xref: /dpdk/examples/l3fwd-power/main.c (revision 42a8fc7daa46256d150278fc9a7a846e27945a0c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_ip.h>
40 #include <rte_tcp.h>
41 #include <rte_udp.h>
42 #include <rte_string_fns.h>
43 #include <rte_timer.h>
44 #include <rte_power.h>
45 #include <rte_spinlock.h>
46 #include <rte_power_empty_poll.h>
47 #include <rte_metrics.h>
48 #include <rte_telemetry.h>
49 #include <rte_power_pmd_mgmt.h>
50 
51 #include "perf_core.h"
52 #include "main.h"
53 
54 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
55 
56 #define MAX_PKT_BURST 32
57 
58 #define MIN_ZERO_POLL_COUNT 10
59 
60 /* 100 ms interval */
61 #define TIMER_NUMBER_PER_SECOND           10
62 /* (10ms) */
63 #define INTERVALS_PER_SECOND             100
64 /* 100000 us */
65 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
66 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
67 
68 #define APP_LOOKUP_EXACT_MATCH          0
69 #define APP_LOOKUP_LPM                  1
70 #define DO_RFC_1812_CHECKS
71 
72 #ifndef APP_LOOKUP_METHOD
73 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
74 #endif
75 
76 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
77 #include <rte_hash.h>
78 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
79 #include <rte_lpm.h>
80 #else
81 #error "APP_LOOKUP_METHOD set to incorrect value"
82 #endif
83 
84 #ifndef IPv6_BYTES
85 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
86                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
87 #define IPv6_BYTES(addr) \
88 	addr[0],  addr[1], addr[2],  addr[3], \
89 	addr[4],  addr[5], addr[6],  addr[7], \
90 	addr[8],  addr[9], addr[10], addr[11],\
91 	addr[12], addr[13],addr[14], addr[15]
92 #endif
93 
94 #define MAX_JUMBO_PKT_LEN  9600
95 
96 #define IPV6_ADDR_LEN 16
97 
98 #define MEMPOOL_CACHE_SIZE 256
99 
100 /*
101  * This expression is used to calculate the number of mbufs needed depending on
102  * user input, taking into account memory for rx and tx hardware rings, cache
103  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
104  * NB_MBUF never goes below a minimum value of 8192.
105  */
106 
107 #define NB_MBUF RTE_MAX	( \
108 	(nb_ports*nb_rx_queue*nb_rxd + \
109 	nb_ports*nb_lcores*MAX_PKT_BURST + \
110 	nb_ports*n_tx_queue*nb_txd + \
111 	nb_lcores*MEMPOOL_CACHE_SIZE), \
112 	(unsigned)8192)
113 
114 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
115 
116 #define NB_SOCKETS 8
117 
118 /* Configure how many packets ahead to prefetch, when reading packets */
119 #define PREFETCH_OFFSET	3
120 
121 /*
122  * Configurable number of RX/TX ring descriptors
123  */
124 #define RTE_TEST_RX_DESC_DEFAULT 1024
125 #define RTE_TEST_TX_DESC_DEFAULT 1024
126 
127 /*
128  * These two thresholds were decided on by running the training algorithm on
129  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
130  * for the med_threshold and high_threshold parameters on the command line.
131  */
132 #define EMPTY_POLL_MED_THRESHOLD 350000UL
133 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
134 
135 #define NUM_TELSTATS RTE_DIM(telstats_strings)
136 
137 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
138 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
139 
140 /* ethernet addresses of ports */
141 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
142 
143 /* ethernet addresses of ports */
144 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
145 
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask = 0;
148 /* Ports set in promiscuous mode off by default. */
149 static int promiscuous_on = 0;
150 /* NUMA is enabled by default. */
151 static int numa_on = 1;
152 static bool empty_poll_stop;
153 static bool empty_poll_train;
154 volatile bool quit_signal;
155 static struct  ep_params *ep_params;
156 static struct  ep_policy policy;
157 static long  ep_med_edpi, ep_hgh_edpi;
158 /* timer to update telemetry every 500ms */
159 static struct rte_timer telemetry_timer;
160 
161 /* stats index returned by metrics lib */
162 int telstats_index;
163 
164 struct telstats_name {
165 	char name[RTE_ETH_XSTATS_NAME_SIZE];
166 };
167 
168 /* telemetry stats to be reported */
169 const struct telstats_name telstats_strings[] = {
170 	{"empty_poll"},
171 	{"full_poll"},
172 	{"busy_percent"}
173 };
174 
175 /* core busyness in percentage */
176 enum busy_rate {
177 	ZERO = 0,
178 	PARTIAL = 50,
179 	FULL = 100
180 };
181 
182 /* reference poll count to measure core busyness */
183 #define DEFAULT_COUNT 10000
184 /*
185  * reference CYCLES to be used to
186  * measure core busyness based on poll count
187  */
188 #define MIN_CYCLES  1500000ULL
189 #define MAX_CYCLES 22000000ULL
190 
191 /* (500ms) */
192 #define TELEMETRY_INTERVALS_PER_SEC 2
193 
194 static int parse_ptype; /**< Parse packet type using rx callback, and */
195 			/**< disabled by default */
196 
197 enum appmode {
198 	APP_MODE_DEFAULT = 0,
199 	APP_MODE_LEGACY,
200 	APP_MODE_EMPTY_POLL,
201 	APP_MODE_TELEMETRY,
202 	APP_MODE_INTERRUPT,
203 	APP_MODE_PMD_MGMT
204 };
205 
206 enum appmode app_mode;
207 
208 static enum rte_power_pmd_mgmt_type pmgmt_type;
209 bool baseline_enabled;
210 
211 enum freq_scale_hint_t
212 {
213 	FREQ_LOWER    =      -1,
214 	FREQ_CURRENT  =       0,
215 	FREQ_HIGHER   =       1,
216 	FREQ_HIGHEST  =       2
217 };
218 
219 struct lcore_rx_queue {
220 	uint16_t port_id;
221 	uint8_t queue_id;
222 	enum freq_scale_hint_t freq_up_hint;
223 	uint32_t zero_rx_packet_count;
224 	uint32_t idle_hint;
225 } __rte_cache_aligned;
226 
227 #define MAX_RX_QUEUE_PER_LCORE 16
228 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
229 #define MAX_RX_QUEUE_PER_PORT 128
230 
231 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
232 
233 
234 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
235 static struct lcore_params lcore_params_array_default[] = {
236 	{0, 0, 2},
237 	{0, 1, 2},
238 	{0, 2, 2},
239 	{1, 0, 2},
240 	{1, 1, 2},
241 	{1, 2, 2},
242 	{2, 0, 2},
243 	{3, 0, 3},
244 	{3, 1, 3},
245 };
246 
247 struct lcore_params *lcore_params = lcore_params_array_default;
248 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
249 
250 static struct rte_eth_conf port_conf = {
251 	.rxmode = {
252 		.mq_mode        = RTE_ETH_MQ_RX_RSS,
253 		.split_hdr_size = 0,
254 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
255 	},
256 	.rx_adv_conf = {
257 		.rss_conf = {
258 			.rss_key = NULL,
259 			.rss_hf = RTE_ETH_RSS_UDP,
260 		},
261 	},
262 	.txmode = {
263 		.mq_mode = RTE_ETH_MQ_TX_NONE,
264 	}
265 };
266 
267 static uint32_t max_pkt_len;
268 static uint32_t max_empty_polls = 512;
269 static uint32_t pause_duration = 1;
270 static uint32_t scale_freq_min;
271 static uint32_t scale_freq_max;
272 
273 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
274 
275 
276 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
277 
278 #ifdef RTE_ARCH_X86
279 #include <rte_hash_crc.h>
280 #define DEFAULT_HASH_FUNC       rte_hash_crc
281 #else
282 #include <rte_jhash.h>
283 #define DEFAULT_HASH_FUNC       rte_jhash
284 #endif
285 
286 struct ipv4_5tuple {
287 	uint32_t ip_dst;
288 	uint32_t ip_src;
289 	uint16_t port_dst;
290 	uint16_t port_src;
291 	uint8_t  proto;
292 } __rte_packed;
293 
294 struct ipv6_5tuple {
295 	uint8_t  ip_dst[IPV6_ADDR_LEN];
296 	uint8_t  ip_src[IPV6_ADDR_LEN];
297 	uint16_t port_dst;
298 	uint16_t port_src;
299 	uint8_t  proto;
300 } __rte_packed;
301 
302 struct ipv4_l3fwd_route {
303 	struct ipv4_5tuple key;
304 	uint8_t if_out;
305 };
306 
307 struct ipv6_l3fwd_route {
308 	struct ipv6_5tuple key;
309 	uint8_t if_out;
310 };
311 
312 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
313 	{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
314 	{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
315 	{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
316 	{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
317 };
318 
319 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
320 	{
321 		{
322 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
323 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
324 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
325 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
326 			 1, 10, IPPROTO_UDP
327 		}, 4
328 	},
329 };
330 
331 typedef struct rte_hash lookup_struct_t;
332 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
333 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
334 
335 #define L3FWD_HASH_ENTRIES	1024
336 
337 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
338 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
339 #endif
340 
341 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
342 struct ipv4_l3fwd_route {
343 	uint32_t ip;
344 	uint8_t  depth;
345 	uint8_t  if_out;
346 };
347 
348 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
349 	{RTE_IPV4(1,1,1,0), 24, 0},
350 	{RTE_IPV4(2,1,1,0), 24, 1},
351 	{RTE_IPV4(3,1,1,0), 24, 2},
352 	{RTE_IPV4(4,1,1,0), 24, 3},
353 	{RTE_IPV4(5,1,1,0), 24, 4},
354 	{RTE_IPV4(6,1,1,0), 24, 5},
355 	{RTE_IPV4(7,1,1,0), 24, 6},
356 	{RTE_IPV4(8,1,1,0), 24, 7},
357 };
358 
359 #define IPV4_L3FWD_LPM_MAX_RULES     1024
360 
361 typedef struct rte_lpm lookup_struct_t;
362 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
363 #endif
364 
365 struct lcore_conf {
366 	uint16_t n_rx_queue;
367 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
368 	uint16_t n_tx_port;
369 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
370 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
371 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
372 	lookup_struct_t * ipv4_lookup_struct;
373 	lookup_struct_t * ipv6_lookup_struct;
374 } __rte_cache_aligned;
375 
376 struct lcore_stats {
377 	/* total sleep time in ms since last frequency scaling down */
378 	uint32_t sleep_time;
379 	/* number of long sleep recently */
380 	uint32_t nb_long_sleep;
381 	/* freq. scaling up trend */
382 	uint32_t trend;
383 	/* total packet processed recently */
384 	uint64_t nb_rx_processed;
385 	/* total iterations looped recently */
386 	uint64_t nb_iteration_looped;
387 	/*
388 	 * Represents empty and non empty polls
389 	 * of rte_eth_rx_burst();
390 	 * ep_nep[0] holds non empty polls
391 	 * i.e. 0 < nb_rx <= MAX_BURST
392 	 * ep_nep[1] holds empty polls.
393 	 * i.e. nb_rx == 0
394 	 */
395 	uint64_t ep_nep[2];
396 	/*
397 	 * Represents full and empty+partial
398 	 * polls of rte_eth_rx_burst();
399 	 * ep_nep[0] holds empty+partial polls.
400 	 * i.e. 0 <= nb_rx < MAX_BURST
401 	 * ep_nep[1] holds full polls
402 	 * i.e. nb_rx == MAX_BURST
403 	 */
404 	uint64_t fp_nfp[2];
405 	enum busy_rate br;
406 	rte_spinlock_t telemetry_lock;
407 } __rte_cache_aligned;
408 
409 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
410 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
411 static struct rte_timer power_timers[RTE_MAX_LCORE];
412 
413 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
414 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
415 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
416 
417 
418 /*
419  * These defaults are using the max frequency index (1), a medium index (9)
420  * and a typical low frequency index (14). These can be adjusted to use
421  * different indexes using the relevant command line parameters.
