xref: /dpdk/examples/l3fwd-power/main.c (revision 2490bb897182f57de80fd924dd3ae48dda819b8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_ip.h>
40 #include <rte_tcp.h>
41 #include <rte_udp.h>
42 #include <rte_string_fns.h>
43 #include <rte_timer.h>
44 #include <rte_power.h>
45 #include <rte_spinlock.h>
46 #include <rte_power_empty_poll.h>
47 #include <rte_metrics.h>
48 #include <rte_telemetry.h>
49 #include <rte_power_pmd_mgmt.h>
50 
51 #include "perf_core.h"
52 #include "main.h"
53 
54 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
55 
56 #define MAX_PKT_BURST 32
57 
58 #define MIN_ZERO_POLL_COUNT 10
59 
60 /* 100 ms interval */
61 #define TIMER_NUMBER_PER_SECOND           10
62 /* (10ms) */
63 #define INTERVALS_PER_SECOND             100
64 /* 100000 us */
65 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
66 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
67 
68 #define APP_LOOKUP_EXACT_MATCH          0
69 #define APP_LOOKUP_LPM                  1
70 #define DO_RFC_1812_CHECKS
71 
72 #ifndef APP_LOOKUP_METHOD
73 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
74 #endif
75 
76 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
77 #include <rte_hash.h>
78 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
79 #include <rte_lpm.h>
80 #else
81 #error "APP_LOOKUP_METHOD set to incorrect value"
82 #endif
83 
84 #ifndef IPv6_BYTES
85 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
86                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
87 #define IPv6_BYTES(addr) \
88 	addr[0],  addr[1], addr[2],  addr[3], \
89 	addr[4],  addr[5], addr[6],  addr[7], \
90 	addr[8],  addr[9], addr[10], addr[11],\
91 	addr[12], addr[13],addr[14], addr[15]
92 #endif
93 
94 #define MAX_JUMBO_PKT_LEN  9600
95 
96 #define IPV6_ADDR_LEN 16
97 
98 #define MEMPOOL_CACHE_SIZE 256
99 
100 /*
101  * This expression is used to calculate the number of mbufs needed depending on
102  * user input, taking into account memory for rx and tx hardware rings, cache
103  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
104  * NB_MBUF never goes below a minimum value of 8192.
105  */
106 
107 #define NB_MBUF RTE_MAX	( \
108 	(nb_ports*nb_rx_queue*nb_rxd + \
109 	nb_ports*nb_lcores*MAX_PKT_BURST + \
110 	nb_ports*n_tx_queue*nb_txd + \
111 	nb_lcores*MEMPOOL_CACHE_SIZE), \
112 	(unsigned)8192)
113 
114 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
115 
116 #define NB_SOCKETS 8
117 
118 /* Configure how many packets ahead to prefetch, when reading packets */
119 #define PREFETCH_OFFSET	3
120 
121 /*
122  * Configurable number of RX/TX ring descriptors
123  */
124 #define RTE_TEST_RX_DESC_DEFAULT 1024
125 #define RTE_TEST_TX_DESC_DEFAULT 1024
126 
127 /*
128  * These two thresholds were decided on by running the training algorithm on
129  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
130  * for the med_threshold and high_threshold parameters on the command line.
131  */
132 #define EMPTY_POLL_MED_THRESHOLD 350000UL
133 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
134 
135 #define NUM_TELSTATS RTE_DIM(telstats_strings)
136 
137 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
138 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
139 
140 /* ethernet addresses of ports */
141 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
142 
143 /* ethernet addresses of ports */
144 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
145 
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask = 0;
148 /* Ports set in promiscuous mode off by default. */
149 static int promiscuous_on = 0;
150 /* NUMA is enabled by default. */
151 static int numa_on = 1;
152 static bool empty_poll_stop;
153 static bool empty_poll_train;
154 volatile bool quit_signal;
155 static struct  ep_params *ep_params;
156 static struct  ep_policy policy;
157 static long  ep_med_edpi, ep_hgh_edpi;
158 /* timer to update telemetry every 500ms */
159 static struct rte_timer telemetry_timer;
160 
161 /* stats index returned by metrics lib */
162 int telstats_index;
163 
164 struct telstats_name {
165 	char name[RTE_ETH_XSTATS_NAME_SIZE];
166 };
167 
168 /* telemetry stats to be reported */
169 const struct telstats_name telstats_strings[] = {
170 	{"empty_poll"},
171 	{"full_poll"},
172 	{"busy_percent"}
173 };
174 
175 /* core busyness in percentage */
176 enum busy_rate {
177 	ZERO = 0,
178 	PARTIAL = 50,
179 	FULL = 100
180 };
181 
182 /* reference poll count to measure core busyness */
183 #define DEFAULT_COUNT 10000
184 /*
185  * reference CYCLES to be used to
186  * measure core busyness based on poll count
187  */
188 #define MIN_CYCLES  1500000ULL
189 #define MAX_CYCLES 22000000ULL
190 
191 /* (500ms) */
192 #define TELEMETRY_INTERVALS_PER_SEC 2
193 
194 static int parse_ptype; /**< Parse packet type using rx callback, and */
195 			/**< disabled by default */
196 
197 enum appmode {
198 	APP_MODE_DEFAULT = 0,
199 	APP_MODE_LEGACY,
200 	APP_MODE_EMPTY_POLL,
201 	APP_MODE_TELEMETRY,
202 	APP_MODE_INTERRUPT,
203 	APP_MODE_PMD_MGMT
204 };
205 
206 enum appmode app_mode;
207 
208 static enum rte_power_pmd_mgmt_type pmgmt_type;
209 bool baseline_enabled;
210 
211 enum freq_scale_hint_t
212 {
213 	FREQ_LOWER    =      -1,
214 	FREQ_CURRENT  =       0,
215 	FREQ_HIGHER   =       1,
216 	FREQ_HIGHEST  =       2
217 };
218 
219 struct lcore_rx_queue {
220 	uint16_t port_id;
221 	uint8_t queue_id;
222 	enum freq_scale_hint_t freq_up_hint;
223 	uint32_t zero_rx_packet_count;
224 	uint32_t idle_hint;
225 } __rte_cache_aligned;
226 
227 #define MAX_RX_QUEUE_PER_LCORE 16
228 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
229 #define MAX_RX_QUEUE_PER_PORT 128
230 
231 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
232 
233 
234 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
235 static struct lcore_params lcore_params_array_default[] = {
236 	{0, 0, 2},
237 	{0, 1, 2},
238 	{0, 2, 2},
239 	{1, 0, 2},
240 	{1, 1, 2},
241 	{1, 2, 2},
242 	{2, 0, 2},
243 	{3, 0, 3},
244 	{3, 1, 3},
245 };
246 
247 struct lcore_params *lcore_params = lcore_params_array_default;
248 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
249 
250 static struct rte_eth_conf port_conf = {
251 	.rxmode = {
252 		.mq_mode        = RTE_ETH_MQ_RX_RSS,
253 		.split_hdr_size = 0,
254 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
255 	},
256 	.rx_adv_conf = {
257 		.rss_conf = {
258 			.rss_key = NULL,
259 			.rss_hf = RTE_ETH_RSS_UDP,
260 		},
261 	},
262 	.txmode = {
263 		.mq_mode = RTE_ETH_MQ_TX_NONE,
264 	}
265 };
266 
267 static uint32_t max_pkt_len;
268 
269 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
270 
271 
272 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
273 
274 #ifdef RTE_ARCH_X86
275 #include <rte_hash_crc.h>
276 #define DEFAULT_HASH_FUNC       rte_hash_crc
277 #else
278 #include <rte_jhash.h>
279 #define DEFAULT_HASH_FUNC       rte_jhash
280 #endif
281 
282 struct ipv4_5tuple {
283 	uint32_t ip_dst;
284 	uint32_t ip_src;
285 	uint16_t port_dst;
286 	uint16_t port_src;
287 	uint8_t  proto;
288 } __rte_packed;
289 
290 struct ipv6_5tuple {
291 	uint8_t  ip_dst[IPV6_ADDR_LEN];
292 	uint8_t  ip_src[IPV6_ADDR_LEN];
293 	uint16_t port_dst;
294 	uint16_t port_src;
295 	uint8_t  proto;
296 } __rte_packed;
297 
298 struct ipv4_l3fwd_route {
299 	struct ipv4_5tuple key;
300 	uint8_t if_out;
301 };
302 
303 struct ipv6_l3fwd_route {
304 	struct ipv6_5tuple key;
305 	uint8_t if_out;
306 };
307 
308 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
309 	{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
310 	{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
311 	{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
312 	{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
313 };
314 
315 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
316 	{
317 		{
318 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
319 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
320 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
321 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
322 			 1, 10, IPPROTO_UDP
323 		}, 4
324 	},
325 };
326 
327 typedef struct rte_hash lookup_struct_t;
328 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
329 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
330 
331 #define L3FWD_HASH_ENTRIES	1024
332 
333 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
334 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
335 #endif
336 
337 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
338 struct ipv4_l3fwd_route {
339 	uint32_t ip;
340 	uint8_t  depth;
341 	uint8_t  if_out;
342 };
343 
344 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
345 	{RTE_IPV4(1,1,1,0), 24, 0},
346 	{RTE_IPV4(2,1,1,0), 24, 1},
347 	{RTE_IPV4(3,1,1,0), 24, 2},
348 	{RTE_IPV4(4,1,1,0), 24, 3},
349 	{RTE_IPV4(5,1,1,0), 24, 4},
350 	{RTE_IPV4(6,1,1,0), 24, 5},
351 	{RTE_IPV4(7,1,1,0), 24, 6},
352 	{RTE_IPV4(8,1,1,0), 24, 7},
353 };
354 
355 #define IPV4_L3FWD_LPM_MAX_RULES     1024
356 
357 typedef struct rte_lpm lookup_struct_t;
358 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
359 #endif
360 
361 struct lcore_conf {
362 	uint16_t n_rx_queue;
363 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
364 	uint16_t n_tx_port;
365 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
366 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
367 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
368 	lookup_struct_t * ipv4_lookup_struct;
369 	lookup_struct_t * ipv6_lookup_struct;
370 } __rte_cache_aligned;
371 
372 struct lcore_stats {
373 	/* total sleep time in ms since last frequency scaling down */
374 	uint32_t sleep_time;
375 	/* number of long sleep recently */
376 	uint32_t nb_long_sleep;
377 	/* freq. scaling up trend */
378 	uint32_t trend;
379 	/* total packet processed recently */
380 	uint64_t nb_rx_processed;
381 	/* total iterations looped recently */
382 	uint64_t nb_iteration_looped;
383 	/*
384 	 * Represents empty and non empty polls
385 	 * of rte_eth_rx_burst();
386 	 * ep_nep[0] holds non empty polls
387 	 * i.e. 0 < nb_rx <= MAX_BURST
388 	 * ep_nep[1] holds empty polls.
389 	 * i.e. nb_rx == 0
390 	 */
391 	uint64_t ep_nep[2];
392 	/*
393 	 * Represents full and empty+partial
394 	 * polls of rte_eth_rx_burst();
395 	 * ep_nep[0] holds empty+partial polls.
396 	 * i.e. 0 <= nb_rx < MAX_BURST
397 	 * ep_nep[1] holds full polls
398 	 * i.e. nb_rx == MAX_BURST
399 	 */
400 	uint64_t fp_nfp[2];
401 	enum busy_rate br;
402 	rte_spinlock_t telemetry_lock;
403 } __rte_cache_aligned;
404 
405 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
406 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
407 static struct rte_timer power_timers[RTE_MAX_LCORE];
408 
409 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
410 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
411 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
412 
413 
414 /*
415  * These defaults are using the max frequency index (1), a medium index (9)
416  * and a typical low frequency index (14). These can be adjusted to use
417  * different indexes using the relevant command line parameters.
