xref: /dpdk/examples/l3fwd-power/main.c (revision 0e433e5f0891ecd18a694ed733a28e69b1470c25)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <unistd.h>
45 #include <signal.h>
46 
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 #include <rte_timer.h>
76 #include <rte_power.h>
77 
78 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
79 
80 #define MAX_PKT_BURST 32
81 
82 #define MIN_ZERO_POLL_COUNT 5
83 
84 /* around 100ms at 2 Ghz */
85 #define TIMER_RESOLUTION_CYCLES           200000000ULL
86 /* 100 ms interval */
87 #define TIMER_NUMBER_PER_SECOND           10
88 /* 100000 us */
89 #define SCALING_PERIOD                    (1000000/TIMER_NUMBER_PER_SECOND)
90 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
91 
92 #define APP_LOOKUP_EXACT_MATCH          0
93 #define APP_LOOKUP_LPM                  1
94 #define DO_RFC_1812_CHECKS
95 
96 #ifndef APP_LOOKUP_METHOD
97 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
98 #endif
99 
100 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
101 #include <rte_hash.h>
102 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
103 #include <rte_lpm.h>
104 #else
105 #error "APP_LOOKUP_METHOD set to incorrect value"
106 #endif
107 
108 #ifndef IPv6_BYTES
109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
110                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
111 #define IPv6_BYTES(addr) \
112 	addr[0],  addr[1], addr[2],  addr[3], \
113 	addr[4],  addr[5], addr[6],  addr[7], \
114 	addr[8],  addr[9], addr[10], addr[11],\
115 	addr[12], addr[13],addr[14], addr[15]
116 #endif
117 
118 #define MAX_JUMBO_PKT_LEN  9600
119 
120 #define IPV6_ADDR_LEN 16
121 
122 #define MEMPOOL_CACHE_SIZE 256
123 
124 /*
125  * This expression is used to calculate the number of mbufs needed depending on
126  * user input, taking into account memory for rx and tx hardware rings, cache
127  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
128  * NB_MBUF never goes below a minimum value of 8192.
129  */
130 
131 #define NB_MBUF RTE_MAX	( \
132 	(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
133 	nb_ports*nb_lcores*MAX_PKT_BURST + \
134 	nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
135 	nb_lcores*MEMPOOL_CACHE_SIZE), \
136 	(unsigned)8192)
137 
138 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
139 
140 #define NB_SOCKETS 8
141 
142 /* Configure how many packets ahead to prefetch, when reading packets */
143 #define PREFETCH_OFFSET	3
144 
145 /*
146  * Configurable number of RX/TX ring descriptors
147  */
148 #define RTE_TEST_RX_DESC_DEFAULT 128
149 #define RTE_TEST_TX_DESC_DEFAULT 512
150 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
151 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
152 
153 /* ethernet addresses of ports */
154 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
155 
156 /* mask of enabled ports */
157 static uint32_t enabled_port_mask = 0;
158 /* Ports set in promiscuous mode off by default. */
159 static int promiscuous_on = 0;
160 /* NUMA is enabled by default. */
161 static int numa_on = 1;
162 
163 enum freq_scale_hint_t
164 {
165 	FREQ_LOWER    =      -1,
166 	FREQ_CURRENT  =       0,
167 	FREQ_HIGHER   =       1,
168 	FREQ_HIGHEST  =       2
169 };
170 
171 struct mbuf_table {
172 	uint16_t len;
173 	struct rte_mbuf *m_table[MAX_PKT_BURST];
174 };
175 
176 struct lcore_rx_queue {
177 	uint8_t port_id;
178 	uint8_t queue_id;
179 	enum freq_scale_hint_t freq_up_hint;
180 	uint32_t zero_rx_packet_count;
181 	uint32_t idle_hint;
182 } __rte_cache_aligned;
183 
184 #define MAX_RX_QUEUE_PER_LCORE 16
185 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
186 #define MAX_RX_QUEUE_PER_PORT 128
187 
188 #define MAX_LCORE_PARAMS 1024
189 struct lcore_params {
190 	uint8_t port_id;
191 	uint8_t queue_id;
192 	uint8_t lcore_id;
193 } __rte_cache_aligned;
194 
195 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
196 static struct lcore_params lcore_params_array_default[] = {
197 	{0, 0, 2},
198 	{0, 1, 2},
199 	{0, 2, 2},
200 	{1, 0, 2},
201 	{1, 1, 2},
202 	{1, 2, 2},
203 	{2, 0, 2},
204 	{3, 0, 3},
205 	{3, 1, 3},
206 };
207 
208 static struct lcore_params * lcore_params = lcore_params_array_default;
209 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
210 				sizeof(lcore_params_array_default[0]);
211 
212 static struct rte_eth_conf port_conf = {
213 	.rxmode = {
214 		.mq_mode	= ETH_MQ_RX_RSS,
215 		.max_rx_pkt_len = ETHER_MAX_LEN,
216 		.split_hdr_size = 0,
217 		.header_split   = 0, /**< Header Split disabled */
218 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
219 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
220 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
221 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
222 	},
223 	.rx_adv_conf = {
224 		.rss_conf = {
225 			.rss_key = NULL,
226 			.rss_hf = ETH_RSS_IP,
227 		},
228 	},
229 	.txmode = {
230 		.mq_mode = ETH_DCB_NONE,
231 	},
232 };
233 
234 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
235 
236 
237 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
238 
239 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
240 #include <rte_hash_crc.h>
241 #define DEFAULT_HASH_FUNC       rte_hash_crc
242 #else
243 #include <rte_jhash.h>
244 #define DEFAULT_HASH_FUNC       rte_jhash
245 #endif
