xref: /dpdk/examples/l3fwd-power/main.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_ip.h>
41 #include <rte_tcp.h>
42 #include <rte_udp.h>
43 #include <rte_string_fns.h>
44 #include <rte_timer.h>
45 #include <rte_power.h>
46 #include <rte_spinlock.h>
47 #include <rte_power_empty_poll.h>
48 #include <rte_metrics.h>
49 #include <rte_telemetry.h>
50 #include <rte_power_pmd_mgmt.h>
51 
52 #include "perf_core.h"
53 #include "main.h"
54 
55 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
56 
57 #define MAX_PKT_BURST 32
58 
59 #define MIN_ZERO_POLL_COUNT 10
60 
61 /* 100 ms interval */
62 #define TIMER_NUMBER_PER_SECOND           10
63 /* (10ms) */
64 #define INTERVALS_PER_SECOND             100
65 /* 100000 us */
66 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
67 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
68 
69 #define APP_LOOKUP_EXACT_MATCH          0
70 #define APP_LOOKUP_LPM                  1
71 #define DO_RFC_1812_CHECKS
72 
73 #ifndef APP_LOOKUP_METHOD
74 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
75 #endif
76 
77 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
78 #include <rte_hash.h>
79 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
80 #include <rte_lpm.h>
81 #else
82 #error "APP_LOOKUP_METHOD set to incorrect value"
83 #endif
84 
85 #ifndef IPv6_BYTES
86 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
87                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
88 #define IPv6_BYTES(addr) \
89 	addr[0],  addr[1], addr[2],  addr[3], \
90 	addr[4],  addr[5], addr[6],  addr[7], \
91 	addr[8],  addr[9], addr[10], addr[11],\
92 	addr[12], addr[13],addr[14], addr[15]
93 #endif
94 
95 #define MAX_JUMBO_PKT_LEN  9600
96 
97 #define IPV6_ADDR_LEN 16
98 
99 #define MEMPOOL_CACHE_SIZE 256
100 
101 /*
102  * This expression is used to calculate the number of mbufs needed depending on
103  * user input, taking into account memory for rx and tx hardware rings, cache
104  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
105  * NB_MBUF never goes below a minimum value of 8192.
106  */
107 
108 #define NB_MBUF RTE_MAX	( \
109 	(nb_ports*nb_rx_queue*nb_rxd + \
110 	nb_ports*nb_lcores*MAX_PKT_BURST + \
111 	nb_ports*n_tx_queue*nb_txd + \
112 	nb_lcores*MEMPOOL_CACHE_SIZE), \
113 	(unsigned)8192)
114 
115 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
116 
117 #define NB_SOCKETS 8
118 
119 /* Configure how many packets ahead to prefetch, when reading packets */
120 #define PREFETCH_OFFSET	3
121 
122 /*
123  * Configurable number of RX/TX ring descriptors
124  */
125 #define RTE_TEST_RX_DESC_DEFAULT 1024
126 #define RTE_TEST_TX_DESC_DEFAULT 1024
127 
128 /*
129  * These two thresholds were decided on by running the training algorithm on
130  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
131  * for the med_threshold and high_threshold parameters on the command line.
132  */
133 #define EMPTY_POLL_MED_THRESHOLD 350000UL
134 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
135 
136 #define NUM_TELSTATS RTE_DIM(telstats_strings)
137 
138 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
139 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
140 
141 /* ethernet addresses of ports */
142 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
143 
144 /* ethernet addresses of ports */
145 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
146 
147 /* mask of enabled ports */
148 static uint32_t enabled_port_mask = 0;
149 /* Ports set in promiscuous mode off by default. */
150 static int promiscuous_on = 0;
151 /* NUMA is enabled by default. */
152 static int numa_on = 1;
153 static bool empty_poll_stop;
154 static bool empty_poll_train;
155 volatile bool quit_signal;
156 static struct  ep_params *ep_params;
157 static struct  ep_policy policy;
158 static long  ep_med_edpi, ep_hgh_edpi;
159 /* timer to update telemetry every 500ms */
160 static struct rte_timer telemetry_timer;
161 
162 /* stats index returned by metrics lib */
163 int telstats_index;
164 
165 struct telstats_name {
166 	char name[RTE_ETH_XSTATS_NAME_SIZE];
167 };
168 
169 /* telemetry stats to be reported */
170 const struct telstats_name telstats_strings[] = {
171 	{"empty_poll"},
172 	{"full_poll"},
173 	{"busy_percent"}
174 };
175 
176 /* core busyness in percentage */
177 enum busy_rate {
178 	ZERO = 0,
179 	PARTIAL = 50,
180 	FULL = 100
181 };
182 
183 /* reference poll count to measure core busyness */
184 #define DEFAULT_COUNT 10000
185 /*
186  * reference CYCLES to be used to
187  * measure core busyness based on poll count
188  */
189 #define MIN_CYCLES  1500000ULL
190 #define MAX_CYCLES 22000000ULL
191 
192 /* (500ms) */
193 #define TELEMETRY_INTERVALS_PER_SEC 2
194 
195 static int parse_ptype; /**< Parse packet type using rx callback, and */
196 			/**< disabled by default */
197 
198 enum appmode {
199 	APP_MODE_DEFAULT = 0,
200 	APP_MODE_LEGACY,
201 	APP_MODE_EMPTY_POLL,
202 	APP_MODE_TELEMETRY,
203 	APP_MODE_INTERRUPT,
204 	APP_MODE_PMD_MGMT
205 };
206 
207 enum appmode app_mode;
208 
209 static enum rte_power_pmd_mgmt_type pmgmt_type;
210 
211 enum freq_scale_hint_t
212 {
213 	FREQ_LOWER    =      -1,
214 	FREQ_CURRENT  =       0,
215 	FREQ_HIGHER   =       1,
216 	FREQ_HIGHEST  =       2
217 };
218 
219 struct lcore_rx_queue {
220 	uint16_t port_id;
221 	uint8_t queue_id;
222 	enum freq_scale_hint_t freq_up_hint;
223 	uint32_t zero_rx_packet_count;
224 	uint32_t idle_hint;
225 } __rte_cache_aligned;
226 
227 #define MAX_RX_QUEUE_PER_LCORE 16
228 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
229 #define MAX_RX_QUEUE_PER_PORT 128
230 
231 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
232 
233 
234 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
235 static struct lcore_params lcore_params_array_default[] = {
236 	{0, 0, 2},
237 	{0, 1, 2},
238 	{0, 2, 2},
239 	{1, 0, 2},
240 	{1, 1, 2},
241 	{1, 2, 2},
242 	{2, 0, 2},
243 	{3, 0, 3},
244 	{3, 1, 3},
245 };
246 
247 struct lcore_params *lcore_params = lcore_params_array_default;
248 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
249 
250 static struct rte_eth_conf port_conf = {
251 	.rxmode = {
252 		.mq_mode        = ETH_MQ_RX_RSS,
253 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
254 		.split_hdr_size = 0,
255 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
256 	},
257 	.rx_adv_conf = {
258 		.rss_conf = {
259 			.rss_key = NULL,
260 			.rss_hf = ETH_RSS_UDP,
261 		},
262 	},
263 	.txmode = {
264 		.mq_mode = ETH_MQ_TX_NONE,
265 	}
266 };
267 
268 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
269 
270 
271 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
272 
273 #ifdef RTE_ARCH_X86
274 #include <rte_hash_crc.h>
275 #define DEFAULT_HASH_FUNC       rte_hash_crc
276 #else
277 #include <rte_jhash.h>
278 #define DEFAULT_HASH_FUNC       rte_jhash
279 #endif
280 
281 struct ipv4_5tuple {
282 	uint32_t ip_dst;
283 	uint32_t ip_src;
284 	uint16_t port_dst;
285 	uint16_t port_src;
286 	uint8_t  proto;
287 } __rte_packed;
288 
289 struct ipv6_5tuple {
290 	uint8_t  ip_dst[IPV6_ADDR_LEN];
291 	uint8_t  ip_src[IPV6_ADDR_LEN];
292 	uint16_t port_dst;
293 	uint16_t port_src;
294 	uint8_t  proto;
295 } __rte_packed;
296 
297 struct ipv4_l3fwd_route {
298 	struct ipv4_5tuple key;
299 	uint8_t if_out;
300 };
301 
302 struct ipv6_l3fwd_route {
303 	struct ipv6_5tuple key;
304 	uint8_t if_out;
305 };
306 
307 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
308 	{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
309 	{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
310 	{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
311 	{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
312 };
313 
314 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
315 	{
316 		{
317 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
318 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
319 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
320 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
321 			 1, 10, IPPROTO_UDP
322 		}, 4
323 	},
324 };
325 
326 typedef struct rte_hash lookup_struct_t;
327 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
328 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
329 
330 #define L3FWD_HASH_ENTRIES	1024
331 
332 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
333 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
334 #endif
335 
336 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
337 struct ipv4_l3fwd_route {
338 	uint32_t ip;
339 	uint8_t  depth;
340 	uint8_t  if_out;
341 };
342 
343 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
344 	{RTE_IPV4(1,1,1,0), 24, 0},
345 	{RTE_IPV4(2,1,1,0), 24, 1},
346 	{RTE_IPV4(3,1,1,0), 24, 2},
347 	{RTE_IPV4(4,1,1,0), 24, 3},
348 	{RTE_IPV4(5,1,1,0), 24, 4},
349 	{RTE_IPV4(6,1,1,0), 24, 5},
350 	{RTE_IPV4(7,1,1,0), 24, 6},
351 	{RTE_IPV4(8,1,1,0), 24, 7},
352 };
353 
354 #define IPV4_L3FWD_LPM_MAX_RULES     1024
355 
356 typedef struct rte_lpm lookup_struct_t;
357 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
358 #endif
359 
360 struct lcore_conf {
361 	uint16_t n_rx_queue;
362 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
363 	uint16_t n_tx_port;
364 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
365 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
366 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
367 	lookup_struct_t * ipv4_lookup_struct;
368 	lookup_struct_t * ipv6_lookup_struct;
369 } __rte_cache_aligned;
370 
371 struct lcore_stats {
372 	/* total sleep time in ms since last frequency scaling down */
373 	uint32_t sleep_time;
374 	/* number of long sleep recently */
375 	uint32_t nb_long_sleep;
376 	/* freq. scaling up trend */
377 	uint32_t trend;
378 	/* total packet processed recently */
379 	uint64_t nb_rx_processed;
380 	/* total iterations looped recently */
381 	uint64_t nb_iteration_looped;
382 	/*
383 	 * Represents empty and non empty polls
384 	 * of rte_eth_rx_burst();
385 	 * ep_nep[0] holds non empty polls
386 	 * i.e. 0 < nb_rx <= MAX_BURST
387 	 * ep_nep[1] holds empty polls.
388 	 * i.e. nb_rx == 0
389 	 */
390 	uint64_t ep_nep[2];
391 	/*
392 	 * Represents full and empty+partial
393 	 * polls of rte_eth_rx_burst();
394 	 * ep_nep[0] holds empty+partial polls.
395 	 * i.e. 0 <= nb_rx < MAX_BURST
396 	 * ep_nep[1] holds full polls
397 	 * i.e. nb_rx == MAX_BURST
398 	 */
399 	uint64_t fp_nfp[2];
400 	enum busy_rate br;
401 	rte_spinlock_t telemetry_lock;
402 } __rte_cache_aligned;
403 
404 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
405 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
406 static struct rte_timer power_timers[RTE_MAX_LCORE];
407 
408 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
409 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
410 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
411 
412 
413 /*
414  * These defaults are using the max frequency index (1), a medium index (9)
415  * and a typical low frequency index (14). These can be adjusted to use
416  * different indexes using the relevant command line parameters.