422  */
423 static uint8_t  freq_tlb[] = {14, 9, 1};
424 
425 static int is_done(void)
426 {
427 	return quit_signal;
428 }
429 
430 /* exit signal handler */
431 static void
432 signal_exit_now(int sigtype)
433 {
434 
435 	if (sigtype == SIGINT)
436 		quit_signal = true;
437 
438 }
439 
440 /*  Frequency scale down timer callback */
441 static void
442 power_timer_cb(__rte_unused struct rte_timer *tim,
443 			  __rte_unused void *arg)
444 {
445 	uint64_t hz;
446 	float sleep_time_ratio;
447 	unsigned lcore_id = rte_lcore_id();
448 
449 	/* accumulate total execution time in us when callback is invoked */
450 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
451 					(float)SCALING_PERIOD;
452 	/**
453 	 * check whether need to scale down frequency a step if it sleep a lot.
454 	 */
455 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
456 		if (rte_power_freq_down)
457 			rte_power_freq_down(lcore_id);
458 	}
459 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
460 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
461 		/**
462 		 * scale down a step if average packet per iteration less
463 		 * than expectation.
464 		 */
465 		if (rte_power_freq_down)
466 			rte_power_freq_down(lcore_id);
467 	}
468 
469 	/**
470 	 * initialize another timer according to current frequency to ensure
471 	 * timer interval is relatively fixed.
472 	 */
473 	hz = rte_get_timer_hz();
474 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
475 				SINGLE, lcore_id, power_timer_cb, NULL);
476 
477 	stats[lcore_id].nb_rx_processed = 0;
478 	stats[lcore_id].nb_iteration_looped = 0;
479 
480 	stats[lcore_id].sleep_time = 0;
481 }
482 
483 /* Enqueue a single packet, and send burst if queue is filled */
484 static inline int
485 send_single_packet(struct rte_mbuf *m, uint16_t port)
486 {
487 	uint32_t lcore_id;
488 	struct lcore_conf *qconf;
489 
490 	lcore_id = rte_lcore_id();
491 	qconf = &lcore_conf[lcore_id];
492 
493 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
494 			qconf->tx_buffer[port], m);
495 
496 	return 0;
497 }
498 
499 #ifdef DO_RFC_1812_CHECKS
500 static inline int
501 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
502 {
503 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
504 	/*
505 	 * 1. The packet length reported by the Link Layer must be large
506 	 * enough to hold the minimum length legal IP datagram (20 bytes).
507 	 */
508 	if (link_len < sizeof(struct rte_ipv4_hdr))
509 		return -1;
510 
511 	/* 2. The IP checksum must be correct. */
512 	/* if this is not checked in H/W, check it. */
513 	if ((port_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM) == 0) {
514 		uint16_t actual_cksum, expected_cksum;
515 		actual_cksum = pkt->hdr_checksum;
516 		pkt->hdr_checksum = 0;
517 		expected_cksum = rte_ipv4_cksum(pkt);
518 		if (actual_cksum != expected_cksum)
519 			return -2;
520 	}
521 
522 	/*
523 	 * 3. The IP version number must be 4. If the version number is not 4
524 	 * then the packet may be another version of IP, such as IPng or
525 	 * ST-II.
526 	 */
527 	if (((pkt->version_ihl) >> 4) != 4)
528 		return -3;
529 	/*
530 	 * 4. The IP header length field must be large enough to hold the
531 	 * minimum length legal IP datagram (20 bytes = 5 words).
532 	 */
533 	if ((pkt->version_ihl & 0xf) < 5)
534 		return -4;
535 
536 	/*
537 	 * 5. The IP total length field must be large enough to hold the IP
538 	 * datagram header, whose length is specified in the IP header length
539 	 * field.
540 	 */
541 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
542 		return -5;
543 
544 	return 0;
545 }
546 #endif
547 
548 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
549 static void
550 print_ipv4_key(struct ipv4_5tuple key)
551 {
552 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
553 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
554 				key.port_dst, key.port_src, key.proto);
555 }
556 static void
557 print_ipv6_key(struct ipv6_5tuple key)
558 {
559 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
560 	        "port dst = %d, port src = %d, proto = %d\n",
561 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
562 	        key.port_dst, key.port_src, key.proto);
563 }
564 
565 static inline uint16_t
566 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
567 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
568 {
569 	struct ipv4_5tuple key;
570 	struct rte_tcp_hdr *tcp;
571 	struct rte_udp_hdr *udp;
572 	int ret = 0;
573 
574 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
575 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
576 	key.proto = ipv4_hdr->next_proto_id;
577 
578 	switch (ipv4_hdr->next_proto_id) {
579 	case IPPROTO_TCP:
580 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
581 					sizeof(struct rte_ipv4_hdr));
582 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
583 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
584 		break;
585 
586 	case IPPROTO_UDP:
587 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
588 					sizeof(struct rte_ipv4_hdr));
589 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
590 		key.port_src = rte_be_to_cpu_16(udp->src_port);
591 		break;
592 
593 	default:
594 		key.port_dst = 0;
595 		key.port_src = 0;
596 		break;
597 	}
598 
599 	/* Find destination port */
600 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
601 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
602 }
603 
604 static inline uint16_t
605 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
606 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
607 {
608 	struct ipv6_5tuple key;
609 	struct rte_tcp_hdr *tcp;
610 	struct rte_udp_hdr *udp;
611 	int ret = 0;
612 
613 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
614 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
615 
616 	key.proto = ipv6_hdr->proto;
617 
618 	switch (ipv6_hdr->proto) {
619 	case IPPROTO_TCP:
620 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
621 					sizeof(struct rte_ipv6_hdr));
622 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
623 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
624 		break;
625 
626 	case IPPROTO_UDP:
627 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
628 					sizeof(struct rte_ipv6_hdr));
629 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
630 		key.port_src = rte_be_to_cpu_16(udp->src_port);
631 		break;
632 
633 	default:
634 		key.port_dst = 0;
635 		key.port_src = 0;
636 		break;
637 	}
638 
639 	/* Find destination port */
640 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
641 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
642 }
643 #endif
644 
645 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
646 static inline uint16_t
647 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
648 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
649 {
650 	uint32_t next_hop;
651 
652 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
653 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
654 			next_hop : portid);
655 }
656 #endif
657 
658 static inline void
659 parse_ptype_one(struct rte_mbuf *m)
660 {
661 	struct rte_ether_hdr *eth_hdr;
662 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
663 	uint16_t ether_type;
664 
665 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
666 	ether_type = eth_hdr->ether_type;
667 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
668 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
669 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
670 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
671 
672 	m->packet_type = packet_type;
673 }
674 
675 static uint16_t
676 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
677 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
678 	       uint16_t max_pkts __rte_unused,
679 	       void *user_param __rte_unused)
680 {
681 	unsigned int i;
682 
683 	for (i = 0; i < nb_pkts; ++i)
684 		parse_ptype_one(pkts[i]);
685 
686 	return nb_pkts;
687 }
688 
689 static int
690 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
691 {
692 	printf("Port %d: softly parse packet type info\n", portid);
693 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
694 		return 0;
695 
696 	printf("Failed to add rx callback: port=%d\n", portid);
697 	return -1;
698 }
699 
700 static inline void
701 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
702 				struct lcore_conf *qconf)
703 {
704 	struct rte_ether_hdr *eth_hdr;
705 	struct rte_ipv4_hdr *ipv4_hdr;
706 	void *d_addr_bytes;
707 	uint16_t dst_port;
708 
709 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
710 
711 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
712 		/* Handle IPv4 headers.*/
713 		ipv4_hdr =
714 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
715 						sizeof(struct rte_ether_hdr));
716 
717 #ifdef DO_RFC_1812_CHECKS
718 		/* Check to make sure the packet is valid (RFC1812) */
719 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
720 			rte_pktmbuf_free(m);
721 			return;
722 		}
723 #endif
724 
725 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
726 					qconf->ipv4_lookup_struct);
727 		if (dst_port >= RTE_MAX_ETHPORTS ||
728 				(enabled_port_mask & 1 << dst_port) == 0)
729 			dst_port = portid;
730 
731 		/* 02:00:00:00:00:xx */
732 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
733 		*((uint64_t *)d_addr_bytes) =
734 			0x000000000002 + ((uint64_t)dst_port << 40);
735 
736 #ifdef DO_RFC_1812_CHECKS
737 		/* Update time to live and header checksum */
738 		--(ipv4_hdr->time_to_live);
739 		++(ipv4_hdr->hdr_checksum);
740 #endif
741 
742 		/* src addr */
743 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
744 				&eth_hdr->src_addr);
745 
746 		send_single_packet(m, dst_port);
747 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
748 		/* Handle IPv6 headers.*/
749 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
750 		struct rte_ipv6_hdr *ipv6_hdr;
751 
752 		ipv6_hdr =
753 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
754 						sizeof(struct rte_ether_hdr));
755 
756 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
757 					qconf->ipv6_lookup_struct);
758 
759 		if (dst_port >= RTE_MAX_ETHPORTS ||
760 				(enabled_port_mask & 1 << dst_port) == 0)
761 			dst_port = portid;
762 
763 		/* 02:00:00:00:00:xx */
764 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
765 		*((uint64_t *)d_addr_bytes) =
766 			0x000000000002 + ((uint64_t)dst_port << 40);
767 
768 		/* src addr */
769 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
770 				&eth_hdr->src_addr);
771 
772 		send_single_packet(m, dst_port);
773 #else
774 		/* We don't currently handle IPv6 packets in LPM mode. */
775 		rte_pktmbuf_free(m);
776 #endif
777 	} else
778 		rte_pktmbuf_free(m);
779 
780 }
781 
782 #define MINIMUM_SLEEP_TIME         1
783 #define SUSPEND_THRESHOLD          300
784 
785 static inline uint32_t
786 power_idle_heuristic(uint32_t zero_rx_packet_count)
787 {
788 	/* If zero count is less than 100,  sleep 1us */
789 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
790 		return MINIMUM_SLEEP_TIME;
791 	/* If zero count is less than 1000, sleep 100 us which is the
792 		minimum latency switching from C3/C6 to C0
793 	*/
794 	else
795 		return SUSPEND_THRESHOLD;
796 }
797 
798 static inline enum freq_scale_hint_t
799 power_freq_scaleup_heuristic(unsigned lcore_id,
800 			     uint16_t port_id,
801 			     uint16_t queue_id)
802 {
803 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
804 /**
805  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
806  * per iteration
807  */
808 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
809 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
810 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
811 #define FREQ_UP_TREND1_ACC   1
812 #define FREQ_UP_TREND2_ACC   100
813 #define FREQ_UP_THRESHOLD    10000
814 
815 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
816 		stats[lcore_id].trend = 0;
817 		return FREQ_HIGHEST;
818 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
819 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
820 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
821 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
822 
823 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
824 		stats[lcore_id].trend = 0;
825 		return FREQ_HIGHER;
826 	}
827 
828 	return FREQ_CURRENT;
829 }
830 
831 /**
832  * force polling thread sleep until one-shot rx interrupt triggers
833  * @param port_id
834  *  Port id.
835  * @param queue_id
836  *  Rx queue id.
837  * @return
838  *  0 on success
839  */
840 static int
841 sleep_until_rx_interrupt(int num, int lcore)
842 {
843 	/*
844 	 * we want to track when we are woken up by traffic so that we can go
845 	 * back to sleep again without log spamming. Avoid cache line sharing
846 	 * to prevent threads stepping on each others' toes.