246 
247 struct ipv4_5tuple {
248 	uint32_t ip_dst;
249 	uint32_t ip_src;
250 	uint16_t port_dst;
251 	uint16_t port_src;
252 	uint8_t  proto;
253 } __attribute__((__packed__));
254 
255 struct ipv6_5tuple {
256 	uint8_t  ip_dst[IPV6_ADDR_LEN];
257 	uint8_t  ip_src[IPV6_ADDR_LEN];
258 	uint16_t port_dst;
259 	uint16_t port_src;
260 	uint8_t  proto;
261 } __attribute__((__packed__));
262 
263 struct ipv4_l3fwd_route {
264 	struct ipv4_5tuple key;
265 	uint8_t if_out;
266 };
267 
268 struct ipv6_l3fwd_route {
269 	struct ipv6_5tuple key;
270 	uint8_t if_out;
271 };
272 
273 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
274 	{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
275 	{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
276 	{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
277 	{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
278 };
279 
280 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
281 	{
282 		{
283 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
284 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
285 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
286 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
287 			 1, 10, IPPROTO_UDP
288 		}, 4
289 	},
290 };
291 
292 typedef struct rte_hash lookup_struct_t;
293 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
294 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
295 
296 #define L3FWD_HASH_ENTRIES	1024
297 
298 #define IPV4_L3FWD_NUM_ROUTES \
299 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
300 
301 #define IPV6_L3FWD_NUM_ROUTES \
302 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
303 
304 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
305 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
306 #endif
307 
308 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
309 struct ipv4_l3fwd_route {
310 	uint32_t ip;
311 	uint8_t  depth;
312 	uint8_t  if_out;
313 };
314 
315 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
316 	{IPv4(1,1,1,0), 24, 0},
317 	{IPv4(2,1,1,0), 24, 1},
318 	{IPv4(3,1,1,0), 24, 2},
319 	{IPv4(4,1,1,0), 24, 3},
320 	{IPv4(5,1,1,0), 24, 4},
321 	{IPv4(6,1,1,0), 24, 5},
322 	{IPv4(7,1,1,0), 24, 6},
323 	{IPv4(8,1,1,0), 24, 7},
324 };
325 
326 #define IPV4_L3FWD_NUM_ROUTES \
327 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
328 
329 #define IPV4_L3FWD_LPM_MAX_RULES     1024
330 
331 typedef struct rte_lpm lookup_struct_t;
332 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
333 #endif
334 
335 struct lcore_conf {
336 	uint16_t n_rx_queue;
337 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
338 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
339 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
340 	lookup_struct_t * ipv4_lookup_struct;
341 	lookup_struct_t * ipv6_lookup_struct;
342 } __rte_cache_aligned;
343 
344 struct lcore_stats {
345 	/* total sleep time in ms since last frequency scaling down */
346 	uint32_t sleep_time;
347 	/* number of long sleep recently */
348 	uint32_t nb_long_sleep;
349 	/* freq. scaling up trend */
350 	uint32_t trend;
351 	/* total packet processed recently */
352 	uint64_t nb_rx_processed;
353 	/* total iterations looped recently */
354 	uint64_t nb_iteration_looped;
355 	uint32_t padding[9];
356 } __rte_cache_aligned;
357 
358 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
359 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
360 static struct rte_timer power_timers[RTE_MAX_LCORE];
361 
362 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
363 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
364 			unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
365 
366 /* exit signal handler */
367 static void
368 signal_exit_now(int sigtype)
369 {
370 	unsigned lcore_id;
371 	int ret;
372 
373 	if (sigtype == SIGINT) {
374 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
375 			if (rte_lcore_is_enabled(lcore_id) == 0)
376 				continue;
377 
378 			/* init power management library */
379 			ret = rte_power_exit(lcore_id);
380 			if (ret)
381 				rte_exit(EXIT_FAILURE, "Power management "
382 					"library de-initialization failed on "
383 							"core%u\n", lcore_id);
384 		}
385 	}
386 
387 	rte_exit(EXIT_SUCCESS, "User forced exit\n");
388 }
389 
390 /*  Freqency scale down timer callback */
391 static void
392 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
393 			  __attribute__((unused)) void *arg)
394 {
395 	uint64_t hz;
396 	float sleep_time_ratio;
397 	unsigned lcore_id = rte_lcore_id();
398 
399 	/* accumulate total execution time in us when callback is invoked */
400 	sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
401 					(float)SCALING_PERIOD;
402 
403 	/**
404 	 * check whether need to scale down frequency a step if it sleep a lot.
405 	 */
406 	if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD)
407 		rte_power_freq_down(lcore_id);
408 	else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
409 		stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST)
410 		/**
411 		 * scale down a step if average packet per iteration less
412 		 * than expectation.
413 		 */
414 		rte_power_freq_down(lcore_id);
415 
416 	/**
417 	 * initialize another timer according to current frequency to ensure
418 	 * timer interval is relatively fixed.