417  */
418 static uint8_t  freq_tlb[] = {14, 9, 1};
419 
420 static int is_done(void)
421 {
422 	return quit_signal;
423 }
424 
425 /* exit signal handler */
426 static void
427 signal_exit_now(int sigtype)
428 {
429 
430 	if (sigtype == SIGINT)
431 		quit_signal = true;
432 
433 }
434 
435 /*  Freqency scale down timer callback */
436 static void
437 power_timer_cb(__rte_unused struct rte_timer *tim,
438 			  __rte_unused void *arg)
439 {
440 	uint64_t hz;
441 	float sleep_time_ratio;
442 	unsigned lcore_id = rte_lcore_id();
443 
444 	/* accumulate total execution time in us when callback is invoked */
445 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
446 					(float)SCALING_PERIOD;
447 	/**
448 	 * check whether need to scale down frequency a step if it sleep a lot.
449 	 */
450 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
451 		if (rte_power_freq_down)
452 			rte_power_freq_down(lcore_id);
453 	}
454 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
455 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
456 		/**
457 		 * scale down a step if average packet per iteration less
458 		 * than expectation.
459 		 */
460 		if (rte_power_freq_down)
461 			rte_power_freq_down(lcore_id);
462 	}
463 
464 	/**
465 	 * initialize another timer according to current frequency to ensure
466 	 * timer interval is relatively fixed.
467 	 */
468 	hz = rte_get_timer_hz();
469 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
470 				SINGLE, lcore_id, power_timer_cb, NULL);
471 
472 	stats[lcore_id].nb_rx_processed = 0;
473 	stats[lcore_id].nb_iteration_looped = 0;
474 
475 	stats[lcore_id].sleep_time = 0;
476 }
477 
478 /* Enqueue a single packet, and send burst if queue is filled */
479 static inline int
480 send_single_packet(struct rte_mbuf *m, uint16_t port)
481 {
482 	uint32_t lcore_id;
483 	struct lcore_conf *qconf;
484 
485 	lcore_id = rte_lcore_id();
486 	qconf = &lcore_conf[lcore_id];
487 
488 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
489 			qconf->tx_buffer[port], m);
490 
491 	return 0;
492 }
493 
494 #ifdef DO_RFC_1812_CHECKS
495 static inline int
496 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
497 {
498 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
499 	/*
500 	 * 1. The packet length reported by the Link Layer must be large
501 	 * enough to hold the minimum length legal IP datagram (20 bytes).
502 	 */
503 	if (link_len < sizeof(struct rte_ipv4_hdr))
504 		return -1;
505 
506 	/* 2. The IP checksum must be correct. */
507 	/* this is checked in H/W */
508 
509 	/*
510 	 * 3. The IP version number must be 4. If the version number is not 4
511 	 * then the packet may be another version of IP, such as IPng or
512 	 * ST-II.
513 	 */
514 	if (((pkt->version_ihl) >> 4) != 4)
515 		return -3;
516 	/*
517 	 * 4. The IP header length field must be large enough to hold the
518 	 * minimum length legal IP datagram (20 bytes = 5 words).
519 	 */
520 	if ((pkt->version_ihl & 0xf) < 5)
521 		return -4;
522 
523 	/*
524 	 * 5. The IP total length field must be large enough to hold the IP
525 	 * datagram header, whose length is specified in the IP header length
526 	 * field.
527 	 */
528 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
529 		return -5;
530 
531 	return 0;
532 }
533 #endif
534 
535 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
536 static void
537 print_ipv4_key(struct ipv4_5tuple key)
538 {
539 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
540 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
541 				key.port_dst, key.port_src, key.proto);
542 }
543 static void
544 print_ipv6_key(struct ipv6_5tuple key)
545 {
546 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
547 	        "port dst = %d, port src = %d, proto = %d\n",
548 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
549 	        key.port_dst, key.port_src, key.proto);
550 }
551 
552 static inline uint16_t
553 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
554 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
555 {
556 	struct ipv4_5tuple key;
557 	struct rte_tcp_hdr *tcp;
558 	struct rte_udp_hdr *udp;
559 	int ret = 0;
560 
561 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
562 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
563 	key.proto = ipv4_hdr->next_proto_id;
564 
565 	switch (ipv4_hdr->next_proto_id) {
566 	case IPPROTO_TCP:
567 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
568 					sizeof(struct rte_ipv4_hdr));
569 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
570 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
571 		break;
572 
573 	case IPPROTO_UDP:
574 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
575 					sizeof(struct rte_ipv4_hdr));
576 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
577 		key.port_src = rte_be_to_cpu_16(udp->src_port);
578 		break;
579 
580 	default:
581 		key.port_dst = 0;
582 		key.port_src = 0;
583 		break;
584 	}
585 
586 	/* Find destination port */
587 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
588 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
589 }
590 
591 static inline uint16_t
592 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
593 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
594 {
595 	struct ipv6_5tuple key;
596 	struct rte_tcp_hdr *tcp;
597 	struct rte_udp_hdr *udp;
598 	int ret = 0;
599 
600 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
601 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
602 
603 	key.proto = ipv6_hdr->proto;
604 
605 	switch (ipv6_hdr->proto) {
606 	case IPPROTO_TCP:
607 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
608 					sizeof(struct rte_ipv6_hdr));
609 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
610 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
611 		break;
612 
613 	case IPPROTO_UDP:
614 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
615 					sizeof(struct rte_ipv6_hdr));
616 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
617 		key.port_src = rte_be_to_cpu_16(udp->src_port);
618 		break;
619 
620 	default:
621 		key.port_dst = 0;
622 		key.port_src = 0;
623 		break;
624 	}
625 
626 	/* Find destination port */
627 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
628 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
629 }
630 #endif
631 
632 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
633 static inline uint16_t
634 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
635 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
636 {
637 	uint32_t next_hop;
638 
639 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
640 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
641 			next_hop : portid);
642 }
643 #endif
644 
645 static inline void
646 parse_ptype_one(struct rte_mbuf *m)
647 {
648 	struct rte_ether_hdr *eth_hdr;
649 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
650 	uint16_t ether_type;
651 
652 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
653 	ether_type = eth_hdr->ether_type;
654 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
655 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
656 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
657 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
658 
659 	m->packet_type = packet_type;
660 }
661 
662 static uint16_t
663 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
664 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
665 	       uint16_t max_pkts __rte_unused,
666 	       void *user_param __rte_unused)
667 {
668 	unsigned int i;
669 
670 	for (i = 0; i < nb_pkts; ++i)
671 		parse_ptype_one(pkts[i]);
672 
673 	return nb_pkts;
674 }
675 
676 static int
677 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
678 {
679 	printf("Port %d: softly parse packet type info\n", portid);
680 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
681 		return 0;
682 
683 	printf("Failed to add rx callback: port=%d\n", portid);
684 	return -1;
685 }
686 
687 static inline void
688 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
689 				struct lcore_conf *qconf)
690 {
691 	struct rte_ether_hdr *eth_hdr;
692 	struct rte_ipv4_hdr *ipv4_hdr;
693 	void *d_addr_bytes;
694 	uint16_t dst_port;
695 
696 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
697 
698 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
699 		/* Handle IPv4 headers.*/
700 		ipv4_hdr =
701 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
702 						sizeof(struct rte_ether_hdr));
703 
704 #ifdef DO_RFC_1812_CHECKS
705 		/* Check to make sure the packet is valid (RFC1812) */
706 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
707 			rte_pktmbuf_free(m);
708 			return;
709 		}
710 #endif
711 
712 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
713 					qconf->ipv4_lookup_struct);
714 		if (dst_port >= RTE_MAX_ETHPORTS ||
715 				(enabled_port_mask & 1 << dst_port) == 0)
716 			dst_port = portid;
717 
718 		/* 02:00:00:00:00:xx */
719 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
720 		*((uint64_t *)d_addr_bytes) =
721 			0x000000000002 + ((uint64_t)dst_port << 40);
722 
723 #ifdef DO_RFC_1812_CHECKS
724 		/* Update time to live and header checksum */
725 		--(ipv4_hdr->time_to_live);
726 		++(ipv4_hdr->hdr_checksum);
727 #endif
728 
729 		/* src addr */
730 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
731 				&eth_hdr->s_addr);
732 
733 		send_single_packet(m, dst_port);
734 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
735 		/* Handle IPv6 headers.*/
736 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
737 		struct rte_ipv6_hdr *ipv6_hdr;
738 
739 		ipv6_hdr =
740 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
741 						sizeof(struct rte_ether_hdr));
742 
743 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
744 					qconf->ipv6_lookup_struct);
745 
746 		if (dst_port >= RTE_MAX_ETHPORTS ||
747 				(enabled_port_mask & 1 << dst_port) == 0)
748 			dst_port = portid;
749 
750 		/* 02:00:00:00:00:xx */
751 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
752 		*((uint64_t *)d_addr_bytes) =
753 			0x000000000002 + ((uint64_t)dst_port << 40);
754 
755 		/* src addr */
756 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
757 				&eth_hdr->s_addr);
758 
759 		send_single_packet(m, dst_port);
760 #else
761 		/* We don't currently handle IPv6 packets in LPM mode. */
762 		rte_pktmbuf_free(m);
763 #endif
764 	} else
765 		rte_pktmbuf_free(m);
766 
767 }
768 
769 #define MINIMUM_SLEEP_TIME         1
770 #define SUSPEND_THRESHOLD          300
771 
772 static inline uint32_t
773 power_idle_heuristic(uint32_t zero_rx_packet_count)
774 {
775 	/* If zero count is less than 100,  sleep 1us */
776 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
777 		return MINIMUM_SLEEP_TIME;
778 	/* If zero count is less than 1000, sleep 100 us which is the
779 		minimum latency switching from C3/C6 to C0
780 	*/
781 	else
782 		return SUSPEND_THRESHOLD;
783 }
784 
785 static inline enum freq_scale_hint_t
786 power_freq_scaleup_heuristic(unsigned lcore_id,
787 			     uint16_t port_id,
788 			     uint16_t queue_id)
789 {
790 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
791 /**
792  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
793  * per iteration
794  */
795 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
796 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
797 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
798 #define FREQ_UP_TREND1_ACC   1
799 #define FREQ_UP_TREND2_ACC   100
800 #define FREQ_UP_THRESHOLD    10000
801 
802 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
803 		stats[lcore_id].trend = 0;
804 		return FREQ_HIGHEST;
805 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
806 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
807 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
808 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
809 
810 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
811 		stats[lcore_id].trend = 0;
812 		return FREQ_HIGHER;
813 	}
814 
815 	return FREQ_CURRENT;
816 }
817 
818 /**
819  * force polling thread sleep until one-shot rx interrupt triggers
820  * @param port_id
821  *  Port id.
822  * @param queue_id
823  *  Rx queue id.
824  * @return
825  *  0 on success
826  */
827 static int
828 sleep_until_rx_interrupt(int num, int lcore)
829 {
830 	/*
831 	 * we want to track when we are woken up by traffic so that we can go
832 	 * back to sleep again without log spamming. Avoid cache line sharing
833 	 * to prevent threads stepping on each others' toes.
