target machine. 1757 */ 1758 if (promiscuous_on) 1759 rte_eth_promiscuous_enable(portid); 1760 /* initialize spinlock for each port */ 1761 rte_spinlock_init(&(locks[portid])); 1762 } 1763 1764 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1765 1766 /* launch per-lcore init on every lcore */ 1767 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1768 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1769 if (rte_eal_wait_lcore(lcore_id) < 0) 1770 return -1; 1771 } 1772 1773 return 0; 1774 } 1775