418  */
419 static uint8_t  freq_tlb[] = {14, 9, 1};
420 
421 static int is_done(void)
422 {
423 	return quit_signal;
424 }
425 
426 /* exit signal handler */
427 static void
428 signal_exit_now(int sigtype)
429 {
430 
431 	if (sigtype == SIGINT)
432 		quit_signal = true;
433 
434 }
435 
436 /*  Freqency scale down timer callback */
437 static void
438 power_timer_cb(__rte_unused struct rte_timer *tim,
439 			  __rte_unused void *arg)
440 {
441 	uint64_t hz;
442 	float sleep_time_ratio;
443 	unsigned lcore_id = rte_lcore_id();
444 
445 	/* accumulate total execution time in us when callback is invoked */
446 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
447 					(float)SCALING_PERIOD;
448 	/**
449 	 * check whether need to scale down frequency a step if it sleep a lot.
450 	 */
451 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
452 		if (rte_power_freq_down)
453 			rte_power_freq_down(lcore_id);
454 	}
455 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
456 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
457 		/**
458 		 * scale down a step if average packet per iteration less
459 		 * than expectation.
460 		 */
461 		if (rte_power_freq_down)
462 			rte_power_freq_down(lcore_id);
463 	}
464 
465 	/**
466 	 * initialize another timer according to current frequency to ensure
467 	 * timer interval is relatively fixed.
468 	 */
469 	hz = rte_get_timer_hz();
470 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
471 				SINGLE, lcore_id, power_timer_cb, NULL);
472 
473 	stats[lcore_id].nb_rx_processed = 0;
474 	stats[lcore_id].nb_iteration_looped = 0;
475 
476 	stats[lcore_id].sleep_time = 0;
477 }
478 
479 /* Enqueue a single packet, and send burst if queue is filled */
480 static inline int
481 send_single_packet(struct rte_mbuf *m, uint16_t port)
482 {
483 	uint32_t lcore_id;
484 	struct lcore_conf *qconf;
485 
486 	lcore_id = rte_lcore_id();
487 	qconf = &lcore_conf[lcore_id];
488 
489 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
490 			qconf->tx_buffer[port], m);
491 
492 	return 0;
493 }
494 
495 #ifdef DO_RFC_1812_CHECKS
496 static inline int
497 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
498 {
499 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
500 	/*
501 	 * 1. The packet length reported by the Link Layer must be large
502 	 * enough to hold the minimum length legal IP datagram (20 bytes).
503 	 */
504 	if (link_len < sizeof(struct rte_ipv4_hdr))
505 		return -1;
506 
507 	/* 2. The IP checksum must be correct. */
508 	/* if this is not checked in H/W, check it. */
509 	if ((port_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM) == 0) {
510 		uint16_t actual_cksum, expected_cksum;
511 		actual_cksum = pkt->hdr_checksum;
512 		pkt->hdr_checksum = 0;
513 		expected_cksum = rte_ipv4_cksum(pkt);
514 		if (actual_cksum != expected_cksum)
515 			return -2;
516 	}
517 
518 	/*
519 	 * 3. The IP version number must be 4. If the version number is not 4
520 	 * then the packet may be another version of IP, such as IPng or
521 	 * ST-II.
522 	 */
523 	if (((pkt->version_ihl) >> 4) != 4)
524 		return -3;
525 	/*
526 	 * 4. The IP header length field must be large enough to hold the
527 	 * minimum length legal IP datagram (20 bytes = 5 words).
528 	 */
529 	if ((pkt->version_ihl & 0xf) < 5)
530 		return -4;
531 
532 	/*
533 	 * 5. The IP total length field must be large enough to hold the IP
534 	 * datagram header, whose length is specified in the IP header length
535 	 * field.
536 	 */
537 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
538 		return -5;
539 
540 	return 0;
541 }
542 #endif
543 
544 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
545 static void
546 print_ipv4_key(struct ipv4_5tuple key)
547 {
548 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
549 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
550 				key.port_dst, key.port_src, key.proto);
551 }
552 static void
553 print_ipv6_key(struct ipv6_5tuple key)
554 {
555 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
556 	        "port dst = %d, port src = %d, proto = %d\n",
557 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
558 	        key.port_dst, key.port_src, key.proto);
559 }
560 
561 static inline uint16_t
562 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
563 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
564 {
565 	struct ipv4_5tuple key;
566 	struct rte_tcp_hdr *tcp;
567 	struct rte_udp_hdr *udp;
568 	int ret = 0;
569 
570 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
571 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
572 	key.proto = ipv4_hdr->next_proto_id;
573 
574 	switch (ipv4_hdr->next_proto_id) {
575 	case IPPROTO_TCP:
576 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
577 					sizeof(struct rte_ipv4_hdr));
578 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
579 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
580 		break;
581 
582 	case IPPROTO_UDP:
583 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
584 					sizeof(struct rte_ipv4_hdr));
585 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
586 		key.port_src = rte_be_to_cpu_16(udp->src_port);
587 		break;
588 
589 	default:
590 		key.port_dst = 0;
591 		key.port_src = 0;
592 		break;
593 	}
594 
595 	/* Find destination port */
596 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
597 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
598 }
599 
600 static inline uint16_t
601 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
602 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
603 {
604 	struct ipv6_5tuple key;
605 	struct rte_tcp_hdr *tcp;
606 	struct rte_udp_hdr *udp;
607 	int ret = 0;
608 
609 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
610 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
611 
612 	key.proto = ipv6_hdr->proto;
613 
614 	switch (ipv6_hdr->proto) {
615 	case IPPROTO_TCP:
616 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
617 					sizeof(struct rte_ipv6_hdr));
618 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
619 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
620 		break;
621 
622 	case IPPROTO_UDP:
623 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
624 					sizeof(struct rte_ipv6_hdr));
625 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
626 		key.port_src = rte_be_to_cpu_16(udp->src_port);
627 		break;
628 
629 	default:
630 		key.port_dst = 0;
631 		key.port_src = 0;
632 		break;
633 	}
634 
635 	/* Find destination port */
636 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
637 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
638 }
639 #endif
640 
641 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
642 static inline uint16_t
643 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
644 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
645 {
646 	uint32_t next_hop;
647 
648 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
649 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
650 			next_hop : portid);
651 }
652 #endif
653 
654 static inline void
655 parse_ptype_one(struct rte_mbuf *m)
656 {
657 	struct rte_ether_hdr *eth_hdr;
658 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
659 	uint16_t ether_type;
660 
661 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
662 	ether_type = eth_hdr->ether_type;
663 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
664 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
665 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
666 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
667 
668 	m->packet_type = packet_type;
669 }
670 
671 static uint16_t
672 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
673 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
674 	       uint16_t max_pkts __rte_unused,
675 	       void *user_param __rte_unused)
676 {
677 	unsigned int i;
678 
679 	for (i = 0; i < nb_pkts; ++i)
680 		parse_ptype_one(pkts[i]);
681 
682 	return nb_pkts;
683 }
684 
685 static int
686 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
687 {
688 	printf("Port %d: softly parse packet type info\n", portid);
689 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
690 		return 0;
691 
692 	printf("Failed to add rx callback: port=%d\n", portid);
693 	return -1;
694 }
695 
696 static inline void
697 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
698 				struct lcore_conf *qconf)
699 {
700 	struct rte_ether_hdr *eth_hdr;
701 	struct rte_ipv4_hdr *ipv4_hdr;
702 	void *d_addr_bytes;
703 	uint16_t dst_port;
704 
705 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
706 
707 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
708 		/* Handle IPv4 headers.*/
709 		ipv4_hdr =
710 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
711 						sizeof(struct rte_ether_hdr));
712 
713 #ifdef DO_RFC_1812_CHECKS
714 		/* Check to make sure the packet is valid (RFC1812) */
715 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
716 			rte_pktmbuf_free(m);
717 			return;
718 		}
719 #endif
720 
721 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
722 					qconf->ipv4_lookup_struct);
723 		if (dst_port >= RTE_MAX_ETHPORTS ||
724 				(enabled_port_mask & 1 << dst_port) == 0)
725 			dst_port = portid;
726 
727 		/* 02:00:00:00:00:xx */
728 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
729 		*((uint64_t *)d_addr_bytes) =
730 			0x000000000002 + ((uint64_t)dst_port << 40);
731 
732 #ifdef DO_RFC_1812_CHECKS
733 		/* Update time to live and header checksum */
734 		--(ipv4_hdr->time_to_live);
735 		++(ipv4_hdr->hdr_checksum);
736 #endif
737 
738 		/* src addr */
739 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
740 				&eth_hdr->src_addr);
741 
742 		send_single_packet(m, dst_port);
743 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
744 		/* Handle IPv6 headers.*/
745 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
746 		struct rte_ipv6_hdr *ipv6_hdr;
747 
748 		ipv6_hdr =
749 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
750 						sizeof(struct rte_ether_hdr));
751 
752 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
753 					qconf->ipv6_lookup_struct);
754 
755 		if (dst_port >= RTE_MAX_ETHPORTS ||
756 				(enabled_port_mask & 1 << dst_port) == 0)
757 			dst_port = portid;
758 
759 		/* 02:00:00:00:00:xx */
760 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
761 		*((uint64_t *)d_addr_bytes) =
762 			0x000000000002 + ((uint64_t)dst_port << 40);
763 
764 		/* src addr */
765 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
766 				&eth_hdr->src_addr);
767 
768 		send_single_packet(m, dst_port);
769 #else
770 		/* We don't currently handle IPv6 packets in LPM mode. */
771 		rte_pktmbuf_free(m);
772 #endif
773 	} else
774 		rte_pktmbuf_free(m);
775 
776 }
777 
778 #define MINIMUM_SLEEP_TIME         1
779 #define SUSPEND_THRESHOLD          300
780 
781 static inline uint32_t
782 power_idle_heuristic(uint32_t zero_rx_packet_count)
783 {
784 	/* If zero count is less than 100,  sleep 1us */
785 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
786 		return MINIMUM_SLEEP_TIME;
787 	/* If zero count is less than 1000, sleep 100 us which is the
788 		minimum latency switching from C3/C6 to C0
789 	*/
790 	else
791 		return SUSPEND_THRESHOLD;
792 }
793 
794 static inline enum freq_scale_hint_t
795 power_freq_scaleup_heuristic(unsigned lcore_id,
796 			     uint16_t port_id,
797 			     uint16_t queue_id)
798 {
799 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
800 /**
801  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
802  * per iteration
803  */
804 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
805 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
806 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
807 #define FREQ_UP_TREND1_ACC   1
808 #define FREQ_UP_TREND2_ACC   100
809 #define FREQ_UP_THRESHOLD    10000
810 
811 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
812 		stats[lcore_id].trend = 0;
813 		return FREQ_HIGHEST;
814 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
815 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
816 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
817 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
818 
819 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
820 		stats[lcore_id].trend = 0;
821 		return FREQ_HIGHER;
822 	}
823 
824 	return FREQ_CURRENT;
825 }
826 
827 /**
828  * force polling thread sleep until one-shot rx interrupt triggers
829  * @param port_id
830  *  Port id.
831  * @param queue_id
832  *  Rx queue id.
833  * @return
834  *  0 on success
835  */
836 static int
837 sleep_until_rx_interrupt(int num, int lcore)
838 {
839 	/*
840 	 * we want to track when we are woken up by traffic so that we can go
841 	 * back to sleep again without log spamming. Avoid cache line sharing
842 	 * to prevent threads stepping on each others' toes.