834 	 */
835 	static struct {
836 		bool wakeup;
837 	} __rte_cache_aligned status[RTE_MAX_LCORE];
838 	struct rte_epoll_event event[num];
839 	int n, i;
840 	uint16_t port_id;
841 	uint8_t queue_id;
842 	void *data;
843 
844 	if (status[lcore].wakeup) {
845 		RTE_LOG(INFO, L3FWD_POWER,
846 				"lcore %u sleeps until interrupt triggers\n",
847 				rte_lcore_id());
848 	}
849 
850 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
851 	for (i = 0; i < n; i++) {
852 		data = event[i].epdata.data;
853 		port_id = ((uintptr_t)data) >> CHAR_BIT;
854 		queue_id = ((uintptr_t)data) &
855 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
856 		RTE_LOG(INFO, L3FWD_POWER,
857 			"lcore %u is waked up from rx interrupt on"
858 			" port %d queue %d\n",
859 			rte_lcore_id(), port_id, queue_id);
860 	}
861 	status[lcore].wakeup = n != 0;
862 
863 	return 0;
864 }
865 
866 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
867 {
868 	int i;
869 	struct lcore_rx_queue *rx_queue;
870 	uint8_t queue_id;
871 	uint16_t port_id;
872 
873 	for (i = 0; i < qconf->n_rx_queue; ++i) {
874 		rx_queue = &(qconf->rx_queue_list[i]);
875 		port_id = rx_queue->port_id;
876 		queue_id = rx_queue->queue_id;
877 
878 		rte_spinlock_lock(&(locks[port_id]));
879 		if (on)
880 			rte_eth_dev_rx_intr_enable(port_id, queue_id);
881 		else
882 			rte_eth_dev_rx_intr_disable(port_id, queue_id);
883 		rte_spinlock_unlock(&(locks[port_id]));
884 	}
885 }
886 
887 static int event_register(struct lcore_conf *qconf)
888 {
889 	struct lcore_rx_queue *rx_queue;
890 	uint8_t queueid;
891 	uint16_t portid;
892 	uint32_t data;
893 	int ret;
894 	int i;
895 
896 	for (i = 0; i < qconf->n_rx_queue; ++i) {
897 		rx_queue = &(qconf->rx_queue_list[i]);
898 		portid = rx_queue->port_id;
899 		queueid = rx_queue->queue_id;
900 		data = portid << CHAR_BIT | queueid;
901 
902 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
903 						RTE_EPOLL_PER_THREAD,
904 						RTE_INTR_EVENT_ADD,
905 						(void *)((uintptr_t)data));
906 		if (ret)
907 			return ret;
908 	}
909 
910 	return 0;
911 }
912 
913 /* main processing loop */
914 static int main_intr_loop(__rte_unused void *dummy)
915 {
916 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
917 	unsigned int lcore_id;
918 	uint64_t prev_tsc, diff_tsc, cur_tsc;
919 	int i, j, nb_rx;
920 	uint8_t queueid;
921 	uint16_t portid;
922 	struct lcore_conf *qconf;
923 	struct lcore_rx_queue *rx_queue;
924 	uint32_t lcore_rx_idle_count = 0;
925 	uint32_t lcore_idle_hint = 0;
926 	int intr_en = 0;
927 
928 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
929 				   US_PER_S * BURST_TX_DRAIN_US;
930 
931 	prev_tsc = 0;
932 
933 	lcore_id = rte_lcore_id();
934 	qconf = &lcore_conf[lcore_id];
935 
936 	if (qconf->n_rx_queue == 0) {
937 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
938 				lcore_id);
939 		return 0;
940 	}
941 
942 	RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
943 			lcore_id);
944 
945 	for (i = 0; i < qconf->n_rx_queue; i++) {
946 		portid = qconf->rx_queue_list[i].port_id;
947 		queueid = qconf->rx_queue_list[i].queue_id;
948 		RTE_LOG(INFO, L3FWD_POWER,
949 				" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
950 				lcore_id, portid, queueid);
951 	}
952 
953 	/* add into event wait list */
954 	if (event_register(qconf) == 0)
955 		intr_en = 1;
956 	else
957 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
958 
959 	while (!is_done()) {
960 		stats[lcore_id].nb_iteration_looped++;
961 
962 		cur_tsc = rte_rdtsc();
963 
964 		/*
965 		 * TX burst queue drain
966 		 */
967 		diff_tsc = cur_tsc - prev_tsc;
968 		if (unlikely(diff_tsc > drain_tsc)) {
969 			for (i = 0; i < qconf->n_tx_port; ++i) {
970 				portid = qconf->tx_port_id[i];
971 				rte_eth_tx_buffer_flush(portid,
972 						qconf->tx_queue_id[portid],
973 						qconf->tx_buffer[portid]);
974 			}
975 			prev_tsc = cur_tsc;
976 		}
977 
978 start_rx:
979 		/*
980 		 * Read packet from RX queues
981 		 */
982 		lcore_rx_idle_count = 0;
983 		for (i = 0; i < qconf->n_rx_queue; ++i) {
984 			rx_queue = &(qconf->rx_queue_list[i]);
985 			rx_queue->idle_hint = 0;
986 			portid = rx_queue->port_id;
987 			queueid = rx_queue->queue_id;
988 
989 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
990 					MAX_PKT_BURST);
991 
992 			stats[lcore_id].nb_rx_processed += nb_rx;
993 			if (unlikely(nb_rx == 0)) {
994 				/**
995 				 * no packet received from rx queue, try to
996 				 * sleep for a while forcing CPU enter deeper
997 				 * C states.
998 				 */
999 				rx_queue->zero_rx_packet_count++;
1000 
1001 				if (rx_queue->zero_rx_packet_count <=
1002 						MIN_ZERO_POLL_COUNT)
1003 					continue;
1004 
1005 				rx_queue->idle_hint = power_idle_heuristic(
1006 						rx_queue->zero_rx_packet_count);
1007 				lcore_rx_idle_count++;
1008 			} else {
1009 				rx_queue->zero_rx_packet_count = 0;
1010 			}
1011 
1012 			/* Prefetch first packets */
1013 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1014 				rte_prefetch0(rte_pktmbuf_mtod(
1015 						pkts_burst[j], void *));
1016 			}
1017 
1018 			/* Prefetch and forward already prefetched packets */
1019 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1020 				rte_prefetch0(rte_pktmbuf_mtod(
1021 						pkts_burst[j + PREFETCH_OFFSET],
1022 						void *));
1023 				l3fwd_simple_forward(
1024 						pkts_burst[j], portid, qconf);
1025 			}
1026 
1027 			/* Forward remaining prefetched packets */
1028 			for (; j < nb_rx; j++) {
1029 				l3fwd_simple_forward(
1030 						pkts_burst[j], portid, qconf);
1031 			}
1032 		}
1033 
1034 		if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1035 			/**
1036 			 * All Rx queues empty in recent consecutive polls,
1037 			 * sleep in a conservative manner, meaning sleep as
1038 			 * less as possible.
1039 			 */
1040 			for (i = 1,
1041 			    lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1042 					i < qconf->n_rx_queue; ++i) {
1043 				rx_queue = &(qconf->rx_queue_list[i]);
1044 				if (rx_queue->idle_hint < lcore_idle_hint)
1045 					lcore_idle_hint = rx_queue->idle_hint;
1046 			}
1047 
1048 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1049 				/**
1050 				 * execute "pause" instruction to avoid context
1051 				 * switch which generally take hundred of
1052 				 * microseconds for short sleep.
1053 				 */
1054 				rte_delay_us(lcore_idle_hint);
1055 			else {
1056 				/* suspend until rx interrupt triggers */
1057 				if (intr_en) {
1058 					turn_on_off_intr(qconf, 1);
1059 					sleep_until_rx_interrupt(
1060 							qconf->n_rx_queue,
1061 							lcore_id);
1062 					turn_on_off_intr(qconf, 0);
1063 					/**
1064 					 * start receiving packets immediately
1065 					 */
1066 					if (likely(!is_done()))
1067 						goto start_rx;
1068 				}
1069 			}
1070 			stats[lcore_id].sleep_time += lcore_idle_hint;
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /* main processing loop */
1078 static int
1079 main_telemetry_loop(__rte_unused void *dummy)
1080 {
1081 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1082 	unsigned int lcore_id;
1083 	uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1084 	int i, j, nb_rx;
1085 	uint8_t queueid;
1086 	uint16_t portid;
1087 	struct lcore_conf *qconf;
1088 	struct lcore_rx_queue *rx_queue;
1089 	uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1090 	uint64_t poll_count;
1091 	enum busy_rate br;
1092 
1093 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1094 					US_PER_S * BURST_TX_DRAIN_US;
1095 
1096 	poll_count = 0;
1097 	prev_tsc = 0;
1098 	prev_tel_tsc = 0;
1099 
1100 	lcore_id = rte_lcore_id();
1101 	qconf = &lcore_conf[lcore_id];
1102 
1103 	if (qconf->n_rx_queue == 0) {
1104 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1105 			lcore_id);
1106 		return 0;
1107 	}
1108 
1109 	RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1110 		lcore_id);
1111 
1112 	for (i = 0; i < qconf->n_rx_queue; i++) {
1113 		portid = qconf->rx_queue_list[i].port_id;
1114 		queueid = qconf->rx_queue_list[i].queue_id;
1115 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1116 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1117 	}
1118 
1119 	while (!is_done()) {
1120 
1121 		cur_tsc = rte_rdtsc();
1122 		/*
1123 		 * TX burst queue drain
1124 		 */
1125 		diff_tsc = cur_tsc - prev_tsc;
1126 		if (unlikely(diff_tsc > drain_tsc)) {
1127 			for (i = 0; i < qconf->n_tx_port; ++i) {
1128 				portid = qconf->tx_port_id[i];
1129 				rte_eth_tx_buffer_flush(portid,
1130 						qconf->tx_queue_id[portid],
1131 						qconf->tx_buffer[portid]);
1132 			}
1133 			prev_tsc = cur_tsc;
1134 		}
1135 
1136 		/*
1137 		 * Read packet from RX queues
1138 		 */
1139 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1140 			rx_queue = &(qconf->rx_queue_list[i]);
1141 			portid = rx_queue->port_id;
1142 			queueid = rx_queue->queue_id;
1143 
1144 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1145 								MAX_PKT_BURST);
1146 			ep_nep[nb_rx == 0]++;
1147 			fp_nfp[nb_rx == MAX_PKT_BURST]++;
1148 			poll_count++;
1149 			if (unlikely(nb_rx == 0))
1150 				continue;
1151 
1152 			/* Prefetch first packets */
1153 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1154 				rte_prefetch0(rte_pktmbuf_mtod(
1155 						pkts_burst[j], void *));
1156 			}
1157 
1158 			/* Prefetch and forward already prefetched packets */
1159 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1160 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1161 						j + PREFETCH_OFFSET], void *));
1162 				l3fwd_simple_forward(pkts_burst[j], portid,
1163 								qconf);