847 	 */
848 	static struct {
849 		bool wakeup;
850 	} __rte_cache_aligned status[RTE_MAX_LCORE];
851 	struct rte_epoll_event event[num];
852 	int n, i;
853 	uint16_t port_id;
854 	uint8_t queue_id;
855 	void *data;
856 
857 	if (status[lcore].wakeup) {
858 		RTE_LOG(INFO, L3FWD_POWER,
859 				"lcore %u sleeps until interrupt triggers\n",
860 				rte_lcore_id());
861 	}
862 
863 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
864 	for (i = 0; i < n; i++) {
865 		data = event[i].epdata.data;
866 		port_id = ((uintptr_t)data) >> CHAR_BIT;
867 		queue_id = ((uintptr_t)data) &
868 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
869 		RTE_LOG(INFO, L3FWD_POWER,
870 			"lcore %u is waked up from rx interrupt on"
871 			" port %d queue %d\n",
872 			rte_lcore_id(), port_id, queue_id);
873 	}
874 	status[lcore].wakeup = n != 0;
875 
876 	return 0;
877 }
878 
879 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
880 {
881 	int i;
882 	struct lcore_rx_queue *rx_queue;
883 	uint8_t queue_id;
884 	uint16_t port_id;
885 
886 	for (i = 0; i < qconf->n_rx_queue; ++i) {
887 		rx_queue = &(qconf->rx_queue_list[i]);
888 		port_id = rx_queue->port_id;
889 		queue_id = rx_queue->queue_id;
890 
891 		rte_spinlock_lock(&(locks[port_id]));
892 		if (on)
893 			rte_eth_dev_rx_intr_enable(port_id, queue_id);
894 		else
895 			rte_eth_dev_rx_intr_disable(port_id, queue_id);
896 		rte_spinlock_unlock(&(locks[port_id]));
897 	}
898 }
899 
900 static int event_register(struct lcore_conf *qconf)
901 {
902 	struct lcore_rx_queue *rx_queue;
903 	uint8_t queueid;
904 	uint16_t portid;
905 	uint32_t data;
906 	int ret;
907 	int i;
908 
909 	for (i = 0; i < qconf->n_rx_queue; ++i) {
910 		rx_queue = &(qconf->rx_queue_list[i]);
911 		portid = rx_queue->port_id;
912 		queueid = rx_queue->queue_id;
913 		data = portid << CHAR_BIT | queueid;
914 
915 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
916 						RTE_EPOLL_PER_THREAD,
917 						RTE_INTR_EVENT_ADD,
918 						(void *)((uintptr_t)data));
919 		if (ret)
920 			return ret;
921 	}
922 
923 	return 0;
924 }
925 
926 /* Main processing loop. 8< */
927 static int main_intr_loop(__rte_unused void *dummy)
928 {
929 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
930 	unsigned int lcore_id;
931 	uint64_t prev_tsc, diff_tsc, cur_tsc;
932 	int i, j, nb_rx;
933 	uint8_t queueid;
934 	uint16_t portid;
935 	struct lcore_conf *qconf;
936 	struct lcore_rx_queue *rx_queue;
937 	uint32_t lcore_rx_idle_count = 0;
938 	uint32_t lcore_idle_hint = 0;
939 	int intr_en = 0;
940 
941 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
942 				   US_PER_S * BURST_TX_DRAIN_US;
943 
944 	prev_tsc = 0;
945 
946 	lcore_id = rte_lcore_id();
947 	qconf = &lcore_conf[lcore_id];
948 
949 	if (qconf->n_rx_queue == 0) {
950 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
951 				lcore_id);
952 		return 0;
953 	}
954 
955 	RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
956 			lcore_id);
957 
958 	for (i = 0; i < qconf->n_rx_queue; i++) {
959 		portid = qconf->rx_queue_list[i].port_id;
960 		queueid = qconf->rx_queue_list[i].queue_id;
961 		RTE_LOG(INFO, L3FWD_POWER,
962 				" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
963 				lcore_id, portid, queueid);
964 	}
965 
966 	/* add into event wait list */
967 	if (event_register(qconf) == 0)
968 		intr_en = 1;
969 	else
970 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
971 
972 	while (!is_done()) {
973 		stats[lcore_id].nb_iteration_looped++;
974 
975 		cur_tsc = rte_rdtsc();
976 
977 		/*
978 		 * TX burst queue drain
979 		 */
980 		diff_tsc = cur_tsc - prev_tsc;
981 		if (unlikely(diff_tsc > drain_tsc)) {
982 			for (i = 0; i < qconf->n_tx_port; ++i) {
983 				portid = qconf->tx_port_id[i];
984 				rte_eth_tx_buffer_flush(portid,
985 						qconf->tx_queue_id[portid],
986 						qconf->tx_buffer[portid]);
987 			}
988 			prev_tsc = cur_tsc;
989 		}
990 
991 start_rx:
992 		/*
993 		 * Read packet from RX queues
994 		 */
995 		lcore_rx_idle_count = 0;
996 		for (i = 0; i < qconf->n_rx_queue; ++i) {
997 			rx_queue = &(qconf->rx_queue_list[i]);
998 			rx_queue->idle_hint = 0;
999 			portid = rx_queue->port_id;
1000 			queueid = rx_queue->queue_id;
1001 
1002 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1003 					MAX_PKT_BURST);
1004 
1005 			stats[lcore_id].nb_rx_processed += nb_rx;
1006 			if (unlikely(nb_rx == 0)) {
1007 				/**
1008 				 * no packet received from rx queue, try to
1009 				 * sleep for a while forcing CPU enter deeper
1010 				 * C states.
1011 				 */
1012 				rx_queue->zero_rx_packet_count++;
1013 
1014 				if (rx_queue->zero_rx_packet_count <=
1015 						MIN_ZERO_POLL_COUNT)
1016 					continue;
1017 
1018 				rx_queue->idle_hint = power_idle_heuristic(
1019 						rx_queue->zero_rx_packet_count);
1020 				lcore_rx_idle_count++;
1021 			} else {
1022 				rx_queue->zero_rx_packet_count = 0;
1023 			}
1024 
1025 			/* Prefetch first packets */
1026 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1027 				rte_prefetch0(rte_pktmbuf_mtod(
1028 						pkts_burst[j], void *));
1029 			}
1030 
1031 			/* Prefetch and forward already prefetched packets */
1032 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1033 				rte_prefetch0(rte_pktmbuf_mtod(
1034 						pkts_burst[j + PREFETCH_OFFSET],
1035 						void *));
1036 				l3fwd_simple_forward(
1037 						pkts_burst[j], portid, qconf);
1038 			}
1039 
1040 			/* Forward remaining prefetched packets */
1041 			for (; j < nb_rx; j++) {
1042 				l3fwd_simple_forward(
1043 						pkts_burst[j], portid, qconf);
1044 			}
1045 		}
1046 
1047 		if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1048 			/**
1049 			 * All Rx queues empty in recent consecutive polls,
1050 			 * sleep in a conservative manner, meaning sleep as
1051 			 * less as possible.
1052 			 */
1053 			for (i = 1,
1054 			    lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1055 					i < qconf->n_rx_queue; ++i) {
1056 				rx_queue = &(qconf->rx_queue_list[i]);
1057 				if (rx_queue->idle_hint < lcore_idle_hint)
1058 					lcore_idle_hint = rx_queue->idle_hint;
1059 			}
1060 
1061 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1062 				/**
1063 				 * execute "pause" instruction to avoid context
1064 				 * switch which generally take hundred of
1065 				 * microseconds for short sleep.
1066 				 */
1067 				rte_delay_us(lcore_idle_hint);
1068 			else {
1069 				/* suspend until rx interrupt triggers */
1070 				if (intr_en) {
1071 					turn_on_off_intr(qconf, 1);
1072 					sleep_until_rx_interrupt(
1073 							qconf->n_rx_queue,
1074 							lcore_id);
1075 					turn_on_off_intr(qconf, 0);
1076 					/**
1077 					 * start receiving packets immediately
1078 					 */
1079 					if (likely(!is_done()))
1080 						goto start_rx;
1081 				}
1082 			}
1083 			stats[lcore_id].sleep_time += lcore_idle_hint;
1084 		}
1085 	}
1086 
1087 	return 0;
1088 }
1089 /* >8 End of main processing loop. */
1090 
1091 /* main processing loop */
1092 static int
1093 main_telemetry_loop(__rte_unused void *dummy)
1094 {
1095 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1096 	unsigned int lcore_id;
1097 	uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1098 	int i, j, nb_rx;
1099 	uint8_t queueid;
1100 	uint16_t portid;
1101 	struct lcore_conf *qconf;
1102 	struct lcore_rx_queue *rx_queue;
1103 	uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1104 	uint64_t poll_count;
1105 	enum busy_rate br;
1106 
1107 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1108 					US_PER_S * BURST_TX_DRAIN_US;
1109 
1110 	poll_count = 0;
1111 	prev_tsc = 0;
1112 	prev_tel_tsc = 0;
1113 
1114 	lcore_id = rte_lcore_id();
1115 	qconf = &lcore_conf[lcore_id];
1116 
1117 	if (qconf->n_rx_queue == 0) {
1118 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1119 			lcore_id);
1120 		return 0;
1121 	}
1122 
1123 	RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1124 		lcore_id);
1125 
1126 	for (i = 0; i < qconf->n_rx_queue; i++) {
1127 		portid = qconf->rx_queue_list[i].port_id;
1128 		queueid = qconf->rx_queue_list[i].queue_id;
1129 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1130 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1131 	}
1132 
1133 	while (!is_done()) {
1134 
1135 		cur_tsc = rte_rdtsc();
1136 		/*
1137 		 * TX burst queue drain
1138 		 */
1139 		diff_tsc = cur_tsc - prev_tsc;
1140 		if (unlikely(diff_tsc > drain_tsc)) {
1141 			for (i = 0; i < qconf->n_tx_port; ++i) {
1142 				portid = qconf->tx_port_id[i];
1143 				rte_eth_tx_buffer_flush(portid,
1144 						qconf->tx_queue_id[portid],
1145 						qconf->tx_buffer[portid]);
1146 			}
1147 			prev_tsc = cur_tsc;
1148 		}
1149 
1150 		/*
1151 		 * Read packet from RX queues
1152 		 */
1153 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1154 			rx_queue = &(qconf->rx_queue_list[i]);
1155 			portid = rx_queue->port_id;
1156 			queueid = rx_queue->queue_id;
1157 
1158 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1159 								MAX_PKT_BURST);
1160 			ep_nep[nb_rx == 0]++;
1161 			fp_nfp[nb_rx == MAX_PKT_BURST]++;
1162 			poll_count++;
1163 			if (unlikely(nb_rx == 0))
1164 				continue;
1165 
1166 			/* Prefetch first packets */
1167 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1168 				rte_prefetch0(rte_pktmbuf_mtod(
1169 						pkts_burst[j], void *));
1170 			}
1171 
1172 			/* Prefetch and forward already prefetched packets */
1173 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1174 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1175 						j + PREFETCH_OFFSET], void *));
1176 				l3fwd_simple_forward(pkts_burst[j], portid,