843 	 */
844 	static struct {
845 		bool wakeup;
846 	} __rte_cache_aligned status[RTE_MAX_LCORE];
847 	struct rte_epoll_event event[num];
848 	int n, i;
849 	uint16_t port_id;
850 	uint8_t queue_id;
851 	void *data;
852 
853 	if (status[lcore].wakeup) {
854 		RTE_LOG(INFO, L3FWD_POWER,
855 				"lcore %u sleeps until interrupt triggers\n",
856 				rte_lcore_id());
857 	}
858 
859 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
860 	for (i = 0; i < n; i++) {
861 		data = event[i].epdata.data;
862 		port_id = ((uintptr_t)data) >> CHAR_BIT;
863 		queue_id = ((uintptr_t)data) &
864 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
865 		RTE_LOG(INFO, L3FWD_POWER,
866 			"lcore %u is waked up from rx interrupt on"
867 			" port %d queue %d\n",
868 			rte_lcore_id(), port_id, queue_id);
869 	}
870 	status[lcore].wakeup = n != 0;
871 
872 	return 0;
873 }
874 
875 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
876 {
877 	int i;
878 	struct lcore_rx_queue *rx_queue;
879 	uint8_t queue_id;
880 	uint16_t port_id;
881 
882 	for (i = 0; i < qconf->n_rx_queue; ++i) {
883 		rx_queue = &(qconf->rx_queue_list[i]);
884 		port_id = rx_queue->port_id;
885 		queue_id = rx_queue->queue_id;
886 
887 		rte_spinlock_lock(&(locks[port_id]));
888 		if (on)
889 			rte_eth_dev_rx_intr_enable(port_id, queue_id);
890 		else
891 			rte_eth_dev_rx_intr_disable(port_id, queue_id);
892 		rte_spinlock_unlock(&(locks[port_id]));
893 	}
894 }
895 
896 static int event_register(struct lcore_conf *qconf)
897 {
898 	struct lcore_rx_queue *rx_queue;
899 	uint8_t queueid;
900 	uint16_t portid;
901 	uint32_t data;
902 	int ret;
903 	int i;
904 
905 	for (i = 0; i < qconf->n_rx_queue; ++i) {
906 		rx_queue = &(qconf->rx_queue_list[i]);
907 		portid = rx_queue->port_id;
908 		queueid = rx_queue->queue_id;
909 		data = portid << CHAR_BIT | queueid;
910 
911 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
912 						RTE_EPOLL_PER_THREAD,
913 						RTE_INTR_EVENT_ADD,
914 						(void *)((uintptr_t)data));
915 		if (ret)
916 			return ret;
917 	}
918 
919 	return 0;
920 }
921 
922 /* Main processing loop. 8< */
923 static int main_intr_loop(__rte_unused void *dummy)
924 {
925 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
926 	unsigned int lcore_id;
927 	uint64_t prev_tsc, diff_tsc, cur_tsc;
928 	int i, j, nb_rx;
929 	uint8_t queueid;
930 	uint16_t portid;
931 	struct lcore_conf *qconf;
932 	struct lcore_rx_queue *rx_queue;
933 	uint32_t lcore_rx_idle_count = 0;
934 	uint32_t lcore_idle_hint = 0;
935 	int intr_en = 0;
936 
937 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
938 				   US_PER_S * BURST_TX_DRAIN_US;
939 
940 	prev_tsc = 0;
941 
942 	lcore_id = rte_lcore_id();
943 	qconf = &lcore_conf[lcore_id];
944 
945 	if (qconf->n_rx_queue == 0) {
946 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
947 				lcore_id);
948 		return 0;
949 	}
950 
951 	RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
952 			lcore_id);
953 
954 	for (i = 0; i < qconf->n_rx_queue; i++) {
955 		portid = qconf->rx_queue_list[i].port_id;
956 		queueid = qconf->rx_queue_list[i].queue_id;
957 		RTE_LOG(INFO, L3FWD_POWER,
958 				" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
959 				lcore_id, portid, queueid);
960 	}
961 
962 	/* add into event wait list */
963 	if (event_register(qconf) == 0)
964 		intr_en = 1;
965 	else
966 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
967 
968 	while (!is_done()) {
969 		stats[lcore_id].nb_iteration_looped++;
970 
971 		cur_tsc = rte_rdtsc();
972 
973 		/*
974 		 * TX burst queue drain
975 		 */
976 		diff_tsc = cur_tsc - prev_tsc;
977 		if (unlikely(diff_tsc > drain_tsc)) {
978 			for (i = 0; i < qconf->n_tx_port; ++i) {
979 				portid = qconf->tx_port_id[i];
980 				rte_eth_tx_buffer_flush(portid,
981 						qconf->tx_queue_id[portid],
982 						qconf->tx_buffer[portid]);
983 			}
984 			prev_tsc = cur_tsc;
985 		}
986 
987 start_rx:
988 		/*
989 		 * Read packet from RX queues
990 		 */
991 		lcore_rx_idle_count = 0;
992 		for (i = 0; i < qconf->n_rx_queue; ++i) {
993 			rx_queue = &(qconf->rx_queue_list[i]);
994 			rx_queue->idle_hint = 0;
995 			portid = rx_queue->port_id;
996 			queueid = rx_queue->queue_id;
997 
998 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
999 					MAX_PKT_BURST);
1000 
1001 			stats[lcore_id].nb_rx_processed += nb_rx;
1002 			if (unlikely(nb_rx == 0)) {
1003 				/**
1004 				 * no packet received from rx queue, try to
1005 				 * sleep for a while forcing CPU enter deeper
1006 				 * C states.
1007 				 */
1008 				rx_queue->zero_rx_packet_count++;
1009 
1010 				if (rx_queue->zero_rx_packet_count <=
1011 						MIN_ZERO_POLL_COUNT)
1012 					continue;
1013 
1014 				rx_queue->idle_hint = power_idle_heuristic(
1015 						rx_queue->zero_rx_packet_count);
1016 				lcore_rx_idle_count++;
1017 			} else {
1018 				rx_queue->zero_rx_packet_count = 0;
1019 			}
1020 
1021 			/* Prefetch first packets */
1022 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1023 				rte_prefetch0(rte_pktmbuf_mtod(
1024 						pkts_burst[j], void *));
1025 			}
1026 
1027 			/* Prefetch and forward already prefetched packets */
1028 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1029 				rte_prefetch0(rte_pktmbuf_mtod(
1030 						pkts_burst[j + PREFETCH_OFFSET],
1031 						void *));
1032 				l3fwd_simple_forward(
1033 						pkts_burst[j], portid, qconf);
1034 			}
1035 
1036 			/* Forward remaining prefetched packets */
1037 			for (; j < nb_rx; j++) {
1038 				l3fwd_simple_forward(
1039 						pkts_burst[j], portid, qconf);
1040 			}
1041 		}
1042 
1043 		if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1044 			/**
1045 			 * All Rx queues empty in recent consecutive polls,
1046 			 * sleep in a conservative manner, meaning sleep as
1047 			 * less as possible.
1048 			 */
1049 			for (i = 1,
1050 			    lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1051 					i < qconf->n_rx_queue; ++i) {
1052 				rx_queue = &(qconf->rx_queue_list[i]);
1053 				if (rx_queue->idle_hint < lcore_idle_hint)
1054 					lcore_idle_hint = rx_queue->idle_hint;
1055 			}
1056 
1057 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1058 				/**
1059 				 * execute "pause" instruction to avoid context
1060 				 * switch which generally take hundred of
1061 				 * microseconds for short sleep.
1062 				 */
1063 				rte_delay_us(lcore_idle_hint);
1064 			else {
1065 				/* suspend until rx interrupt triggers */
1066 				if (intr_en) {
1067 					turn_on_off_intr(qconf, 1);
1068 					sleep_until_rx_interrupt(
1069 							qconf->n_rx_queue,
1070 							lcore_id);
1071 					turn_on_off_intr(qconf, 0);
1072 					/**
1073 					 * start receiving packets immediately
1074 					 */
1075 					if (likely(!is_done()))
1076 						goto start_rx;
1077 				}
1078 			}
1079 			stats[lcore_id].sleep_time += lcore_idle_hint;
1080 		}
1081 	}
1082 
1083 	return 0;
1084 }
1085 /* >8 End of main processing loop. */
1086 
1087 /* main processing loop */
1088 static int
1089 main_telemetry_loop(__rte_unused void *dummy)
1090 {
1091 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1092 	unsigned int lcore_id;
1093 	uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1094 	int i, j, nb_rx;
1095 	uint8_t queueid;
1096 	uint16_t portid;
1097 	struct lcore_conf *qconf;
1098 	struct lcore_rx_queue *rx_queue;
1099 	uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1100 	uint64_t poll_count;
1101 	enum busy_rate br;
1102 
1103 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1104 					US_PER_S * BURST_TX_DRAIN_US;
1105 
1106 	poll_count = 0;
1107 	prev_tsc = 0;
1108 	prev_tel_tsc = 0;
1109 
1110 	lcore_id = rte_lcore_id();
1111 	qconf = &lcore_conf[lcore_id];
1112 
1113 	if (qconf->n_rx_queue == 0) {
1114 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1115 			lcore_id);
1116 		return 0;
1117 	}
1118 
1119 	RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1120 		lcore_id);
1121 
1122 	for (i = 0; i < qconf->n_rx_queue; i++) {
1123 		portid = qconf->rx_queue_list[i].port_id;
1124 		queueid = qconf->rx_queue_list[i].queue_id;
1125 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1126 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1127 	}
1128 
1129 	while (!is_done()) {
1130 
1131 		cur_tsc = rte_rdtsc();
1132 		/*
1133 		 * TX burst queue drain
1134 		 */
1135 		diff_tsc = cur_tsc - prev_tsc;
1136 		if (unlikely(diff_tsc > drain_tsc)) {
1137 			for (i = 0; i < qconf->n_tx_port; ++i) {
1138 				portid = qconf->tx_port_id[i];
1139 				rte_eth_tx_buffer_flush(portid,
1140 						qconf->tx_queue_id[portid],
1141 						qconf->tx_buffer[portid]);
1142 			}
1143 			prev_tsc = cur_tsc;
1144 		}
1145 
1146 		/*
1147 		 * Read packet from RX queues
1148 		 */
1149 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1150 			rx_queue = &(qconf->rx_queue_list[i]);
1151 			portid = rx_queue->port_id;
1152 			queueid = rx_queue->queue_id;
1153 
1154 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1155 								MAX_PKT_BURST);
1156 			ep_nep[nb_rx == 0]++;
1157 			fp_nfp[nb_rx == MAX_PKT_BURST]++;
1158 			poll_count++;
1159 			RTE_LOG(INFO, L3FWD_POWER,
1160 				"lcore %u has woken up on port %d queue %d\n",
1161 				rte_lcore_id(), portid, queueid);
1162 			if (unlikely(nb_rx == 0))
1163 				continue;
1164 
1165 			/* Prefetch first packets */
1166 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1167 				rte_prefetch0(rte_pktmbuf_mtod(
1168 						pkts_burst[j], void *));
1169 			}
1170 
1171 			/* Prefetch and forward already prefetched packets */
1172 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1173 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1174 						j + PREFETCH_OFFSET], void *));