1164 			}
1165 
1166 			/* Forward remaining prefetched packets */
1167 			for (; j < nb_rx; j++) {
1168 				l3fwd_simple_forward(pkts_burst[j], portid,
1169 								qconf);
1170 			}
1171 		}
1172 		if (unlikely(poll_count >= DEFAULT_COUNT)) {
1173 			diff_tsc = cur_tsc - prev_tel_tsc;
1174 			if (diff_tsc >= MAX_CYCLES) {
1175 				br = FULL;
1176 			} else if (diff_tsc > MIN_CYCLES &&
1177 					diff_tsc < MAX_CYCLES) {
1178 				br = (diff_tsc * 100) / MAX_CYCLES;
1179 			} else {
1180 				br = ZERO;
1181 			}
1182 			poll_count = 0;
1183 			prev_tel_tsc = cur_tsc;
1184 			/* update stats for telemetry */
1185 			rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1186 			stats[lcore_id].ep_nep[0] = ep_nep[0];
1187 			stats[lcore_id].ep_nep[1] = ep_nep[1];
1188 			stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1189 			stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1190 			stats[lcore_id].br = br;
1191 			rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1192 		}
1193 	}
1194 
1195 	return 0;
1196 }
1197 /* main processing loop */
1198 static int
1199 main_empty_poll_loop(__rte_unused void *dummy)
1200 {
1201 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1202 	unsigned int lcore_id;
1203 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1204 	int i, j, nb_rx;
1205 	uint8_t queueid;
1206 	uint16_t portid;
1207 	struct lcore_conf *qconf;
1208 	struct lcore_rx_queue *rx_queue;
1209 
1210 	const uint64_t drain_tsc =
1211 		(rte_get_tsc_hz() + US_PER_S - 1) /
1212 		US_PER_S * BURST_TX_DRAIN_US;
1213 
1214 	prev_tsc = 0;
1215 
1216 	lcore_id = rte_lcore_id();
1217 	qconf = &lcore_conf[lcore_id];
1218 
1219 	if (qconf->n_rx_queue == 0) {
1220 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1221 			lcore_id);
1222 		return 0;
1223 	}
1224 
1225 	for (i = 0; i < qconf->n_rx_queue; i++) {
1226 		portid = qconf->rx_queue_list[i].port_id;
1227 		queueid = qconf->rx_queue_list[i].queue_id;
1228 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1229 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1230 	}
1231 
1232 	while (!is_done()) {
1233 		stats[lcore_id].nb_iteration_looped++;
1234 
1235 		cur_tsc = rte_rdtsc();
1236 		/*
1237 		 * TX burst queue drain
1238 		 */
1239 		diff_tsc = cur_tsc - prev_tsc;
1240 		if (unlikely(diff_tsc > drain_tsc)) {
1241 			for (i = 0; i < qconf->n_tx_port; ++i) {
1242 				portid = qconf->tx_port_id[i];
1243 				rte_eth_tx_buffer_flush(portid,
1244 						qconf->tx_queue_id[portid],
1245 						qconf->tx_buffer[portid]);
1246 			}
1247 			prev_tsc = cur_tsc;
1248 		}
1249 
1250 		/*
1251 		 * Read packet from RX queues
1252 		 */
1253 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1254 			rx_queue = &(qconf->rx_queue_list[i]);
1255 			rx_queue->idle_hint = 0;
1256 			portid = rx_queue->port_id;
1257 			queueid = rx_queue->queue_id;
1258 
1259 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1260 					MAX_PKT_BURST);
1261 
1262 			stats[lcore_id].nb_rx_processed += nb_rx;
1263 
1264 			if (nb_rx == 0) {
1265 
1266 				rte_power_empty_poll_stat_update(lcore_id);
1267 
1268 				continue;
1269 			} else {
1270 				rte_power_poll_stat_update(lcore_id, nb_rx);
1271 			}
1272 
1273 
1274 			/* Prefetch first packets */
1275 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1276 				rte_prefetch0(rte_pktmbuf_mtod(
1277 							pkts_burst[j], void *));
1278 			}
1279 
1280 			/* Prefetch and forward already prefetched packets */
1281 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1282 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1283 							j + PREFETCH_OFFSET],
1284 							void *));
1285 				l3fwd_simple_forward(pkts_burst[j], portid,
1286 						qconf);
1287 			}
1288 
1289 			/* Forward remaining prefetched packets */
1290 			for (; j < nb_rx; j++) {
1291 				l3fwd_simple_forward(pkts_burst[j], portid,
1292 						qconf);
1293 			}
1294 
1295 		}
1296 
1297 	}
1298 
1299 	return 0;
1300 }
1301 /* main processing loop */
1302 static int
1303 main_legacy_loop(__rte_unused void *dummy)
1304 {
1305 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1306 	unsigned lcore_id;
1307 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1308 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1309 	int i, j, nb_rx;
1310 	uint8_t queueid;
1311 	uint16_t portid;
1312 	struct lcore_conf *qconf;
1313 	struct lcore_rx_queue *rx_queue;
1314 	enum freq_scale_hint_t lcore_scaleup_hint;
1315 	uint32_t lcore_rx_idle_count = 0;
1316 	uint32_t lcore_idle_hint = 0;
1317 	int intr_en = 0;
1318 
1319 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1320 
1321 	prev_tsc = 0;
1322 	hz = rte_get_timer_hz();
1323 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1324 
1325 	lcore_id = rte_lcore_id();
1326 	qconf = &lcore_conf[lcore_id];
1327 
1328 	if (qconf->n_rx_queue == 0) {
1329 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1330 		return 0;
1331 	}
1332 
1333 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1334 
1335 	for (i = 0; i < qconf->n_rx_queue; i++) {
1336 		portid = qconf->rx_queue_list[i].port_id;
1337 		queueid = qconf->rx_queue_list[i].queue_id;
1338 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1339 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1340 	}
1341 
1342 	/* add into event wait list */
1343 	if (event_register(qconf) == 0)
1344 		intr_en = 1;
1345 	else
1346 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1347 
1348 	while (!is_done()) {
1349 		stats[lcore_id].nb_iteration_looped++;
1350 
1351 		cur_tsc = rte_rdtsc();
1352 		cur_tsc_power = cur_tsc;
1353 
1354 		/*
1355 		 * TX burst queue drain
1356 		 */
1357 		diff_tsc = cur_tsc - prev_tsc;
1358 		if (unlikely(diff_tsc > drain_tsc)) {
1359 			for (i = 0; i < qconf->n_tx_port; ++i) {
1360 				portid = qconf->tx_port_id[i];
1361 				rte_eth_tx_buffer_flush(portid,
1362 						qconf->tx_queue_id[portid],
1363 						qconf->tx_buffer[portid]);
1364 			}
1365 			prev_tsc = cur_tsc;
1366 		}
1367 
1368 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1369 		if (diff_tsc_power > tim_res_tsc) {
1370 			rte_timer_manage();
1371 			prev_tsc_power = cur_tsc_power;
1372 		}
1373 
1374 start_rx:
1375 		/*
1376 		 * Read packet from RX queues
1377 		 */
1378 		lcore_scaleup_hint = FREQ_CURRENT;
1379 		lcore_rx_idle_count = 0;
1380 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1381 			rx_queue = &(qconf->rx_queue_list[i]);
1382 			rx_queue->idle_hint = 0;
1383 			portid = rx_queue->port_id;
1384 			queueid = rx_queue->queue_id;
1385 
1386 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1387 								MAX_PKT_BURST);
1388 
1389 			stats[lcore_id].nb_rx_processed += nb_rx;
1390 			if (unlikely(nb_rx == 0)) {
1391 				/**
1392 				 * no packet received from rx queue, try to
1393 				 * sleep for a while forcing CPU enter deeper
1394 				 * C states.
1395 				 */
1396 				rx_queue->zero_rx_packet_count++;
1397 
1398 				if (rx_queue->zero_rx_packet_count <=
1399 							MIN_ZERO_POLL_COUNT)
1400 					continue;
1401 
1402 				rx_queue->idle_hint = power_idle_heuristic(\
1403 					rx_queue->zero_rx_packet_count);
1404 				lcore_rx_idle_count++;
1405 			} else {
1406 				rx_queue->zero_rx_packet_count = 0;
1407 
1408 				/**
1409 				 * do not scale up frequency immediately as
1410 				 * user to kernel space communication is costly
1411 				 * which might impact packet I/O for received
1412 				 * packets.
1413 				 */
1414 				rx_queue->freq_up_hint =
1415 					power_freq_scaleup_heuristic(lcore_id,
1416 							portid, queueid);
1417 			}
1418 
1419 			/* Prefetch first packets */
1420 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1421 				rte_prefetch0(rte_pktmbuf_mtod(
1422 						pkts_burst[j], void *));
1423 			}
1424 
1425 			/* Prefetch and forward already prefetched packets */
1426 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1427 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1428 						j + PREFETCH_OFFSET], void *));
1429 				l3fwd_simple_forward(pkts_burst[j], portid,
1430 								qconf);
1431 			}
1432 
1433 			/* Forward remaining prefetched packets */
1434 			for (; j < nb_rx; j++) {
1435 				l3fwd_simple_forward(pkts_burst[j], portid,
1436 								qconf);
1437 			}
1438 		}
1439 
1440 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1441 			for (i = 1, lcore_scaleup_hint =
1442 				qconf->rx_queue_list[0].freq_up_hint;
1443 					i < qconf->n_rx_queue; ++i) {
1444 				rx_queue = &(qconf->rx_queue_list[i]);
1445 				if (rx_queue->freq_up_hint >
1446 						lcore_scaleup_hint)
1447 					lcore_scaleup_hint =
1448 						rx_queue->freq_up_hint;
1449 			}
1450 
1451 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1452 				if (rte_power_freq_max)
1453 					rte_power_freq_max(lcore_id);
1454 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1455 				if (rte_power_freq_up)
1456 					rte_power_freq_up(lcore_id);
1457 			}
1458 		} else {
1459 			/**
1460 			 * All Rx queues empty in recent consecutive polls,
1461 			 * sleep in a conservative manner, meaning sleep as
1462 			 * less as possible.
1463 			 */
1464 			for (i = 1, lcore_idle_hint =
1465 				qconf->rx_queue_list[0].idle_hint;
1466 					i < qconf->n_rx_queue; ++i) {
1467 				rx_queue = &(qconf->rx_queue_list[i]);
1468 				if (rx_queue->idle_hint < lcore_idle_hint)
1469 					lcore_idle_hint = rx_queue->idle_hint;
1470 			}
1471 
1472 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1473 				/**
1474 				 * execute "pause" instruction to avoid context
1475 				 * switch which generally take hundred of
1476 				 * microseconds for short sleep.
