xref: /dpdk/examples/l3fwd-power/main.c (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 
18 #include <rte_common.h>
19 #include <rte_byteorder.h>
20 #include <rte_log.h>
21 #include <rte_malloc.h>
22 #include <rte_memory.h>
23 #include <rte_memcpy.h>
24 #include <rte_eal.h>
25 #include <rte_launch.h>
26 #include <rte_atomic.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_ip.h>
40 #include <rte_tcp.h>
41 #include <rte_udp.h>
42 #include <rte_string_fns.h>
43 #include <rte_timer.h>
44 #include <rte_power.h>
45 #include <rte_spinlock.h>
46 #include <rte_power_empty_poll.h>
47 
48 #include "perf_core.h"
49 #include "main.h"
50 
51 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
52 
53 #define MAX_PKT_BURST 32
54 
55 #define MIN_ZERO_POLL_COUNT 10
56 
57 /* 100 ms interval */
58 #define TIMER_NUMBER_PER_SECOND           10
59 /* (10ms) */
60 #define INTERVALS_PER_SECOND             100
61 /* 100000 us */
62 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
63 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
64 
65 #define APP_LOOKUP_EXACT_MATCH          0
66 #define APP_LOOKUP_LPM                  1
67 #define DO_RFC_1812_CHECKS
68 
69 #ifndef APP_LOOKUP_METHOD
70 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
71 #endif
72 
73 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
74 #include <rte_hash.h>
75 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
76 #include <rte_lpm.h>
77 #else
78 #error "APP_LOOKUP_METHOD set to incorrect value"
79 #endif
80 
81 #ifndef IPv6_BYTES
82 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
83                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
84 #define IPv6_BYTES(addr) \
85 	addr[0],  addr[1], addr[2],  addr[3], \
86 	addr[4],  addr[5], addr[6],  addr[7], \
87 	addr[8],  addr[9], addr[10], addr[11],\
88 	addr[12], addr[13],addr[14], addr[15]
89 #endif
90 
91 #define MAX_JUMBO_PKT_LEN  9600
92 
93 #define IPV6_ADDR_LEN 16
94 
95 #define MEMPOOL_CACHE_SIZE 256
96 
97 /*
98  * This expression is used to calculate the number of mbufs needed depending on
99  * user input, taking into account memory for rx and tx hardware rings, cache
100  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
101  * NB_MBUF never goes below a minimum value of 8192.
102  */
103 
104 #define NB_MBUF RTE_MAX	( \
105 	(nb_ports*nb_rx_queue*nb_rxd + \
106 	nb_ports*nb_lcores*MAX_PKT_BURST + \
107 	nb_ports*n_tx_queue*nb_txd + \
108 	nb_lcores*MEMPOOL_CACHE_SIZE), \
109 	(unsigned)8192)
110 
111 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
112 
113 #define NB_SOCKETS 8
114 
115 /* Configure how many packets ahead to prefetch, when reading packets */
116 #define PREFETCH_OFFSET	3
117 
118 /*
119  * Configurable number of RX/TX ring descriptors
120  */
121 #define RTE_TEST_RX_DESC_DEFAULT 1024
122 #define RTE_TEST_TX_DESC_DEFAULT 1024
123 
124 /*
125  * These two thresholds were decided on by running the training algorithm on
126  * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
127  * for the med_threshold and high_threshold parameters on the command line.
128  */
129 #define EMPTY_POLL_MED_THRESHOLD 350000UL
130 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
131 
132 
133 
134 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
135 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
136 
137 /* ethernet addresses of ports */
138 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
139 
140 /* ethernet addresses of ports */
141 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
142 
143 /* mask of enabled ports */
144 static uint32_t enabled_port_mask = 0;
145 /* Ports set in promiscuous mode off by default. */
146 static int promiscuous_on = 0;
147 /* NUMA is enabled by default. */
148 static int numa_on = 1;
149 /* emptypoll is disabled by default. */
150 static bool empty_poll_on;
151 static bool empty_poll_train;
152 volatile bool empty_poll_stop;
153 static struct  ep_params *ep_params;
154 static struct  ep_policy policy;
155 static long  ep_med_edpi, ep_hgh_edpi;
156 
157 static int parse_ptype; /**< Parse packet type using rx callback, and */
158 			/**< disabled by default */
159 
160 enum freq_scale_hint_t
161 {
162 	FREQ_LOWER    =      -1,
163 	FREQ_CURRENT  =       0,
164 	FREQ_HIGHER   =       1,
165 	FREQ_HIGHEST  =       2
166 };
167 
168 struct lcore_rx_queue {
169 	uint16_t port_id;
170 	uint8_t queue_id;
171 	enum freq_scale_hint_t freq_up_hint;
172 	uint32_t zero_rx_packet_count;
173 	uint32_t idle_hint;
174 } __rte_cache_aligned;
175 
176 #define MAX_RX_QUEUE_PER_LCORE 16
177 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
178 #define MAX_RX_QUEUE_PER_PORT 128
179 
180 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
181 
182 
183 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
184 static struct lcore_params lcore_params_array_default[] = {
185 	{0, 0, 2},
186 	{0, 1, 2},
187 	{0, 2, 2},
188 	{1, 0, 2},
189 	{1, 1, 2},
190 	{1, 2, 2},
191 	{2, 0, 2},
192 	{3, 0, 3},
193 	{3, 1, 3},
194 };
195 
196 struct lcore_params *lcore_params = lcore_params_array_default;
197 uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
198 				sizeof(lcore_params_array_default[0]);
199 
200 static struct rte_eth_conf port_conf = {
201 	.rxmode = {
202 		.mq_mode        = ETH_MQ_RX_RSS,
203 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
204 		.split_hdr_size = 0,
205 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
206 	},
207 	.rx_adv_conf = {
208 		.rss_conf = {
209 			.rss_key = NULL,
210 			.rss_hf = ETH_RSS_UDP,
211 		},
212 	},
213 	.txmode = {
214 		.mq_mode = ETH_MQ_TX_NONE,
215 	},
216 	.intr_conf = {
217 		.rxq = 1,
218 	},
219 };
220 
221 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
222 
223 
224 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
225 
226 #ifdef RTE_ARCH_X86
227 #include <rte_hash_crc.h>
228 #define DEFAULT_HASH_FUNC       rte_hash_crc
229 #else
230 #include <rte_jhash.h>
231 #define DEFAULT_HASH_FUNC       rte_jhash
232 #endif
233 
234 struct ipv4_5tuple {
235 	uint32_t ip_dst;
236 	uint32_t ip_src;
237 	uint16_t port_dst;
238 	uint16_t port_src;
239 	uint8_t  proto;
240 } __attribute__((__packed__));
241 
242 struct ipv6_5tuple {
243 	uint8_t  ip_dst[IPV6_ADDR_LEN];
244 	uint8_t  ip_src[IPV6_ADDR_LEN];
245 	uint16_t port_dst;
246 	uint16_t port_src;
247 	uint8_t  proto;
248 } __attribute__((__packed__));
249 
250 struct ipv4_l3fwd_route {
251 	struct ipv4_5tuple key;
252 	uint8_t if_out;
253 };
254 
255 struct ipv6_l3fwd_route {
256 	struct ipv6_5tuple key;
257 	uint8_t if_out;
258 };
259 
260 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
261 	{{RTE_IPv4(100,10,0,1), RTE_IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
262 	{{RTE_IPv4(100,20,0,2), RTE_IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
263 	{{RTE_IPv4(100,30,0,3), RTE_IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
264 	{{RTE_IPv4(100,40,0,4), RTE_IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
265 };
266 
267 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
268 	{
269 		{
270 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
271 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
272 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
273 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
274 			 1, 10, IPPROTO_UDP
275 		}, 4
276 	},
277 };
278 
279 typedef struct rte_hash lookup_struct_t;
280 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
281 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
282 
283 #define L3FWD_HASH_ENTRIES	1024
284 
285 #define IPV4_L3FWD_NUM_ROUTES \
286 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
287 
288 #define IPV6_L3FWD_NUM_ROUTES \
289 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
290 
291 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
292 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
293 #endif
294 
295 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
296 struct ipv4_l3fwd_route {
297 	uint32_t ip;
298 	uint8_t  depth;
299 	uint8_t  if_out;
300 };
301 
302 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
303 	{RTE_IPv4(1,1,1,0), 24, 0},
304 	{RTE_IPv4(2,1,1,0), 24, 1},
305 	{RTE_IPv4(3,1,1,0), 24, 2},
306 	{RTE_IPv4(4,1,1,0), 24, 3},
307 	{RTE_IPv4(5,1,1,0), 24, 4},
308 	{RTE_IPv4(6,1,1,0), 24, 5},
309 	{RTE_IPv4(7,1,1,0), 24, 6},
310 	{RTE_IPv4(8,1,1,0), 24, 7},
311 };
312 
313 #define IPV4_L3FWD_NUM_ROUTES \
314 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
315 
316 #define IPV4_L3FWD_LPM_MAX_RULES     1024
317 
318 typedef struct rte_lpm lookup_struct_t;
319 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
320 #endif
321 
322 struct lcore_conf {
323 	uint16_t n_rx_queue;
324 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
325 	uint16_t n_tx_port;
326 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
327 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
328 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
329 	lookup_struct_t * ipv4_lookup_struct;
330 	lookup_struct_t * ipv6_lookup_struct;
331 } __rte_cache_aligned;
332 
333 struct lcore_stats {
334 	/* total sleep time in ms since last frequency scaling down */
335 	uint32_t sleep_time;
336 	/* number of long sleep recently */
337 	uint32_t nb_long_sleep;
338 	/* freq. scaling up trend */
339 	uint32_t trend;
340 	/* total packet processed recently */
341 	uint64_t nb_rx_processed;
342 	/* total iterations looped recently */
343 	uint64_t nb_iteration_looped;
344 	uint32_t padding[9];
345 } __rte_cache_aligned;
346 
347 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
348 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
349 static struct rte_timer power_timers[RTE_MAX_LCORE];
350 
351 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
352 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
353 		unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
354 
355 
356 /*
357  * These defaults are using the max frequency index (1), a medium index (9)
358  * and a typical low frequency index (14). These can be adjusted to use
359  * different indexes using the relevant command line parameters.