1177 								qconf);
1178 			}
1179 
1180 			/* Forward remaining prefetched packets */
1181 			for (; j < nb_rx; j++) {
1182 				l3fwd_simple_forward(pkts_burst[j], portid,
1183 								qconf);
1184 			}
1185 		}
1186 		if (unlikely(poll_count >= DEFAULT_COUNT)) {
1187 			diff_tsc = cur_tsc - prev_tel_tsc;
1188 			if (diff_tsc >= MAX_CYCLES) {
1189 				br = FULL;
1190 			} else if (diff_tsc > MIN_CYCLES &&
1191 					diff_tsc < MAX_CYCLES) {
1192 				br = (diff_tsc * 100) / MAX_CYCLES;
1193 			} else {
1194 				br = ZERO;
1195 			}
1196 			poll_count = 0;
1197 			prev_tel_tsc = cur_tsc;
1198 			/* update stats for telemetry */
1199 			rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1200 			stats[lcore_id].ep_nep[0] = ep_nep[0];
1201 			stats[lcore_id].ep_nep[1] = ep_nep[1];
1202 			stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1203 			stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1204 			stats[lcore_id].br = br;
1205 			rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1206 		}
1207 	}
1208 
1209 	return 0;
1210 }
1211 /* main processing loop */
1212 static int
1213 main_empty_poll_loop(__rte_unused void *dummy)
1214 {
1215 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1216 	unsigned int lcore_id;
1217 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1218 	int i, j, nb_rx;
1219 	uint8_t queueid;
1220 	uint16_t portid;
1221 	struct lcore_conf *qconf;
1222 	struct lcore_rx_queue *rx_queue;
1223 
1224 	const uint64_t drain_tsc =
1225 		(rte_get_tsc_hz() + US_PER_S - 1) /
1226 		US_PER_S * BURST_TX_DRAIN_US;
1227 
1228 	prev_tsc = 0;
1229 
1230 	lcore_id = rte_lcore_id();
1231 	qconf = &lcore_conf[lcore_id];
1232 
1233 	if (qconf->n_rx_queue == 0) {
1234 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1235 			lcore_id);
1236 		return 0;
1237 	}
1238 
1239 	for (i = 0; i < qconf->n_rx_queue; i++) {
1240 		portid = qconf->rx_queue_list[i].port_id;
1241 		queueid = qconf->rx_queue_list[i].queue_id;
1242 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1243 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1244 	}
1245 
1246 	while (!is_done()) {
1247 		stats[lcore_id].nb_iteration_looped++;
1248 
1249 		cur_tsc = rte_rdtsc();
1250 		/*
1251 		 * TX burst queue drain
1252 		 */
1253 		diff_tsc = cur_tsc - prev_tsc;
1254 		if (unlikely(diff_tsc > drain_tsc)) {
1255 			for (i = 0; i < qconf->n_tx_port; ++i) {
1256 				portid = qconf->tx_port_id[i];
1257 				rte_eth_tx_buffer_flush(portid,
1258 						qconf->tx_queue_id[portid],
1259 						qconf->tx_buffer[portid]);
1260 			}
1261 			prev_tsc = cur_tsc;
1262 		}
1263 
1264 		/*
1265 		 * Read packet from RX queues
1266 		 */
1267 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1268 			rx_queue = &(qconf->rx_queue_list[i]);
1269 			rx_queue->idle_hint = 0;
1270 			portid = rx_queue->port_id;
1271 			queueid = rx_queue->queue_id;
1272 
1273 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1274 					MAX_PKT_BURST);
1275 
1276 			stats[lcore_id].nb_rx_processed += nb_rx;
1277 
1278 			if (nb_rx == 0) {
1279 
1280 				rte_power_empty_poll_stat_update(lcore_id);
1281 
1282 				continue;
1283 			} else {
1284 				rte_power_poll_stat_update(lcore_id, nb_rx);
1285 			}
1286 
1287 
1288 			/* Prefetch first packets */
1289 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1290 				rte_prefetch0(rte_pktmbuf_mtod(
1291 							pkts_burst[j], void *));
1292 			}
1293 
1294 			/* Prefetch and forward already prefetched packets */
1295 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1296 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1297 							j + PREFETCH_OFFSET],
1298 							void *));
1299 				l3fwd_simple_forward(pkts_burst[j], portid,
1300 						qconf);
1301 			}
1302 
1303 			/* Forward remaining prefetched packets */
1304 			for (; j < nb_rx; j++) {
1305 				l3fwd_simple_forward(pkts_burst[j], portid,
1306 						qconf);
1307 			}
1308 
1309 		}
1310 
1311 	}
1312 
1313 	return 0;
1314 }
1315 /* main processing loop */
1316 static int
1317 main_legacy_loop(__rte_unused void *dummy)
1318 {
1319 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1320 	unsigned lcore_id;
1321 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1322 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1323 	int i, j, nb_rx;
1324 	uint8_t queueid;
1325 	uint16_t portid;
1326 	struct lcore_conf *qconf;
1327 	struct lcore_rx_queue *rx_queue;
1328 	enum freq_scale_hint_t lcore_scaleup_hint;
1329 	uint32_t lcore_rx_idle_count = 0;
1330 	uint32_t lcore_idle_hint = 0;
1331 	int intr_en = 0;
1332 
1333 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1334 
1335 	prev_tsc = 0;
1336 	hz = rte_get_timer_hz();
1337 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1338 
1339 	lcore_id = rte_lcore_id();
1340 	qconf = &lcore_conf[lcore_id];
1341 
1342 	if (qconf->n_rx_queue == 0) {
1343 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1344 		return 0;
1345 	}
1346 
1347 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1348 
1349 	for (i = 0; i < qconf->n_rx_queue; i++) {
1350 		portid = qconf->rx_queue_list[i].port_id;
1351 		queueid = qconf->rx_queue_list[i].queue_id;
1352 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1353 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1354 	}
1355 
1356 	/* add into event wait list */
1357 	if (event_register(qconf) == 0)
1358 		intr_en = 1;
1359 	else
1360 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1361 
1362 	while (!is_done()) {
1363 		stats[lcore_id].nb_iteration_looped++;
1364 
1365 		cur_tsc = rte_rdtsc();
1366 		cur_tsc_power = cur_tsc;
1367 
1368 		/*
1369 		 * TX burst queue drain
1370 		 */
1371 		diff_tsc = cur_tsc - prev_tsc;
1372 		if (unlikely(diff_tsc > drain_tsc)) {
1373 			for (i = 0; i < qconf->n_tx_port; ++i) {
1374 				portid = qconf->tx_port_id[i];
1375 				rte_eth_tx_buffer_flush(portid,
1376 						qconf->tx_queue_id[portid],
1377 						qconf->tx_buffer[portid]);
1378 			}
1379 			prev_tsc = cur_tsc;
1380 		}
1381 
1382 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1383 		if (diff_tsc_power > tim_res_tsc) {
1384 			rte_timer_manage();
1385 			prev_tsc_power = cur_tsc_power;
1386 		}
1387 
1388 start_rx:
1389 		/*
1390 		 * Read packet from RX queues
1391 		 */
1392 		lcore_scaleup_hint = FREQ_CURRENT;
1393 		lcore_rx_idle_count = 0;
1394 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1395 			rx_queue = &(qconf->rx_queue_list[i]);
1396 			rx_queue->idle_hint = 0;
1397 			portid = rx_queue->port_id;
1398 			queueid = rx_queue->queue_id;
1399 
1400 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1401 								MAX_PKT_BURST);
1402 
1403 			stats[lcore_id].nb_rx_processed += nb_rx;
1404 			if (unlikely(nb_rx == 0)) {
1405 				/**
1406 				 * no packet received from rx queue, try to
1407 				 * sleep for a while forcing CPU enter deeper
1408 				 * C states.
1409 				 */
1410 				rx_queue->zero_rx_packet_count++;
1411 
1412 				if (rx_queue->zero_rx_packet_count <=
1413 							MIN_ZERO_POLL_COUNT)
1414 					continue;
1415 
1416 				rx_queue->idle_hint = power_idle_heuristic(\
1417 					rx_queue->zero_rx_packet_count);
1418 				lcore_rx_idle_count++;
1419 			} else {
1420 				rx_queue->zero_rx_packet_count = 0;
1421 
1422 				/**
1423 				 * do not scale up frequency immediately as
1424 				 * user to kernel space communication is costly
1425 				 * which might impact packet I/O for received
1426 				 * packets.
1427 				 */
1428 				rx_queue->freq_up_hint =
1429 					power_freq_scaleup_heuristic(lcore_id,
1430 							portid, queueid);
1431 			}
1432 
1433 			/* Prefetch first packets */
1434 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1435 				rte_prefetch0(rte_pktmbuf_mtod(
1436 						pkts_burst[j], void *));
1437 			}
1438 
1439 			/* Prefetch and forward already prefetched packets */
1440 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1441 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1442 						j + PREFETCH_OFFSET], void *));
1443 				l3fwd_simple_forward(pkts_burst[j], portid,
1444 								qconf);
1445 			}
1446 
1447 			/* Forward remaining prefetched packets */
1448 			for (; j < nb_rx; j++) {
1449 				l3fwd_simple_forward(pkts_burst[j], portid,
1450 								qconf);
1451 			}
1452 		}
1453 
1454 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1455 			for (i = 1, lcore_scaleup_hint =
1456 				qconf->rx_queue_list[0].freq_up_hint;
1457 					i < qconf->n_rx_queue; ++i) {
1458 				rx_queue = &(qconf->rx_queue_list[i]);
1459 				if (rx_queue->freq_up_hint >
1460 						lcore_scaleup_hint)
1461 					lcore_scaleup_hint =
1462 						rx_queue->freq_up_hint;
1463 			}
1464 
1465 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1466 				if (rte_power_freq_max)
1467 					rte_power_freq_max(lcore_id);
1468 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1469 				if (rte_power_freq_up)
1470 					rte_power_freq_up(lcore_id);
1471 			}
1472 		} else {
1473 			/**
1474 			 * All Rx queues empty in recent consecutive polls,
1475 			 * sleep in a conservative manner, meaning sleep as
1476 			 * less as possible.
1477 			 */
1478 			for (i = 1, lcore_idle_hint =
1479 				qconf->rx_queue_list[0].idle_hint;
1480 					i < qconf->n_rx_queue; ++i) {
1481 				rx_queue = &(qconf->rx_queue_list[i]);
1482 				if (rx_queue->idle_hint < lcore_idle_hint)
1483 					lcore_idle_hint = rx_queue->idle_hint;
1484 			}
1485 
1486 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1487 				/**
1488 				 * execute "pause" instruction to avoid context
1489 				 * switch which generally take hundred of
1490 				 * microseconds for short sleep.