1175 				l3fwd_simple_forward(pkts_burst[j], portid,
1176 								qconf);
1177 			}
1178 
1179 			/* Forward remaining prefetched packets */
1180 			for (; j < nb_rx; j++) {
1181 				l3fwd_simple_forward(pkts_burst[j], portid,
1182 								qconf);
1183 			}
1184 		}
1185 		if (unlikely(poll_count >= DEFAULT_COUNT)) {
1186 			diff_tsc = cur_tsc - prev_tel_tsc;
1187 			if (diff_tsc >= MAX_CYCLES) {
1188 				br = FULL;
1189 			} else if (diff_tsc > MIN_CYCLES &&
1190 					diff_tsc < MAX_CYCLES) {
1191 				br = (diff_tsc * 100) / MAX_CYCLES;
1192 			} else {
1193 				br = ZERO;
1194 			}
1195 			poll_count = 0;
1196 			prev_tel_tsc = cur_tsc;
1197 			/* update stats for telemetry */
1198 			rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1199 			stats[lcore_id].ep_nep[0] = ep_nep[0];
1200 			stats[lcore_id].ep_nep[1] = ep_nep[1];
1201 			stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1202 			stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1203 			stats[lcore_id].br = br;
1204 			rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1205 		}
1206 	}
1207 
1208 	return 0;
1209 }
1210 /* main processing loop */
1211 static int
1212 main_empty_poll_loop(__rte_unused void *dummy)
1213 {
1214 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1215 	unsigned int lcore_id;
1216 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1217 	int i, j, nb_rx;
1218 	uint8_t queueid;
1219 	uint16_t portid;
1220 	struct lcore_conf *qconf;
1221 	struct lcore_rx_queue *rx_queue;
1222 
1223 	const uint64_t drain_tsc =
1224 		(rte_get_tsc_hz() + US_PER_S - 1) /
1225 		US_PER_S * BURST_TX_DRAIN_US;
1226 
1227 	prev_tsc = 0;
1228 
1229 	lcore_id = rte_lcore_id();
1230 	qconf = &lcore_conf[lcore_id];
1231 
1232 	if (qconf->n_rx_queue == 0) {
1233 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1234 			lcore_id);
1235 		return 0;
1236 	}
1237 
1238 	for (i = 0; i < qconf->n_rx_queue; i++) {
1239 		portid = qconf->rx_queue_list[i].port_id;
1240 		queueid = qconf->rx_queue_list[i].queue_id;
1241 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1242 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1243 	}
1244 
1245 	while (!is_done()) {
1246 		stats[lcore_id].nb_iteration_looped++;
1247 
1248 		cur_tsc = rte_rdtsc();
1249 		/*
1250 		 * TX burst queue drain
1251 		 */
1252 		diff_tsc = cur_tsc - prev_tsc;
1253 		if (unlikely(diff_tsc > drain_tsc)) {
1254 			for (i = 0; i < qconf->n_tx_port; ++i) {
1255 				portid = qconf->tx_port_id[i];
1256 				rte_eth_tx_buffer_flush(portid,
1257 						qconf->tx_queue_id[portid],
1258 						qconf->tx_buffer[portid]);
1259 			}
1260 			prev_tsc = cur_tsc;
1261 		}
1262 
1263 		/*
1264 		 * Read packet from RX queues
1265 		 */
1266 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1267 			rx_queue = &(qconf->rx_queue_list[i]);
1268 			rx_queue->idle_hint = 0;
1269 			portid = rx_queue->port_id;
1270 			queueid = rx_queue->queue_id;
1271 
1272 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1273 					MAX_PKT_BURST);
1274 
1275 			stats[lcore_id].nb_rx_processed += nb_rx;
1276 
1277 			if (nb_rx == 0) {
1278 
1279 				rte_power_empty_poll_stat_update(lcore_id);
1280 
1281 				continue;
1282 			} else {
1283 				rte_power_poll_stat_update(lcore_id, nb_rx);
1284 			}
1285 
1286 
1287 			/* Prefetch first packets */
1288 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1289 				rte_prefetch0(rte_pktmbuf_mtod(
1290 							pkts_burst[j], void *));
1291 			}
1292 
1293 			/* Prefetch and forward already prefetched packets */
1294 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1295 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1296 							j + PREFETCH_OFFSET],
1297 							void *));
1298 				l3fwd_simple_forward(pkts_burst[j], portid,
1299 						qconf);
1300 			}
1301 
1302 			/* Forward remaining prefetched packets */
1303 			for (; j < nb_rx; j++) {
1304 				l3fwd_simple_forward(pkts_burst[j], portid,
1305 						qconf);
1306 			}
1307 
1308 		}
1309 
1310 	}
1311 
1312 	return 0;
1313 }
1314 /* main processing loop */
1315 static int
1316 main_legacy_loop(__rte_unused void *dummy)
1317 {
1318 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1319 	unsigned lcore_id;
1320 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1321 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1322 	int i, j, nb_rx;
1323 	uint8_t queueid;
1324 	uint16_t portid;
1325 	struct lcore_conf *qconf;
1326 	struct lcore_rx_queue *rx_queue;
1327 	enum freq_scale_hint_t lcore_scaleup_hint;
1328 	uint32_t lcore_rx_idle_count = 0;
1329 	uint32_t lcore_idle_hint = 0;
1330 	int intr_en = 0;
1331 
1332 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1333 
1334 	prev_tsc = 0;
1335 	hz = rte_get_timer_hz();
1336 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1337 
1338 	lcore_id = rte_lcore_id();
1339 	qconf = &lcore_conf[lcore_id];
1340 
1341 	if (qconf->n_rx_queue == 0) {
1342 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1343 		return 0;
1344 	}
1345 
1346 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1347 
1348 	for (i = 0; i < qconf->n_rx_queue; i++) {
1349 		portid = qconf->rx_queue_list[i].port_id;
1350 		queueid = qconf->rx_queue_list[i].queue_id;
1351 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1352 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1353 	}
1354 
1355 	/* add into event wait list */
1356 	if (event_register(qconf) == 0)
1357 		intr_en = 1;
1358 	else
1359 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1360 
1361 	while (!is_done()) {
1362 		stats[lcore_id].nb_iteration_looped++;
1363 
1364 		cur_tsc = rte_rdtsc();
1365 		cur_tsc_power = cur_tsc;
1366 
1367 		/*
1368 		 * TX burst queue drain
1369 		 */
1370 		diff_tsc = cur_tsc - prev_tsc;
1371 		if (unlikely(diff_tsc > drain_tsc)) {
1372 			for (i = 0; i < qconf->n_tx_port; ++i) {
1373 				portid = qconf->tx_port_id[i];
1374 				rte_eth_tx_buffer_flush(portid,
1375 						qconf->tx_queue_id[portid],
1376 						qconf->tx_buffer[portid]);
1377 			}
1378 			prev_tsc = cur_tsc;
1379 		}
1380 
1381 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1382 		if (diff_tsc_power > tim_res_tsc) {
1383 			rte_timer_manage();
1384 			prev_tsc_power = cur_tsc_power;
1385 		}
1386 
1387 start_rx:
1388 		/*
1389 		 * Read packet from RX queues
1390 		 */
1391 		lcore_scaleup_hint = FREQ_CURRENT;
1392 		lcore_rx_idle_count = 0;
1393 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1394 			rx_queue = &(qconf->rx_queue_list[i]);
1395 			rx_queue->idle_hint = 0;
1396 			portid = rx_queue->port_id;
1397 			queueid = rx_queue->queue_id;
1398 
1399 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1400 								MAX_PKT_BURST);
1401 
1402 			stats[lcore_id].nb_rx_processed += nb_rx;
1403 			if (unlikely(nb_rx == 0)) {
1404 				/**
1405 				 * no packet received from rx queue, try to
1406 				 * sleep for a while forcing CPU enter deeper
1407 				 * C states.
1408 				 */
1409 				rx_queue->zero_rx_packet_count++;
1410 
1411 				if (rx_queue->zero_rx_packet_count <=
1412 							MIN_ZERO_POLL_COUNT)
1413 					continue;
1414 
1415 				rx_queue->idle_hint = power_idle_heuristic(\
1416 					rx_queue->zero_rx_packet_count);
1417 				lcore_rx_idle_count++;
1418 			} else {
1419 				rx_queue->zero_rx_packet_count = 0;
1420 
1421 				/**
1422 				 * do not scale up frequency immediately as
1423 				 * user to kernel space communication is costly
1424 				 * which might impact packet I/O for received
1425 				 * packets.
1426 				 */
1427 				rx_queue->freq_up_hint =
1428 					power_freq_scaleup_heuristic(lcore_id,
1429 							portid, queueid);
1430 			}
1431 
1432 			/* Prefetch first packets */
1433 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1434 				rte_prefetch0(rte_pktmbuf_mtod(
1435 						pkts_burst[j], void *));
1436 			}
1437 
1438 			/* Prefetch and forward already prefetched packets */
1439 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1440 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1441 						j + PREFETCH_OFFSET], void *));
1442 				l3fwd_simple_forward(pkts_burst[j], portid,
1443 								qconf);
1444 			}
1445 
1446 			/* Forward remaining prefetched packets */
1447 			for (; j < nb_rx; j++) {
1448 				l3fwd_simple_forward(pkts_burst[j], portid,
1449 								qconf);
1450 			}
1451 		}
1452 
1453 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1454 			for (i = 1, lcore_scaleup_hint =
1455 				qconf->rx_queue_list[0].freq_up_hint;
1456 					i < qconf->n_rx_queue; ++i) {
1457 				rx_queue = &(qconf->rx_queue_list[i]);
1458 				if (rx_queue->freq_up_hint >
1459 						lcore_scaleup_hint)
1460 					lcore_scaleup_hint =
1461 						rx_queue->freq_up_hint;
1462 			}
1463 
1464 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1465 				if (rte_power_freq_max)
1466 					rte_power_freq_max(lcore_id);
1467 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1468 				if (rte_power_freq_up)
1469 					rte_power_freq_up(lcore_id);
1470 			}
1471 		} else {
1472 			/**
1473 			 * All Rx queues empty in recent consecutive polls,
1474 			 * sleep in a conservative manner, meaning sleep as
1475 			 * less as possible.
1476 			 */
1477 			for (i = 1, lcore_idle_hint =
1478 				qconf->rx_queue_list[0].idle_hint;
1479 					i < qconf->n_rx_queue; ++i) {
1480 				rx_queue = &(qconf->rx_queue_list[i]);
1481 				if (rx_queue->idle_hint < lcore_idle_hint)
1482 					lcore_idle_hint = rx_queue->idle_hint;
1483 			}
1484 
1485 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1486 				/**
1487 				 * execute "pause" instruction to avoid context
1488 				 * switch which generally take hundred of
1489 				 * microseconds for short sleep.