360  */
361 static uint8_t  freq_tlb[] = {14, 9, 1};
362 
363 static int is_done(void)
364 {
365 	return empty_poll_stop;
366 }
367 
368 /* exit signal handler */
369 static void
370 signal_exit_now(int sigtype)
371 {
372 	unsigned lcore_id;
373 	unsigned int portid;
374 	int ret;
375 
376 	if (sigtype == SIGINT) {
377 		if (empty_poll_on)
378 			empty_poll_stop = true;
379 
380 
381 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
382 			if (rte_lcore_is_enabled(lcore_id) == 0)
383 				continue;
384 
385 			/* init power management library */
386 			ret = rte_power_exit(lcore_id);
387 			if (ret)
388 				rte_exit(EXIT_FAILURE, "Power management "
389 					"library de-initialization failed on "
390 							"core%u\n", lcore_id);
391 		}
392 
393 		if (!empty_poll_on) {
394 			RTE_ETH_FOREACH_DEV(portid) {
395 				if ((enabled_port_mask & (1 << portid)) == 0)
396 					continue;
397 
398 				rte_eth_dev_stop(portid);
399 				rte_eth_dev_close(portid);
400 			}
401 		}
402 	}
403 
404 	if (!empty_poll_on)
405 		rte_exit(EXIT_SUCCESS, "User forced exit\n");
406 }
407 
408 /*  Freqency scale down timer callback */
409 static void
410 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
411 			  __attribute__((unused)) void *arg)
412 {
413 	uint64_t hz;
414 	float sleep_time_ratio;
415 	unsigned lcore_id = rte_lcore_id();
416 
417 	/* accumulate total execution time in us when callback is invoked */
418 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
419 					(float)SCALING_PERIOD;
420 	/**
421 	 * check whether need to scale down frequency a step if it sleep a lot.
422 	 */
423 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
424 		if (rte_power_freq_down)
425 			rte_power_freq_down(lcore_id);
426 	}
427 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
428 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
429 		/**
430 		 * scale down a step if average packet per iteration less
431 		 * than expectation.
432 		 */
433 		if (rte_power_freq_down)
434 			rte_power_freq_down(lcore_id);
435 	}
436 
437 	/**
438 	 * initialize another timer according to current frequency to ensure
439 	 * timer interval is relatively fixed.
440 	 */
441 	hz = rte_get_timer_hz();
442 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
443 				SINGLE, lcore_id, power_timer_cb, NULL);
444 
445 	stats[lcore_id].nb_rx_processed = 0;
446 	stats[lcore_id].nb_iteration_looped = 0;
447 
448 	stats[lcore_id].sleep_time = 0;
449 }
450 
451 /* Enqueue a single packet, and send burst if queue is filled */
452 static inline int
453 send_single_packet(struct rte_mbuf *m, uint16_t port)
454 {
455 	uint32_t lcore_id;
456 	struct lcore_conf *qconf;
457 
458 	lcore_id = rte_lcore_id();
459 	qconf = &lcore_conf[lcore_id];
460 
461 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
462 			qconf->tx_buffer[port], m);
463 
464 	return 0;
465 }
466 
467 #ifdef DO_RFC_1812_CHECKS
468 static inline int
469 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
470 {
471 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
472 	/*
473 	 * 1. The packet length reported by the Link Layer must be large
474 	 * enough to hold the minimum length legal IP datagram (20 bytes).
475 	 */
476 	if (link_len < sizeof(struct rte_ipv4_hdr))
477 		return -1;
478 
479 	/* 2. The IP checksum must be correct. */
480 	/* this is checked in H/W */
481 
482 	/*
483 	 * 3. The IP version number must be 4. If the version number is not 4
484 	 * then the packet may be another version of IP, such as IPng or
485 	 * ST-II.
486 	 */
487 	if (((pkt->version_ihl) >> 4) != 4)
488 		return -3;
489 	/*
490 	 * 4. The IP header length field must be large enough to hold the
491 	 * minimum length legal IP datagram (20 bytes = 5 words).
492 	 */
493 	if ((pkt->version_ihl & 0xf) < 5)
494 		return -4;
495 
496 	/*
497 	 * 5. The IP total length field must be large enough to hold the IP
498 	 * datagram header, whose length is specified in the IP header length
499 	 * field.
500 	 */
501 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
502 		return -5;
503 
504 	return 0;
505 }
506 #endif
507 
508 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
509 static void
510 print_ipv4_key(struct ipv4_5tuple key)
511 {
512 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
513 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
514 				key.port_dst, key.port_src, key.proto);
515 }
516 static void
517 print_ipv6_key(struct ipv6_5tuple key)
518 {
519 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
520 	        "port dst = %d, port src = %d, proto = %d\n",
521 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
522 	        key.port_dst, key.port_src, key.proto);
523 }
524 
525 static inline uint16_t
526 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
527 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
528 {
529 	struct ipv4_5tuple key;
530 	struct rte_tcp_hdr *tcp;
531 	struct rte_udp_hdr *udp;
532 	int ret = 0;
533 
534 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
535 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
536 	key.proto = ipv4_hdr->next_proto_id;
537 
538 	switch (ipv4_hdr->next_proto_id) {
539 	case IPPROTO_TCP:
540 		tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
541 					sizeof(struct rte_ipv4_hdr));
542 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
543 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
544 		break;
545 
546 	case IPPROTO_UDP:
547 		udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
548 					sizeof(struct rte_ipv4_hdr));
549 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
550 		key.port_src = rte_be_to_cpu_16(udp->src_port);
551 		break;
552 
553 	default:
554 		key.port_dst = 0;
555 		key.port_src = 0;
556 		break;
557 	}
558 
559 	/* Find destination port */
560 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
561 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
562 }
563 
564 static inline uint16_t
565 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
566 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
567 {
568 	struct ipv6_5tuple key;
569 	struct rte_tcp_hdr *tcp;
570 	struct rte_udp_hdr *udp;
571 	int ret = 0;
572 
573 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
574 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
575 
576 	key.proto = ipv6_hdr->proto;
577 
578 	switch (ipv6_hdr->proto) {
579 	case IPPROTO_TCP:
580 		tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
581 					sizeof(struct rte_ipv6_hdr));
582 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
583 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
584 		break;
585 
586 	case IPPROTO_UDP:
587 		udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
588 					sizeof(struct rte_ipv6_hdr));
589 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
590 		key.port_src = rte_be_to_cpu_16(udp->src_port);
591 		break;
592 
593 	default:
594 		key.port_dst = 0;
595 		key.port_src = 0;
596 		break;
597 	}
598 
599 	/* Find destination port */
600 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
601 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
602 }
603 #endif
604 
605 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
606 static inline uint16_t
607 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
608 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
609 {
610 	uint32_t next_hop;
611 
612 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
613 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
614 			next_hop : portid);
615 }
616 #endif
617 
618 static inline void
619 parse_ptype_one(struct rte_mbuf *m)
620 {
621 	struct rte_ether_hdr *eth_hdr;
622 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
623 	uint16_t ether_type;
624 
625 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