419 	 */
420 	hz = rte_get_timer_hz();
421 	rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
422 				SINGLE, lcore_id, power_timer_cb, NULL);
423 
424 	stats[lcore_id].nb_rx_processed = 0;
425 	stats[lcore_id].nb_iteration_looped = 0;
426 
427 	stats[lcore_id].sleep_time = 0;
428 }
429 
430 /* Send burst of packets on an output interface */
431 static inline int
432 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
433 {
434 	struct rte_mbuf **m_table;
435 	int ret;
436 	uint16_t queueid;
437 
438 	queueid = qconf->tx_queue_id[port];
439 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
440 
441 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
442 	if (unlikely(ret < n)) {
443 		do {
444 			rte_pktmbuf_free(m_table[ret]);
445 		} while (++ret < n);
446 	}
447 
448 	return 0;
449 }
450 
451 /* Enqueue a single packet, and send burst if queue is filled */
452 static inline int
453 send_single_packet(struct rte_mbuf *m, uint8_t port)
454 {
455 	uint32_t lcore_id;
456 	uint16_t len;
457 	struct lcore_conf *qconf;
458 
459 	lcore_id = rte_lcore_id();
460 
461 	qconf = &lcore_conf[lcore_id];
462 	len = qconf->tx_mbufs[port].len;
463 	qconf->tx_mbufs[port].m_table[len] = m;
464 	len++;
465 
466 	/* enough pkts to be sent */
467 	if (unlikely(len == MAX_PKT_BURST)) {
468 		send_burst(qconf, MAX_PKT_BURST, port);
469 		len = 0;
470 	}
471 
472 	qconf->tx_mbufs[port].len = len;
473 	return 0;
474 }
475 
476 #ifdef DO_RFC_1812_CHECKS
477 static inline int
478 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
479 {
480 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
481 	/*
482 	 * 1. The packet length reported by the Link Layer must be large
483 	 * enough to hold the minimum length legal IP datagram (20 bytes).
484 	 */
485 	if (link_len < sizeof(struct ipv4_hdr))
486 		return -1;
487 
488 	/* 2. The IP checksum must be correct. */
489 	/* this is checked in H/W */
490 
491 	/*
492 	 * 3. The IP version number must be 4. If the version number is not 4
493 	 * then the packet may be another version of IP, such as IPng or
494 	 * ST-II.
495 	 */
496 	if (((pkt->version_ihl) >> 4) != 4)
497 		return -3;
498 	/*
499 	 * 4. The IP header length field must be large enough to hold the
500 	 * minimum length legal IP datagram (20 bytes = 5 words).
501 	 */
502 	if ((pkt->version_ihl & 0xf) < 5)
503 		return -4;
504 
505 	/*
506 	 * 5. The IP total length field must be large enough to hold the IP
507 	 * datagram header, whose length is specified in the IP header length
508 	 * field.
509 	 */
510 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
511 		return -5;
512 
513 	return 0;
514 }
515 #endif
516 
517 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
518 static void
519 print_ipv4_key(struct ipv4_5tuple key)
520 {
521 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
522 		"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
523 				key.port_dst, key.port_src, key.proto);
524 }
525 static void
526 print_ipv6_key(struct ipv6_5tuple key)
527 {
528 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
529 	        "port dst = %d, port src = %d, proto = %d\n",
530 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
531 	        key.port_dst, key.port_src, key.proto);
532 }
533 
534 static inline uint8_t
535 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
536 		lookup_struct_t * ipv4_l3fwd_lookup_struct)
537 {
538 	struct ipv4_5tuple key;
539 	struct tcp_hdr *tcp;
540 	struct udp_hdr *udp;
541 	int ret = 0;
542 
543 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
544 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
545 	key.proto = ipv4_hdr->next_proto_id;
546 
547 	switch (ipv4_hdr->next_proto_id) {
548 	case IPPROTO_TCP:
549 		tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
550 					sizeof(struct ipv4_hdr));
551 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
552 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
553 		break;
554 
555 	case IPPROTO_UDP:
556 		udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
557 					sizeof(struct ipv4_hdr));
558 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
559 		key.port_src = rte_be_to_cpu_16(udp->src_port);
560 		break;
561 
562 	default:
563 		key.port_dst = 0;
564 		key.port_src = 0;
565 		break;
566 	}
567 
568 	/* Find destination port */
569 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
570 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
571 }
572 
573 static inline uint8_t
574 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid,
575 			lookup_struct_t *ipv6_l3fwd_lookup_struct)
576 {
577 	struct ipv6_5tuple key;
578 	struct tcp_hdr *tcp;
579 	struct udp_hdr *udp;
580 	int ret = 0;
581 
582 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
583 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
584 
585 	key.proto = ipv6_hdr->proto;
586 
587 	switch (ipv6_hdr->proto) {
588 	case IPPROTO_TCP:
589 		tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
590 					sizeof(struct ipv6_hdr));
591 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
592 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
593 		break;
594 
595 	case IPPROTO_UDP:
596 		udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
597 					sizeof(struct ipv6_hdr));
598 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
599 		key.port_src = rte_be_to_cpu_16(udp->src_port);
600 		break;
601 
602 	default:
603 		key.port_dst = 0;
604 		key.port_src = 0;
605 		break;
606 	}
607 
608 	/* Find destination port */
609 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
610 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
611 }
612 #endif
613 
614 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
615 static inline uint8_t
616 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
617 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
618 {
619 	uint8_t next_hop;
620 
621 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
622 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
623 			next_hop : portid);
624 }
625 #endif
626 
627 static inline void
628 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
629 				struct lcore_conf *qconf)
630 {
631 	struct ether_hdr *eth_hdr;
632 	struct ipv4_hdr *ipv4_hdr;
633 	void *d_addr_bytes;
634 	uint8_t dst_port;
635 
636 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
637 
638 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
639 		/* Handle IPv4 headers.*/
640 		ipv4_hdr =
641 			(struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
642 						+ sizeof(struct ether_hdr));
643 
644 #ifdef DO_RFC_1812_CHECKS