1490 				 */
1491 				rte_delay_us(lcore_idle_hint);
1492 			else {
1493 				/* suspend until rx interrupt triggers */
1494 				if (intr_en) {
1495 					turn_on_off_intr(qconf, 1);
1496 					sleep_until_rx_interrupt(
1497 							qconf->n_rx_queue,
1498 							lcore_id);
1499 					turn_on_off_intr(qconf, 0);
1500 					/**
1501 					 * start receiving packets immediately
1502 					 */
1503 					if (likely(!is_done()))
1504 						goto start_rx;
1505 				}
1506 			}
1507 			stats[lcore_id].sleep_time += lcore_idle_hint;
1508 		}
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static int
1515 check_lcore_params(void)
1516 {
1517 	uint8_t queue, lcore;
1518 	uint16_t i;
1519 	int socketid;
1520 
1521 	for (i = 0; i < nb_lcore_params; ++i) {
1522 		queue = lcore_params[i].queue_id;
1523 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1524 			printf("invalid queue number: %hhu\n", queue);
1525 			return -1;
1526 		}
1527 		lcore = lcore_params[i].lcore_id;
1528 		if (!rte_lcore_is_enabled(lcore)) {
1529 			printf("error: lcore %hhu is not enabled in lcore "
1530 							"mask\n", lcore);
1531 			return -1;
1532 		}
1533 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1534 							(numa_on == 0)) {
1535 			printf("warning: lcore %hhu is on socket %d with numa "
1536 						"off\n", lcore, socketid);
1537 		}
1538 		if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1539 			printf("cannot enable main core %d in config for telemetry mode\n",
1540 				rte_lcore_id());
1541 			return -1;
1542 		}
1543 	}
1544 	return 0;
1545 }
1546 
1547 static int
1548 check_port_config(void)
1549 {
1550 	unsigned portid;
1551 	uint16_t i;
1552 
1553 	for (i = 0; i < nb_lcore_params; ++i) {
1554 		portid = lcore_params[i].port_id;
1555 		if ((enabled_port_mask & (1 << portid)) == 0) {
1556 			printf("port %u is not enabled in port mask\n",
1557 								portid);
1558 			return -1;
1559 		}
1560 		if (!rte_eth_dev_is_valid_port(portid)) {
1561 			printf("port %u is not present on the board\n",
1562 								portid);
1563 			return -1;
1564 		}
1565 	}
1566 	return 0;
1567 }
1568 
1569 static uint8_t
1570 get_port_n_rx_queues(const uint16_t port)
1571 {
1572 	int queue = -1;
1573 	uint16_t i;
1574 
1575 	for (i = 0; i < nb_lcore_params; ++i) {
1576 		if (lcore_params[i].port_id == port &&
1577 				lcore_params[i].queue_id > queue)
1578 			queue = lcore_params[i].queue_id;
1579 	}
1580 	return (uint8_t)(++queue);
1581 }
1582 
1583 static int
1584 init_lcore_rx_queues(void)
1585 {
1586 	uint16_t i, nb_rx_queue;
1587 	uint8_t lcore;
1588 
1589 	for (i = 0; i < nb_lcore_params; ++i) {
1590 		lcore = lcore_params[i].lcore_id;
1591 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1592 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1593 			printf("error: too many queues (%u) for lcore: %u\n",
1594 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1595 			return -1;
1596 		} else {
1597 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1598 				lcore_params[i].port_id;
1599 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1600 				lcore_params[i].queue_id;
1601 			lcore_conf[lcore].n_rx_queue++;
1602 		}
1603 	}
1604 	return 0;
1605 }
1606 
1607 /* display usage */
1608 static void
1609 print_usage(const char *prgname)
1610 {
1611 	printf ("%s [EAL options] -- -p PORTMASK -P"
1612 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1613 		"  [--high-perf-cores CORELIST"
1614 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1615 		"  [--max-pkt-len PKTLEN]\n"
1616 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1617 		"  -P: enable promiscuous mode\n"
1618 		"  --config (port,queue,lcore): rx queues configuration\n"
1619 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1620 		"  --perf-config: similar as config, cores specified as indices"
1621 		" for bins containing high or regular performance cores\n"
1622 		"  --no-numa: optional, disable numa awareness\n"
1623 		"  --max-pkt-len PKTLEN: maximum packet length in decimal (64-9600)\n"
1624 		"  --parse-ptype: parse packet type by software\n"
1625 		"  --legacy: use legacy interrupt-based scaling\n"
1626 		"  --empty-poll: enable empty poll detection"
1627 		" follow (training_flag, high_threshold, med_threshold)\n"
1628 		" --telemetry: enable telemetry mode, to update"
1629 		" empty polls, full polls, and core busyness to telemetry\n"
1630 		" --interrupt-only: enable interrupt-only mode\n"
1631 		" --pmd-mgmt MODE: enable PMD power management mode. "
1632 		"Currently supported modes: baseline, monitor, pause, scale\n",
1633 		prgname);
1634 }
1635 
1636 static int parse_max_pkt_len(const char *pktlen)
1637 {
1638 	char *end = NULL;
1639 	unsigned long len;
1640 
1641 	/* parse decimal string */
1642 	len = strtoul(pktlen, &end, 10);
1643 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1644 		return -1;
1645 
1646 	if (len == 0)
1647 		return -1;
1648 
1649 	return len;
1650 }
1651 
1652 static int
1653 parse_portmask(const char *portmask)
1654 {
1655 	char *end = NULL;
1656 	unsigned long pm;
1657 
1658 	/* parse hexadecimal string */
1659 	pm = strtoul(portmask, &end, 16);
1660 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1661 		return 0;
1662 
1663 	return pm;
1664 }
1665 
1666 static int
1667 parse_config(const char *q_arg)
1668 {
1669 	char s[256];
1670 	const char *p, *p0 = q_arg;
1671 	char *end;
1672 	enum fieldnames {
1673 		FLD_PORT = 0,
1674 		FLD_QUEUE,
1675 		FLD_LCORE,
1676 		_NUM_FLD
1677 	};
1678 	unsigned long int_fld[_NUM_FLD];
1679 	char *str_fld[_NUM_FLD];
1680 	int i;
1681 	unsigned size;
1682 
1683 	nb_lcore_params = 0;
1684 
1685 	while ((p = strchr(p0,'(')) != NULL) {
1686 		++p;
1687 		if((p0 = strchr(p,')')) == NULL)
1688 			return -1;
1689 
1690 		size = p0 - p;
1691 		if(size >= sizeof(s))
1692 			return -1;
1693 
1694 		snprintf(s, sizeof(s), "%.*s", size, p);
1695 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1696 								_NUM_FLD)
1697 			return -1;
1698 		for (i = 0; i < _NUM_FLD; i++){
1699 			errno = 0;
1700 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1701 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1702 									255)
1703 				return -1;
1704 		}
1705 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1706 			printf("exceeded max number of lcore params: %hu\n",
1707 				nb_lcore_params);
1708 			return -1;
1709 		}
1710 		lcore_params_array[nb_lcore_params].port_id =
1711 				(uint8_t)int_fld[FLD_PORT];
1712 		lcore_params_array[nb_lcore_params].queue_id =
1713 				(uint8_t)int_fld[FLD_QUEUE];
1714 		lcore_params_array[nb_lcore_params].lcore_id =
1715 				(uint8_t)int_fld[FLD_LCORE];
1716 		++nb_lcore_params;
1717 	}
1718 	lcore_params = lcore_params_array;
1719 
1720 	return 0;
1721 }
1722 
1723 static int
1724 parse_pmd_mgmt_config(const char *name)
1725 {
1726 #define PMD_MGMT_MONITOR "monitor"
1727 #define PMD_MGMT_PAUSE   "pause"
1728 #define PMD_MGMT_SCALE   "scale"
1729 #define PMD_MGMT_BASELINE  "baseline"
1730 
1731 	if (strncmp(PMD_MGMT_MONITOR, name, sizeof(PMD_MGMT_MONITOR)) == 0) {
1732 		pmgmt_type = RTE_POWER_MGMT_TYPE_MONITOR;
1733 		return 0;
1734 	}
1735 
1736 	if (strncmp(PMD_MGMT_PAUSE, name, sizeof(PMD_MGMT_PAUSE)) == 0) {
1737 		pmgmt_type = RTE_POWER_MGMT_TYPE_PAUSE;
1738 		return 0;
1739 	}
1740 
1741 	if (strncmp(PMD_MGMT_SCALE, name, sizeof(PMD_MGMT_SCALE)) == 0) {
1742 		pmgmt_type = RTE_POWER_MGMT_TYPE_SCALE;
1743 		return 0;
1744 	}
1745 	if (strncmp(PMD_MGMT_BASELINE, name, sizeof(PMD_MGMT_BASELINE)) == 0) {
1746 		baseline_enabled = true;
1747 		return 0;
1748 	}
1749 	/* unknown PMD power management mode */
1750 	return -1;
1751 }
1752 
1753 static int
1754 parse_ep_config(const char *q_arg)
1755 {
1756 	char s[256];
1757 	const char *p = q_arg;
1758 	char *end;
1759 	int  num_arg;
1760 
1761 	char *str_fld[3];
1762 
1763 	int training_flag;
1764 	int med_edpi;
1765 	int hgh_edpi;
1766 
1767 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1768 	ep_hgh_edpi = EMPTY_POLL_HGH_THRESHOLD;
1769 
1770 	strlcpy(s, p, sizeof(s));
1771 
1772 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1773 
1774 	empty_poll_train = false;
1775 
1776 	if (num_arg == 0)
1777 		return 0;
1778 
1779 	if (num_arg == 3) {
1780 
1781 		training_flag = strtoul(str_fld[0], &end, 0);
1782 		med_edpi = strtoul(str_fld[1], &end, 0);
1783 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1784 
1785 		if (training_flag == 1)
1786 			empty_poll_train = true;
1787 
1788 		if (med_edpi > 0)
1789 			ep_med_edpi = med_edpi;
1790 
1791 		if (hgh_edpi > 0)
1792 			ep_hgh_edpi = hgh_edpi;
1793 
1794 	} else {
1795 
1796 		return -1;
1797 	}
1798 
1799 	return 0;
1800 
1801 }
1802 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1803 #define CMD_LINE_OPT_LEGACY "legacy"
1804 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1805 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1806 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1807 #define CMD_LINE_OPT_PMD_MGMT "pmd-mgmt"
1808 #define CMD_LINE_OPT_MAX_PKT_LEN "max-pkt-len"
1809 
1810 /* Parse the argument given in the command line of the application */
1811 static int
1812 parse_args(int argc, char **argv)
1813 {
1814 	int opt, ret;
1815 	char **argvopt;
1816 	int option_index;
1817 	uint32_t limit;
1818 	char *prgname = argv[0];
1819 	static struct option lgopts[] = {
1820 		{"config", 1, 0, 0},
1821 		{"perf-config", 1, 0, 0},
1822 		{"high-perf-cores", 1, 0, 0},
1823 		{"no-numa", 0, 0, 0},
1824 		{CMD_LINE_OPT_MAX_PKT_LEN, 1, 0, 0},
1825 		{CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1826 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1827 		{CMD_LINE_OPT_LEGACY, 0, 0, 0},
1828 		{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1829 		{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1830 		{CMD_LINE_OPT_PMD_MGMT, 1, 0, 0},
1831 		{NULL, 0, 0, 0}
1832 	};
1833 
1834 	argvopt = argv;
1835 
1836 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1837 				lgopts, &option_index)) != EOF) {
1838 
1839 		switch (opt) {
1840 		/* portmask */
1841 		case 'p':
1842 			enabled_port_mask = parse_portmask(optarg);
1843 			if (enabled_port_mask == 0) {
1844 				printf("invalid portmask\n");
1845 				print_usage(prgname);
1846 				return -1;
1847 			}
1848 			break;
1849 		case 'P':
1850 			printf("Promiscuous mode selected\n");
1851 			promiscuous_on = 1;
1852 			break;
1853 		case 'l':
1854 			limit = parse_max_pkt_len(optarg);
1855 			freq_tlb[LOW] = limit;
1856 			break;
1857 		case 'm':
1858 			limit = parse_max_pkt_len(optarg);
1859 			freq_tlb[MED] = limit;
1860 			break;
1861 		case 'h':
1862 			limit = parse_max_pkt_len(optarg);
1863 			freq_tlb[HGH] = limit;
1864 			break;
1865 		/* long options */
1866 		case 0:
1867 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1868 				ret = parse_config(optarg);
1869 				if (ret) {
1870 					printf("invalid config\n");
1871 					print_usage(prgname);
1872 					return -1;
1873 				}
1874 			}
1875 
1876 			if (!strncmp(lgopts[option_index].name,
1877 					"perf-config", 11)) {
1878 				ret = parse_perf_config(optarg);