626 	ether_type = eth_hdr->ether_type;
627 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPv4))
628 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
629 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPv6))
630 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
631 
632 	m->packet_type = packet_type;
633 }
634 
635 static uint16_t
636 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
637 	       struct rte_mbuf *pkts[], uint16_t nb_pkts,
638 	       uint16_t max_pkts __rte_unused,
639 	       void *user_param __rte_unused)
640 {
641 	unsigned int i;
642 
643 	for (i = 0; i < nb_pkts; ++i)
644 		parse_ptype_one(pkts[i]);
645 
646 	return nb_pkts;
647 }
648 
649 static int
650 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
651 {
652 	printf("Port %d: softly parse packet type info\n", portid);
653 	if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
654 		return 0;
655 
656 	printf("Failed to add rx callback: port=%d\n", portid);
657 	return -1;
658 }
659 
660 static inline void
661 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
662 				struct lcore_conf *qconf)
663 {
664 	struct rte_ether_hdr *eth_hdr;
665 	struct rte_ipv4_hdr *ipv4_hdr;
666 	void *d_addr_bytes;
667 	uint16_t dst_port;
668 
669 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
670 
671 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
672 		/* Handle IPv4 headers.*/
673 		ipv4_hdr =
674 			rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
675 						sizeof(struct rte_ether_hdr));
676 
677 #ifdef DO_RFC_1812_CHECKS
678 		/* Check to make sure the packet is valid (RFC1812) */
679 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
680 			rte_pktmbuf_free(m);
681 			return;
682 		}
683 #endif
684 
685 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
686 					qconf->ipv4_lookup_struct);
687 		if (dst_port >= RTE_MAX_ETHPORTS ||
688 				(enabled_port_mask & 1 << dst_port) == 0)
689 			dst_port = portid;
690 
691 		/* 02:00:00:00:00:xx */
692 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
693 		*((uint64_t *)d_addr_bytes) =
694 			0x000000000002 + ((uint64_t)dst_port << 40);
695 
696 #ifdef DO_RFC_1812_CHECKS
697 		/* Update time to live and header checksum */
698 		--(ipv4_hdr->time_to_live);
699 		++(ipv4_hdr->hdr_checksum);
700 #endif
701 
702 		/* src addr */
703 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
704 				&eth_hdr->s_addr);
705 
706 		send_single_packet(m, dst_port);
707 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
708 		/* Handle IPv6 headers.*/
709 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
710 		struct rte_ipv6_hdr *ipv6_hdr;
711 
712 		ipv6_hdr =
713 			rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
714 						sizeof(struct rte_ether_hdr));
715 
716 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
717 					qconf->ipv6_lookup_struct);
718 
719 		if (dst_port >= RTE_MAX_ETHPORTS ||
720 				(enabled_port_mask & 1 << dst_port) == 0)
721 			dst_port = portid;
722 
723 		/* 02:00:00:00:00:xx */
724 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
725 		*((uint64_t *)d_addr_bytes) =
726 			0x000000000002 + ((uint64_t)dst_port << 40);
727 
728 		/* src addr */
729 		rte_ether_addr_copy(&ports_eth_addr[dst_port],
730 				&eth_hdr->s_addr);
731 
732 		send_single_packet(m, dst_port);
733 #else
734 		/* We don't currently handle IPv6 packets in LPM mode. */
735 		rte_pktmbuf_free(m);
736 #endif
737 	} else
738 		rte_pktmbuf_free(m);
739 
740 }
741 
742 #define MINIMUM_SLEEP_TIME         1
743 #define SUSPEND_THRESHOLD          300
744 
745 static inline uint32_t
746 power_idle_heuristic(uint32_t zero_rx_packet_count)
747 {
748 	/* If zero count is less than 100,  sleep 1us */
749 	if (zero_rx_packet_count < SUSPEND_THRESHOLD)
750 		return MINIMUM_SLEEP_TIME;
751 	/* If zero count is less than 1000, sleep 100 us which is the
752 		minimum latency switching from C3/C6 to C0
753 	*/
754 	else
755 		return SUSPEND_THRESHOLD;
756 }
757 
758 static inline enum freq_scale_hint_t
759 power_freq_scaleup_heuristic(unsigned lcore_id,
760 			     uint16_t port_id,
761 			     uint16_t queue_id)
762 {
763 	uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
764 /**
765  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
766  * per iteration
767  */
768 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
769 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
770 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
771 #define FREQ_UP_TREND1_ACC   1
772 #define FREQ_UP_TREND2_ACC   100
773 #define FREQ_UP_THRESHOLD    10000
774 
775 	if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
776 		stats[lcore_id].trend = 0;
777 		return FREQ_HIGHEST;
778 	} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
779 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
780 	else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
781 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
782 
783 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
784 		stats[lcore_id].trend = 0;
785 		return FREQ_HIGHER;
786 	}
787 
788 	return FREQ_CURRENT;
789 }
790 
791 /**
792  * force polling thread sleep until one-shot rx interrupt triggers
793  * @param port_id
794  *  Port id.
795  * @param queue_id
796  *  Rx queue id.
797  * @return
798  *  0 on success
799  */
800 static int
801 sleep_until_rx_interrupt(int num)
802 {
803 	struct rte_epoll_event event[num];
804 	int n, i;
805 	uint16_t port_id;
806 	uint8_t queue_id;
807 	void *data;
808 
809 	RTE_LOG(INFO, L3FWD_POWER,
810 		"lcore %u sleeps until interrupt triggers\n",
811 		rte_lcore_id());
812 
813 	n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1);
814 	for (i = 0; i < n; i++) {
815 		data = event[i].epdata.data;
816 		port_id = ((uintptr_t)data) >> CHAR_BIT;
817 		queue_id = ((uintptr_t)data) &
818 			RTE_LEN2MASK(CHAR_BIT, uint8_t);
819 		rte_eth_dev_rx_intr_disable(port_id, queue_id);
820 		RTE_LOG(INFO, L3FWD_POWER,
821 			"lcore %u is waked up from rx interrupt on"
822 			" port %d queue %d\n",
823 			rte_lcore_id(), port_id, queue_id);
824 	}
825 
826 	return 0;
827 }
828 
829 static void turn_on_intr(struct lcore_conf *qconf)
830 {
831 	int i;
832 	struct lcore_rx_queue *rx_queue;
833 	uint8_t queue_id;
834 	uint16_t port_id;
835 
836 	for (i = 0; i < qconf->n_rx_queue; ++i) {
837 		rx_queue = &(qconf->rx_queue_list[i]);
838 		port_id = rx_queue->port_id;
839 		queue_id = rx_queue->queue_id;
840 
841 		rte_spinlock_lock(&(locks[port_id]));
842 		rte_eth_dev_rx_intr_enable(port_id, queue_id);
843 		rte_spinlock_unlock(&(locks[port_id]));
844 	}
845 }
846 
847 static int event_register(struct lcore_conf *qconf)
848 {
849 	struct lcore_rx_queue *rx_queue;
850 	uint8_t queueid;
851 	uint16_t portid;
852 	uint32_t data;
853 	int ret;
854 	int i;
855 
856 	for (i = 0; i < qconf->n_rx_queue; ++i) {
857 		rx_queue = &(qconf->rx_queue_list[i]);
858 		portid = rx_queue->port_id;
859 		queueid = rx_queue->queue_id;
860 		data = portid << CHAR_BIT | queueid;
861 
862 		ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
863 						RTE_EPOLL_PER_THREAD,
864 						RTE_INTR_EVENT_ADD,
865 						(void *)((uintptr_t)data));
866 		if (ret)
867 			return ret;
868 	}
869 
870 	return 0;
871 }
872 /* main processing loop */
873 static int
874 main_empty_poll_loop(__attribute__((unused)) void *dummy)
875 {
876 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
877 	unsigned int lcore_id;
878 	uint64_t prev_tsc, diff_tsc, cur_tsc;
879 	int i, j, nb_rx;
880 	uint8_t queueid;
881 	uint16_t portid;
882 	struct lcore_conf *qconf;
883 	struct lcore_rx_queue *rx_queue;
884 
885 	const uint64_t drain_tsc =
886 		(rte_get_tsc_hz() + US_PER_S - 1) /
887 		US_PER_S * BURST_TX_DRAIN_US;
888 
889 	prev_tsc = 0;
890 
891 	lcore_id = rte_lcore_id();
892 	qconf = &lcore_conf[lcore_id];