1477 				 */
1478 				rte_delay_us(lcore_idle_hint);
1479 			else {
1480 				/* suspend until rx interrupt triggers */
1481 				if (intr_en) {
1482 					turn_on_off_intr(qconf, 1);
1483 					sleep_until_rx_interrupt(
1484 							qconf->n_rx_queue,
1485 							lcore_id);
1486 					turn_on_off_intr(qconf, 0);
1487 					/**
1488 					 * start receiving packets immediately
1489 					 */
1490 					if (likely(!is_done()))
1491 						goto start_rx;
1492 				}
1493 			}
1494 			stats[lcore_id].sleep_time += lcore_idle_hint;
1495 		}
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int
1502 check_lcore_params(void)
1503 {
1504 	uint8_t queue, lcore;
1505 	uint16_t i;
1506 	int socketid;
1507 
1508 	for (i = 0; i < nb_lcore_params; ++i) {
1509 		queue = lcore_params[i].queue_id;
1510 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1511 			printf("invalid queue number: %hhu\n", queue);
1512 			return -1;
1513 		}
1514 		lcore = lcore_params[i].lcore_id;
1515 		if (!rte_lcore_is_enabled(lcore)) {
1516 			printf("error: lcore %hhu is not enabled in lcore "
1517 							"mask\n", lcore);
1518 			return -1;
1519 		}
1520 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1521 							(numa_on == 0)) {
1522 			printf("warning: lcore %hhu is on socket %d with numa "
1523 						"off\n", lcore, socketid);
1524 		}
1525 		if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1526 			printf("cannot enable main core %d in config for telemetry mode\n",
1527 				rte_lcore_id());
1528 			return -1;
1529 		}
1530 	}
1531 	return 0;
1532 }
1533 
1534 static int
1535 check_port_config(void)
1536 {
1537 	unsigned portid;
1538 	uint16_t i;
1539 
1540 	for (i = 0; i < nb_lcore_params; ++i) {
1541 		portid = lcore_params[i].port_id;
1542 		if ((enabled_port_mask & (1 << portid)) == 0) {
1543 			printf("port %u is not enabled in port mask\n",
1544 								portid);
1545 			return -1;
1546 		}
1547 		if (!rte_eth_dev_is_valid_port(portid)) {
1548 			printf("port %u is not present on the board\n",
1549 								portid);
1550 			return -1;
1551 		}
1552 	}
1553 	return 0;
1554 }
1555 
1556 static uint8_t
1557 get_port_n_rx_queues(const uint16_t port)
1558 {
1559 	int queue = -1;
1560 	uint16_t i;
1561 
1562 	for (i = 0; i < nb_lcore_params; ++i) {
1563 		if (lcore_params[i].port_id == port &&
1564 				lcore_params[i].queue_id > queue)
1565 			queue = lcore_params[i].queue_id;
1566 	}
1567 	return (uint8_t)(++queue);
1568 }
1569 
1570 static int
1571 init_lcore_rx_queues(void)
1572 {
1573 	uint16_t i, nb_rx_queue;
1574 	uint8_t lcore;
1575 
1576 	for (i = 0; i < nb_lcore_params; ++i) {
1577 		lcore = lcore_params[i].lcore_id;
1578 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1579 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1580 			printf("error: too many queues (%u) for lcore: %u\n",
1581 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1582 			return -1;
1583 		} else {
1584 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1585 				lcore_params[i].port_id;
1586 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1587 				lcore_params[i].queue_id;
1588 			lcore_conf[lcore].n_rx_queue++;
1589 		}
1590 	}
1591 	return 0;
1592 }
1593 
1594 /* display usage */
1595 static void
1596 print_usage(const char *prgname)
1597 {
1598 	printf ("%s [EAL options] -- -p PORTMASK -P"
1599 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1600 		"  [--high-perf-cores CORELIST"
1601 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1602 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1603 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1604 		"  -P : enable promiscuous mode\n"
1605 		"  --config (port,queue,lcore): rx queues configuration\n"
1606 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1607 		"  --perf-config: similar as config, cores specified as indices"
1608 		" for bins containing high or regular performance cores\n"
1609 		"  --no-numa: optional, disable numa awareness\n"
1610 		"  --enable-jumbo: enable jumbo frame"
1611 		" which max packet len is PKTLEN in decimal (64-9600)\n"
1612 		"  --parse-ptype: parse packet type by software\n"
1613 		"  --legacy: use legacy interrupt-based scaling\n"
1614 		"  --empty-poll: enable empty poll detection"
1615 		" follow (training_flag, high_threshold, med_threshold)\n"
1616 		" --telemetry: enable telemetry mode, to update"
1617 		" empty polls, full polls, and core busyness to telemetry\n"
1618 		" --interrupt-only: enable interrupt-only mode\n"
1619 		" --pmd-mgmt MODE: enable PMD power management mode. "
1620 		"Currently supported modes: monitor, pause, scale\n",
1621 		prgname);
1622 }
1623 
1624 static int parse_max_pkt_len(const char *pktlen)
1625 {
1626 	char *end = NULL;
1627 	unsigned long len;
1628 
1629 	/* parse decimal string */
1630 	len = strtoul(pktlen, &end, 10);
1631 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1632 		return -1;
1633 
1634 	if (len == 0)
1635 		return -1;
1636 
1637 	return len;
1638 }
1639 
1640 static int
1641 parse_portmask(const char *portmask)
1642 {
1643 	char *end = NULL;
1644 	unsigned long pm;
1645 
1646 	/* parse hexadecimal string */
1647 	pm = strtoul(portmask, &end, 16);
1648 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1649 		return 0;
1650 
1651 	return pm;
1652 }
1653 
1654 static int
1655 parse_config(const char *q_arg)
1656 {
1657 	char s[256];
1658 	const char *p, *p0 = q_arg;
1659 	char *end;
1660 	enum fieldnames {
1661 		FLD_PORT = 0,
1662 		FLD_QUEUE,
1663 		FLD_LCORE,
1664 		_NUM_FLD
1665 	};
1666 	unsigned long int_fld[_NUM_FLD];
1667 	char *str_fld[_NUM_FLD];
1668 	int i;
1669 	unsigned size;
1670 
1671 	nb_lcore_params = 0;
1672 
1673 	while ((p = strchr(p0,'(')) != NULL) {
1674 		++p;
1675 		if((p0 = strchr(p,')')) == NULL)
1676 			return -1;
1677 
1678 		size = p0 - p;
1679 		if(size >= sizeof(s))
1680 			return -1;
1681 
1682 		snprintf(s, sizeof(s), "%.*s", size, p);
1683 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1684 								_NUM_FLD)
1685 			return -1;
1686 		for (i = 0; i < _NUM_FLD; i++){
1687 			errno = 0;
1688 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1689 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1690 									255)
1691 				return -1;
1692 		}
1693 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1694 			printf("exceeded max number of lcore params: %hu\n",
1695 				nb_lcore_params);
1696 			return -1;
1697 		}
1698 		lcore_params_array[nb_lcore_params].port_id =
1699 				(uint8_t)int_fld[FLD_PORT];
1700 		lcore_params_array[nb_lcore_params].queue_id =
1701 				(uint8_t)int_fld[FLD_QUEUE];
1702 		lcore_params_array[nb_lcore_params].lcore_id =
1703 				(uint8_t)int_fld[FLD_LCORE];
1704 		++nb_lcore_params;
1705 	}
1706 	lcore_params = lcore_params_array;
1707 
1708 	return 0;
1709 }
1710 
1711 static int
1712 parse_pmd_mgmt_config(const char *name)
1713 {
1714 #define PMD_MGMT_MONITOR "monitor"
1715 #define PMD_MGMT_PAUSE   "pause"
1716 #define PMD_MGMT_SCALE   "scale"
1717 
1718 	if (strncmp(PMD_MGMT_MONITOR, name, sizeof(PMD_MGMT_MONITOR)) == 0) {
1719 		pmgmt_type = RTE_POWER_MGMT_TYPE_MONITOR;
1720 		return 0;
1721 	}
1722 
1723 	if (strncmp(PMD_MGMT_PAUSE, name, sizeof(PMD_MGMT_PAUSE)) == 0) {
1724 		pmgmt_type = RTE_POWER_MGMT_TYPE_PAUSE;
1725 		return 0;
1726 	}
1727 
1728 	if (strncmp(PMD_MGMT_SCALE, name, sizeof(PMD_MGMT_SCALE)) == 0) {
1729 		pmgmt_type = RTE_POWER_MGMT_TYPE_SCALE;
1730 		return 0;
1731 	}
1732 	/* unknown PMD power management mode */
1733 	return -1;
1734 }
1735 
1736 static int
1737 parse_ep_config(const char *q_arg)
1738 {
1739 	char s[256];
1740 	const char *p = q_arg;
1741 	char *end;
1742 	int  num_arg;
1743 
1744 	char *str_fld[3];
1745 
1746 	int training_flag;
1747 	int med_edpi;
1748 	int hgh_edpi;
1749 
1750 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1751 	ep_hgh_edpi = EMPTY_POLL_MED_THRESHOLD;
1752 
1753 	strlcpy(s, p, sizeof(s));
1754 
1755 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1756 
1757 	empty_poll_train = false;
1758 
1759 	if (num_arg == 0)
1760 		return 0;
1761 
1762 	if (num_arg == 3) {
1763 
1764 		training_flag = strtoul(str_fld[0], &end, 0);
1765 		med_edpi = strtoul(str_fld[1], &end, 0);
1766 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1767 
1768 		if (training_flag == 1)
1769 			empty_poll_train = true;
1770 
1771 		if (med_edpi > 0)
1772 			ep_med_edpi = med_edpi;
1773 
1774 		if (med_edpi > 0)
1775 			ep_hgh_edpi = hgh_edpi;
1776 
1777 	} else {
1778 
1779 		return -1;
1780 	}
1781 
1782 	return 0;
1783 
1784 }
1785 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1786 #define CMD_LINE_OPT_LEGACY "legacy"
1787 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1788 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1789 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1790 #define CMD_LINE_OPT_PMD_MGMT "pmd-mgmt"
1791 
1792 /* Parse the argument given in the command line of the application */
1793 static int
1794 parse_args(int argc, char **argv)
1795 {
1796 	int opt, ret;
1797 	char **argvopt;
1798 	int option_index;
1799 	uint32_t limit;
1800 	char *prgname = argv[0];
1801 	static struct option lgopts[] = {
1802 		{"config", 1, 0, 0},
1803 		{"perf-config", 1, 0, 0},
1804 		{"high-perf-cores", 1, 0, 0},
1805 		{"no-numa", 0, 0, 0},
1806 		{"enable-jumbo", 0, 0, 0},
1807 		{CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1808 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1809 		{CMD_LINE_OPT_LEGACY, 0, 0, 0},
1810 		{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1811 		{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1812 		{CMD_LINE_OPT_PMD_MGMT, 1, 0, 0},
1813 		{NULL, 0, 0, 0}
1814 	};
1815 
1816 	argvopt = argv;
1817 
1818 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1819 				lgopts, &option_index)) != EOF) {
1820 
1821 		switch (opt) {
1822 		/* portmask */
1823 		case 'p':
1824 			enabled_port_mask = parse_portmask(optarg);
1825 			if (enabled_port_mask == 0) {
1826 				printf("invalid portmask\n");
1827 				print_usage(prgname);
1828 				return -1;
1829 			}
1830 			break;
1831 		case 'P':
1832 			printf("Promiscuous mode selected\n");
1833 			promiscuous_on = 1;
1834 			break;
1835 		case 'l':
1836 			limit = parse_max_pkt_len(optarg);
1837 			freq_tlb[LOW] = limit;
1838 			break;
1839 		case 'm':
1840 			limit = parse_max_pkt_len(optarg);
1841 			freq_tlb[MED] = limit;
1842 			break;
1843 		case 'h':
1844 			limit = parse_max_pkt_len(optarg);
1845 			freq_tlb[HGH] = limit;
1846 			break;
1847 		/* long options */
1848 		case 0:
1849 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1850 				ret = parse_config(optarg);
1851 				if (ret) {
1852 					printf("invalid config\n");
1853 					print_usage(prgname);
1854 					return -1;
1855 				}
1856 			}
1857 
1858 			if (!strncmp(lgopts[option_index].name,
1859 					"perf-config", 11)) {
1860 				ret = parse_perf_config(optarg);