1879 				if (ret) {
1880 					printf("invalid perf-config\n");
1881 					print_usage(prgname);
1882 					return -1;
1883 				}
1884 			}
1885 
1886 			if (!strncmp(lgopts[option_index].name,
1887 					"high-perf-cores", 15)) {
1888 				ret = parse_perf_core_list(optarg);
1889 				if (ret) {
1890 					printf("invalid high-perf-cores\n");
1891 					print_usage(prgname);
1892 					return -1;
1893 				}
1894 			}
1895 
1896 			if (!strncmp(lgopts[option_index].name,
1897 						"no-numa", 7)) {
1898 				printf("numa is disabled \n");
1899 				numa_on = 0;
1900 			}
1901 
1902 			if (!strncmp(lgopts[option_index].name,
1903 					CMD_LINE_OPT_LEGACY,
1904 					sizeof(CMD_LINE_OPT_LEGACY))) {
1905 				if (app_mode != APP_MODE_DEFAULT) {
1906 					printf(" legacy mode is mutually exclusive with other modes\n");
1907 					return -1;
1908 				}
1909 				app_mode = APP_MODE_LEGACY;
1910 				printf("legacy mode is enabled\n");
1911 			}
1912 
1913 			if (!strncmp(lgopts[option_index].name,
1914 					CMD_LINE_OPT_EMPTY_POLL, 10)) {
1915 				if (app_mode != APP_MODE_DEFAULT) {
1916 					printf(" empty-poll mode is mutually exclusive with other modes\n");
1917 					return -1;
1918 				}
1919 				app_mode = APP_MODE_EMPTY_POLL;
1920 				ret = parse_ep_config(optarg);
1921 
1922 				if (ret) {
1923 					printf("invalid empty poll config\n");
1924 					print_usage(prgname);
1925 					return -1;
1926 				}
1927 				printf("empty-poll is enabled\n");
1928 			}
1929 
1930 			if (!strncmp(lgopts[option_index].name,
1931 					CMD_LINE_OPT_TELEMETRY,
1932 					sizeof(CMD_LINE_OPT_TELEMETRY))) {
1933 				if (app_mode != APP_MODE_DEFAULT) {
1934 					printf(" telemetry mode is mutually exclusive with other modes\n");
1935 					return -1;
1936 				}
1937 				app_mode = APP_MODE_TELEMETRY;
1938 				printf("telemetry mode is enabled\n");
1939 			}
1940 
1941 			if (!strncmp(lgopts[option_index].name,
1942 					CMD_LINE_OPT_PMD_MGMT,
1943 					sizeof(CMD_LINE_OPT_PMD_MGMT))) {
1944 				if (app_mode != APP_MODE_DEFAULT) {
1945 					printf(" power mgmt mode is mutually exclusive with other modes\n");
1946 					return -1;
1947 				}
1948 				if (parse_pmd_mgmt_config(optarg) < 0) {
1949 					printf(" Invalid PMD power management mode: %s\n",
1950 							optarg);
1951 					return -1;
1952 				}
1953 				app_mode = APP_MODE_PMD_MGMT;
1954 				printf("PMD power mgmt mode is enabled\n");
1955 			}
1956 			if (!strncmp(lgopts[option_index].name,
1957 					CMD_LINE_OPT_INTERRUPT_ONLY,
1958 					sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1959 				if (app_mode != APP_MODE_DEFAULT) {
1960 					printf(" interrupt-only mode is mutually exclusive with other modes\n");
1961 					return -1;
1962 				}
1963 				app_mode = APP_MODE_INTERRUPT;
1964 				printf("interrupt-only mode is enabled\n");
1965 			}
1966 
1967 			if (!strncmp(lgopts[option_index].name,
1968 					CMD_LINE_OPT_MAX_PKT_LEN,
1969 					sizeof(CMD_LINE_OPT_MAX_PKT_LEN))) {
1970 				printf("Custom frame size is configured\n");
1971 				max_pkt_len = parse_max_pkt_len(optarg);
1972 			}
1973 
1974 			if (!strncmp(lgopts[option_index].name,
1975 				     CMD_LINE_OPT_PARSE_PTYPE,
1976 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1977 				printf("soft parse-ptype is enabled\n");
1978 				parse_ptype = 1;
1979 			}
1980 
1981 			break;
1982 
1983 		default:
1984 			print_usage(prgname);
1985 			return -1;
1986 		}
1987 	}
1988 
1989 	if (optind >= 0)
1990 		argv[optind-1] = prgname;
1991 
1992 	ret = optind-1;
1993 	optind = 1; /* reset getopt lib */
1994 	return ret;
1995 }
1996 
1997 static void
1998 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1999 {
2000 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
2001 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
2002 	printf("%s%s", name, buf);
2003 }
2004 
2005 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2006 static void
2007 setup_hash(int socketid)
2008 {
2009 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
2010 		.name = NULL,
2011 		.entries = L3FWD_HASH_ENTRIES,
2012 		.key_len = sizeof(struct ipv4_5tuple),
2013 		.hash_func = DEFAULT_HASH_FUNC,
2014 		.hash_func_init_val = 0,
2015 	};
2016 
2017 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
2018 		.name = NULL,
2019 		.entries = L3FWD_HASH_ENTRIES,
2020 		.key_len = sizeof(struct ipv6_5tuple),
2021 		.hash_func = DEFAULT_HASH_FUNC,
2022 		.hash_func_init_val = 0,
2023 	};
2024 
2025 	unsigned i;
2026 	int ret;
2027 	char s[64];
2028 
2029 	/* create ipv4 hash */
2030 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
2031 	ipv4_l3fwd_hash_params.name = s;
2032 	ipv4_l3fwd_hash_params.socket_id = socketid;
2033 	ipv4_l3fwd_lookup_struct[socketid] =
2034 		rte_hash_create(&ipv4_l3fwd_hash_params);
2035 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2036 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2037 				"socket %d\n", socketid);
2038 
2039 	/* create ipv6 hash */
2040 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2041 	ipv6_l3fwd_hash_params.name = s;
2042 	ipv6_l3fwd_hash_params.socket_id = socketid;
2043 	ipv6_l3fwd_lookup_struct[socketid] =
2044 		rte_hash_create(&ipv6_l3fwd_hash_params);
2045 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2046 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2047 				"socket %d\n", socketid);
2048 
2049 
2050 	/* populate the ipv4 hash */
2051 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2052 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2053 				(void *) &ipv4_l3fwd_route_array[i].key);
2054 		if (ret < 0) {
2055 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2056 				"l3fwd hash on socket %d\n", i, socketid);
2057 		}
2058 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2059 		printf("Hash: Adding key\n");
2060 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2061 	}
2062 
2063 	/* populate the ipv6 hash */
2064 	for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2065 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2066 				(void *) &ipv6_l3fwd_route_array[i].key);
2067 		if (ret < 0) {
2068 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2069 				"l3fwd hash on socket %d\n", i, socketid);
2070 		}
2071 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2072 		printf("Hash: Adding key\n");
2073 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2074 	}
2075 }
2076 #endif
2077 
2078 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2079 static void
2080 setup_lpm(int socketid)
2081 {
2082 	unsigned i;
2083 	int ret;
2084 	char s[64];
2085 
2086 	/* create the LPM table */
2087 	struct rte_lpm_config lpm_ipv4_config;
2088 
2089 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2090 	lpm_ipv4_config.number_tbl8s = 256;
2091 	lpm_ipv4_config.flags = 0;
2092 
2093 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2094 	ipv4_l3fwd_lookup_struct[socketid] =
2095 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
2096 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2097 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2098 				" on socket %d\n", socketid);
2099 
2100 	/* populate the LPM table */
2101 	for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2102 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2103 			ipv4_l3fwd_route_array[i].ip,
2104 			ipv4_l3fwd_route_array[i].depth,
2105 			ipv4_l3fwd_route_array[i].if_out);
2106 
2107 		if (ret < 0) {
2108 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2109 				"l3fwd LPM table on socket %d\n",
2110 				i, socketid);
2111 		}
2112 
2113 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
2114 			(unsigned)ipv4_l3fwd_route_array[i].ip,
2115 			ipv4_l3fwd_route_array[i].depth,
2116 			ipv4_l3fwd_route_array[i].if_out);
2117 	}
2118 }
2119 #endif
2120 
2121 static int
2122 init_mem(unsigned nb_mbuf)
2123 {
2124 	struct lcore_conf *qconf;
2125 	int socketid;
2126 	unsigned lcore_id;
2127 	char s[64];
2128 
2129 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2130 		if (rte_lcore_is_enabled(lcore_id) == 0)
2131 			continue;
2132 
2133 		if (numa_on)
2134 			socketid = rte_lcore_to_socket_id(lcore_id);
2135 		else
2136 			socketid = 0;
2137 
2138 		if (socketid >= NB_SOCKETS) {
2139 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2140 					"out of range %d\n", socketid,
2141 						lcore_id, NB_SOCKETS);
2142 		}
2143 		if (pktmbuf_pool[socketid] == NULL) {
2144 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2145 			pktmbuf_pool[socketid] =
2146 				rte_pktmbuf_pool_create(s, nb_mbuf,
2147 					MEMPOOL_CACHE_SIZE, 0,
2148 					RTE_MBUF_DEFAULT_BUF_SIZE,
2149 					socketid);
2150 			if (pktmbuf_pool[socketid] == NULL)
2151 				rte_exit(EXIT_FAILURE,
2152 					"Cannot init mbuf pool on socket %d\n",
2153 								socketid);
2154 			else
2155 				printf("Allocated mbuf pool on socket %d\n",
2156 								socketid);
2157 
2158 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2159 			setup_lpm(socketid);
2160 #else
2161 			setup_hash(socketid);
2162 #endif
2163 		}
2164 		qconf = &lcore_conf[lcore_id];
2165 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2166 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2167 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2168 #endif
2169 	}
2170 	return 0;
2171 }
2172 
2173 /* Check the link status of all ports in up to 9s, and print them finally */
2174 static void
2175 check_all_ports_link_status(uint32_t port_mask)
2176 {
2177 #define CHECK_INTERVAL 100 /* 100ms */
2178 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2179 	uint8_t count, all_ports_up, print_flag = 0;
2180 	uint16_t portid;
2181 	struct rte_eth_link link;
2182 	int ret;
2183 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
2184 
2185 	printf("\nChecking link status");
2186 	fflush(stdout);
2187 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2188 		all_ports_up = 1;
2189 		RTE_ETH_FOREACH_DEV(portid) {
2190 			if ((port_mask & (1 << portid)) == 0)
2191 				continue;
2192 			memset(&link, 0, sizeof(link));
2193 			ret = rte_eth_link_get_nowait(portid, &link);
2194 			if (ret < 0) {
2195 				all_ports_up = 0;
2196 				if (print_flag == 1)
2197 					printf("Port %u link get failed: %s\n",
2198 						portid, rte_strerror(-ret));
2199 				continue;
2200 			}
2201 			/* print link status if flag set */
2202 			if (print_flag == 1) {
2203 				rte_eth_link_to_str(link_status_text,
2204 					sizeof(link_status_text), &link);
2205 				printf("Port %d %s\n", portid,
2206 				       link_status_text);
2207 				continue;
2208 			}
2209 			/* clear all_ports_up flag if any link down */
2210 			if (link.link_status == RTE_ETH_LINK_DOWN) {
2211 				all_ports_up = 0;
2212 				break;
2213 			}
2214 		}
2215 		/* after finally printing all link status, get out */
2216 		if (print_flag == 1)
2217 			break;
2218 
2219 		if (all_ports_up == 0) {
2220 			printf(".");
2221 			fflush(stdout);
2222 			rte_delay_ms(CHECK_INTERVAL);
2223 		}
2224 
2225 		/* set the print_flag if all ports up or timeout */
2226 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2227 			print_flag = 1;
2228 			printf("done\n");