893 
894 	if (qconf->n_rx_queue == 0) {
895 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
896 			lcore_id);
897 		return 0;
898 	}
899 
900 	for (i = 0; i < qconf->n_rx_queue; i++) {
901 		portid = qconf->rx_queue_list[i].port_id;
902 		queueid = qconf->rx_queue_list[i].queue_id;
903 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
904 				"rxqueueid=%hhu\n", lcore_id, portid, queueid);
905 	}
906 
907 	while (!is_done()) {
908 		stats[lcore_id].nb_iteration_looped++;
909 
910 		cur_tsc = rte_rdtsc();
911 		/*
912 		 * TX burst queue drain
913 		 */
914 		diff_tsc = cur_tsc - prev_tsc;
915 		if (unlikely(diff_tsc > drain_tsc)) {
916 			for (i = 0; i < qconf->n_tx_port; ++i) {
917 				portid = qconf->tx_port_id[i];
918 				rte_eth_tx_buffer_flush(portid,
919 						qconf->tx_queue_id[portid],
920 						qconf->tx_buffer[portid]);
921 			}
922 			prev_tsc = cur_tsc;
923 		}
924 
925 		/*
926 		 * Read packet from RX queues
927 		 */
928 		for (i = 0; i < qconf->n_rx_queue; ++i) {
929 			rx_queue = &(qconf->rx_queue_list[i]);
930 			rx_queue->idle_hint = 0;
931 			portid = rx_queue->port_id;
932 			queueid = rx_queue->queue_id;
933 
934 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
935 					MAX_PKT_BURST);
936 
937 			stats[lcore_id].nb_rx_processed += nb_rx;
938 
939 			if (nb_rx == 0) {
940 
941 				rte_power_empty_poll_stat_update(lcore_id);
942 
943 				continue;
944 			} else {
945 				rte_power_poll_stat_update(lcore_id, nb_rx);
946 			}
947 
948 
949 			/* Prefetch first packets */
950 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
951 				rte_prefetch0(rte_pktmbuf_mtod(
952 							pkts_burst[j], void *));
953 			}
954 
955 			/* Prefetch and forward already prefetched packets */
956 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
957 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
958 							j + PREFETCH_OFFSET],
959 							void *));
960 				l3fwd_simple_forward(pkts_burst[j], portid,
961 						qconf);
962 			}
963 
964 			/* Forward remaining prefetched packets */
965 			for (; j < nb_rx; j++) {
966 				l3fwd_simple_forward(pkts_burst[j], portid,
967 						qconf);
968 			}
969 
970 		}
971 
972 	}
973 
974 	return 0;
975 }
976 /* main processing loop */
977 static int
978 main_loop(__attribute__((unused)) void *dummy)
979 {
980 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
981 	unsigned lcore_id;
982 	uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
983 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
984 	int i, j, nb_rx;
985 	uint8_t queueid;
986 	uint16_t portid;
987 	struct lcore_conf *qconf;
988 	struct lcore_rx_queue *rx_queue;
989 	enum freq_scale_hint_t lcore_scaleup_hint;
990 	uint32_t lcore_rx_idle_count = 0;
991 	uint32_t lcore_idle_hint = 0;
992 	int intr_en = 0;
993 
994 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
995 
996 	prev_tsc = 0;
997 	hz = rte_get_timer_hz();
998 	tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
999 
1000 	lcore_id = rte_lcore_id();
1001 	qconf = &lcore_conf[lcore_id];
1002 
1003 	if (qconf->n_rx_queue == 0) {
1004 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1005 		return 0;
1006 	}
1007 
1008 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1009 
1010 	for (i = 0; i < qconf->n_rx_queue; i++) {
1011 		portid = qconf->rx_queue_list[i].port_id;
1012 		queueid = qconf->rx_queue_list[i].queue_id;
1013 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1014 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
1015 	}
1016 
1017 	/* add into event wait list */
1018 	if (event_register(qconf) == 0)
1019 		intr_en = 1;
1020 	else
1021 		RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1022 
1023 	while (1) {
1024 		stats[lcore_id].nb_iteration_looped++;
1025 
1026 		cur_tsc = rte_rdtsc();
1027 		cur_tsc_power = cur_tsc;
1028 
1029 		/*
1030 		 * TX burst queue drain
1031 		 */
1032 		diff_tsc = cur_tsc - prev_tsc;
1033 		if (unlikely(diff_tsc > drain_tsc)) {
1034 			for (i = 0; i < qconf->n_tx_port; ++i) {
1035 				portid = qconf->tx_port_id[i];
1036 				rte_eth_tx_buffer_flush(portid,
1037 						qconf->tx_queue_id[portid],
1038 						qconf->tx_buffer[portid]);
1039 			}
1040 			prev_tsc = cur_tsc;
1041 		}
1042 
1043 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
1044 		if (diff_tsc_power > tim_res_tsc) {
1045 			rte_timer_manage();
1046 			prev_tsc_power = cur_tsc_power;
1047 		}
1048 
1049 start_rx:
1050 		/*
1051 		 * Read packet from RX queues
1052 		 */
1053 		lcore_scaleup_hint = FREQ_CURRENT;
1054 		lcore_rx_idle_count = 0;
1055 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1056 			rx_queue = &(qconf->rx_queue_list[i]);
1057 			rx_queue->idle_hint = 0;
1058 			portid = rx_queue->port_id;
1059 			queueid = rx_queue->queue_id;
1060 
1061 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1062 								MAX_PKT_BURST);
1063 
1064 			stats[lcore_id].nb_rx_processed += nb_rx;
1065 			if (unlikely(nb_rx == 0)) {
1066 				/**
1067 				 * no packet received from rx queue, try to
1068 				 * sleep for a while forcing CPU enter deeper
1069 				 * C states.
1070 				 */
1071 				rx_queue->zero_rx_packet_count++;
1072 
1073 				if (rx_queue->zero_rx_packet_count <=
1074 							MIN_ZERO_POLL_COUNT)
1075 					continue;
1076 
1077 				rx_queue->idle_hint = power_idle_heuristic(\
1078 					rx_queue->zero_rx_packet_count);
1079 				lcore_rx_idle_count++;
1080 			} else {
1081 				rx_queue->zero_rx_packet_count = 0;
1082 
1083 				/**
1084 				 * do not scale up frequency immediately as
1085 				 * user to kernel space communication is costly
1086 				 * which might impact packet I/O for received
1087 				 * packets.
1088 				 */
1089 				rx_queue->freq_up_hint =
1090 					power_freq_scaleup_heuristic(lcore_id,
1091 							portid, queueid);
1092 			}
1093 
1094 			/* Prefetch first packets */
1095 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1096 				rte_prefetch0(rte_pktmbuf_mtod(
1097 						pkts_burst[j], void *));
1098 			}
1099 
1100 			/* Prefetch and forward already prefetched packets */
1101 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1102 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1103 						j + PREFETCH_OFFSET], void *));
1104 				l3fwd_simple_forward(pkts_burst[j], portid,
1105 								qconf);
1106 			}
1107 
1108 			/* Forward remaining prefetched packets */
1109 			for (; j < nb_rx; j++) {
1110 				l3fwd_simple_forward(pkts_burst[j], portid,
1111 								qconf);
1112 			}
1113 		}
1114 
1115 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1116 			for (i = 1, lcore_scaleup_hint =
1117 				qconf->rx_queue_list[0].freq_up_hint;
1118 					i < qconf->n_rx_queue; ++i) {
1119 				rx_queue = &(qconf->rx_queue_list[i]);
1120 				if (rx_queue->freq_up_hint >
1121 						lcore_scaleup_hint)
1122 					lcore_scaleup_hint =
1123 						rx_queue->freq_up_hint;
1124 			}
1125 
1126 			if (lcore_scaleup_hint == FREQ_HIGHEST) {
1127 				if (rte_power_freq_max)
1128 					rte_power_freq_max(lcore_id);
1129 			} else if (lcore_scaleup_hint == FREQ_HIGHER) {
1130 				if (rte_power_freq_up)
1131 					rte_power_freq_up(lcore_id);
1132 			}
1133 		} else {
1134 			/**
1135 			 * All Rx queues empty in recent consecutive polls,
1136 			 * sleep in a conservative manner, meaning sleep as
1137 			 * less as possible.
1138 			 */
1139 			for (i = 1, lcore_idle_hint =
1140 				qconf->rx_queue_list[0].idle_hint;
1141 					i < qconf->n_rx_queue; ++i) {
1142 				rx_queue = &(qconf->rx_queue_list[i]);
1143 				if (rx_queue->idle_hint < lcore_idle_hint)
1144 					lcore_idle_hint = rx_queue->idle_hint;
1145 			}
1146 
1147 			if (lcore_idle_hint < SUSPEND_THRESHOLD)
1148 				/**
1149 				 * execute "pause" instruction to avoid context
1150 				 * switch which generally take hundred of
1151 				 * microseconds for short sleep.