1491 				 */
1492 				rte_delay_us(lcore_idle_hint);
1493 			else {
1494 				/* suspend until rx interrupt triggers */
1495 				if (intr_en) {
1496 					turn_on_off_intr(qconf, 1);
1497 					sleep_until_rx_interrupt(
1498 							qconf->n_rx_queue,
1499 							lcore_id);
1500 					turn_on_off_intr(qconf, 0);
1501 					/**
1502 					 * start receiving packets immediately
1503 					 */
1504 					if (likely(!is_done()))
1505 						goto start_rx;
1506 				}
1507 			}
1508 			stats[lcore_id].sleep_time += lcore_idle_hint;
1509 		}
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 static int
1516 check_lcore_params(void)
1517 {
1518 	uint8_t queue, lcore;
1519 	uint16_t i;
1520 	int socketid;
1521 
1522 	for (i = 0; i < nb_lcore_params; ++i) {
1523 		queue = lcore_params[i].queue_id;
1524 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1525 			printf("invalid queue number: %hhu\n", queue);
1526 			return -1;
1527 		}
1528 		lcore = lcore_params[i].lcore_id;
1529 		if (!rte_lcore_is_enabled(lcore)) {
1530 			printf("error: lcore %hhu is not enabled in lcore "
1531 							"mask\n", lcore);
1532 			return -1;
1533 		}
1534 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1535 							(numa_on == 0)) {
1536 			printf("warning: lcore %hhu is on socket %d with numa "
1537 						"off\n", lcore, socketid);
1538 		}
1539 		if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1540 			printf("cannot enable main core %d in config for telemetry mode\n",
1541 				rte_lcore_id());
1542 			return -1;
1543 		}
1544 	}
1545 	return 0;
1546 }
1547 
1548 static int
1549 check_port_config(void)
1550 {
1551 	unsigned portid;
1552 	uint16_t i;
1553 
1554 	for (i = 0; i < nb_lcore_params; ++i) {
1555 		portid = lcore_params[i].port_id;
1556 		if ((enabled_port_mask & (1 << portid)) == 0) {
1557 			printf("port %u is not enabled in port mask\n",
1558 								portid);
1559 			return -1;
1560 		}
1561 		if (!rte_eth_dev_is_valid_port(portid)) {
1562 			printf("port %u is not present on the board\n",
1563 								portid);
1564 			return -1;
1565 		}
1566 	}
1567 	return 0;
1568 }
1569 
1570 static uint8_t
1571 get_port_n_rx_queues(const uint16_t port)
1572 {
1573 	int queue = -1;
1574 	uint16_t i;
1575 
1576 	for (i = 0; i < nb_lcore_params; ++i) {
1577 		if (lcore_params[i].port_id == port &&
1578 				lcore_params[i].queue_id > queue)
1579 			queue = lcore_params[i].queue_id;
1580 	}
1581 	return (uint8_t)(++queue);
1582 }
1583 
1584 static int
1585 init_lcore_rx_queues(void)
1586 {
1587 	uint16_t i, nb_rx_queue;
1588 	uint8_t lcore;
1589 
1590 	for (i = 0; i < nb_lcore_params; ++i) {
1591 		lcore = lcore_params[i].lcore_id;
1592 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1593 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1594 			printf("error: too many queues (%u) for lcore: %u\n",
1595 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1596 			return -1;
1597 		} else {
1598 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1599 				lcore_params[i].port_id;
1600 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1601 				lcore_params[i].queue_id;
1602 			lcore_conf[lcore].n_rx_queue++;
1603 		}
1604 	}
1605 	return 0;
1606 }
1607 
1608 /* display usage */
1609 static void
1610 print_usage(const char *prgname)
1611 {
1612 	printf ("%s [EAL options] -- -p PORTMASK -P"
1613 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1614 		"  [--high-perf-cores CORELIST"
1615 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1616 		"  [--max-pkt-len PKTLEN]\n"
1617 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1618 		"  -P: enable promiscuous mode\n"
1619 		"  --config (port,queue,lcore): rx queues configuration\n"
1620 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1621 		"  --perf-config: similar as config, cores specified as indices"
1622 		" for bins containing high or regular performance cores\n"
1623 		"  --no-numa: optional, disable numa awareness\n"
1624 		"  --max-pkt-len PKTLEN: maximum packet length in decimal (64-9600)\n"
1625 		"  --parse-ptype: parse packet type by software\n"
1626 		"  --legacy: use legacy interrupt-based scaling\n"
1627 		"  --empty-poll: enable empty poll detection"
1628 		" follow (training_flag, high_threshold, med_threshold)\n"
1629 		" --telemetry: enable telemetry mode, to update"
1630 		" empty polls, full polls, and core busyness to telemetry\n"
1631 		" --interrupt-only: enable interrupt-only mode\n"
1632 		" --pmd-mgmt MODE: enable PMD power management mode. "
1633 		"Currently supported modes: baseline, monitor, pause, scale\n"
1634 		"  --max-empty-polls MAX_EMPTY_POLLS: number of empty polls to"
1635 		" wait before entering sleep state\n"
1636 		"  --pause-duration DURATION: set the duration, in microseconds,"
1637 		" of the pause callback\n"
1638 		"  --scale-freq-min FREQ_MIN: set minimum frequency for scaling mode for"
1639 		" all application lcores (FREQ_MIN must be in kHz, in increments of 100MHz)\n"
1640 		"  --scale-freq-max FREQ_MAX: set maximum frequency for scaling mode for"
1641 		" all application lcores (FREQ_MAX must be in kHz, in increments of 100MHz)\n",
1642 		prgname);
1643 }
1644 
1645 static int
1646 parse_int(const char *opt)
1647 {
1648 	char *end = NULL;
1649 	unsigned long val;
1650 
1651 	/* parse integer string */
1652 	val = strtoul(opt, &end, 10);
1653 	if ((opt[0] == '\0') || (end == NULL) || (*end != '\0'))
1654 		return -1;
1655 
1656 	return val;
1657 }
1658 
1659 static int parse_max_pkt_len(const char *pktlen)
1660 {
1661 	char *end = NULL;
1662 	unsigned long len;
1663 
1664 	/* parse decimal string */
1665 	len = strtoul(pktlen, &end, 10);
1666 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1667 		return -1;
1668 
1669 	if (len == 0)
1670 		return -1;
1671 
1672 	return len;
1673 }
1674 
1675 static int
1676 parse_portmask(const char *portmask)
1677 {
1678 	char *end = NULL;
1679 	unsigned long pm;
1680 
1681 	/* parse hexadecimal string */
1682 	pm = strtoul(portmask, &end, 16);
1683 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1684 		return 0;
1685 
1686 	return pm;
1687 }
1688 
1689 static int
1690 parse_config(const char *q_arg)
1691 {
1692 	char s[256];
1693 	const char *p, *p0 = q_arg;
1694 	char *end;
1695 	enum fieldnames {
1696 		FLD_PORT = 0,
1697 		FLD_QUEUE,
1698 		FLD_LCORE,
1699 		_NUM_FLD
1700 	};
1701 	unsigned long int_fld[_NUM_FLD];
1702 	char *str_fld[_NUM_FLD];
1703 	int i;
1704 	unsigned size;
1705 
1706 	nb_lcore_params = 0;
1707 
1708 	while ((p = strchr(p0,'(')) != NULL) {
1709 		++p;
1710 		if((p0 = strchr(p,')')) == NULL)
1711 			return -1;
1712 
1713 		size = p0 - p;
1714 		if(size >= sizeof(s))
1715 			return -1;
1716 
1717 		snprintf(s, sizeof(s), "%.*s", size, p);
1718 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1719 								_NUM_FLD)
1720 			return -1;
1721 		for (i = 0; i < _NUM_FLD; i++){
1722 			errno = 0;
1723 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1724 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1725 									255)
1726 				return -1;
1727 		}
1728 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1729 			printf("exceeded max number of lcore params: %hu\n",
1730 				nb_lcore_params);
1731 			return -1;
1732 		}
1733 		lcore_params_array[nb_lcore_params].port_id =
1734 				(uint8_t)int_fld[FLD_PORT];
1735 		lcore_params_array[nb_lcore_params].queue_id =
1736 				(uint8_t)int_fld[FLD_QUEUE];
1737 		lcore_params_array[nb_lcore_params].lcore_id =
1738 				(uint8_t)int_fld[FLD_LCORE];
1739 		++nb_lcore_params;
1740 	}
1741 	lcore_params = lcore_params_array;
1742 
1743 	return 0;
1744 }
1745 
1746 static int
1747 parse_pmd_mgmt_config(const char *name)
1748 {
1749 #define PMD_MGMT_MONITOR "monitor"
1750 #define PMD_MGMT_PAUSE   "pause"
1751 #define PMD_MGMT_SCALE   "scale"
1752 #define PMD_MGMT_BASELINE  "baseline"
1753 
1754 	if (strncmp(PMD_MGMT_MONITOR, name, sizeof(PMD_MGMT_MONITOR)) == 0) {
1755 		pmgmt_type = RTE_POWER_MGMT_TYPE_MONITOR;
1756 		return 0;
1757 	}
1758 
1759 	if (strncmp(PMD_MGMT_PAUSE, name, sizeof(PMD_MGMT_PAUSE)) == 0) {
1760 		pmgmt_type = RTE_POWER_MGMT_TYPE_PAUSE;
1761 		return 0;
1762 	}
1763 
1764 	if (strncmp(PMD_MGMT_SCALE, name, sizeof(PMD_MGMT_SCALE)) == 0) {
1765 		pmgmt_type = RTE_POWER_MGMT_TYPE_SCALE;
1766 		return 0;
1767 	}
1768 	if (strncmp(PMD_MGMT_BASELINE, name, sizeof(PMD_MGMT_BASELINE)) == 0) {
1769 		baseline_enabled = true;
1770 		return 0;
1771 	}
1772 	/* unknown PMD power management mode */
1773 	return -1;
1774 }
1775 
1776 static int
1777 parse_ep_config(const char *q_arg)
1778 {
1779 	char s[256];
1780 	const char *p = q_arg;
1781 	char *end;
1782 	int  num_arg;
1783 
1784 	char *str_fld[3];
1785 
1786 	int training_flag;
1787 	int med_edpi;
1788 	int hgh_edpi;
1789 
1790 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1791 	ep_hgh_edpi = EMPTY_POLL_HGH_THRESHOLD;
1792 
1793 	strlcpy(s, p, sizeof(s));
1794 
1795 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1796 
1797 	empty_poll_train = false;
1798 
1799 	if (num_arg == 0)
1800 		return 0;
1801 
1802 	if (num_arg == 3) {
1803 
1804 		training_flag = strtoul(str_fld[0], &end, 0);
1805 		med_edpi = strtoul(str_fld[1], &end, 0);
1806 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1807 
1808 		if (training_flag == 1)
1809 			empty_poll_train = true;
1810 
1811 		if (med_edpi > 0)
1812 			ep_med_edpi = med_edpi;
1813 
1814 		if (hgh_edpi > 0)
1815 			ep_hgh_edpi = hgh_edpi;
1816 
1817 	} else {
1818 
1819 		return -1;
1820 	}
1821 
1822 	return 0;
1823 
1824 }
1825 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1826 #define CMD_LINE_OPT_LEGACY "legacy"
1827 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1828 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1829 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1830 #define CMD_LINE_OPT_PMD_MGMT "pmd-mgmt"
1831 #define CMD_LINE_OPT_MAX_PKT_LEN "max-pkt-len"
1832 #define CMD_LINE_OPT_MAX_EMPTY_POLLS "max-empty-polls"
1833 #define CMD_LINE_OPT_PAUSE_DURATION "pause-duration"
1834 #define CMD_LINE_OPT_SCALE_FREQ_MIN "scale-freq-min"
1835 #define CMD_LINE_OPT_SCALE_FREQ_MAX "scale-freq-max"
1836 
1837 /* Parse the argument given in the command line of the application */
1838 static int
1839 parse_args(int argc, char **argv)
1840 {
1841 	int opt, ret;
1842 	char **argvopt;
1843 	int option_index;
1844 	uint32_t limit;
1845 	char *prgname = argv[0];
1846 	static struct option lgopts[] = {
1847 		{"config", 1, 0, 0},
1848 		{"perf-config", 1, 0, 0},
1849 		{"high-perf-cores", 1, 0, 0},
1850 		{"no-numa", 0, 0, 0},
1851 		{CMD_LINE_OPT_MAX_PKT_LEN, 1, 0, 0},
1852 		{CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1853 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1854 		{CMD_LINE_OPT_LEGACY, 0, 0, 0},
1855 		{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1856 		{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1857 		{CMD_LINE_OPT_PMD_MGMT, 1, 0, 0},
1858 		{CMD_LINE_OPT_MAX_EMPTY_POLLS, 1, 0, 0},
1859 		{CMD_LINE_OPT_PAUSE_DURATION, 1, 0, 0},
1860 		{CMD_LINE_OPT_SCALE_FREQ_MIN, 1, 0, 0},
1861 		{CMD_LINE_OPT_SCALE_FREQ_MAX, 1, 0, 0},
1862 		{NULL, 0, 0, 0}
1863 	};
1864 
1865 	argvopt = argv;
1866 
1867 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1868 				lgopts, &option_index)) != EOF) {
1869 
1870 		switch (opt) {
1871 		/* portmask */
1872 		case 'p':
1873 			enabled_port_mask = parse_portmask(optarg);
1874 			if (enabled_port_mask == 0) {
1875 				printf("invalid portmask\n");
1876 				print_usage(prgname);
1877 				return -1;
1878 			}
1879 			break;
1880 		case 'P':
1881 			printf("Promiscuous mode selected\n");
1882 			promiscuous_on = 1;
1883 			break;
1884 		case 'l':
1885 			limit = parse_max_pkt_len(optarg);
1886 			freq_tlb[LOW] = limit;
1887 			break;
1888 		case 'm':
1889 			limit = parse_max_pkt_len(optarg);
1890 			freq_tlb[MED] = limit;
1891 			break;
1892 		case 'h':