645 		/* Check to make sure the packet is valid (RFC1812) */
646 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
647 			rte_pktmbuf_free(m);
648 			return;
649 		}
650 #endif
651 
652 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
653 					qconf->ipv4_lookup_struct);
654 		if (dst_port >= RTE_MAX_ETHPORTS ||
655 				(enabled_port_mask & 1 << dst_port) == 0)
656 			dst_port = portid;
657 
658 		/* 02:00:00:00:00:xx */
659 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
660 		*((uint64_t *)d_addr_bytes) =
661 			0x000000000002 + ((uint64_t)dst_port << 40);
662 
663 #ifdef DO_RFC_1812_CHECKS
664 		/* Update time to live and header checksum */
665 		--(ipv4_hdr->time_to_live);
666 		++(ipv4_hdr->hdr_checksum);
667 #endif
668 
669 		/* src addr */
670 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
671 
672 		send_single_packet(m, dst_port);
673 	}
674 	else {
675 		/* Handle IPv6 headers.*/
676 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
677 		struct ipv6_hdr *ipv6_hdr;
678 
679 		ipv6_hdr =
680 			(struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
681 						+ sizeof(struct ether_hdr));
682 
683 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
684 					qconf->ipv6_lookup_struct);
685 
686 		if (dst_port >= RTE_MAX_ETHPORTS ||
687 				(enabled_port_mask & 1 << dst_port) == 0)
688 			dst_port = portid;
689 
690 		/* 02:00:00:00:00:xx */
691 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
692 		*((uint64_t *)d_addr_bytes) =
693 			0x000000000002 + ((uint64_t)dst_port << 40);
694 
695 		/* src addr */
696 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
697 
698 		send_single_packet(m, dst_port);
699 #else
700 		/* We don't currently handle IPv6 packets in LPM mode. */
701 		rte_pktmbuf_free(m);
702 #endif
703 	}
704 
705 }
706 
707 #define SLEEP_GEAR1_THRESHOLD            100
708 #define SLEEP_GEAR2_THRESHOLD            1000
709 
710 static inline uint32_t
711 power_idle_heuristic(uint32_t zero_rx_packet_count)
712 {
713 	/* If zero count is less than 100, use it as the sleep time in us */
714 	if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD)
715 		return zero_rx_packet_count;
716 	/* If zero count is less than 1000, sleep time should be 100 us */
717 	else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) &&
718 			(zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD))
719 		return SLEEP_GEAR1_THRESHOLD;
720 	/* If zero count is greater than 1000, sleep time should be 1000 us */
721 	else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD)
722 		return SLEEP_GEAR2_THRESHOLD;
723 
724 	return 0;
725 }
726 
727 static inline enum freq_scale_hint_t
728 power_freq_scaleup_heuristic(unsigned lcore_id,
729 			     uint8_t port_id,
730 			     uint16_t queue_id)
731 {
732 /**
733  * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
734  * per iteration
735  */
736 #define FREQ_GEAR1_RX_PACKET_THRESHOLD             MAX_PKT_BURST
737 #define FREQ_GEAR2_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*2)
738 #define FREQ_GEAR3_RX_PACKET_THRESHOLD             (MAX_PKT_BURST*3)
739 #define FREQ_UP_TREND1_ACC   1
740 #define FREQ_UP_TREND2_ACC   100
741 #define FREQ_UP_THRESHOLD    10000
742 
743 	if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
744 			FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
745 		stats[lcore_id].trend = 0;
746 		return FREQ_HIGHEST;
747 	} else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
748 			FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
749 		stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
750 	else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
751 			FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
752 		stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
753 
754 	if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
755 		stats[lcore_id].trend = 0;
756 		return FREQ_HIGHER;
757 	}
758 
759 	return FREQ_CURRENT;
760 }
761 
762 /* main processing loop */
763 static int
764 main_loop(__attribute__((unused)) void *dummy)
765 {
766 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
767 	unsigned lcore_id;
768 	uint64_t prev_tsc, diff_tsc, cur_tsc;
769 	uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
770 	int i, j, nb_rx;
771 	uint8_t portid, queueid;
772 	struct lcore_conf *qconf;
773 	struct lcore_rx_queue *rx_queue;
774 	enum freq_scale_hint_t lcore_scaleup_hint;
775 
776 	uint32_t lcore_rx_idle_count = 0;
777 	uint32_t lcore_idle_hint = 0;
778 
779 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
780 
781 	prev_tsc = 0;
782 
783 	lcore_id = rte_lcore_id();
784 	qconf = &lcore_conf[lcore_id];
785 
786 	if (qconf->n_rx_queue == 0) {
787 		RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
788 		return 0;
789 	}
790 
791 	RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
792 
793 	for (i = 0; i < qconf->n_rx_queue; i++) {
794 
795 		portid = qconf->rx_queue_list[i].port_id;
796 		queueid = qconf->rx_queue_list[i].queue_id;
797 		RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
798 			"rxqueueid=%hhu\n", lcore_id, portid, queueid);
799 	}
800 
801 	while (1) {
802 		stats[lcore_id].nb_iteration_looped++;
803 
804 		cur_tsc = rte_rdtsc();
805 		cur_tsc_power = cur_tsc;
806 
807 		/*
808 		 * TX burst queue drain
809 		 */
810 		diff_tsc = cur_tsc - prev_tsc;
811 		if (unlikely(diff_tsc > drain_tsc)) {
812 
813 			/*
814 			 * This could be optimized (use queueid instead of
815 			 * portid), but it is not called so often
816 			 */
817 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
818 				if (qconf->tx_mbufs[portid].len == 0)
819 					continue;
820 				send_burst(&lcore_conf[lcore_id],
821 					qconf->tx_mbufs[portid].len,
822 					portid);
823 				qconf->tx_mbufs[portid].len = 0;
824 			}
825 
826 			prev_tsc = cur_tsc;
827 		}
828 
829 		diff_tsc_power = cur_tsc_power - prev_tsc_power;
830 		if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
831 			rte_timer_manage();
832 			prev_tsc_power = cur_tsc_power;
833 		}
834 
835 		/*
836 		 * Read packet from RX queues
837 		 */
838 		lcore_scaleup_hint = FREQ_CURRENT;
839 		lcore_rx_idle_count = 0;
840 		for (i = 0; i < qconf->n_rx_queue; ++i) {
841 			rx_queue = &(qconf->rx_queue_list[i]);
842 			rx_queue->idle_hint = 0;
843 			portid = rx_queue->port_id;
844 			queueid = rx_queue->queue_id;
845 
846 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
847 								MAX_PKT_BURST);
848 			stats[lcore_id].nb_rx_processed += nb_rx;
849 			if (unlikely(nb_rx == 0)) {
850 				/**
851 				 * no packet received from rx queue, try to
852 				 * sleep for a while forcing CPU enter deeper
853 				 * C states.