1152 				 */
1153 				rte_delay_us(lcore_idle_hint);
1154 			else {
1155 				/* suspend until rx interrupt trigges */
1156 				if (intr_en) {
1157 					turn_on_intr(qconf);
1158 					sleep_until_rx_interrupt(
1159 						qconf->n_rx_queue);
1160 					/**
1161 					 * start receiving packets immediately
1162 					 */
1163 					goto start_rx;
1164 				}
1165 			}
1166 			stats[lcore_id].sleep_time += lcore_idle_hint;
1167 		}
1168 	}
1169 }
1170 
1171 static int
1172 check_lcore_params(void)
1173 {
1174 	uint8_t queue, lcore;
1175 	uint16_t i;
1176 	int socketid;
1177 
1178 	for (i = 0; i < nb_lcore_params; ++i) {
1179 		queue = lcore_params[i].queue_id;
1180 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1181 			printf("invalid queue number: %hhu\n", queue);
1182 			return -1;
1183 		}
1184 		lcore = lcore_params[i].lcore_id;
1185 		if (!rte_lcore_is_enabled(lcore)) {
1186 			printf("error: lcore %hhu is not enabled in lcore "
1187 							"mask\n", lcore);
1188 			return -1;
1189 		}
1190 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1191 							(numa_on == 0)) {
1192 			printf("warning: lcore %hhu is on socket %d with numa "
1193 						"off\n", lcore, socketid);
1194 		}
1195 	}
1196 	return 0;
1197 }
1198 
1199 static int
1200 check_port_config(void)
1201 {
1202 	unsigned portid;
1203 	uint16_t i;
1204 
1205 	for (i = 0; i < nb_lcore_params; ++i) {
1206 		portid = lcore_params[i].port_id;
1207 		if ((enabled_port_mask & (1 << portid)) == 0) {
1208 			printf("port %u is not enabled in port mask\n",
1209 								portid);
1210 			return -1;
1211 		}
1212 		if (!rte_eth_dev_is_valid_port(portid)) {
1213 			printf("port %u is not present on the board\n",
1214 								portid);
1215 			return -1;
1216 		}
1217 	}
1218 	return 0;
1219 }
1220 
1221 static uint8_t
1222 get_port_n_rx_queues(const uint16_t port)
1223 {
1224 	int queue = -1;
1225 	uint16_t i;
1226 
1227 	for (i = 0; i < nb_lcore_params; ++i) {
1228 		if (lcore_params[i].port_id == port &&
1229 				lcore_params[i].queue_id > queue)
1230 			queue = lcore_params[i].queue_id;
1231 	}
1232 	return (uint8_t)(++queue);
1233 }
1234 
1235 static int
1236 init_lcore_rx_queues(void)
1237 {
1238 	uint16_t i, nb_rx_queue;
1239 	uint8_t lcore;
1240 
1241 	for (i = 0; i < nb_lcore_params; ++i) {
1242 		lcore = lcore_params[i].lcore_id;
1243 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1244 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1245 			printf("error: too many queues (%u) for lcore: %u\n",
1246 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1247 			return -1;
1248 		} else {
1249 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1250 				lcore_params[i].port_id;
1251 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1252 				lcore_params[i].queue_id;
1253 			lcore_conf[lcore].n_rx_queue++;
1254 		}
1255 	}
1256 	return 0;
1257 }
1258 
1259 /* display usage */
1260 static void
1261 print_usage(const char *prgname)
1262 {
1263 	printf ("%s [EAL options] -- -p PORTMASK -P"
1264 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1265 		"  [--high-perf-cores CORELIST"
1266 		"  [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1267 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1268 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1269 		"  -P : enable promiscuous mode\n"
1270 		"  --config (port,queue,lcore): rx queues configuration\n"
1271 		"  --high-perf-cores CORELIST: list of high performance cores\n"
1272 		"  --perf-config: similar as config, cores specified as indices"
1273 		" for bins containing high or regular performance cores\n"
1274 		"  --no-numa: optional, disable numa awareness\n"
1275 		"  --enable-jumbo: enable jumbo frame"
1276 		" which max packet len is PKTLEN in decimal (64-9600)\n"
1277 		"  --parse-ptype: parse packet type by software\n"
1278 		"  --empty-poll: enable empty poll detection"
1279 		" follow (training_flag, high_threshold, med_threshold)\n",
1280 		prgname);
1281 }
1282 
1283 static int parse_max_pkt_len(const char *pktlen)
1284 {
1285 	char *end = NULL;
1286 	unsigned long len;
1287 
1288 	/* parse decimal string */
1289 	len = strtoul(pktlen, &end, 10);
1290 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1291 		return -1;
1292 
1293 	if (len == 0)
1294 		return -1;
1295 
1296 	return len;
1297 }
1298 
1299 static int
1300 parse_portmask(const char *portmask)
1301 {
1302 	char *end = NULL;
1303 	unsigned long pm;
1304 
1305 	/* parse hexadecimal string */
1306 	pm = strtoul(portmask, &end, 16);
1307 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1308 		return -1;
1309 
1310 	if (pm == 0)
1311 		return -1;
1312 
1313 	return pm;
1314 }
1315 
1316 static int
1317 parse_config(const char *q_arg)
1318 {
1319 	char s[256];
1320 	const char *p, *p0 = q_arg;
1321 	char *end;
1322 	enum fieldnames {
1323 		FLD_PORT = 0,
1324 		FLD_QUEUE,
1325 		FLD_LCORE,
1326 		_NUM_FLD
1327 	};
1328 	unsigned long int_fld[_NUM_FLD];
1329 	char *str_fld[_NUM_FLD];
1330 	int i;
1331 	unsigned size;
1332 
1333 	nb_lcore_params = 0;
1334 
1335 	while ((p = strchr(p0,'(')) != NULL) {
1336 		++p;
1337 		if((p0 = strchr(p,')')) == NULL)
1338 			return -1;
1339 
1340 		size = p0 - p;
1341 		if(size >= sizeof(s))
1342 			return -1;
1343 
1344 		snprintf(s, sizeof(s), "%.*s", size, p);
1345 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1346 								_NUM_FLD)
1347 			return -1;
1348 		for (i = 0; i < _NUM_FLD; i++){
1349 			errno = 0;
1350 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1351 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1352 									255)
1353 				return -1;
1354 		}
1355 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1356 			printf("exceeded max number of lcore params: %hu\n",
1357 				nb_lcore_params);
1358 			return -1;
1359 		}
1360 		lcore_params_array[nb_lcore_params].port_id =
1361 				(uint8_t)int_fld[FLD_PORT];
1362 		lcore_params_array[nb_lcore_params].queue_id =
1363 				(uint8_t)int_fld[FLD_QUEUE];
1364 		lcore_params_array[nb_lcore_params].lcore_id =
1365 				(uint8_t)int_fld[FLD_LCORE];
1366 		++nb_lcore_params;
1367 	}
1368 	lcore_params = lcore_params_array;
1369 
1370 	return 0;
1371 }
1372 static int
1373 parse_ep_config(const char *q_arg)
1374 {
1375 	char s[256];
1376 	const char *p = q_arg;
1377 	char *end;
1378 	int  num_arg;
1379 
1380 	char *str_fld[3];
1381 
1382 	int training_flag;
1383 	int med_edpi;
1384 	int hgh_edpi;
1385 
1386 	ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1387 	ep_hgh_edpi = EMPTY_POLL_MED_THRESHOLD;
1388 
1389 	strlcpy(s, p, sizeof(s));
1390 
1391 	num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1392 
1393 	empty_poll_train = false;
1394 
1395 	if (num_arg == 0)
1396 		return 0;
1397 
1398 	if (num_arg == 3) {
1399 
1400 		training_flag = strtoul(str_fld[0], &end, 0);
1401 		med_edpi = strtoul(str_fld[1], &end, 0);
1402 		hgh_edpi = strtoul(str_fld[2], &end, 0);
1403 
1404 		if (training_flag == 1)
1405 			empty_poll_train = true;
1406 
1407 		if (med_edpi > 0)
1408 			ep_med_edpi = med_edpi;
1409 
1410 		if (med_edpi > 0)
1411 			ep_hgh_edpi = hgh_edpi;
1412 
1413 	} else {
1414 
1415 		return -1;
1416 	}
1417 
1418 	return 0;
1419 
1420 }
1421 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1422 
1423 /* Parse the argument given in the command line of the application */
1424 static int
1425 parse_args(int argc, char **argv)
1426 {
1427 	int opt, ret;
1428 	char **argvopt;
1429 	int option_index;
1430 	uint32_t limit;
1431 	char *prgname = argv[0];
1432 	static struct option lgopts[] = {
1433 		{"config", 1, 0, 0},
1434 		{"perf-config", 1, 0, 0},
1435 		{"high-perf-cores", 1, 0, 0},
1436 		{"no-numa", 0, 0, 0},
1437 		{"enable-jumbo", 0, 0, 0},
1438 		{"empty-poll", 1, 0, 0},
1439 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1440 		{NULL, 0, 0, 0}
1441 	};
1442 
1443 	argvopt = argv;
1444 