1861 				if (ret) {
1862 					printf("invalid perf-config\n");
1863 					print_usage(prgname);
1864 					return -1;
1865 				}
1866 			}
1867 
1868 			if (!strncmp(lgopts[option_index].name,
1869 					"high-perf-cores", 15)) {
1870 				ret = parse_perf_core_list(optarg);
1871 				if (ret) {
1872 					printf("invalid high-perf-cores\n");
1873 					print_usage(prgname);
1874 					return -1;
1875 				}
1876 			}
1877 
1878 			if (!strncmp(lgopts[option_index].name,
1879 						"no-numa", 7)) {
1880 				printf("numa is disabled \n");
1881 				numa_on = 0;
1882 			}
1883 
1884 			if (!strncmp(lgopts[option_index].name,
1885 					CMD_LINE_OPT_LEGACY,
1886 					sizeof(CMD_LINE_OPT_LEGACY))) {
1887 				if (app_mode != APP_MODE_DEFAULT) {
1888 					printf(" legacy mode is mutually exclusive with other modes\n");
1889 					return -1;
1890 				}
1891 				app_mode = APP_MODE_LEGACY;
1892 				printf("legacy mode is enabled\n");
1893 			}
1894 
1895 			if (!strncmp(lgopts[option_index].name,
1896 					CMD_LINE_OPT_EMPTY_POLL, 10)) {
1897 				if (app_mode != APP_MODE_DEFAULT) {
1898 					printf(" empty-poll mode is mutually exclusive with other modes\n");
1899 					return -1;
1900 				}
1901 				app_mode = APP_MODE_EMPTY_POLL;
1902 				ret = parse_ep_config(optarg);
1903 
1904 				if (ret) {
1905 					printf("invalid empty poll config\n");
1906 					print_usage(prgname);
1907 					return -1;
1908 				}
1909 				printf("empty-poll is enabled\n");
1910 			}
1911 
1912 			if (!strncmp(lgopts[option_index].name,
1913 					CMD_LINE_OPT_TELEMETRY,
1914 					sizeof(CMD_LINE_OPT_TELEMETRY))) {
1915 				if (app_mode != APP_MODE_DEFAULT) {
1916 					printf(" telemetry mode is mutually exclusive with other modes\n");
1917 					return -1;
1918 				}
1919 				app_mode = APP_MODE_TELEMETRY;
1920 				printf("telemetry mode is enabled\n");
1921 			}
1922 
1923 			if (!strncmp(lgopts[option_index].name,
1924 					CMD_LINE_OPT_PMD_MGMT,
1925 					sizeof(CMD_LINE_OPT_PMD_MGMT))) {
1926 				if (app_mode != APP_MODE_DEFAULT) {
1927 					printf(" power mgmt mode is mutually exclusive with other modes\n");
1928 					return -1;
1929 				}
1930 				if (parse_pmd_mgmt_config(optarg) < 0) {
1931 					printf(" Invalid PMD power management mode: %s\n",
1932 							optarg);
1933 					return -1;
1934 				}
1935 				app_mode = APP_MODE_PMD_MGMT;
1936 				printf("PMD power mgmt mode is enabled\n");
1937 			}
1938 			if (!strncmp(lgopts[option_index].name,
1939 					CMD_LINE_OPT_INTERRUPT_ONLY,
1940 					sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1941 				if (app_mode != APP_MODE_DEFAULT) {
1942 					printf(" interrupt-only mode is mutually exclusive with other modes\n");
1943 					return -1;
1944 				}
1945 				app_mode = APP_MODE_INTERRUPT;
1946 				printf("interrupt-only mode is enabled\n");
1947 			}
1948 
1949 			if (!strncmp(lgopts[option_index].name,
1950 					"enable-jumbo", 12)) {
1951 				struct option lenopts =
1952 					{"max-pkt-len", required_argument, \
1953 									0, 0};
1954 
1955 				printf("jumbo frame is enabled \n");
1956 				port_conf.rxmode.offloads |=
1957 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1958 				port_conf.txmode.offloads |=
1959 						DEV_TX_OFFLOAD_MULTI_SEGS;
1960 
1961 				/**
1962 				 * if no max-pkt-len set, use the default value
1963 				 * RTE_ETHER_MAX_LEN
1964 				 */
1965 				if (0 == getopt_long(argc, argvopt, "",
1966 						&lenopts, &option_index)) {
1967 					ret = parse_max_pkt_len(optarg);
1968 					if ((ret < 64) ||
1969 						(ret > MAX_JUMBO_PKT_LEN)){
1970 						printf("invalid packet "
1971 								"length\n");
1972 						print_usage(prgname);
1973 						return -1;
1974 					}
1975 					port_conf.rxmode.max_rx_pkt_len = ret;
1976 				}
1977 				printf("set jumbo frame "
1978 					"max packet length to %u\n",
1979 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1980 			}
1981 
1982 			if (!strncmp(lgopts[option_index].name,
1983 				     CMD_LINE_OPT_PARSE_PTYPE,
1984 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1985 				printf("soft parse-ptype is enabled\n");
1986 				parse_ptype = 1;
1987 			}
1988 
1989 			break;
1990 
1991 		default:
1992 			print_usage(prgname);
1993 			return -1;
1994 		}
1995 	}
1996 
1997 	if (optind >= 0)
1998 		argv[optind-1] = prgname;
1999 
2000 	ret = optind-1;
2001 	optind = 1; /* reset getopt lib */
2002 	return ret;
2003 }
2004 
2005 static void
2006 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
2007 {
2008 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
2009 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
2010 	printf("%s%s", name, buf);
2011 }
2012 
2013 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2014 static void
2015 setup_hash(int socketid)
2016 {
2017 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
2018 		.name = NULL,
2019 		.entries = L3FWD_HASH_ENTRIES,
2020 		.key_len = sizeof(struct ipv4_5tuple),
2021 		.hash_func = DEFAULT_HASH_FUNC,
2022 		.hash_func_init_val = 0,
2023 	};
2024 
2025 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
2026 		.name = NULL,
2027 		.entries = L3FWD_HASH_ENTRIES,
2028 		.key_len = sizeof(struct ipv6_5tuple),
2029 		.hash_func = DEFAULT_HASH_FUNC,
2030 		.hash_func_init_val = 0,
2031 	};
2032 
2033 	unsigned i;
2034 	int ret;
2035 	char s[64];
2036 
2037 	/* create ipv4 hash */
2038 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
2039 	ipv4_l3fwd_hash_params.name = s;
2040 	ipv4_l3fwd_hash_params.socket_id = socketid;
2041 	ipv4_l3fwd_lookup_struct[socketid] =
2042 		rte_hash_create(&ipv4_l3fwd_hash_params);
2043 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2044 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2045 				"socket %d\n", socketid);
2046 
2047 	/* create ipv6 hash */
2048 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2049 	ipv6_l3fwd_hash_params.name = s;
2050 	ipv6_l3fwd_hash_params.socket_id = socketid;
2051 	ipv6_l3fwd_lookup_struct[socketid] =
2052 		rte_hash_create(&ipv6_l3fwd_hash_params);
2053 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2054 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2055 				"socket %d\n", socketid);
2056 
2057 
2058 	/* populate the ipv4 hash */
2059 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2060 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2061 				(void *) &ipv4_l3fwd_route_array[i].key);
2062 		if (ret < 0) {
2063 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2064 				"l3fwd hash on socket %d\n", i, socketid);
2065 		}
2066 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2067 		printf("Hash: Adding key\n");
2068 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2069 	}
2070 
2071 	/* populate the ipv6 hash */
2072 	for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2073 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2074 				(void *) &ipv6_l3fwd_route_array[i].key);
2075 		if (ret < 0) {
2076 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2077 				"l3fwd hash on socket %d\n", i, socketid);
2078 		}
2079 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2080 		printf("Hash: Adding key\n");
2081 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2082 	}
2083 }
2084 #endif
2085 
2086 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2087 static void
2088 setup_lpm(int socketid)
2089 {
2090 	unsigned i;
2091 	int ret;
2092 	char s[64];
2093 
2094 	/* create the LPM table */
2095 	struct rte_lpm_config lpm_ipv4_config;
2096 
2097 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2098 	lpm_ipv4_config.number_tbl8s = 256;
2099 	lpm_ipv4_config.flags = 0;
2100 
2101 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2102 	ipv4_l3fwd_lookup_struct[socketid] =
2103 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
2104 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2105 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2106 				" on socket %d\n", socketid);
2107 
2108 	/* populate the LPM table */
2109 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2110 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2111 			ipv4_l3fwd_route_array[i].ip,
2112 			ipv4_l3fwd_route_array[i].depth,
2113 			ipv4_l3fwd_route_array[i].if_out);
2114 
2115 		if (ret < 0) {
2116 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2117 				"l3fwd LPM table on socket %d\n",
2118 				i, socketid);
2119 		}
2120 
2121 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2122 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2123 			ipv4_l3fwd_route_array[i].depth,
2124 			ipv4_l3fwd_route_array[i].if_out);
2125 	}
2126 }
2127 #endif
2128 
2129 static int
2130 init_mem(unsigned nb_mbuf)
2131 {
2132 	struct lcore_conf *qconf;
2133 	int socketid;
2134 	unsigned lcore_id;
2135 	char s[64];
2136 
2137 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2138 		if (rte_lcore_is_enabled(lcore_id) == 0)
2139 			continue;
2140 
2141 		if (numa_on)
2142 			socketid = rte_lcore_to_socket_id(lcore_id);
2143 		else
2144 			socketid = 0;
2145 
2146 		if (socketid >= NB_SOCKETS) {
2147 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2148 					"out of range %d\n", socketid,
2149 						lcore_id, NB_SOCKETS);
2150 		}
2151 		if (pktmbuf_pool[socketid] == NULL) {
2152 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2153 			pktmbuf_pool[socketid] =
2154 				rte_pktmbuf_pool_create(s, nb_mbuf,
2155 					MEMPOOL_CACHE_SIZE, 0,
2156 					RTE_MBUF_DEFAULT_BUF_SIZE,
2157 					socketid);
2158 			if (pktmbuf_pool[socketid] == NULL)
2159 				rte_exit(EXIT_FAILURE,
2160 					"Cannot init mbuf pool on socket %d\n",
2161 								socketid);
2162 			else
2163 				printf("Allocated mbuf pool on socket %d\n",
2164 								socketid);
2165 
2166 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2167 			setup_lpm(socketid);
2168 #else
2169 			setup_hash(socketid);
2170 #endif
2171 		}
2172 		qconf = &lcore_conf[lcore_id];
2173 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2174 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2175 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2176 #endif
2177 	}
2178 	return 0;
2179 }
2180 
2181 /* Check the link status of all ports in up to 9s, and print them finally */
2182 static void
2183 check_all_ports_link_status(uint32_t port_mask)
2184 {
2185 #define CHECK_INTERVAL 100 /* 100ms */
2186 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2187 	uint8_t count, all_ports_up, print_flag = 0;
2188 	uint16_t portid;
2189 	struct rte_eth_link link;
2190 	int ret;
2191 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
2192 
2193 	printf("\nChecking link status");
2194 	fflush(stdout);
2195 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2196 		all_ports_up = 1;
2197 		RTE_ETH_FOREACH_DEV(portid) {
2198 			if ((port_mask & (1 << portid)) == 0)
2199 				continue;
2200 			memset(&link, 0, sizeof(link));
2201 			ret = rte_eth_link_get_nowait(portid, &link);
2202 			if (ret < 0) {