1893 			limit = parse_max_pkt_len(optarg);
1894 			freq_tlb[HGH] = limit;
1895 			break;
1896 		/* long options */
1897 		case 0:
1898 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1899 				ret = parse_config(optarg);
1900 				if (ret) {
1901 					printf("invalid config\n");
1902 					print_usage(prgname);
1903 					return -1;
1904 				}
1905 			}
1906 
1907 			if (!strncmp(lgopts[option_index].name,
1908 					"perf-config", 11)) {
1909 				ret = parse_perf_config(optarg);
1910 				if (ret) {
1911 					printf("invalid perf-config\n");
1912 					print_usage(prgname);
1913 					return -1;
1914 				}
1915 			}
1916 
1917 			if (!strncmp(lgopts[option_index].name,
1918 					"high-perf-cores", 15)) {
1919 				ret = parse_perf_core_list(optarg);
1920 				if (ret) {
1921 					printf("invalid high-perf-cores\n");
1922 					print_usage(prgname);
1923 					return -1;
1924 				}
1925 			}
1926 
1927 			if (!strncmp(lgopts[option_index].name,
1928 						"no-numa", 7)) {
1929 				printf("numa is disabled \n");
1930 				numa_on = 0;
1931 			}
1932 
1933 			if (!strncmp(lgopts[option_index].name,
1934 					CMD_LINE_OPT_LEGACY,
1935 					sizeof(CMD_LINE_OPT_LEGACY))) {
1936 				if (app_mode != APP_MODE_DEFAULT) {
1937 					printf(" legacy mode is mutually exclusive with other modes\n");
1938 					return -1;
1939 				}
1940 				app_mode = APP_MODE_LEGACY;
1941 				printf("legacy mode is enabled\n");
1942 			}
1943 
1944 			if (!strncmp(lgopts[option_index].name,
1945 					CMD_LINE_OPT_EMPTY_POLL, 10)) {
1946 				if (app_mode != APP_MODE_DEFAULT) {
1947 					printf(" empty-poll mode is mutually exclusive with other modes\n");
1948 					return -1;
1949 				}
1950 				app_mode = APP_MODE_EMPTY_POLL;
1951 				ret = parse_ep_config(optarg);
1952 
1953 				if (ret) {
1954 					printf("invalid empty poll config\n");
1955 					print_usage(prgname);
1956 					return -1;
1957 				}
1958 				printf("empty-poll is enabled\n");
1959 			}
1960 
1961 			if (!strncmp(lgopts[option_index].name,
1962 					CMD_LINE_OPT_TELEMETRY,
1963 					sizeof(CMD_LINE_OPT_TELEMETRY))) {
1964 				if (app_mode != APP_MODE_DEFAULT) {
1965 					printf(" telemetry mode is mutually exclusive with other modes\n");
1966 					return -1;
1967 				}
1968 				app_mode = APP_MODE_TELEMETRY;
1969 				printf("telemetry mode is enabled\n");
1970 			}
1971 
1972 			if (!strncmp(lgopts[option_index].name,
1973 					CMD_LINE_OPT_PMD_MGMT,
1974 					sizeof(CMD_LINE_OPT_PMD_MGMT))) {
1975 				if (app_mode != APP_MODE_DEFAULT) {
1976 					printf(" power mgmt mode is mutually exclusive with other modes\n");
1977 					return -1;
1978 				}
1979 				if (parse_pmd_mgmt_config(optarg) < 0) {
1980 					printf(" Invalid PMD power management mode: %s\n",
1981 							optarg);
1982 					return -1;
1983 				}
1984 				app_mode = APP_MODE_PMD_MGMT;
1985 				printf("PMD power mgmt mode is enabled\n");
1986 			}
1987 			if (!strncmp(lgopts[option_index].name,
1988 					CMD_LINE_OPT_INTERRUPT_ONLY,
1989 					sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1990 				if (app_mode != APP_MODE_DEFAULT) {
1991 					printf(" interrupt-only mode is mutually exclusive with other modes\n");
1992 					return -1;
1993 				}
1994 				app_mode = APP_MODE_INTERRUPT;
1995 				printf("interrupt-only mode is enabled\n");
1996 			}
1997 
1998 			if (!strncmp(lgopts[option_index].name,
1999 					CMD_LINE_OPT_MAX_PKT_LEN,
2000 					sizeof(CMD_LINE_OPT_MAX_PKT_LEN))) {
2001 				printf("Custom frame size is configured\n");
2002 				max_pkt_len = parse_max_pkt_len(optarg);
2003 			}
2004 
2005 			if (!strncmp(lgopts[option_index].name,
2006 				     CMD_LINE_OPT_PARSE_PTYPE,
2007 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
2008 				printf("soft parse-ptype is enabled\n");
2009 				parse_ptype = 1;
2010 			}
2011 
2012 			if (!strncmp(lgopts[option_index].name,
2013 					CMD_LINE_OPT_MAX_EMPTY_POLLS,
2014 					sizeof(CMD_LINE_OPT_MAX_EMPTY_POLLS))) {
2015 				printf("Maximum empty polls configured\n");
2016 				max_empty_polls = parse_int(optarg);
2017 			}
2018 
2019 			if (!strncmp(lgopts[option_index].name,
2020 					CMD_LINE_OPT_PAUSE_DURATION,
2021 					sizeof(CMD_LINE_OPT_PAUSE_DURATION))) {
2022 				printf("Pause duration configured\n");
2023 				pause_duration = parse_int(optarg);
2024 			}
2025 
2026 			if (!strncmp(lgopts[option_index].name,
2027 					CMD_LINE_OPT_SCALE_FREQ_MIN,
2028 					sizeof(CMD_LINE_OPT_SCALE_FREQ_MIN))) {
2029 				printf("Scaling frequency minimum configured\n");
2030 				scale_freq_min = parse_int(optarg);
2031 			}
2032 
2033 			if (!strncmp(lgopts[option_index].name,
2034 					CMD_LINE_OPT_SCALE_FREQ_MAX,
2035 					sizeof(CMD_LINE_OPT_SCALE_FREQ_MAX))) {
2036 				printf("Scaling frequency maximum configured\n");
2037 				scale_freq_max = parse_int(optarg);
2038 			}
2039 
2040 			break;
2041 
2042 		default:
2043 			print_usage(prgname);
2044 			return -1;
2045 		}
2046 	}
2047 
2048 	if (optind >= 0)
2049 		argv[optind-1] = prgname;
2050 
2051 	ret = optind-1;
2052 	optind = 1; /* reset getopt lib */
2053 	return ret;
2054 }
2055 
2056 static void
2057 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
2058 {
2059 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
2060 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
2061 	printf("%s%s", name, buf);
2062 }
2063 
2064 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2065 static void
2066 setup_hash(int socketid)
2067 {
2068 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
2069 		.name = NULL,
2070 		.entries = L3FWD_HASH_ENTRIES,
2071 		.key_len = sizeof(struct ipv4_5tuple),
2072 		.hash_func = DEFAULT_HASH_FUNC,
2073 		.hash_func_init_val = 0,
2074 	};
2075 
2076 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
2077 		.name = NULL,
2078 		.entries = L3FWD_HASH_ENTRIES,
2079 		.key_len = sizeof(struct ipv6_5tuple),
2080 		.hash_func = DEFAULT_HASH_FUNC,
2081 		.hash_func_init_val = 0,
2082 	};
2083 
2084 	unsigned i;
2085 	int ret;
2086 	char s[64];
2087 
2088 	/* create ipv4 hash */
2089 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
2090 	ipv4_l3fwd_hash_params.name = s;
2091 	ipv4_l3fwd_hash_params.socket_id = socketid;
2092 	ipv4_l3fwd_lookup_struct[socketid] =
2093 		rte_hash_create(&ipv4_l3fwd_hash_params);
2094 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2095 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2096 				"socket %d\n", socketid);
2097 
2098 	/* create ipv6 hash */
2099 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2100 	ipv6_l3fwd_hash_params.name = s;
2101 	ipv6_l3fwd_hash_params.socket_id = socketid;
2102 	ipv6_l3fwd_lookup_struct[socketid] =
2103 		rte_hash_create(&ipv6_l3fwd_hash_params);
2104 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2105 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2106 				"socket %d\n", socketid);
2107 
2108 
2109 	/* populate the ipv4 hash */
2110 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2111 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2112 				(void *) &ipv4_l3fwd_route_array[i].key);
2113 		if (ret < 0) {
2114 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2115 				"l3fwd hash on socket %d\n", i, socketid);
2116 		}
2117 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2118 		printf("Hash: Adding key\n");
2119 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2120 	}
2121 
2122 	/* populate the ipv6 hash */
2123 	for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2124 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2125 				(void *) &ipv6_l3fwd_route_array[i].key);
2126 		if (ret < 0) {
2127 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2128 				"l3fwd hash on socket %d\n", i, socketid);
2129 		}
2130 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2131 		printf("Hash: Adding key\n");
2132 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2133 	}
2134 }
2135 #endif
2136 
2137 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2138 static void
2139 setup_lpm(int socketid)
2140 {
2141 	unsigned i;
2142 	int ret;
2143 	char s[64];
2144 
2145 	/* create the LPM table */
2146 	struct rte_lpm_config lpm_ipv4_config;
2147 
2148 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2149 	lpm_ipv4_config.number_tbl8s = 256;
2150 	lpm_ipv4_config.flags = 0;
2151 
2152 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2153 	ipv4_l3fwd_lookup_struct[socketid] =
2154 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
2155 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2156 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2157 				" on socket %d\n", socketid);
2158 
2159 	/* populate the LPM table */
2160 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2161 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2162 			ipv4_l3fwd_route_array[i].ip,
2163 			ipv4_l3fwd_route_array[i].depth,
2164 			ipv4_l3fwd_route_array[i].if_out);
2165 
2166 		if (ret < 0) {
2167 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2168 				"l3fwd LPM table on socket %d\n",
2169 				i, socketid);
2170 		}
2171 
2172 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2173 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2174 			ipv4_l3fwd_route_array[i].depth,
2175 			ipv4_l3fwd_route_array[i].if_out);
2176 	}
2177 }
2178 #endif
2179 
2180 static int
2181 init_mem(unsigned nb_mbuf)
2182 {
2183 	struct lcore_conf *qconf;
2184 	int socketid;
2185 	unsigned lcore_id;
2186 	char s[64];
2187 
2188 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2189 		if (rte_lcore_is_enabled(lcore_id) == 0)
2190 			continue;
2191 
2192 		if (numa_on)
2193 			socketid = rte_lcore_to_socket_id(lcore_id);
2194 		else
2195 			socketid = 0;
2196 
2197 		if (socketid >= NB_SOCKETS) {
2198 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2199 					"out of range %d\n", socketid,
2200 						lcore_id, NB_SOCKETS);
2201 		}
2202 		if (pktmbuf_pool[socketid] == NULL) {
2203 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2204 			pktmbuf_pool[socketid] =
2205 				rte_pktmbuf_pool_create(s, nb_mbuf,
2206 					MEMPOOL_CACHE_SIZE, 0,
2207 					RTE_MBUF_DEFAULT_BUF_SIZE,
2208 					socketid);
2209 			if (pktmbuf_pool[socketid] == NULL)
2210 				rte_exit(EXIT_FAILURE,
2211 					"Cannot init mbuf pool on socket %d\n",
2212 								socketid);
2213 			else
2214 				printf("Allocated mbuf pool on socket %d\n",
2215 								socketid);
2216 
2217 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2218 			setup_lpm(socketid);
2219 #else
2220 			setup_hash(socketid);
2221 #endif
2222 		}
2223 		qconf = &lcore_conf[lcore_id];
2224 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2225 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2226 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2227 #endif
2228 	}
2229 	return 0;
2230 }
2231 
2232 /* Check the link status of all ports in up to 9s, and print them finally */
2233 static void
2234 check_all_ports_link_status(uint32_t port_mask)
2235 {
2236 #define CHECK_INTERVAL 100 /* 100ms */
2237 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2238 	uint8_t count, all_ports_up, print_flag = 0;
2239 	uint16_t portid;
2240 	struct rte_eth_link link;
2241 	int ret;
2242 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
2243 
2244 	printf("\nChecking link status");
2245 	fflush(stdout);
2246 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2247 		all_ports_up = 1;
2248 		RTE_ETH_FOREACH_DEV(portid) {
2249 			if ((port_mask & (1 << portid)) == 0)
2250 				continue;
2251 			memset(&link, 0, sizeof(link));
2252 			ret = rte_eth_link_get_nowait(portid, &link);
2253 			if (ret < 0) {
2254 				all_ports_up = 0;
2255 				if (print_flag == 1)
2256 					printf("Port %u link get failed: %s\n",
2257 						portid, rte_strerror(-ret));
2258 				continue;
2259 			}
2260 			/* print link status if flag set */
2261 			if (print_flag == 1) {
2262 				rte_eth_link_to_str(link_status_text,