2229 		}
2230 	}
2231 }
2232 
2233 static int check_ptype(uint16_t portid)
2234 {
2235 	int i, ret;
2236 	int ptype_l3_ipv4 = 0;
2237 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2238 	int ptype_l3_ipv6 = 0;
2239 #endif
2240 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2241 
2242 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2243 	if (ret <= 0)
2244 		return 0;
2245 
2246 	uint32_t ptypes[ret];
2247 
2248 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2249 	for (i = 0; i < ret; ++i) {
2250 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2251 			ptype_l3_ipv4 = 1;
2252 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2253 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2254 			ptype_l3_ipv6 = 1;
2255 #endif
2256 	}
2257 
2258 	if (ptype_l3_ipv4 == 0)
2259 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2260 
2261 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2262 	if (ptype_l3_ipv6 == 0)
2263 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2264 #endif
2265 
2266 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2267 	if (ptype_l3_ipv4)
2268 #else /* APP_LOOKUP_EXACT_MATCH */
2269 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
2270 #endif
2271 		return 1;
2272 
2273 	return 0;
2274 
2275 }
2276 
2277 static int
2278 init_power_library(void)
2279 {
2280 	enum power_management_env env;
2281 	unsigned int lcore_id;
2282 	int ret = 0;
2283 
2284 	RTE_LCORE_FOREACH(lcore_id) {
2285 		/* init power management library */
2286 		ret = rte_power_init(lcore_id);
2287 		if (ret) {
2288 			RTE_LOG(ERR, POWER,
2289 				"Library initialization failed on core %u\n",
2290 				lcore_id);
2291 			return ret;
2292 		}
2293 		/* we're not supporting the VM channel mode */
2294 		env = rte_power_get_env();
2295 		if (env != PM_ENV_ACPI_CPUFREQ &&
2296 				env != PM_ENV_PSTATE_CPUFREQ) {
2297 			RTE_LOG(ERR, POWER,
2298 				"Only ACPI and PSTATE mode are supported\n");
2299 			return -1;
2300 		}
2301 	}
2302 	return ret;
2303 }
2304 
2305 static int
2306 deinit_power_library(void)
2307 {
2308 	unsigned int lcore_id;
2309 	int ret = 0;
2310 
2311 	RTE_LCORE_FOREACH(lcore_id) {
2312 		/* deinit power management library */
2313 		ret = rte_power_exit(lcore_id);
2314 		if (ret) {
2315 			RTE_LOG(ERR, POWER,
2316 				"Library deinitialization failed on core %u\n",
2317 				lcore_id);
2318 			return ret;
2319 		}
2320 	}
2321 	return ret;
2322 }
2323 
2324 static void
2325 get_current_stat_values(uint64_t *values)
2326 {
2327 	unsigned int lcore_id = rte_lcore_id();
2328 	struct lcore_conf *qconf;
2329 	uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2330 	uint64_t count = 0;
2331 
2332 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2333 		qconf = &lcore_conf[lcore_id];
2334 		if (qconf->n_rx_queue == 0)
2335 			continue;
2336 		count++;
2337 		rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2338 		app_eps += stats[lcore_id].ep_nep[1];
2339 		app_fps += stats[lcore_id].fp_nfp[1];
2340 		app_br += stats[lcore_id].br;
2341 		rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2342 	}
2343 
2344 	if (count > 0) {
2345 		values[0] = app_eps/count;
2346 		values[1] = app_fps/count;
2347 		values[2] = app_br/count;
2348 	} else
2349 		memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2350 
2351 }
2352 
2353 static void
2354 update_telemetry(__rte_unused struct rte_timer *tim,
2355 		__rte_unused void *arg)
2356 {
2357 	int ret;
2358 	uint64_t values[NUM_TELSTATS] = {0};
2359 
2360 	get_current_stat_values(values);
2361 	ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2362 					values, RTE_DIM(values));
2363 	if (ret < 0)
2364 		RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
2365 }
2366 
2367 static int
2368 handle_app_stats(const char *cmd __rte_unused,
2369 		const char *params __rte_unused,
2370 		struct rte_tel_data *d)
2371 {
2372 	uint64_t values[NUM_TELSTATS] = {0};
2373 	uint32_t i;
2374 
2375 	rte_tel_data_start_dict(d);
2376 	get_current_stat_values(values);
2377 	for (i = 0; i < NUM_TELSTATS; i++)
2378 		rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2379 				values[i]);
2380 	return 0;
2381 }
2382 
2383 static void
2384 telemetry_setup_timer(void)
2385 {
2386 	int lcore_id = rte_lcore_id();
2387 	uint64_t hz = rte_get_timer_hz();
2388 	uint64_t ticks;
2389 
2390 	ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2391 	rte_timer_reset_sync(&telemetry_timer,
2392 			ticks,
2393 			PERIODICAL,
2394 			lcore_id,
2395 			update_telemetry,
2396 			NULL);
2397 }
2398 static void
2399 empty_poll_setup_timer(void)
2400 {
2401 	int lcore_id = rte_lcore_id();
2402 	uint64_t hz = rte_get_timer_hz();
2403 
2404 	struct  ep_params *ep_ptr = ep_params;
2405 
2406 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2407 
2408 	rte_timer_reset_sync(&ep_ptr->timer0,
2409 			ep_ptr->interval_ticks,
2410 			PERIODICAL,
2411 			lcore_id,
2412 			rte_empty_poll_detection,
2413 			(void *)ep_ptr);
2414 
2415 }
2416 static int
2417 launch_timer(unsigned int lcore_id)
2418 {
2419 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2420 
2421 	RTE_SET_USED(lcore_id);
2422 
2423 
2424 	if (rte_get_main_lcore() != lcore_id) {
2425 		rte_panic("timer on lcore:%d which is not main core:%d\n",
2426 				lcore_id,
2427 				rte_get_main_lcore());
2428 	}
2429 
2430 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2431 
2432 	if (app_mode == APP_MODE_EMPTY_POLL)
2433 		empty_poll_setup_timer();
2434 	else
2435 		telemetry_setup_timer();
2436 
2437 	cycles_10ms = rte_get_timer_hz() / 100;
2438 
2439 	while (!is_done()) {
2440 		cur_tsc = rte_rdtsc();
2441 		diff_tsc = cur_tsc - prev_tsc;
2442 		if (diff_tsc > cycles_10ms) {
2443 			rte_timer_manage();
2444 			prev_tsc = cur_tsc;
2445 			cycles_10ms = rte_get_timer_hz() / 100;
2446 		}
2447 	}
2448 
2449 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2450 
2451 	return 0;
2452 }
2453 
2454 static int
2455 autodetect_mode(void)
2456 {
2457 	RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2458 
2459 	/*
2460 	 * Empty poll and telemetry modes have to be specifically requested to
2461 	 * be enabled, but we can auto-detect between interrupt mode with or
2462 	 * without frequency scaling. Both ACPI and pstate can be used.
2463 	 */
2464 	if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2465 		return APP_MODE_LEGACY;
2466 	if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2467 		return APP_MODE_LEGACY;
2468 
2469 	RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2470 
2471 	return APP_MODE_INTERRUPT;
2472 }
2473 
2474 static const char *
2475 mode_to_str(enum appmode mode)
2476 {
2477 	switch (mode) {
2478 	case APP_MODE_LEGACY:
2479 		return "legacy";
2480 	case APP_MODE_EMPTY_POLL:
2481 		return "empty poll";
2482 	case APP_MODE_TELEMETRY:
2483 		return "telemetry";
2484 	case APP_MODE_INTERRUPT:
2485 		return "interrupt-only";
2486 	case APP_MODE_PMD_MGMT:
2487 		return "pmd mgmt";
2488 	default:
2489 		return "invalid";
2490 	}
2491 }
2492 
2493 static uint32_t
2494 eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
2495 {
2496 	uint32_t overhead_len;
2497 
2498 	if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
2499 		overhead_len = max_rx_pktlen - max_mtu;
2500 	else
2501 		overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
2502 
2503 	return overhead_len;
2504 }
2505 
2506 static int
2507 config_port_max_pkt_len(struct rte_eth_conf *conf,
2508 		struct rte_eth_dev_info *dev_info)
2509 {
2510 	uint32_t overhead_len;
2511 
2512 	if (max_pkt_len == 0)
2513 		return 0;
2514 
2515 	if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
2516 		return -1;
2517 
2518 	overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
2519 			dev_info->max_mtu);
2520 	conf->rxmode.mtu = max_pkt_len - overhead_len;
2521 
2522 	if (conf->rxmode.mtu > RTE_ETHER_MTU)
2523 		conf->txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2524 
2525 	return 0;
2526 }
2527 
2528 /* Power library initialized in the main routine. 8< */
2529 int
2530 main(int argc, char **argv)
2531 {
2532 	struct lcore_conf *qconf;
2533 	struct rte_eth_dev_info dev_info;
2534 	struct rte_eth_txconf *txconf;
2535 	int ret;
2536 	uint16_t nb_ports;
2537 	uint16_t queueid;
2538 	unsigned lcore_id;
2539 	uint64_t hz;
2540 	uint32_t n_tx_queue, nb_lcores;
2541 	uint32_t dev_rxq_num, dev_txq_num;
2542 	uint8_t nb_rx_queue, queue, socketid;
2543 	uint16_t portid;
2544 	const char *ptr_strings[NUM_TELSTATS];
2545 
2546 	/* init EAL */
2547 	ret = rte_eal_init(argc, argv);
2548 	if (ret < 0)
2549 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2550 	argc -= ret;
2551 	argv += ret;
2552 
2553 	/* catch SIGINT and restore cpufreq governor to ondemand */
2554 	signal(SIGINT, signal_exit_now);
2555 
2556 	/* init RTE timer library to be used late */
2557 	rte_timer_subsystem_init();
2558 
2559 	/* if we're running pmd-mgmt mode, don't default to baseline mode */
2560 	baseline_enabled = false;
2561 
2562 	/* parse application arguments (after the EAL ones) */
2563 	ret = parse_args(argc, argv);
2564 	if (ret < 0)
2565 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2566 
2567 	if (app_mode == APP_MODE_DEFAULT)
2568 		app_mode = autodetect_mode();
2569 
2570 	RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2571 			mode_to_str(app_mode));
2572 
2573 	/* only legacy and empty poll mode rely on power library */
2574 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2575 			init_power_library())
2576 		rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2577 
2578 	if (update_lcore_params() < 0)
2579 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2580 
2581 	if (check_lcore_params() < 0)
2582 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2583 
2584 	ret = init_lcore_rx_queues();
2585 	if (ret < 0)
2586 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2587 
2588 	nb_ports = rte_eth_dev_count_avail();
2589 
2590 	if (check_port_config() < 0)
2591 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2592 
2593 	nb_lcores = rte_lcore_count();
2594 
2595 	/* initialize all ports */
2596 	RTE_ETH_FOREACH_DEV(portid) {
2597 		struct rte_eth_conf local_port_conf = port_conf;
2598 		/* not all app modes need interrupts */
2599 		bool need_intr = app_mode == APP_MODE_LEGACY ||
2600 				app_mode == APP_MODE_INTERRUPT;
2601 
2602 		/* skip ports that are not enabled */
2603 		if ((enabled_port_mask & (1 << portid)) == 0) {
2604 			printf("\nSkipping disabled port %d\n", portid);
2605 			continue;
2606 		}
2607 
2608 		/* init port */
2609 		printf("Initializing port %d ... ", portid );
2610 		fflush(stdout);
2611 
2612 		ret = rte_eth_dev_info_get(portid, &dev_info);
2613 		if (ret != 0)
2614 			rte_exit(EXIT_FAILURE,
2615 				"Error during getting device (port %u) info: %s\n",
2616 				portid, strerror(-ret));
2617 
2618 		dev_rxq_num = dev_info.max_rx_queues;
2619 		dev_txq_num = dev_info.max_tx_queues;
2620 
2621 		nb_rx_queue = get_port_n_rx_queues(portid);
2622 		if (nb_rx_queue > dev_rxq_num)
2623 			rte_exit(EXIT_FAILURE,
2624 				"Cannot configure not existed rxq: "