2203 				all_ports_up = 0;
2204 				if (print_flag == 1)
2205 					printf("Port %u link get failed: %s\n",
2206 						portid, rte_strerror(-ret));
2207 				continue;
2208 			}
2209 			/* print link status if flag set */
2210 			if (print_flag == 1) {
2211 				rte_eth_link_to_str(link_status_text,
2212 					sizeof(link_status_text), &link);
2213 				printf("Port %d %s\n", portid,
2214 				       link_status_text);
2215 				continue;
2216 			}
2217 			/* clear all_ports_up flag if any link down */
2218 			if (link.link_status == ETH_LINK_DOWN) {
2219 				all_ports_up = 0;
2220 				break;
2221 			}
2222 		}
2223 		/* after finally printing all link status, get out */
2224 		if (print_flag == 1)
2225 			break;
2226 
2227 		if (all_ports_up == 0) {
2228 			printf(".");
2229 			fflush(stdout);
2230 			rte_delay_ms(CHECK_INTERVAL);
2231 		}
2232 
2233 		/* set the print_flag if all ports up or timeout */
2234 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2235 			print_flag = 1;
2236 			printf("done\n");
2237 		}
2238 	}
2239 }
2240 
2241 static int check_ptype(uint16_t portid)
2242 {
2243 	int i, ret;
2244 	int ptype_l3_ipv4 = 0;
2245 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2246 	int ptype_l3_ipv6 = 0;
2247 #endif
2248 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2249 
2250 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2251 	if (ret <= 0)
2252 		return 0;
2253 
2254 	uint32_t ptypes[ret];
2255 
2256 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2257 	for (i = 0; i < ret; ++i) {
2258 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2259 			ptype_l3_ipv4 = 1;
2260 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2261 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2262 			ptype_l3_ipv6 = 1;
2263 #endif
2264 	}
2265 
2266 	if (ptype_l3_ipv4 == 0)
2267 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2268 
2269 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2270 	if (ptype_l3_ipv6 == 0)
2271 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2272 #endif
2273 
2274 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2275 	if (ptype_l3_ipv4)
2276 #else /* APP_LOOKUP_EXACT_MATCH */
2277 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
2278 #endif
2279 		return 1;
2280 
2281 	return 0;
2282 
2283 }
2284 
2285 static int
2286 init_power_library(void)
2287 {
2288 	enum power_management_env env;
2289 	unsigned int lcore_id;
2290 	int ret = 0;
2291 
2292 	RTE_LCORE_FOREACH(lcore_id) {
2293 		/* init power management library */
2294 		ret = rte_power_init(lcore_id);
2295 		if (ret) {
2296 			RTE_LOG(ERR, POWER,
2297 				"Library initialization failed on core %u\n",
2298 				lcore_id);
2299 			return ret;
2300 		}
2301 		/* we're not supporting the VM channel mode */
2302 		env = rte_power_get_env();
2303 		if (env != PM_ENV_ACPI_CPUFREQ &&
2304 				env != PM_ENV_PSTATE_CPUFREQ) {
2305 			RTE_LOG(ERR, POWER,
2306 				"Only ACPI and PSTATE mode are supported\n");
2307 			return -1;
2308 		}
2309 	}
2310 	return ret;
2311 }
2312 
2313 static int
2314 deinit_power_library(void)
2315 {
2316 	unsigned int lcore_id;
2317 	int ret = 0;
2318 
2319 	RTE_LCORE_FOREACH(lcore_id) {
2320 		/* deinit power management library */
2321 		ret = rte_power_exit(lcore_id);
2322 		if (ret) {
2323 			RTE_LOG(ERR, POWER,
2324 				"Library deinitialization failed on core %u\n",
2325 				lcore_id);
2326 			return ret;
2327 		}
2328 	}
2329 	return ret;
2330 }
2331 
2332 static void
2333 get_current_stat_values(uint64_t *values)
2334 {
2335 	unsigned int lcore_id = rte_lcore_id();
2336 	struct lcore_conf *qconf;
2337 	uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2338 	uint64_t count = 0;
2339 
2340 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2341 		qconf = &lcore_conf[lcore_id];
2342 		if (qconf->n_rx_queue == 0)
2343 			continue;
2344 		count++;
2345 		rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2346 		app_eps += stats[lcore_id].ep_nep[1];
2347 		app_fps += stats[lcore_id].fp_nfp[1];
2348 		app_br += stats[lcore_id].br;
2349 		rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2350 	}
2351 
2352 	if (count > 0) {
2353 		values[0] = app_eps/count;
2354 		values[1] = app_fps/count;
2355 		values[2] = app_br/count;
2356 	} else
2357 		memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2358 
2359 }
2360 
2361 static void
2362 update_telemetry(__rte_unused struct rte_timer *tim,
2363 		__rte_unused void *arg)
2364 {
2365 	int ret;
2366 	uint64_t values[NUM_TELSTATS] = {0};
2367 
2368 	get_current_stat_values(values);
2369 	ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2370 					values, RTE_DIM(values));
2371 	if (ret < 0)
2372 		RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
2373 }
2374 
2375 static int
2376 handle_app_stats(const char *cmd __rte_unused,
2377 		const char *params __rte_unused,
2378 		struct rte_tel_data *d)
2379 {
2380 	uint64_t values[NUM_TELSTATS] = {0};
2381 	uint32_t i;
2382 
2383 	rte_tel_data_start_dict(d);
2384 	get_current_stat_values(values);
2385 	for (i = 0; i < NUM_TELSTATS; i++)
2386 		rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2387 				values[i]);
2388 	return 0;
2389 }
2390 
2391 static void
2392 telemetry_setup_timer(void)
2393 {
2394 	int lcore_id = rte_lcore_id();
2395 	uint64_t hz = rte_get_timer_hz();
2396 	uint64_t ticks;
2397 
2398 	ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2399 	rte_timer_reset_sync(&telemetry_timer,
2400 			ticks,
2401 			PERIODICAL,
2402 			lcore_id,
2403 			update_telemetry,
2404 			NULL);
2405 }
2406 static void
2407 empty_poll_setup_timer(void)
2408 {
2409 	int lcore_id = rte_lcore_id();
2410 	uint64_t hz = rte_get_timer_hz();
2411 
2412 	struct  ep_params *ep_ptr = ep_params;
2413 
2414 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2415 
2416 	rte_timer_reset_sync(&ep_ptr->timer0,
2417 			ep_ptr->interval_ticks,
2418 			PERIODICAL,
2419 			lcore_id,
2420 			rte_empty_poll_detection,
2421 			(void *)ep_ptr);
2422 
2423 }
2424 static int
2425 launch_timer(unsigned int lcore_id)
2426 {
2427 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2428 
2429 	RTE_SET_USED(lcore_id);
2430 
2431 
2432 	if (rte_get_main_lcore() != lcore_id) {
2433 		rte_panic("timer on lcore:%d which is not main core:%d\n",
2434 				lcore_id,
2435 				rte_get_main_lcore());
2436 	}
2437 
2438 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2439 
2440 	if (app_mode == APP_MODE_EMPTY_POLL)
2441 		empty_poll_setup_timer();
2442 	else
2443 		telemetry_setup_timer();
2444 
2445 	cycles_10ms = rte_get_timer_hz() / 100;
2446 
2447 	while (!is_done()) {
2448 		cur_tsc = rte_rdtsc();
2449 		diff_tsc = cur_tsc - prev_tsc;
2450 		if (diff_tsc > cycles_10ms) {
2451 			rte_timer_manage();
2452 			prev_tsc = cur_tsc;
2453 			cycles_10ms = rte_get_timer_hz() / 100;
2454 		}
2455 	}
2456 
2457 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2458 
2459 	return 0;
2460 }
2461 
2462 static int
2463 autodetect_mode(void)
2464 {
2465 	RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2466 
2467 	/*
2468 	 * Empty poll and telemetry modes have to be specifically requested to
2469 	 * be enabled, but we can auto-detect between interrupt mode with or
2470 	 * without frequency scaling. Both ACPI and pstate can be used.
2471 	 */
2472 	if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2473 		return APP_MODE_LEGACY;
2474 	if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2475 		return APP_MODE_LEGACY;
2476 
2477 	RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2478 
2479 	return APP_MODE_INTERRUPT;
2480 }
2481 
2482 static const char *
2483 mode_to_str(enum appmode mode)
2484 {
2485 	switch (mode) {
2486 	case APP_MODE_LEGACY:
2487 		return "legacy";
2488 	case APP_MODE_EMPTY_POLL:
2489 		return "empty poll";
2490 	case APP_MODE_TELEMETRY:
2491 		return "telemetry";
2492 	case APP_MODE_INTERRUPT:
2493 		return "interrupt-only";
2494 	case APP_MODE_PMD_MGMT:
2495 		return "pmd mgmt";
2496 	default:
2497 		return "invalid";
2498 	}
2499 }
2500 
2501 int
2502 main(int argc, char **argv)
2503 {
2504 	struct lcore_conf *qconf;
2505 	struct rte_eth_dev_info dev_info;
2506 	struct rte_eth_txconf *txconf;
2507 	int ret;
2508 	uint16_t nb_ports;
2509 	uint16_t queueid;
2510 	unsigned lcore_id;
2511 	uint64_t hz;
2512 	uint32_t n_tx_queue, nb_lcores;
2513 	uint32_t dev_rxq_num, dev_txq_num;
2514 	uint8_t nb_rx_queue, queue, socketid;
2515 	uint16_t portid;
2516 	const char *ptr_strings[NUM_TELSTATS];
2517 
2518 	/* catch SIGINT and restore cpufreq governor to ondemand */
2519 	signal(SIGINT, signal_exit_now);
2520 
2521 	/* init EAL */
2522 	ret = rte_eal_init(argc, argv);
2523 	if (ret < 0)
2524 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2525 	argc -= ret;
2526 	argv += ret;
2527 
2528 	/* init RTE timer library to be used late */
2529 	rte_timer_subsystem_init();
2530 
2531 	/* parse application arguments (after the EAL ones) */
2532 	ret = parse_args(argc, argv);
2533 	if (ret < 0)
2534 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2535 
2536 	if (app_mode == APP_MODE_DEFAULT)
2537 		app_mode = autodetect_mode();
2538 
2539 	RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2540 			mode_to_str(app_mode));
2541 
2542 	/* only legacy and empty poll mode rely on power library */
2543 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2544 			init_power_library())
2545 		rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2546 
2547 	if (update_lcore_params() < 0)
2548 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2549 
2550 	if (check_lcore_params() < 0)
2551 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2552 
2553 	ret = init_lcore_rx_queues();
2554 	if (ret < 0)
2555 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2556 
2557 	nb_ports = rte_eth_dev_count_avail();
2558 
2559 	if (check_port_config() < 0)
2560 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2561 
2562 	nb_lcores = rte_lcore_count();
2563 
2564 	/* initialize all ports */
2565 	RTE_ETH_FOREACH_DEV(portid) {
2566 		struct rte_eth_conf local_port_conf = port_conf;
2567 		/* not all app modes need interrupts */
2568 		bool need_intr = app_mode == APP_MODE_LEGACY ||
2569 				app_mode == APP_MODE_INTERRUPT;
2570 
2571 		/* skip ports that are not enabled */
2572 		if ((enabled_port_mask & (1 << portid)) == 0) {
2573 			printf("\nSkipping disabled port %d\n", portid);
2574 			continue;
2575 		}
2576 
2577 		/* init port */
2578 		printf("Initializing port %d ... ", portid );
2579 		fflush(stdout);
2580 
2581 		ret = rte_eth_dev_info_get(portid, &dev_info);
2582 		if (ret != 0)
2583 			rte_exit(EXIT_FAILURE,
2584 				"Error during getting device (port %u) info: %s\n",
2585 				portid, strerror(-ret));
2586 
2587 		dev_rxq_num = dev_info.max_rx_queues;
2588 		dev_txq_num = dev_info.max_tx_queues;
2589 
2590 		nb_rx_queue = get_port_n_rx_queues(portid);