2263 					sizeof(link_status_text), &link);
2264 				printf("Port %d %s\n", portid,
2265 				       link_status_text);
2266 				continue;
2267 			}
2268 			/* clear all_ports_up flag if any link down */
2269 			if (link.link_status == RTE_ETH_LINK_DOWN) {
2270 				all_ports_up = 0;
2271 				break;
2272 			}
2273 		}
2274 		/* after finally printing all link status, get out */
2275 		if (print_flag == 1)
2276 			break;
2277 
2278 		if (all_ports_up == 0) {
2279 			printf(".");
2280 			fflush(stdout);
2281 			rte_delay_ms(CHECK_INTERVAL);
2282 		}
2283 
2284 		/* set the print_flag if all ports up or timeout */
2285 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2286 			print_flag = 1;
2287 			printf("done\n");
2288 		}
2289 	}
2290 }
2291 
2292 static int check_ptype(uint16_t portid)
2293 {
2294 	int i, ret;
2295 	int ptype_l3_ipv4 = 0;
2296 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2297 	int ptype_l3_ipv6 = 0;
2298 #endif
2299 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2300 
2301 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2302 	if (ret <= 0)
2303 		return 0;
2304 
2305 	uint32_t ptypes[ret];
2306 
2307 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2308 	for (i = 0; i < ret; ++i) {
2309 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2310 			ptype_l3_ipv4 = 1;
2311 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2312 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2313 			ptype_l3_ipv6 = 1;
2314 #endif
2315 	}
2316 
2317 	if (ptype_l3_ipv4 == 0)
2318 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2319 
2320 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2321 	if (ptype_l3_ipv6 == 0)
2322 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2323 #endif
2324 
2325 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2326 	if (ptype_l3_ipv4)
2327 #else /* APP_LOOKUP_EXACT_MATCH */
2328 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
2329 #endif
2330 		return 1;
2331 
2332 	return 0;
2333 
2334 }
2335 
2336 static int
2337 init_power_library(void)
2338 {
2339 	enum power_management_env env;
2340 	unsigned int lcore_id;
2341 	int ret = 0;
2342 
2343 	RTE_LCORE_FOREACH(lcore_id) {
2344 		/* init power management library */
2345 		ret = rte_power_init(lcore_id);
2346 		if (ret) {
2347 			RTE_LOG(ERR, POWER,
2348 				"Library initialization failed on core %u\n",
2349 				lcore_id);
2350 			return ret;
2351 		}
2352 		/* we're not supporting the VM channel mode */
2353 		env = rte_power_get_env();
2354 		if (env != PM_ENV_ACPI_CPUFREQ &&
2355 				env != PM_ENV_PSTATE_CPUFREQ) {
2356 			RTE_LOG(ERR, POWER,
2357 				"Only ACPI and PSTATE mode are supported\n");
2358 			return -1;
2359 		}
2360 	}
2361 	return ret;
2362 }
2363 
2364 static int
2365 deinit_power_library(void)
2366 {
2367 	unsigned int lcore_id;
2368 	int ret = 0;
2369 
2370 	RTE_LCORE_FOREACH(lcore_id) {
2371 		/* deinit power management library */
2372 		ret = rte_power_exit(lcore_id);
2373 		if (ret) {
2374 			RTE_LOG(ERR, POWER,
2375 				"Library deinitialization failed on core %u\n",
2376 				lcore_id);
2377 			return ret;
2378 		}
2379 	}
2380 	return ret;
2381 }
2382 
2383 static void
2384 get_current_stat_values(uint64_t *values)
2385 {
2386 	unsigned int lcore_id = rte_lcore_id();
2387 	struct lcore_conf *qconf;
2388 	uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2389 	uint64_t count = 0;
2390 
2391 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2392 		qconf = &lcore_conf[lcore_id];
2393 		if (qconf->n_rx_queue == 0)
2394 			continue;
2395 		count++;
2396 		rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2397 		app_eps += stats[lcore_id].ep_nep[1];
2398 		app_fps += stats[lcore_id].fp_nfp[1];
2399 		app_br += stats[lcore_id].br;
2400 		rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2401 	}
2402 
2403 	if (count > 0) {
2404 		values[0] = app_eps/count;
2405 		values[1] = app_fps/count;
2406 		values[2] = app_br/count;
2407 	} else
2408 		memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2409 
2410 }
2411 
2412 static void
2413 update_telemetry(__rte_unused struct rte_timer *tim,
2414 		__rte_unused void *arg)
2415 {
2416 	int ret;
2417 	uint64_t values[NUM_TELSTATS] = {0};
2418 
2419 	get_current_stat_values(values);
2420 	ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2421 					values, RTE_DIM(values));
2422 	if (ret < 0)
2423 		RTE_LOG(WARNING, POWER, "failed to update metrics\n");
2424 }
2425 
2426 static int
2427 handle_app_stats(const char *cmd __rte_unused,
2428 		const char *params __rte_unused,
2429 		struct rte_tel_data *d)
2430 {
2431 	uint64_t values[NUM_TELSTATS] = {0};
2432 	uint32_t i;
2433 
2434 	rte_tel_data_start_dict(d);
2435 	get_current_stat_values(values);
2436 	for (i = 0; i < NUM_TELSTATS; i++)
2437 		rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2438 				values[i]);
2439 	return 0;
2440 }
2441 
2442 static void
2443 telemetry_setup_timer(void)
2444 {
2445 	int lcore_id = rte_lcore_id();
2446 	uint64_t hz = rte_get_timer_hz();
2447 	uint64_t ticks;
2448 
2449 	ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2450 	rte_timer_reset_sync(&telemetry_timer,
2451 			ticks,
2452 			PERIODICAL,
2453 			lcore_id,
2454 			update_telemetry,
2455 			NULL);
2456 }
2457 static void
2458 empty_poll_setup_timer(void)
2459 {
2460 	int lcore_id = rte_lcore_id();
2461 	uint64_t hz = rte_get_timer_hz();
2462 
2463 	struct  ep_params *ep_ptr = ep_params;
2464 
2465 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2466 
2467 	rte_timer_reset_sync(&ep_ptr->timer0,
2468 			ep_ptr->interval_ticks,
2469 			PERIODICAL,
2470 			lcore_id,
2471 			rte_empty_poll_detection,
2472 			(void *)ep_ptr);
2473 
2474 }
2475 static int
2476 launch_timer(unsigned int lcore_id)
2477 {
2478 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2479 
2480 	RTE_SET_USED(lcore_id);
2481 
2482 
2483 	if (rte_get_main_lcore() != lcore_id) {
2484 		rte_panic("timer on lcore:%d which is not main core:%d\n",
2485 				lcore_id,
2486 				rte_get_main_lcore());
2487 	}
2488 
2489 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2490 
2491 	if (app_mode == APP_MODE_EMPTY_POLL)
2492 		empty_poll_setup_timer();
2493 	else
2494 		telemetry_setup_timer();
2495 
2496 	cycles_10ms = rte_get_timer_hz() / 100;
2497 
2498 	while (!is_done()) {
2499 		cur_tsc = rte_rdtsc();
2500 		diff_tsc = cur_tsc - prev_tsc;
2501 		if (diff_tsc > cycles_10ms) {
2502 			rte_timer_manage();
2503 			prev_tsc = cur_tsc;
2504 			cycles_10ms = rte_get_timer_hz() / 100;
2505 		}
2506 	}
2507 
2508 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2509 
2510 	return 0;
2511 }
2512 
2513 static int
2514 autodetect_mode(void)
2515 {
2516 	RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2517 
2518 	/*
2519 	 * Empty poll and telemetry modes have to be specifically requested to
2520 	 * be enabled, but we can auto-detect between interrupt mode with or
2521 	 * without frequency scaling. Both ACPI and pstate can be used.
2522 	 */
2523 	if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2524 		return APP_MODE_LEGACY;
2525 	if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2526 		return APP_MODE_LEGACY;
2527 
2528 	RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2529 
2530 	return APP_MODE_INTERRUPT;
2531 }
2532 
2533 static const char *
2534 mode_to_str(enum appmode mode)
2535 {
2536 	switch (mode) {
2537 	case APP_MODE_LEGACY:
2538 		return "legacy";
2539 	case APP_MODE_EMPTY_POLL:
2540 		return "empty poll";
2541 	case APP_MODE_TELEMETRY:
2542 		return "telemetry";
2543 	case APP_MODE_INTERRUPT:
2544 		return "interrupt-only";
2545 	case APP_MODE_PMD_MGMT:
2546 		return "pmd mgmt";
2547 	default:
2548 		return "invalid";
2549 	}
2550 }
2551 
2552 static uint32_t
2553 eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
2554 {
2555 	uint32_t overhead_len;
2556 
2557 	if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
2558 		overhead_len = max_rx_pktlen - max_mtu;
2559 	else
2560 		overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
2561 
2562 	return overhead_len;
2563 }
2564 
2565 static int
2566 config_port_max_pkt_len(struct rte_eth_conf *conf,
2567 		struct rte_eth_dev_info *dev_info)
2568 {
2569 	uint32_t overhead_len;
2570 
2571 	if (max_pkt_len == 0)
2572 		return 0;
2573 
2574 	if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
2575 		return -1;
2576 
2577 	overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
2578 			dev_info->max_mtu);
2579 	conf->rxmode.mtu = max_pkt_len - overhead_len;
2580 
2581 	if (conf->rxmode.mtu > RTE_ETHER_MTU)
2582 		conf->txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2583 
2584 	return 0;
2585 }
2586 
2587 /* Power library initialized in the main routine. 8< */
2588 int
2589 main(int argc, char **argv)
2590 {
2591 	struct lcore_conf *qconf;
2592 	struct rte_eth_dev_info dev_info;
2593 	struct rte_eth_txconf *txconf;
2594 	int ret;
2595 	uint16_t nb_ports;
2596 	uint16_t queueid;
2597 	unsigned lcore_id;
2598 	uint64_t hz;
2599 	uint32_t n_tx_queue, nb_lcores;
2600 	uint32_t dev_rxq_num, dev_txq_num;
2601 	uint8_t nb_rx_queue, queue, socketid;
2602 	uint16_t portid;
2603 	const char *ptr_strings[NUM_TELSTATS];
2604 
2605 	/* init EAL */
2606 	ret = rte_eal_init(argc, argv);
2607 	if (ret < 0)
2608 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2609 	argc -= ret;
2610 	argv += ret;
2611 
2612 	/* catch SIGINT and restore cpufreq governor to ondemand */
2613 	signal(SIGINT, signal_exit_now);
2614 
2615 	/* init RTE timer library to be used late */
2616 	rte_timer_subsystem_init();
2617 
2618 	/* if we're running pmd-mgmt mode, don't default to baseline mode */
2619 	baseline_enabled = false;
2620 
2621 	/* parse application arguments (after the EAL ones) */
2622 	ret = parse_args(argc, argv);
2623 	if (ret < 0)
2624 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2625 
2626 	if (app_mode == APP_MODE_DEFAULT)
2627 		app_mode = autodetect_mode();
2628 
2629 	RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2630 			mode_to_str(app_mode));
2631 
2632 	/* only legacy and empty poll mode rely on power library */
2633 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2634 			init_power_library())
2635 		rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2636 
2637 	if (update_lcore_params() < 0)
2638 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2639 
2640 	if (check_lcore_params() < 0)
2641 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2642 
2643 	ret = init_lcore_rx_queues();
2644 	if (ret < 0)
2645 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2646 
2647 	nb_ports = rte_eth_dev_count_avail();
2648 
2649 	if (check_port_config() < 0)
2650 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2651 
2652 	nb_lcores = rte_lcore_count();
2653 
2654 	/* initialize all ports */
2655 	RTE_ETH_FOREACH_DEV(portid) {
2656 		struct rte_eth_conf local_port_conf = port_conf;
2657 		/* not all app modes need interrupts */
2658 		bool need_intr = app_mode == APP_MODE_LEGACY ||
2659 				app_mode == APP_MODE_INTERRUPT;
2660 
2661 		/* skip ports that are not enabled */
2662 		if ((enabled_port_mask & (1 << portid)) == 0) {
2663 			printf("\nSkipping disabled port %d\n", portid);
2664 			continue;
2665 		}
2666 
2667 		/* init port */
2668 		printf("Initializing port %d ... ", portid );
2669 		fflush(stdout);
2670 
2671 		ret = rte_eth_dev_info_get(portid, &dev_info);
2672 		if (ret != 0)
2673 			rte_exit(EXIT_FAILURE,
2674 				"Error during getting device (port %u) info: %s\n",
2675 				portid, strerror(-ret));
2676 
2677 		dev_rxq_num = dev_info.max_rx_queues;
2678 		dev_txq_num = dev_info.max_tx_queues;
2679 
2680 		nb_rx_queue = get_port_n_rx_queues(portid);
2681 		if (nb_rx_queue > dev_rxq_num)
2682 			rte_exit(EXIT_FAILURE,
2683 				"Cannot configure not existed rxq: "
2684 				"port=%d\n", portid);
2685 