1445 	while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1446 				lgopts, &option_index)) != EOF) {
1447 
1448 		switch (opt) {
1449 		/* portmask */
1450 		case 'p':
1451 			enabled_port_mask = parse_portmask(optarg);
1452 			if (enabled_port_mask == 0) {
1453 				printf("invalid portmask\n");
1454 				print_usage(prgname);
1455 				return -1;
1456 			}
1457 			break;
1458 		case 'P':
1459 			printf("Promiscuous mode selected\n");
1460 			promiscuous_on = 1;
1461 			break;
1462 		case 'l':
1463 			limit = parse_max_pkt_len(optarg);
1464 			freq_tlb[LOW] = limit;
1465 			break;
1466 		case 'm':
1467 			limit = parse_max_pkt_len(optarg);
1468 			freq_tlb[MED] = limit;
1469 			break;
1470 		case 'h':
1471 			limit = parse_max_pkt_len(optarg);
1472 			freq_tlb[HGH] = limit;
1473 			break;
1474 		/* long options */
1475 		case 0:
1476 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1477 				ret = parse_config(optarg);
1478 				if (ret) {
1479 					printf("invalid config\n");
1480 					print_usage(prgname);
1481 					return -1;
1482 				}
1483 			}
1484 
1485 			if (!strncmp(lgopts[option_index].name,
1486 					"perf-config", 11)) {
1487 				ret = parse_perf_config(optarg);
1488 				if (ret) {
1489 					printf("invalid perf-config\n");
1490 					print_usage(prgname);
1491 					return -1;
1492 				}
1493 			}
1494 
1495 			if (!strncmp(lgopts[option_index].name,
1496 					"high-perf-cores", 15)) {
1497 				ret = parse_perf_core_list(optarg);
1498 				if (ret) {
1499 					printf("invalid high-perf-cores\n");
1500 					print_usage(prgname);
1501 					return -1;
1502 				}
1503 			}
1504 
1505 			if (!strncmp(lgopts[option_index].name,
1506 						"no-numa", 7)) {
1507 				printf("numa is disabled \n");
1508 				numa_on = 0;
1509 			}
1510 
1511 			if (!strncmp(lgopts[option_index].name,
1512 						"empty-poll", 10)) {
1513 				printf("empty-poll is enabled\n");
1514 				empty_poll_on = true;
1515 				ret = parse_ep_config(optarg);
1516 
1517 				if (ret) {
1518 					printf("invalid empty poll config\n");
1519 					print_usage(prgname);
1520 					return -1;
1521 				}
1522 
1523 			}
1524 
1525 			if (!strncmp(lgopts[option_index].name,
1526 					"enable-jumbo", 12)) {
1527 				struct option lenopts =
1528 					{"max-pkt-len", required_argument, \
1529 									0, 0};
1530 
1531 				printf("jumbo frame is enabled \n");
1532 				port_conf.rxmode.offloads |=
1533 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1534 				port_conf.txmode.offloads |=
1535 						DEV_TX_OFFLOAD_MULTI_SEGS;
1536 
1537 				/**
1538 				 * if no max-pkt-len set, use the default value
1539 				 * RTE_ETHER_MAX_LEN
1540 				 */
1541 				if (0 == getopt_long(argc, argvopt, "",
1542 						&lenopts, &option_index)) {
1543 					ret = parse_max_pkt_len(optarg);
1544 					if ((ret < 64) ||
1545 						(ret > MAX_JUMBO_PKT_LEN)){
1546 						printf("invalid packet "
1547 								"length\n");
1548 						print_usage(prgname);
1549 						return -1;
1550 					}
1551 					port_conf.rxmode.max_rx_pkt_len = ret;
1552 				}
1553 				printf("set jumbo frame "
1554 					"max packet length to %u\n",
1555 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1556 			}
1557 
1558 			if (!strncmp(lgopts[option_index].name,
1559 				     CMD_LINE_OPT_PARSE_PTYPE,
1560 				     sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1561 				printf("soft parse-ptype is enabled\n");
1562 				parse_ptype = 1;
1563 			}
1564 
1565 			break;
1566 
1567 		default:
1568 			print_usage(prgname);
1569 			return -1;
1570 		}
1571 	}
1572 
1573 	if (optind >= 0)
1574 		argv[optind-1] = prgname;
1575 
1576 	ret = optind-1;
1577 	optind = 1; /* reset getopt lib */
1578 	return ret;
1579 }
1580 
1581 static void
1582 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1583 {
1584 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
1585 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1586 	printf("%s%s", name, buf);
1587 }
1588 
1589 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1590 static void
1591 setup_hash(int socketid)
1592 {
1593 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1594 		.name = NULL,
1595 		.entries = L3FWD_HASH_ENTRIES,
1596 		.key_len = sizeof(struct ipv4_5tuple),
1597 		.hash_func = DEFAULT_HASH_FUNC,
1598 		.hash_func_init_val = 0,
1599 	};
1600 
1601 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1602 		.name = NULL,
1603 		.entries = L3FWD_HASH_ENTRIES,
1604 		.key_len = sizeof(struct ipv6_5tuple),
1605 		.hash_func = DEFAULT_HASH_FUNC,
1606 		.hash_func_init_val = 0,
1607 	};
1608 
1609 	unsigned i;
1610 	int ret;
1611 	char s[64];
1612 
1613 	/* create ipv4 hash */
1614 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1615 	ipv4_l3fwd_hash_params.name = s;
1616 	ipv4_l3fwd_hash_params.socket_id = socketid;
1617 	ipv4_l3fwd_lookup_struct[socketid] =
1618 		rte_hash_create(&ipv4_l3fwd_hash_params);
1619 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1620 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1621 				"socket %d\n", socketid);
1622 
1623 	/* create ipv6 hash */
1624 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1625 	ipv6_l3fwd_hash_params.name = s;
1626 	ipv6_l3fwd_hash_params.socket_id = socketid;
1627 	ipv6_l3fwd_lookup_struct[socketid] =
1628 		rte_hash_create(&ipv6_l3fwd_hash_params);
1629 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1630 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1631 				"socket %d\n", socketid);
1632 
1633 
1634 	/* populate the ipv4 hash */
1635 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1636 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1637 				(void *) &ipv4_l3fwd_route_array[i].key);
1638 		if (ret < 0) {
1639 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1640 				"l3fwd hash on socket %d\n", i, socketid);
1641 		}
1642 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1643 		printf("Hash: Adding key\n");
1644 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1645 	}
1646 
1647 	/* populate the ipv6 hash */
1648 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1649 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1650 				(void *) &ipv6_l3fwd_route_array[i].key);
1651 		if (ret < 0) {
1652 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1653 				"l3fwd hash on socket %d\n", i, socketid);
1654 		}
1655 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1656 		printf("Hash: Adding key\n");
1657 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1658 	}
1659 }
1660 #endif
1661 
1662 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1663 static void
1664 setup_lpm(int socketid)
1665 {
1666 	unsigned i;
1667 	int ret;
1668 	char s[64];
1669 
1670 	/* create the LPM table */
1671 	struct rte_lpm_config lpm_ipv4_config;
1672 
1673 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
1674 	lpm_ipv4_config.number_tbl8s = 256;
1675 	lpm_ipv4_config.flags = 0;
1676 
1677 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1678 	ipv4_l3fwd_lookup_struct[socketid] =
1679 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
1680 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1681 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1682 				" on socket %d\n", socketid);
1683 
1684 	/* populate the LPM table */
1685 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1686 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1687 			ipv4_l3fwd_route_array[i].ip,
1688 			ipv4_l3fwd_route_array[i].depth,
1689 			ipv4_l3fwd_route_array[i].if_out);
1690 
1691 		if (ret < 0) {
1692 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1693 				"l3fwd LPM table on socket %d\n",
1694 				i, socketid);
1695 		}
1696 
1697 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1698 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1699 			ipv4_l3fwd_route_array[i].depth,
1700 			ipv4_l3fwd_route_array[i].if_out);
1701 	}
1702 }
1703 #endif
1704 
1705 static int
1706 init_mem(unsigned nb_mbuf)
1707 {