854 				 */
855 				rx_queue->zero_rx_packet_count++;
856 
857 				if (rx_queue->zero_rx_packet_count <=
858 							MIN_ZERO_POLL_COUNT)
859 					continue;
860 
861 				rx_queue->idle_hint = power_idle_heuristic(\
862 					rx_queue->zero_rx_packet_count);
863 				lcore_rx_idle_count++;
864 			} else {
865 				rx_queue->zero_rx_packet_count = 0;
866 
867 				/**
868 				 * do not scale up frequency immediately as
869 				 * user to kernel space communication is costly
870 				 * which might impact packet I/O for received
871 				 * packets.
872 				 */
873 				rx_queue->freq_up_hint =
874 					power_freq_scaleup_heuristic(lcore_id,
875 							portid, queueid);
876 			}
877 
878 			/* Prefetch first packets */
879 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
880 				rte_prefetch0(rte_pktmbuf_mtod(
881 						pkts_burst[j], void *));
882 			}
883 
884 			/* Prefetch and forward already prefetched packets */
885 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
886 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
887 						j + PREFETCH_OFFSET], void *));
888 				l3fwd_simple_forward(pkts_burst[j], portid,
889 								qconf);
890 			}
891 
892 			/* Forward remaining prefetched packets */
893 			for (; j < nb_rx; j++) {
894 				l3fwd_simple_forward(pkts_burst[j], portid,
895 								qconf);
896 			}
897 		}
898 
899 		if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
900 			for (i = 1, lcore_scaleup_hint =
901 				qconf->rx_queue_list[0].freq_up_hint;
902 					i < qconf->n_rx_queue; ++i) {
903 				rx_queue = &(qconf->rx_queue_list[i]);
904 				if (rx_queue->freq_up_hint >
905 						lcore_scaleup_hint)
906 					lcore_scaleup_hint =
907 						rx_queue->freq_up_hint;
908 			}
909 
910 			if (lcore_scaleup_hint == FREQ_HIGHEST)
911 				rte_power_freq_max(lcore_id);
912 			else if (lcore_scaleup_hint == FREQ_HIGHER)
913 				rte_power_freq_up(lcore_id);
914 		} else {
915 			/**
916 			 * All Rx queues empty in recent consecutive polls,
917 			 * sleep in a conservative manner, meaning sleep as
918 			 * less as possible.
919 			 */
920 			for (i = 1, lcore_idle_hint =
921 				qconf->rx_queue_list[0].idle_hint;
922 					i < qconf->n_rx_queue; ++i) {
923 				rx_queue = &(qconf->rx_queue_list[i]);
924 				if (rx_queue->idle_hint < lcore_idle_hint)
925 					lcore_idle_hint = rx_queue->idle_hint;
926 			}
927 
928 			if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
929 				/**
930 				 * execute "pause" instruction to avoid context
931 				 * switch for short sleep.
932 				 */
933 				rte_delay_us(lcore_idle_hint);
934 			else
935 				/* long sleep force runing thread to suspend */
936 				usleep(lcore_idle_hint);
937 
938 			stats[lcore_id].sleep_time += lcore_idle_hint;
939 		}
940 	}
941 }
942 
943 static int
944 check_lcore_params(void)
945 {
946 	uint8_t queue, lcore;
947 	uint16_t i;
948 	int socketid;
949 
950 	for (i = 0; i < nb_lcore_params; ++i) {
951 		queue = lcore_params[i].queue_id;
952 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
953 			printf("invalid queue number: %hhu\n", queue);
954 			return -1;
955 		}
956 		lcore = lcore_params[i].lcore_id;
957 		if (!rte_lcore_is_enabled(lcore)) {
958 			printf("error: lcore %hhu is not enabled in lcore "
959 							"mask\n", lcore);
960 			return -1;
961 		}
962 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
963 							(numa_on == 0)) {
964 			printf("warning: lcore %hhu is on socket %d with numa "
965 						"off\n", lcore, socketid);
966 		}
967 	}
968 	return 0;
969 }
970 
971 static int
972 check_port_config(const unsigned nb_ports)
973 {
974 	unsigned portid;
975 	uint16_t i;
976 
977 	for (i = 0; i < nb_lcore_params; ++i) {
978 		portid = lcore_params[i].port_id;
979 		if ((enabled_port_mask & (1 << portid)) == 0) {
980 			printf("port %u is not enabled in port mask\n",
981 								portid);
982 			return -1;
983 		}
984 		if (portid >= nb_ports) {
985 			printf("port %u is not present on the board\n",
986 								portid);
987 			return -1;
988 		}
989 	}
990 	return 0;
991 }
992 
993 static uint8_t
994 get_port_n_rx_queues(const uint8_t port)
995 {
996 	int queue = -1;
997 	uint16_t i;
998 
999 	for (i = 0; i < nb_lcore_params; ++i) {
1000 		if (lcore_params[i].port_id == port &&
1001 				lcore_params[i].queue_id > queue)
1002 			queue = lcore_params[i].queue_id;
1003 	}
1004 	return (uint8_t)(++queue);
1005 }
1006 
1007 static int
1008 init_lcore_rx_queues(void)
1009 {
1010 	uint16_t i, nb_rx_queue;
1011 	uint8_t lcore;
1012 
1013 	for (i = 0; i < nb_lcore_params; ++i) {
1014 		lcore = lcore_params[i].lcore_id;
1015 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1016 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1017 			printf("error: too many queues (%u) for lcore: %u\n",
1018 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1019 			return -1;
1020 		} else {
1021 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1022 				lcore_params[i].port_id;
1023 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1024 				lcore_params[i].queue_id;
1025 			lcore_conf[lcore].n_rx_queue++;