2686 		n_tx_queue = nb_lcores;
2687 		if (n_tx_queue > dev_txq_num)
2688 			n_tx_queue = dev_txq_num;
2689 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2690 			nb_rx_queue, (unsigned)n_tx_queue );
2691 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2692 		if (nb_rx_queue == 0)
2693 			need_intr = false;
2694 
2695 		if (need_intr)
2696 			local_port_conf.intr_conf.rxq = 1;
2697 
2698 		ret = rte_eth_dev_info_get(portid, &dev_info);
2699 		if (ret != 0)
2700 			rte_exit(EXIT_FAILURE,
2701 				"Error during getting device (port %u) info: %s\n",
2702 				portid, strerror(-ret));
2703 
2704 		ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
2705 		if (ret != 0)
2706 			rte_exit(EXIT_FAILURE,
2707 				"Invalid max packet length: %u (port %u)\n",
2708 				max_pkt_len, portid);
2709 
2710 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
2711 			local_port_conf.txmode.offloads |=
2712 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2713 
2714 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2715 			dev_info.flow_type_rss_offloads;
2716 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2717 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2718 			printf("Port %u modified RSS hash function based on hardware support,"
2719 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2720 				portid,
2721 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2722 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2723 		}
2724 
2725 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf == 0)
2726 			local_port_conf.rxmode.mq_mode = RTE_ETH_MQ_RX_NONE;
2727 		local_port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
2728 		port_conf.rxmode.offloads = local_port_conf.rxmode.offloads;
2729 
2730 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2731 					(uint16_t)n_tx_queue, &local_port_conf);
2732 		if (ret < 0)
2733 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2734 					"err=%d, port=%d\n", ret, portid);
2735 
2736 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2737 						       &nb_txd);
2738 		if (ret < 0)
2739 			rte_exit(EXIT_FAILURE,
2740 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2741 				 ret, portid);
2742 
2743 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2744 		if (ret < 0)
2745 			rte_exit(EXIT_FAILURE,
2746 				 "Cannot get MAC address: err=%d, port=%d\n",
2747 				 ret, portid);
2748 
2749 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2750 		printf(", ");
2751 
2752 		/* init memory */
2753 		ret = init_mem(NB_MBUF);
2754 		if (ret < 0)
2755 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2756 
2757 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2758 			if (rte_lcore_is_enabled(lcore_id) == 0)
2759 				continue;
2760 
2761 			/* Initialize TX buffers */
2762 			qconf = &lcore_conf[lcore_id];
2763 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2764 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2765 				rte_eth_dev_socket_id(portid));
2766 			if (qconf->tx_buffer[portid] == NULL)
2767 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2768 						 portid);
2769 
2770 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2771 		}
2772 
2773 		/* init one TX queue per couple (lcore,port) */
2774 		queueid = 0;
2775 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2776 			if (rte_lcore_is_enabled(lcore_id) == 0)
2777 				continue;
2778 
2779 			if (queueid >= dev_txq_num)
2780 				continue;
2781 
2782 			if (numa_on)
2783 				socketid = \
2784 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2785 			else
2786 				socketid = 0;
2787 
2788 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2789 			fflush(stdout);
2790 
2791 			txconf = &dev_info.default_txconf;
2792 			txconf->offloads = local_port_conf.txmode.offloads;
2793 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2794 						     socketid, txconf);
2795 			if (ret < 0)
2796 				rte_exit(EXIT_FAILURE,
2797 					"rte_eth_tx_queue_setup: err=%d, "
2798 						"port=%d\n", ret, portid);
2799 
2800 			qconf = &lcore_conf[lcore_id];
2801 			qconf->tx_queue_id[portid] = queueid;
2802 			queueid++;
2803 
2804 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2805 			qconf->n_tx_port++;
2806 		}
2807 		printf("\n");
2808 	}
2809 
2810 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2811 		if (rte_lcore_is_enabled(lcore_id) == 0)
2812 			continue;
2813 
2814 		if (app_mode == APP_MODE_LEGACY) {
2815 			/* init timer structures for each enabled lcore */
2816 			rte_timer_init(&power_timers[lcore_id]);
2817 			hz = rte_get_timer_hz();
2818 			rte_timer_reset(&power_timers[lcore_id],
2819 					hz/TIMER_NUMBER_PER_SECOND,
2820 					SINGLE, lcore_id,
2821 					power_timer_cb, NULL);
2822 		}
2823 		qconf = &lcore_conf[lcore_id];
2824 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2825 		fflush(stdout);
2826 
2827 		/* init RX queues */
2828 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2829 			struct rte_eth_rxconf rxq_conf;
2830 
2831 			portid = qconf->rx_queue_list[queue].port_id;
2832 			queueid = qconf->rx_queue_list[queue].queue_id;
2833 
2834 			if (numa_on)
2835 				socketid = \
2836 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2837 			else
2838 				socketid = 0;
2839 
2840 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2841 			fflush(stdout);
2842 
2843 			ret = rte_eth_dev_info_get(portid, &dev_info);
2844 			if (ret != 0)
2845 				rte_exit(EXIT_FAILURE,
2846 					"Error during getting device (port %u) info: %s\n",
2847 					portid, strerror(-ret));
2848 
2849 			rxq_conf = dev_info.default_rxconf;
2850 			rxq_conf.offloads = port_conf.rxmode.offloads;
2851 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2852 				socketid, &rxq_conf,
2853 				pktmbuf_pool[socketid]);
2854 			if (ret < 0)
2855 				rte_exit(EXIT_FAILURE,
2856 					"rte_eth_rx_queue_setup: err=%d, "
2857 						"port=%d\n", ret, portid);
2858 
2859 			if (parse_ptype) {
2860 				if (add_cb_parse_ptype(portid, queueid) < 0)
2861 					rte_exit(EXIT_FAILURE,
2862 						 "Fail to add ptype cb\n");
2863 			}
2864 
2865 			if (app_mode == APP_MODE_PMD_MGMT && !baseline_enabled) {
2866 				/* Set power_pmd_mgmt configs passed by user */
2867 				rte_power_pmd_mgmt_set_emptypoll_max(max_empty_polls);
2868 				ret = rte_power_pmd_mgmt_set_pause_duration(pause_duration);
2869 				if (ret < 0)
2870 					rte_exit(EXIT_FAILURE,
2871 						"Error setting pause_duration: err=%d, lcore=%d\n",
2872 							ret, lcore_id);
2873 
2874 				ret = rte_power_pmd_mgmt_set_scaling_freq_min(lcore_id,
2875 						scale_freq_min);
2876 				if (ret < 0)
2877 					rte_exit(EXIT_FAILURE,
2878 						"Error setting scaling freq min: err=%d, lcore=%d\n",
2879 							ret, lcore_id);
2880 
2881 				ret = rte_power_pmd_mgmt_set_scaling_freq_max(lcore_id,
2882 						scale_freq_max);
2883 				if (ret < 0)
2884 					rte_exit(EXIT_FAILURE,
2885 						"Error setting scaling freq max: err=%d, lcore %d\n",
2886 							ret, lcore_id);
2887 
2888 				ret = rte_power_ethdev_pmgmt_queue_enable(
2889 						lcore_id, portid, queueid,
2890 						pmgmt_type);
2891 				if (ret < 0)
2892 					rte_exit(EXIT_FAILURE,
2893 						"rte_power_ethdev_pmgmt_queue_enable: err=%d, port=%d\n",
2894 							ret, portid);
2895 			}
2896 		}
2897 	}
2898 	/* >8 End of power library initialization. */
2899 
2900 	printf("\n");
2901 
2902 	/* start ports */
2903 	RTE_ETH_FOREACH_DEV(portid) {
2904 		if ((enabled_port_mask & (1 << portid)) == 0) {
2905 			continue;
2906 		}
2907 		/* Start device */
2908 		ret = rte_eth_dev_start(portid);
2909 		if (ret < 0)
2910 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2911 						"port=%d\n", ret, portid);
2912 		/*
2913 		 * If enabled, put device in promiscuous mode.
2914 		 * This allows IO forwarding mode to forward packets
2915 		 * to itself through 2 cross-connected  ports of the
2916 		 * target machine.
2917 		 */
2918 		if (promiscuous_on) {
2919 			ret = rte_eth_promiscuous_enable(portid);
2920 			if (ret != 0)
2921 				rte_exit(EXIT_FAILURE,
2922 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2923 					rte_strerror(-ret), portid);
2924 		}
2925 		/* initialize spinlock for each port */
2926 		rte_spinlock_init(&(locks[portid]));
2927 
2928 		if (!parse_ptype)
2929 			if (!check_ptype(portid))
2930 				rte_exit(EXIT_FAILURE,
2931 					"PMD can not provide needed ptypes\n");
2932 	}
2933 
2934 	check_all_ports_link_status(enabled_port_mask);
2935 
2936 	if (app_mode == APP_MODE_EMPTY_POLL) {
2937 
2938 		if (empty_poll_train) {
2939 			policy.state = TRAINING;
2940 		} else {
2941 			policy.state = MED_NORMAL;
2942 			policy.med_base_edpi = ep_med_edpi;
2943 			policy.hgh_base_edpi = ep_hgh_edpi;
2944 		}
2945 
2946 		ret = rte_power_empty_poll_stat_init(&ep_params,
2947 				freq_tlb,
2948 				&policy);
2949 		if (ret < 0)
2950 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2951 	}
2952 
2953 
2954 	/* launch per-lcore init on every lcore */
2955 	if (app_mode == APP_MODE_LEGACY) {
2956 		rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
2957 	} else if (app_mode == APP_MODE_EMPTY_POLL) {
2958 		empty_poll_stop = false;
2959 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2960 				SKIP_MAIN);
2961 	} else if (app_mode == APP_MODE_TELEMETRY) {
2962 		unsigned int i;
2963 
2964 		/* Init metrics library */
2965 		rte_metrics_init(rte_socket_id());
2966 		/** Register stats with metrics library */
2967 		for (i = 0; i < NUM_TELSTATS; i++)
2968 			ptr_strings[i] = telstats_strings[i].name;
2969 
2970 		ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2971 		if (ret >= 0)
2972 			telstats_index = ret;
2973 		else
2974 			rte_exit(EXIT_FAILURE, "failed to register metrics names");
2975 
2976 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
2977 			rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2978 		}
2979 		rte_timer_init(&telemetry_timer);
2980 		rte_telemetry_register_cmd("/l3fwd-power/stats",
2981 				handle_app_stats,
2982 				"Returns global power stats. Parameters: None");
2983 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2984 						SKIP_MAIN);
2985 	} else if (app_mode == APP_MODE_INTERRUPT) {
2986 		rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
2987 	} else if (app_mode == APP_MODE_PMD_MGMT) {
2988 		/* reuse telemetry loop for PMD power management mode */
2989 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL, CALL_MAIN);
2990 	}
2991 
2992 	if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2993 		launch_timer(rte_lcore_id());
2994 
2995 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2996 		if (rte_eal_wait_lcore(lcore_id) < 0)
2997 			return -1;
2998 	}
2999 
3000 	if (app_mode == APP_MODE_PMD_MGMT) {
3001 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3002 			if (rte_lcore_is_enabled(lcore_id) == 0)
3003 				continue;
3004 			qconf = &lcore_conf[lcore_id];
3005 			for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
3006 				portid = qconf->rx_queue_list[queue].port_id;
3007 				queueid = qconf->rx_queue_list[queue].queue_id;
3008 
3009 				rte_power_ethdev_pmgmt_queue_disable(lcore_id,
3010 						portid, queueid);
3011 			}
3012 		}
3013 	}
3014 
3015 	RTE_ETH_FOREACH_DEV(portid)
3016 	{
3017 		if ((enabled_port_mask & (1 << portid)) == 0)
3018 			continue;
3019 
3020 		ret = rte_eth_dev_stop(portid);
3021 		if (ret != 0)
3022 			RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
3023 				ret, portid);
3024 
3025 		rte_eth_dev_close(portid);
3026 	}
3027 
3028 	if (app_mode == APP_MODE_EMPTY_POLL)
3029 		rte_power_empty_poll_stat_free();
3030 
3031 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
3032 			deinit_power_library())
3033 		rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
3034 
3035 	if (rte_eal_cleanup() < 0)
3036 		RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
3037 
3038 	return 0;
3039 }
3040