1708 	struct lcore_conf *qconf;
1709 	int socketid;
1710 	unsigned lcore_id;
1711 	char s[64];
1712 
1713 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1714 		if (rte_lcore_is_enabled(lcore_id) == 0)
1715 			continue;
1716 
1717 		if (numa_on)
1718 			socketid = rte_lcore_to_socket_id(lcore_id);
1719 		else
1720 			socketid = 0;
1721 
1722 		if (socketid >= NB_SOCKETS) {
1723 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1724 					"out of range %d\n", socketid,
1725 						lcore_id, NB_SOCKETS);
1726 		}
1727 		if (pktmbuf_pool[socketid] == NULL) {
1728 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1729 			pktmbuf_pool[socketid] =
1730 				rte_pktmbuf_pool_create(s, nb_mbuf,
1731 					MEMPOOL_CACHE_SIZE, 0,
1732 					RTE_MBUF_DEFAULT_BUF_SIZE,
1733 					socketid);
1734 			if (pktmbuf_pool[socketid] == NULL)
1735 				rte_exit(EXIT_FAILURE,
1736 					"Cannot init mbuf pool on socket %d\n",
1737 								socketid);
1738 			else
1739 				printf("Allocated mbuf pool on socket %d\n",
1740 								socketid);
1741 
1742 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1743 			setup_lpm(socketid);
1744 #else
1745 			setup_hash(socketid);
1746 #endif
1747 		}
1748 		qconf = &lcore_conf[lcore_id];
1749 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1750 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1751 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1752 #endif
1753 	}
1754 	return 0;
1755 }
1756 
1757 /* Check the link status of all ports in up to 9s, and print them finally */
1758 static void
1759 check_all_ports_link_status(uint32_t port_mask)
1760 {
1761 #define CHECK_INTERVAL 100 /* 100ms */
1762 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1763 	uint8_t count, all_ports_up, print_flag = 0;
1764 	uint16_t portid;
1765 	struct rte_eth_link link;
1766 
1767 	printf("\nChecking link status");
1768 	fflush(stdout);
1769 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1770 		all_ports_up = 1;
1771 		RTE_ETH_FOREACH_DEV(portid) {
1772 			if ((port_mask & (1 << portid)) == 0)
1773 				continue;
1774 			memset(&link, 0, sizeof(link));
1775 			rte_eth_link_get_nowait(portid, &link);
1776 			/* print link status if flag set */
1777 			if (print_flag == 1) {
1778 				if (link.link_status)
1779 					printf("Port %d Link Up - speed %u "
1780 						"Mbps - %s\n", (uint8_t)portid,
1781 						(unsigned)link.link_speed,
1782 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1783 					("full-duplex") : ("half-duplex\n"));
1784 				else
1785 					printf("Port %d Link Down\n",
1786 						(uint8_t)portid);
1787 				continue;
1788 			}
1789 			/* clear all_ports_up flag if any link down */
1790 			if (link.link_status == ETH_LINK_DOWN) {
1791 				all_ports_up = 0;
1792 				break;
1793 			}
1794 		}
1795 		/* after finally printing all link status, get out */
1796 		if (print_flag == 1)
1797 			break;
1798 
1799 		if (all_ports_up == 0) {
1800 			printf(".");
1801 			fflush(stdout);
1802 			rte_delay_ms(CHECK_INTERVAL);
1803 		}
1804 
1805 		/* set the print_flag if all ports up or timeout */
1806 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1807 			print_flag = 1;
1808 			printf("done\n");
1809 		}
1810 	}
1811 }
1812 
1813 static int check_ptype(uint16_t portid)
1814 {
1815 	int i, ret;
1816 	int ptype_l3_ipv4 = 0;
1817 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1818 	int ptype_l3_ipv6 = 0;
1819 #endif
1820 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
1821 
1822 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
1823 	if (ret <= 0)
1824 		return 0;
1825 
1826 	uint32_t ptypes[ret];
1827 
1828 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
1829 	for (i = 0; i < ret; ++i) {
1830 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
1831 			ptype_l3_ipv4 = 1;
1832 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1833 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
1834 			ptype_l3_ipv6 = 1;
1835 #endif
1836 	}
1837 
1838 	if (ptype_l3_ipv4 == 0)
1839 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
1840 
1841 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1842 	if (ptype_l3_ipv6 == 0)
1843 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
1844 #endif
1845 
1846 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1847 	if (ptype_l3_ipv4)
1848 #else /* APP_LOOKUP_EXACT_MATCH */
1849 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
1850 #endif
1851 		return 1;
1852 
1853 	return 0;
1854 
1855 }
1856 
1857 static int
1858 init_power_library(void)
1859 {
1860 	int ret = 0, lcore_id;
1861 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1862 		if (rte_lcore_is_enabled(lcore_id)) {
1863 			/* init power management library */
1864 			ret = rte_power_init(lcore_id);
1865 			if (ret)
1866 				RTE_LOG(ERR, POWER,
1867 				"Library initialization failed on core %u\n",
1868 				lcore_id);
1869 		}
1870 	}
1871 	return ret;
1872 }
1873 static void
1874 empty_poll_setup_timer(void)
1875 {
1876 	int lcore_id = rte_lcore_id();
1877 	uint64_t hz = rte_get_timer_hz();
1878 
1879 	struct  ep_params *ep_ptr = ep_params;
1880 
1881 	ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
1882 
1883 	rte_timer_reset_sync(&ep_ptr->timer0,
1884 			ep_ptr->interval_ticks,
1885 			PERIODICAL,
1886 			lcore_id,
1887 			rte_empty_poll_detection,
1888 			(void *)ep_ptr);
1889 
1890 }
1891 static int
1892 launch_timer(unsigned int lcore_id)
1893 {
1894 	int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
1895 
1896 	RTE_SET_USED(lcore_id);
1897 
1898 
1899 	if (rte_get_master_lcore() != lcore_id) {
1900 		rte_panic("timer on lcore:%d which is not master core:%d\n",
1901 				lcore_id,
1902 				rte_get_master_lcore());
1903 	}
1904 
1905 	RTE_LOG(INFO, POWER, "Bring up the Timer\n");
1906 
1907 	empty_poll_setup_timer();
1908 
1909 	cycles_10ms = rte_get_timer_hz() / 100;
1910 
1911 	while (!is_done()) {
1912 		cur_tsc = rte_rdtsc();
1913 		diff_tsc = cur_tsc - prev_tsc;
1914 		if (diff_tsc > cycles_10ms) {
1915 			rte_timer_manage();
1916 			prev_tsc = cur_tsc;
1917 			cycles_10ms = rte_get_timer_hz() / 100;
1918 		}
1919 	}
1920 
1921 	RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
1922 
1923 	return 0;
1924 }
1925 
1926 
1927 int
1928 main(int argc, char **argv)
1929 {
1930 	struct lcore_conf *qconf;
1931 	struct rte_eth_dev_info dev_info;
1932 	struct rte_eth_txconf *txconf;
1933 	int ret;
1934 	uint16_t nb_ports;
1935 	uint16_t queueid;
1936 	unsigned lcore_id;
1937 	uint64_t hz;
1938 	uint32_t n_tx_queue, nb_lcores;
1939 	uint32_t dev_rxq_num, dev_txq_num;
1940 	uint8_t nb_rx_queue, queue, socketid;
1941 	uint16_t portid;
1942 
1943 	/* catch SIGINT and restore cpufreq governor to ondemand */
1944 	signal(SIGINT, signal_exit_now);
1945 
1946 	/* init EAL */
1947 	ret = rte_eal_init(argc, argv);
1948 	if (ret < 0)
1949 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1950 	argc -= ret;
1951 	argv += ret;
1952 
1953 	/* init RTE timer library to be used late */
1954 	rte_timer_subsystem_init();
1955 
1956 	/* parse application arguments (after the EAL ones) */
1957 	ret = parse_args(argc, argv);
1958 	if (ret < 0)
1959 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1960 
1961 	if (init_power_library())
1962 		RTE_LOG(ERR, L3FWD_POWER, "init_power_library failed\n");
1963 
1964 	if (update_lcore_params() < 0)
1965 		rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
1966 
1967 	if (check_lcore_params() < 0)
1968 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1969 
1970 	ret = init_lcore_rx_queues();
1971 	if (ret < 0)
1972 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1973 
1974 	nb_ports = rte_eth_dev_count_avail();
1975 
1976 	if (check_port_config() < 0)
1977 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1978 
1979 	nb_lcores = rte_lcore_count();
1980 
1981 	/* initialize all ports */
1982 	RTE_ETH_FOREACH_DEV(portid) {