2625 				"port=%d\n", portid);
2626 
2627 		n_tx_queue = nb_lcores;
2628 		if (n_tx_queue > dev_txq_num)
2629 			n_tx_queue = dev_txq_num;
2630 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2631 			nb_rx_queue, (unsigned)n_tx_queue );
2632 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2633 		if (nb_rx_queue == 0)
2634 			need_intr = false;
2635 
2636 		if (need_intr)
2637 			local_port_conf.intr_conf.rxq = 1;
2638 
2639 		ret = rte_eth_dev_info_get(portid, &dev_info);
2640 		if (ret != 0)
2641 			rte_exit(EXIT_FAILURE,
2642 				"Error during getting device (port %u) info: %s\n",
2643 				portid, strerror(-ret));
2644 
2645 		ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
2646 		if (ret != 0)
2647 			rte_exit(EXIT_FAILURE,
2648 				"Invalid max packet length: %u (port %u)\n",
2649 				max_pkt_len, portid);
2650 
2651 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
2652 			local_port_conf.txmode.offloads |=
2653 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2654 
2655 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2656 			dev_info.flow_type_rss_offloads;
2657 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2658 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2659 			printf("Port %u modified RSS hash function based on hardware support,"
2660 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2661 				portid,
2662 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2663 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2664 		}
2665 
2666 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf == 0)
2667 			local_port_conf.rxmode.mq_mode = RTE_ETH_MQ_RX_NONE;
2668 		local_port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
2669 		port_conf.rxmode.offloads = local_port_conf.rxmode.offloads;
2670 
2671 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2672 					(uint16_t)n_tx_queue, &local_port_conf);
2673 		if (ret < 0)
2674 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2675 					"err=%d, port=%d\n", ret, portid);
2676 
2677 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2678 						       &nb_txd);
2679 		if (ret < 0)
2680 			rte_exit(EXIT_FAILURE,
2681 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2682 				 ret, portid);
2683 
2684 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2685 		if (ret < 0)
2686 			rte_exit(EXIT_FAILURE,
2687 				 "Cannot get MAC address: err=%d, port=%d\n",
2688 				 ret, portid);
2689 
2690 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2691 		printf(", ");
2692 
2693 		/* init memory */
2694 		ret = init_mem(NB_MBUF);
2695 		if (ret < 0)
2696 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2697 
2698 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2699 			if (rte_lcore_is_enabled(lcore_id) == 0)
2700 				continue;
2701 
2702 			/* Initialize TX buffers */
2703 			qconf = &lcore_conf[lcore_id];
2704 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2705 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2706 				rte_eth_dev_socket_id(portid));
2707 			if (qconf->tx_buffer[portid] == NULL)
2708 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2709 						 portid);
2710 
2711 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2712 		}
2713 
2714 		/* init one TX queue per couple (lcore,port) */
2715 		queueid = 0;
2716 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2717 			if (rte_lcore_is_enabled(lcore_id) == 0)
2718 				continue;
2719 
2720 			if (queueid >= dev_txq_num)
2721 				continue;
2722 
2723 			if (numa_on)
2724 				socketid = \
2725 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2726 			else
2727 				socketid = 0;
2728 
2729 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2730 			fflush(stdout);
2731 
2732 			txconf = &dev_info.default_txconf;
2733 			txconf->offloads = local_port_conf.txmode.offloads;
2734 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2735 						     socketid, txconf);
2736 			if (ret < 0)
2737 				rte_exit(EXIT_FAILURE,
2738 					"rte_eth_tx_queue_setup: err=%d, "
2739 						"port=%d\n", ret, portid);
2740 
2741 			qconf = &lcore_conf[lcore_id];
2742 			qconf->tx_queue_id[portid] = queueid;
2743 			queueid++;
2744 
2745 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2746 			qconf->n_tx_port++;
2747 		}
2748 		printf("\n");
2749 	}
2750 
2751 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2752 		if (rte_lcore_is_enabled(lcore_id) == 0)
2753 			continue;
2754 
2755 		if (app_mode == APP_MODE_LEGACY) {
2756 			/* init timer structures for each enabled lcore */
2757 			rte_timer_init(&power_timers[lcore_id]);
2758 			hz = rte_get_timer_hz();
2759 			rte_timer_reset(&power_timers[lcore_id],
2760 					hz/TIMER_NUMBER_PER_SECOND,
2761 					SINGLE, lcore_id,
2762 					power_timer_cb, NULL);
2763 		}
2764 		qconf = &lcore_conf[lcore_id];
2765 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2766 		fflush(stdout);
2767 
2768 		/* init RX queues */
2769 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2770 			struct rte_eth_rxconf rxq_conf;
2771 
2772 			portid = qconf->rx_queue_list[queue].port_id;
2773 			queueid = qconf->rx_queue_list[queue].queue_id;
2774 
2775 			if (numa_on)
2776 				socketid = \
2777 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2778 			else
2779 				socketid = 0;
2780 
2781 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2782 			fflush(stdout);
2783 
2784 			ret = rte_eth_dev_info_get(portid, &dev_info);
2785 			if (ret != 0)
2786 				rte_exit(EXIT_FAILURE,
2787 					"Error during getting device (port %u) info: %s\n",
2788 					portid, strerror(-ret));
2789 
2790 			rxq_conf = dev_info.default_rxconf;
2791 			rxq_conf.offloads = port_conf.rxmode.offloads;
2792 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2793 				socketid, &rxq_conf,
2794 				pktmbuf_pool[socketid]);
2795 			if (ret < 0)
2796 				rte_exit(EXIT_FAILURE,
2797 					"rte_eth_rx_queue_setup: err=%d, "
2798 						"port=%d\n", ret, portid);
2799 
2800 			if (parse_ptype) {
2801 				if (add_cb_parse_ptype(portid, queueid) < 0)
2802 					rte_exit(EXIT_FAILURE,
2803 						 "Fail to add ptype cb\n");
2804 			}
2805 
2806 			if (app_mode == APP_MODE_PMD_MGMT && !baseline_enabled) {
2807 				ret = rte_power_ethdev_pmgmt_queue_enable(
2808 						lcore_id, portid, queueid,
2809 						pmgmt_type);
2810 				if (ret < 0)
2811 					rte_exit(EXIT_FAILURE,
2812 						"rte_power_ethdev_pmgmt_queue_enable: err=%d, port=%d\n",
2813 							ret, portid);
2814 			}
2815 		}
2816 	}
2817 	/* >8 End of power library initialization. */
2818 
2819 	printf("\n");
2820 
2821 	/* start ports */
2822 	RTE_ETH_FOREACH_DEV(portid) {
2823 		if ((enabled_port_mask & (1 << portid)) == 0) {
2824 			continue;
2825 		}
2826 		/* Start device */
2827 		ret = rte_eth_dev_start(portid);
2828 		if (ret < 0)
2829 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2830 						"port=%d\n", ret, portid);
2831 		/*
2832 		 * If enabled, put device in promiscuous mode.
2833 		 * This allows IO forwarding mode to forward packets
2834 		 * to itself through 2 cross-connected  ports of the
2835 		 * target machine.
2836 		 */
2837 		if (promiscuous_on) {
2838 			ret = rte_eth_promiscuous_enable(portid);
2839 			if (ret != 0)
2840 				rte_exit(EXIT_FAILURE,
2841 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2842 					rte_strerror(-ret), portid);
2843 		}
2844 		/* initialize spinlock for each port */
2845 		rte_spinlock_init(&(locks[portid]));
2846 
2847 		if (!parse_ptype)
2848 			if (!check_ptype(portid))
2849 				rte_exit(EXIT_FAILURE,
2850 					"PMD can not provide needed ptypes\n");
2851 	}
2852 
2853 	check_all_ports_link_status(enabled_port_mask);
2854 
2855 	if (app_mode == APP_MODE_EMPTY_POLL) {
2856 
2857 		if (empty_poll_train) {
2858 			policy.state = TRAINING;
2859 		} else {
2860 			policy.state = MED_NORMAL;
2861 			policy.med_base_edpi = ep_med_edpi;
2862 			policy.hgh_base_edpi = ep_hgh_edpi;
2863 		}
2864 
2865 		ret = rte_power_empty_poll_stat_init(&ep_params,
2866 				freq_tlb,
2867 				&policy);
2868 		if (ret < 0)
2869 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2870 	}
2871 
2872 
2873 	/* launch per-lcore init on every lcore */
2874 	if (app_mode == APP_MODE_LEGACY) {
2875 		rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
2876 	} else if (app_mode == APP_MODE_EMPTY_POLL) {
2877 		empty_poll_stop = false;
2878 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2879 				SKIP_MAIN);
2880 	} else if (app_mode == APP_MODE_TELEMETRY) {
2881 		unsigned int i;
2882 
2883 		/* Init metrics library */
2884 		rte_metrics_init(rte_socket_id());
2885 		/** Register stats with metrics library */
2886 		for (i = 0; i < NUM_TELSTATS; i++)
2887 			ptr_strings[i] = telstats_strings[i].name;
2888 
2889 		ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2890 		if (ret >= 0)
2891 			telstats_index = ret;
2892 		else
2893 			rte_exit(EXIT_FAILURE, "failed to register metrics names");
2894 
2895 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
2896 			rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2897 		}
2898 		rte_timer_init(&telemetry_timer);
2899 		rte_telemetry_register_cmd("/l3fwd-power/stats",
2900 				handle_app_stats,
2901 				"Returns global power stats. Parameters: None");
2902 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2903 						SKIP_MAIN);
2904 	} else if (app_mode == APP_MODE_INTERRUPT) {
2905 		rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
2906 	} else if (app_mode == APP_MODE_PMD_MGMT) {
2907 		/* reuse telemetry loop for PMD power management mode */
2908 		rte_eal_mp_remote_launch(main_telemetry_loop, NULL, CALL_MAIN);
2909 	}
2910 
2911 	if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2912 		launch_timer(rte_lcore_id());
2913 
2914 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2915 		if (rte_eal_wait_lcore(lcore_id) < 0)
2916 			return -1;
2917 	}
2918 
2919 	if (app_mode == APP_MODE_PMD_MGMT) {
2920 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2921 			if (rte_lcore_is_enabled(lcore_id) == 0)
2922 				continue;
2923 			qconf = &lcore_conf[lcore_id];
2924 			for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
2925 				portid = qconf->rx_queue_list[queue].port_id;
2926 				queueid = qconf->rx_queue_list[queue].queue_id;
2927 
2928 				rte_power_ethdev_pmgmt_queue_disable(lcore_id,
2929 						portid, queueid);
2930 			}
2931 		}
2932 	}
2933 
2934 	RTE_ETH_FOREACH_DEV(portid)
2935 	{
2936 		if ((enabled_port_mask & (1 << portid)) == 0)
2937 			continue;
2938 
2939 		ret = rte_eth_dev_stop(portid);
2940 		if (ret != 0)
2941 			RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
2942 				ret, portid);
2943 
2944 		rte_eth_dev_close(portid);
2945 	}
2946 
2947 	if (app_mode == APP_MODE_EMPTY_POLL)
2948 		rte_power_empty_poll_stat_free();
2949 
2950 	if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2951 			deinit_power_library())
2952 		rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
2953 
2954 	if (rte_eal_cleanup() < 0)
2955 		RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
2956 
2957 	return 0;
2958 }
2959