1026 		}
1027 	}
1028 	return 0;
1029 }
1030 
1031 /* display usage */
1032 static void
1033 print_usage(const char *prgname)
1034 {
1035 	printf ("%s [EAL options] -- -p PORTMASK -P"
1036 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1037 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1038 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1039 		"  -P : enable promiscuous mode\n"
1040 		"  --config (port,queue,lcore): rx queues configuration\n"
1041 		"  --no-numa: optional, disable numa awareness\n"
1042 		"  --enable-jumbo: enable jumbo frame"
1043 		" which max packet len is PKTLEN in decimal (64-9600)\n",
1044 		prgname);
1045 }
1046 
1047 static int parse_max_pkt_len(const char *pktlen)
1048 {
1049 	char *end = NULL;
1050 	unsigned long len;
1051 
1052 	/* parse decimal string */
1053 	len = strtoul(pktlen, &end, 10);
1054 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1055 		return -1;
1056 
1057 	if (len == 0)
1058 		return -1;
1059 
1060 	return len;
1061 }
1062 
1063 static int
1064 parse_portmask(const char *portmask)
1065 {
1066 	char *end = NULL;
1067 	unsigned long pm;
1068 
1069 	/* parse hexadecimal string */
1070 	pm = strtoul(portmask, &end, 16);
1071 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1072 		return -1;
1073 
1074 	if (pm == 0)
1075 		return -1;
1076 
1077 	return pm;
1078 }
1079 
1080 static int
1081 parse_config(const char *q_arg)
1082 {
1083 	char s[256];
1084 	const char *p, *p0 = q_arg;
1085 	char *end;
1086 	enum fieldnames {
1087 		FLD_PORT = 0,
1088 		FLD_QUEUE,
1089 		FLD_LCORE,
1090 		_NUM_FLD
1091 	};
1092 	unsigned long int_fld[_NUM_FLD];
1093 	char *str_fld[_NUM_FLD];
1094 	int i;
1095 	unsigned size;
1096 
1097 	nb_lcore_params = 0;
1098 
1099 	while ((p = strchr(p0,'(')) != NULL) {
1100 		++p;
1101 		if((p0 = strchr(p,')')) == NULL)
1102 			return -1;
1103 
1104 		size = p0 - p;
1105 		if(size >= sizeof(s))
1106 			return -1;
1107 
1108 		snprintf(s, sizeof(s), "%.*s", size, p);
1109 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1110 								_NUM_FLD)
1111 			return -1;
1112 		for (i = 0; i < _NUM_FLD; i++){
1113 			errno = 0;
1114 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1115 			if (errno != 0 || end == str_fld[i] || int_fld[i] >
1116 									255)
1117 				return -1;
1118 		}
1119 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1120 			printf("exceeded max number of lcore params: %hu\n",
1121 				nb_lcore_params);
1122 			return -1;
1123 		}
1124 		lcore_params_array[nb_lcore_params].port_id =
1125 				(uint8_t)int_fld[FLD_PORT];
1126 		lcore_params_array[nb_lcore_params].queue_id =
1127 				(uint8_t)int_fld[FLD_QUEUE];
1128 		lcore_params_array[nb_lcore_params].lcore_id =
1129 				(uint8_t)int_fld[FLD_LCORE];
1130 		++nb_lcore_params;
1131 	}
1132 	lcore_params = lcore_params_array;
1133 
1134 	return 0;
1135 }
1136 
1137 /* Parse the argument given in the command line of the application */
1138 static int
1139 parse_args(int argc, char **argv)
1140 {
1141 	int opt, ret;
1142 	char **argvopt;
1143 	int option_index;
1144 	char *prgname = argv[0];
1145 	static struct option lgopts[] = {
1146 		{"config", 1, 0, 0},
1147 		{"no-numa", 0, 0, 0},
1148 		{"enable-jumbo", 0, 0, 0},
1149 		{NULL, 0, 0, 0}
1150 	};
1151 
1152 	argvopt = argv;
1153 
1154 	while ((opt = getopt_long(argc, argvopt, "p:P",
1155 				lgopts, &option_index)) != EOF) {
1156 
1157 		switch (opt) {
1158 		/* portmask */
1159 		case 'p':
1160 			enabled_port_mask = parse_portmask(optarg);
1161 			if (enabled_port_mask == 0) {
1162 				printf("invalid portmask\n");
1163 				print_usage(prgname);
1164 				return -1;
1165 			}
1166 			break;
1167 		case 'P':
1168 			printf("Promiscuous mode selected\n");
1169 			promiscuous_on = 1;
1170 			break;
1171 
1172 		/* long options */
1173 		case 0:
1174 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1175 				ret = parse_config(optarg);
1176 				if (ret) {
1177 					printf("invalid config\n");
1178 					print_usage(prgname);
1179 					return -1;
1180 				}
1181 			}
1182 
1183 			if (!strncmp(lgopts[option_index].name,
1184 						"no-numa", 7)) {
1185 				printf("numa is disabled \n");
1186 				numa_on = 0;
1187 			}
1188 
1189 			if (!strncmp(lgopts[option_index].name,
1190 					"enable-jumbo", 12)) {
1191 				struct option lenopts =
1192 					{"max-pkt-len", required_argument, \
1193 									0, 0};
1194 
1195 				printf("jumbo frame is enabled \n");
1196 				port_conf.rxmode.jumbo_frame = 1;
1197 
1198 				/**
1199 				 * if no max-pkt-len set, use the default value
1200 				 * ETHER_MAX_LEN
1201 				 */
1202 				if (0 == getopt_long(argc, argvopt, "",
1203 						&lenopts, &option_index)) {
1204 					ret = parse_max_pkt_len(optarg);
1205 					if ((ret < 64) ||
1206 						(ret > MAX_JUMBO_PKT_LEN)){
1207 						printf("invalid packet "
1208 								"length\n");
1209 						print_usage(prgname);
1210 						return -1;
1211 					}
1212 					port_conf.rxmode.max_rx_pkt_len = ret;
1213 				}
1214 				printf("set jumbo frame "
1215 					"max packet length to %u\n",