2591 		if (nb_rx_queue > dev_rxq_num)
2592 			rte_exit(EXIT_FAILURE,
2593 				"Cannot configure not existed rxq: "
2594 				"port=%d\n", portid);
2595 
2596 		n_tx_queue = nb_lcores;
2597 		if (n_tx_queue > dev_txq_num)
2598 			n_tx_queue = dev_txq_num;
2599 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2600 			nb_rx_queue, (unsigned)n_tx_queue );
2601 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2602 		if (nb_rx_queue == 0)
2603 			need_intr = false;
2604 
2605 		if (need_intr)
2606 			local_port_conf.intr_conf.rxq = 1;
2607 
2608 		ret = rte_eth_dev_info_get(portid, &dev_info);
2609 		if (ret != 0)
2610 			rte_exit(EXIT_FAILURE,
2611 				"Error during getting device (port %u) info: %s\n",
2612 				portid, strerror(-ret));
2613 
2614 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2615 			local_port_conf.txmode.offloads |=
2616 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2617 
2618 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2619 			dev_info.flow_type_rss_offloads;
2620 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2621 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2622 			printf("Port %u modified RSS hash function based on hardware support,"
2623 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2624 				portid,
2625 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2626 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2627 		}
2628 
2629 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2630 					(uint16_t)n_tx_queue, &local_port_conf);
2631 		if (ret < 0)
2632 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2633 					"err=%d, port=%d\n", ret, portid);
2634 
2635 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2636 						       &nb_txd);
2637 		if (ret < 0)
2638 			rte_exit(EXIT_FAILURE,
2639 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2640 				 ret, portid);
2641 
2642 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2643 		if (ret < 0)
2644 			rte_exit(EXIT_FAILURE,
2645 				 "Cannot get MAC address: err=%d, port=%d\n",
2646 				 ret, portid);
2647 
2648 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2649 		printf(", ");
2650 
2651 		/* init memory */
2652 		ret = init_mem(NB_MBUF);
2653 		if (ret < 0)
2654 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2655 
2656 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2657 			if (rte_lcore_is_enabled(lcore_id) == 0)
2658 				continue;
2659 
2660 			/* Initialize TX buffers */
2661 			qconf = &lcore_conf[lcore_id];
2662 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2663 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2664 				rte_eth_dev_socket_id(portid));
2665 			if (qconf->tx_buffer[portid] == NULL)
2666 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2667 						 portid);
2668 
2669 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2670 		}
2671 
2672 		/* init one TX queue per couple (lcore,port) */
2673 		queueid = 0;
2674 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2675 			if (rte_lcore_is_enabled(lcore_id) == 0)
2676 				continue;
2677 
2678 			if (queueid >= dev_txq_num)
2679 				continue;
2680 
2681 			if (numa_on)
2682 				socketid = \
2683 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2684 			else
2685 				socketid = 0;
2686 
2687 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2688 			fflush(stdout);
2689 
2690 			txconf = &dev_info.default_txconf;
2691 			txconf->offloads = local_port_conf.txmode.offloads;
2692 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2693 						     socketid, txconf);
2694 			if (ret < 0)
2695 				rte_exit(EXIT_FAILURE,
2696 					"rte_eth_tx_queue_setup: err=%d, "
2697 						"port=%d\n", ret, portid);
2698 
2699 			qconf = &lcore_conf[lcore_id];
2700 			qconf->tx_queue_id[portid] = queueid;
2701 			queueid++;
2702 
2703 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2704 			qconf->n_tx_port++;
2705 		}
2706 		printf("\n");
2707 	}
2708 
2709 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2710 		if (rte_lcore_is_enabled(lcore_id) == 0)
2711 			continue;
2712 
2713 		if (app_mode == APP_MODE_LEGACY) {
2714 			/* init timer structures for each enabled lcore */
2715 			rte_timer_init(&power_timers[lcore_id]);
2716 			hz = rte_get_timer_hz();
2717 			rte_timer_reset(&power_timers[lcore_id],
2718 					hz/TIMER_NUMBER_PER_SECOND,
2719 					SINGLE, lcore_id,
2720 					power_timer_cb, NULL);
2721 		}
2722 		qconf = &lcore_conf[lcore_id];
2723 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2724 		fflush(stdout);
2725 
2726 		/* PMD power management mode can only do 1 queue per core */
2727 		if (app_mode == APP_MODE_PMD_MGMT && qconf->n_rx_queue > 1) {
2728 			rte_exit(EXIT_FAILURE,
2729 				"In PMD power management mode, only one queue per lcore is allowed\n");
2730 		}
2731 
2732 		/* init RX queues */
2733 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2734 			struct rte_eth_rxconf rxq_conf;
2735 
2736 			portid = qconf->rx_queue_list[queue].port_id;
2737 			queueid = qconf->rx_queue_list[queue].queue_id;
2738 
2739 			if (numa_on)
2740 				socketid = \
2741 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2742 			else
2743 				socketid = 0;
2744 
2745 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2746 			fflush(stdout);
2747 
2748 			ret = rte_eth_dev_info_get(portid, &dev_info);
2749 			if (ret != 0)
2750 				rte_exit(EXIT_FAILURE,
2751 					"Error during getting device (port %u) info: %s\n",
2752 					portid, strerror(-ret));
2753 
2754 			rxq_conf = dev_info.default_rxconf;
2755 			rxq_conf.offloads = port_conf.rxmode.offloads;
2756 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2757 				socketid, &rxq_conf,
2758 				pktmbuf_pool[socketid]);
2759 			if (ret < 0)
2760 				rte_exit(EXIT_FAILURE,
2761 					"rte_eth_rx_queue_setup: err=%d, "
2762 						"port=%d\n", ret, portid);
2763 
2764 			if (parse_ptype) {
2765 				if (add_cb_parse_ptype(portid, queueid) < 0)
2766 					rte_exit(EXIT_FAILURE,
2767 						 "Fail to add ptype cb\n");
2768 			}
2769 
2770 			if (app_mode == APP_MODE_PMD_MGMT) {
2771 				ret = rte_power_ethdev_pmgmt_queue_enable(
2772 						lcore_id, portid, queueid,
2773 						pmgmt_type);
2774 				if (ret < 0)
2775 					rte_exit(EXIT_FAILURE,
2776 						"rte_power_ethdev_pmgmt_queue_enable: err=%d, port=%d\n",
2777 							ret, portid);
2778 			}
2779 		}
2780 	}
2781 
2782 	printf("\n");
2783 
2784 	/* start ports */
2785 	RTE_ETH_FOREACH_DEV(portid) {
2786 		if ((enabled_port_mask & (1 << portid)) == 0) {
2787 			continue;
2788 		}
2789 		/* Start device */
2790 		ret = rte_eth_dev_start(portid);
2791 		if (ret < 0)
2792 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2793 						"port=%d\n", ret, portid);
2794 		/*
2795 		 * If enabled, put device in promiscuous mode.
2796 		 * This allows IO forwarding mode to forward packets
2797 		 * to itself through 2 cross-connected  ports of the
2798 		 * target machine.
2799 		 */
2800 		if (promiscuous_on) {
2801 			ret = rte_eth_promiscuous_enable(portid);
2802 			if (ret != 0)
2803 				rte_exit(EXIT_FAILURE,
2804 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2805 					rte_strerror(-ret), portid);
2806 		}
2807 		/* initialize spinlock for each port */
2808 		rte_spinlock_init(&(locks[portid]));
2809 
2810 		if (!parse_ptype)
2811 			if (!check_ptype(portid))
2812 				rte_exit(EXIT_FAILURE,
2813 					"PMD can not provide needed ptypes\n");
2814 	}
2815 
2816 	check_all_ports_link_status(enabled_port_mask);
2817 
2818 	if (app_mode == APP_MODE_EMPTY_POLL) {
2819 
2820 		if (empty_poll_train) {
2821 			policy.state = TRAINING;
2822 		} else {
2823 			policy.state = MED_NORMAL;
2824 			policy.med_base_edpi = ep_med_edpi;
2825 			policy.hgh_base_edpi = ep_hgh_edpi;
2826 		}
2827 
2828 		ret = rte_power_empty_poll_stat_init(&ep_params,
2829 				freq_tlb,
2830 				&policy);
2831 		if (ret < 0)
2832 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2833 	}
2834 
2835 
2836 	/* launch per-lcore init on every lcore */
2837 	if (app_mode == APP_MODE_LEGACY) {
2838 		rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
2839 	} else if (app_mode == APP_MODE_EMPTY_POLL) {
2840 		empty_poll_stop = false;
2841 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2842 				SKIP_MAIN);
2843 	} else if (app_mode == APP_MODE_TELEMETRY) {
2844 		unsigned int i;
2845 
2846 		/* Init metrics library */
2847 		rte_metrics_init(rte_socket_id());
2848 		/** Register stats with metrics library */
2849 		for (i = 0; i < NUM_TELSTATS; i++)
2850 			ptr_strings[i] = telstats_strings[i].name;
2851 
2852 		ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2853 		if (ret >= 0)
2854 			telstats_index = ret;
2855 		else
2856 			rte_exit(EXIT_FAILURE, "failed to register metrics names");
2857 
2858 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
2859 			rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2860 		}
2861 		rte_timer_init(&telemetry_timer);
2862 		rte_telemetry_register_cmd("/l3fwd-power/stats",
2863 				handle_app_stats,
2864 				"Returns global power stats. Parameters: None");
2865 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2866 						SKIP_MAIN);
2867 	} else if (app_mode == APP_MODE_INTERRUPT) {
2868 		rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
2869 	} else if (app_mode == APP_MODE_PMD_MGMT) {
2870 		/* reuse telemetry loop for PMD power management mode */
2871 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL, CALL_MAIN);
2872 	}
2873 
2874 	if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2875 		launch_timer(rte_lcore_id());
2876 
2877 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2878 		if (rte_eal_wait_lcore(lcore_id) < 0)
2879 			return -1;
2880 	}
2881 
2882 	if (app_mode == APP_MODE_PMD_MGMT) {
2883 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2884 			if (rte_lcore_is_enabled(lcore_id) == 0)
2885 				continue;
2886 			qconf = &lcore_conf[lcore_id];
2887 			for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
2888 				portid = qconf->rx_queue_list[queue].port_id;
2889 				queueid = qconf->rx_queue_list[queue].queue_id;
2890 
2891 				rte_power_ethdev_pmgmt_queue_disable(lcore_id,
2892 						portid, queueid);
2893 			}
2894 		}
2895 	}
2896 
2897 	RTE_ETH_FOREACH_DEV(portid)
2898 	{
2899 		if ((enabled_port_mask & (1 << portid)) == 0)
2900 			continue;
2901 
2902 		ret = rte_eth_dev_stop(portid);
2903 		if (ret != 0)
2904 			RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
2905 				ret, portid);
2906 
2907 		rte_eth_dev_close(portid);
2908 	}
2909 
2910 	if (app_mode == APP_MODE_EMPTY_POLL)
2911 		rte_power_empty_poll_stat_free();
2912 
2913 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2914 			deinit_power_library())
2915 		rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
2916 
2917 	if (rte_eal_cleanup() < 0)
2918 		RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
2919 
2920 	return 0;
2921 }
2922