1983 		struct rte_eth_conf local_port_conf = port_conf;
1984 
1985 		/* skip ports that are not enabled */
1986 		if ((enabled_port_mask & (1 << portid)) == 0) {
1987 			printf("\nSkipping disabled port %d\n", portid);
1988 			continue;
1989 		}
1990 
1991 		/* init port */
1992 		printf("Initializing port %d ... ", portid );
1993 		fflush(stdout);
1994 
1995 		rte_eth_dev_info_get(portid, &dev_info);
1996 		dev_rxq_num = dev_info.max_rx_queues;
1997 		dev_txq_num = dev_info.max_tx_queues;
1998 
1999 		nb_rx_queue = get_port_n_rx_queues(portid);
2000 		if (nb_rx_queue > dev_rxq_num)
2001 			rte_exit(EXIT_FAILURE,
2002 				"Cannot configure not existed rxq: "
2003 				"port=%d\n", portid);
2004 
2005 		n_tx_queue = nb_lcores;
2006 		if (n_tx_queue > dev_txq_num)
2007 			n_tx_queue = dev_txq_num;
2008 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2009 			nb_rx_queue, (unsigned)n_tx_queue );
2010 		/* If number of Rx queue is 0, no need to enable Rx interrupt */
2011 		if (nb_rx_queue == 0)
2012 			local_port_conf.intr_conf.rxq = 0;
2013 		rte_eth_dev_info_get(portid, &dev_info);
2014 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2015 			local_port_conf.txmode.offloads |=
2016 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2017 
2018 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2019 			dev_info.flow_type_rss_offloads;
2020 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2021 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2022 			printf("Port %u modified RSS hash function based on hardware support,"
2023 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2024 				portid,
2025 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2026 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2027 		}
2028 
2029 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2030 					(uint16_t)n_tx_queue, &local_port_conf);
2031 		if (ret < 0)
2032 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
2033 					"err=%d, port=%d\n", ret, portid);
2034 
2035 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2036 						       &nb_txd);
2037 		if (ret < 0)
2038 			rte_exit(EXIT_FAILURE,
2039 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2040 				 ret, portid);
2041 
2042 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2043 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
2044 		printf(", ");
2045 
2046 		/* init memory */
2047 		ret = init_mem(NB_MBUF);
2048 		if (ret < 0)
2049 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2050 
2051 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2052 			if (rte_lcore_is_enabled(lcore_id) == 0)
2053 				continue;
2054 
2055 			/* Initialize TX buffers */
2056 			qconf = &lcore_conf[lcore_id];
2057 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2058 				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2059 				rte_eth_dev_socket_id(portid));
2060 			if (qconf->tx_buffer[portid] == NULL)
2061 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2062 						 portid);
2063 
2064 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2065 		}
2066 
2067 		/* init one TX queue per couple (lcore,port) */
2068 		queueid = 0;
2069 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2070 			if (rte_lcore_is_enabled(lcore_id) == 0)
2071 				continue;
2072 
2073 			if (queueid >= dev_txq_num)
2074 				continue;
2075 
2076 			if (numa_on)
2077 				socketid = \
2078 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2079 			else
2080 				socketid = 0;
2081 
2082 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2083 			fflush(stdout);
2084 
2085 			txconf = &dev_info.default_txconf;
2086 			txconf->offloads = local_port_conf.txmode.offloads;
2087 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2088 						     socketid, txconf);
2089 			if (ret < 0)
2090 				rte_exit(EXIT_FAILURE,
2091 					"rte_eth_tx_queue_setup: err=%d, "
2092 						"port=%d\n", ret, portid);
2093 
2094 			qconf = &lcore_conf[lcore_id];
2095 			qconf->tx_queue_id[portid] = queueid;
2096 			queueid++;
2097 
2098 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2099 			qconf->n_tx_port++;
2100 		}
2101 		printf("\n");
2102 	}
2103 
2104 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2105 		if (rte_lcore_is_enabled(lcore_id) == 0)
2106 			continue;
2107 
2108 		if (empty_poll_on == false) {
2109 			/* init timer structures for each enabled lcore */
2110 			rte_timer_init(&power_timers[lcore_id]);
2111 			hz = rte_get_timer_hz();
2112 			rte_timer_reset(&power_timers[lcore_id],
2113 					hz/TIMER_NUMBER_PER_SECOND,
2114 					SINGLE, lcore_id,
2115 					power_timer_cb, NULL);
2116 		}
2117 		qconf = &lcore_conf[lcore_id];
2118 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2119 		fflush(stdout);
2120 		/* init RX queues */
2121 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2122 			struct rte_eth_rxconf rxq_conf;
2123 			struct rte_eth_dev *dev;
2124 			struct rte_eth_conf *conf;
2125 
2126 			portid = qconf->rx_queue_list[queue].port_id;
2127 			queueid = qconf->rx_queue_list[queue].queue_id;
2128 			dev = &rte_eth_devices[portid];
2129 			conf = &dev->data->dev_conf;
2130 
2131 			if (numa_on)
2132 				socketid = \
2133 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
2134 			else
2135 				socketid = 0;
2136 
2137 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2138 			fflush(stdout);
2139 
2140 			rte_eth_dev_info_get(portid, &dev_info);
2141 			rxq_conf = dev_info.default_rxconf;
2142 			rxq_conf.offloads = conf->rxmode.offloads;
2143 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2144 				socketid, &rxq_conf,
2145 				pktmbuf_pool[socketid]);
2146 			if (ret < 0)
2147 				rte_exit(EXIT_FAILURE,
2148 					"rte_eth_rx_queue_setup: err=%d, "
2149 						"port=%d\n", ret, portid);
2150 
2151 			if (parse_ptype) {
2152 				if (add_cb_parse_ptype(portid, queueid) < 0)
2153 					rte_exit(EXIT_FAILURE,
2154 						 "Fail to add ptype cb\n");
2155 			} else if (!check_ptype(portid))
2156 				rte_exit(EXIT_FAILURE,
2157 					 "PMD can not provide needed ptypes\n");
2158 		}
2159 	}
2160 
2161 	printf("\n");
2162 
2163 	/* start ports */
2164 	RTE_ETH_FOREACH_DEV(portid) {
2165 		if ((enabled_port_mask & (1 << portid)) == 0) {
2166 			continue;
2167 		}
2168 		/* Start device */
2169 		ret = rte_eth_dev_start(portid);
2170 		if (ret < 0)
2171 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2172 						"port=%d\n", ret, portid);
2173 		/*
2174 		 * If enabled, put device in promiscuous mode.
2175 		 * This allows IO forwarding mode to forward packets
2176 		 * to itself through 2 cross-connected  ports of the
2177 		 * target machine.
2178 		 */
2179 		if (promiscuous_on)
2180 			rte_eth_promiscuous_enable(portid);
2181 		/* initialize spinlock for each port */
2182 		rte_spinlock_init(&(locks[portid]));
2183 	}
2184 
2185 	check_all_ports_link_status(enabled_port_mask);
2186 
2187 	if (empty_poll_on == true) {
2188 
2189 		if (empty_poll_train) {
2190 			policy.state = TRAINING;
2191 		} else {
2192 			policy.state = MED_NORMAL;
2193 			policy.med_base_edpi = ep_med_edpi;
2194 			policy.hgh_base_edpi = ep_hgh_edpi;
2195 		}
2196 
2197 		ret = rte_power_empty_poll_stat_init(&ep_params,
2198 				freq_tlb,
2199 				&policy);
2200 		if (ret < 0)
2201 			rte_exit(EXIT_FAILURE, "empty poll init failed");
2202 	}
2203 
2204 
2205 	/* launch per-lcore init on every lcore */
2206 	if (empty_poll_on == false) {
2207 		rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2208 	} else {
2209 		empty_poll_stop = false;
2210 		rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2211 				SKIP_MASTER);
2212 	}
2213 
2214 	if (empty_poll_on == true)
2215 		launch_timer(rte_lcore_id());
2216 
2217 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2218 		if (rte_eal_wait_lcore(lcore_id) < 0)
2219 			return -1;
2220 	}
2221 
2222 	if (empty_poll_on)
2223 		rte_power_empty_poll_stat_free();
2224 
2225 	return 0;
2226 }
2227