1216 				(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1217 			}
1218 
1219 			break;
1220 
1221 		default:
1222 			print_usage(prgname);
1223 			return -1;
1224 		}
1225 	}
1226 
1227 	if (optind >= 0)
1228 		argv[optind-1] = prgname;
1229 
1230 	ret = optind-1;
1231 	optind = 0; /* reset getopt lib */
1232 	return ret;
1233 }
1234 
1235 static void
1236 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1237 {
1238 	char buf[ETHER_ADDR_FMT_SIZE];
1239 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1240 	printf("%s%s", name, buf);
1241 }
1242 
1243 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1244 static void
1245 setup_hash(int socketid)
1246 {
1247 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1248 		.name = NULL,
1249 		.entries = L3FWD_HASH_ENTRIES,
1250 		.bucket_entries = 4,
1251 		.key_len = sizeof(struct ipv4_5tuple),
1252 		.hash_func = DEFAULT_HASH_FUNC,
1253 		.hash_func_init_val = 0,
1254 	};
1255 
1256 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1257 		.name = NULL,
1258 		.entries = L3FWD_HASH_ENTRIES,
1259 		.bucket_entries = 4,
1260 		.key_len = sizeof(struct ipv6_5tuple),
1261 		.hash_func = DEFAULT_HASH_FUNC,
1262 		.hash_func_init_val = 0,
1263 	};
1264 
1265 	unsigned i;
1266 	int ret;
1267 	char s[64];
1268 
1269 	/* create ipv4 hash */
1270 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1271 	ipv4_l3fwd_hash_params.name = s;
1272 	ipv4_l3fwd_hash_params.socket_id = socketid;
1273 	ipv4_l3fwd_lookup_struct[socketid] =
1274 		rte_hash_create(&ipv4_l3fwd_hash_params);
1275 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1276 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1277 				"socket %d\n", socketid);
1278 
1279 	/* create ipv6 hash */
1280 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1281 	ipv6_l3fwd_hash_params.name = s;
1282 	ipv6_l3fwd_hash_params.socket_id = socketid;
1283 	ipv6_l3fwd_lookup_struct[socketid] =
1284 		rte_hash_create(&ipv6_l3fwd_hash_params);
1285 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1286 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1287 				"socket %d\n", socketid);
1288 
1289 
1290 	/* populate the ipv4 hash */
1291 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1292 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1293 				(void *) &ipv4_l3fwd_route_array[i].key);
1294 		if (ret < 0) {
1295 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1296 				"l3fwd hash on socket %d\n", i, socketid);
1297 		}
1298 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1299 		printf("Hash: Adding key\n");
1300 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1301 	}
1302 
1303 	/* populate the ipv6 hash */
1304 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1305 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1306 				(void *) &ipv6_l3fwd_route_array[i].key);
1307 		if (ret < 0) {
1308 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1309 				"l3fwd hash on socket %d\n", i, socketid);
1310 		}
1311 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1312 		printf("Hash: Adding key\n");
1313 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1314 	}
1315 }
1316 #endif
1317 
1318 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1319 static void
1320 setup_lpm(int socketid)
1321 {
1322 	unsigned i;
1323 	int ret;
1324 	char s[64];
1325 
1326 	/* create the LPM table */
1327 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1328 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1329 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1330 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1331 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1332 				" on socket %d\n", socketid);
1333 
1334 	/* populate the LPM table */
1335 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1336 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1337 			ipv4_l3fwd_route_array[i].ip,
1338 			ipv4_l3fwd_route_array[i].depth,
1339 			ipv4_l3fwd_route_array[i].if_out);
1340 
1341 		if (ret < 0) {
1342 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1343 				"l3fwd LPM table on socket %d\n",
1344 				i, socketid);
1345 		}
1346 
1347 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1348 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1349 			ipv4_l3fwd_route_array[i].depth,
1350 			ipv4_l3fwd_route_array[i].if_out);
1351 	}
1352 }
1353 #endif
1354 
1355 static int
1356 init_mem(unsigned nb_mbuf)
1357 {
1358 	struct lcore_conf *qconf;
1359 	int socketid;
1360 	unsigned lcore_id;
1361 	char s[64];
1362 
1363 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1364 		if (rte_lcore_is_enabled(lcore_id) == 0)
1365 			continue;
1366 
1367 		if (numa_on)
1368 			socketid = rte_lcore_to_socket_id(lcore_id);
1369 		else
1370 			socketid = 0;
1371 
1372 		if (socketid >= NB_SOCKETS) {
1373 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1374 					"out of range %d\n", socketid,
1375 						lcore_id, NB_SOCKETS);
1376 		}
1377 		if (pktmbuf_pool[socketid] == NULL) {
1378 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1379 			pktmbuf_pool[socketid] =
1380 				rte_pktmbuf_pool_create(s, nb_mbuf,
1381 					MEMPOOL_CACHE_SIZE, 0,
1382 					RTE_MBUF_DEFAULT_BUF_SIZE,
1383 					socketid);
1384 			if (pktmbuf_pool[socketid] == NULL)
1385 				rte_exit(EXIT_FAILURE,
1386 					"Cannot init mbuf pool on socket %d\n",
1387 								socketid);
1388 			else
1389 				printf("Allocated mbuf pool on socket %d\n",
1390 								socketid);
1391 
1392 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1393 			setup_lpm(socketid);
1394 #else
1395 			setup_hash(socketid);
1396 #endif
1397 		}
1398 		qconf = &lcore_conf[lcore_id];
1399 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1400 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1401 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1402 #endif
1403 	}
1404 	return 0;
1405 }
1406 
1407 /* Check the link status of all ports in up to 9s, and print them finally */
1408 static void
1409 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1410 {
1411 #define CHECK_INTERVAL 100 /* 100ms */
1412 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1413 	uint8_t portid, count, all_ports_up, print_flag = 0;
1414 	struct rte_eth_link link;
1415 
1416 	printf("\nChecking link status");
1417 	fflush(stdout);
1418 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1419 		all_ports_up = 1;
1420 		for (portid = 0; portid < port_num; portid++) {
1421 			if ((port_mask & (1 << portid)) == 0)
1422 				continue;
1423 			memset(&link, 0, sizeof(link));
1424 			rte_eth_link_get_nowait(portid, &link);
1425 			/* print link status if flag set */
1426 			if (print_flag == 1) {
1427 				if (link.link_status)
1428 					printf("Port %d Link Up - speed %u "
1429 						"Mbps - %s\n", (uint8_t)portid,
1430 						(unsigned)link.link_speed,
1431 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1432 					("full-duplex") : ("half-duplex\n"));
1433 				else
1434 					printf("Port %d Link Down\n",
1435 						(uint8_t)portid);
1436 				continue;
1437 			}
1438 			/* clear all_ports_up flag if any link down */
1439 			if (link.link_status == 0) {
1440 				all_ports_up = 0;
1441 				break;
1442 			}
1443 		}
1444 		/* after finally printing all link status, get out */
1445 		if (print_flag == 1)
1446 			break;
1447 
1448 		if (all_ports_up == 0) {
1449 			printf(".");
1450 			fflush(stdout);
1451 			rte_delay_ms(CHECK_INTERVAL);
1452 		}
1453 
1454 		/* set the print_flag if all ports up or timeout */
1455 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1456 			print_flag = 1;
1457 			printf("done\n");
1458 		}
1459 	}
1460 }
1461 
1462 int
1463 main(int argc, char **argv)
1464 {
1465 	struct lcore_conf *qconf;
1466 	struct rte_eth_dev_info dev_info;
1467 	struct rte_eth_txconf *txconf;
1468 	int ret;
1469 	unsigned nb_ports;
1470 	uint16_t queueid;
1471 	unsigned lcore_id;
1472 	uint64_t hz;
1473 	uint32_t n_tx_queue, nb_lcores;
1474 	uint8_t portid, nb_rx_queue, queue, socketid;
1475 
1476 	/* catch SIGINT and restore cpufreq governor to ondemand */
1477 	signal(SIGINT, signal_exit_now);
1478 
1479 	/* init EAL */
1480 	ret = rte_eal_init(argc, argv);
1481 	if (ret < 0)
1482 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1483 	argc -= ret;
1484 	argv += ret;
1485 
1486 	/* init RTE timer library to be used late */
1487 	rte_timer_subsystem_init();
1488 
1489 	/* parse application arguments (after the EAL ones) */
1490 	ret = parse_args(argc, argv);
1491 	if (ret < 0)
1492 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1493 
1494 	if (check_lcore_params() < 0)
1495 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1496 
1497 	ret = init_lcore_rx_queues();
1498 	if (ret < 0)
1499 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1500 
1501 
1502 	nb_ports = rte_eth_dev_count();
1503 	if (nb_ports > RTE_MAX_ETHPORTS)
1504 		nb_ports = RTE_MAX_ETHPORTS;
1505 
1506 	if (check_port_config(nb_ports) < 0)
1507 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1508 
1509 	nb_lcores = rte_lcore_count();
1510 
1511 	/* initialize all ports */
1512 	for (portid = 0; portid < nb_ports; portid++) {
1513 		/* skip ports that are not enabled */
1514 		if ((enabled_port_mask & (1 << portid)) == 0) {
1515 			printf("\nSkipping disabled port %d\n", portid);
1516 			continue;
1517 		}
1518 
1519 		/* init port */
1520 		printf("Initializing port %d ... ", portid );
1521 		fflush(stdout);
1522 
1523 		nb_rx_queue = get_port_n_rx_queues(portid);
1524 		n_tx_queue = nb_lcores;
1525 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1526 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1527 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1528 			nb_rx_queue, (unsigned)n_tx_queue );
1529 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1530 					(uint16_t)n_tx_queue, &port_conf);
1531 		if (ret < 0)
1532 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1533 					"err=%d, port=%d\n", ret, portid);
1534 
1535 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1536 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1537 		printf(", ");
1538 
1539 		/* init memory */
1540 		ret = init_mem(NB_MBUF);
1541 		if (ret < 0)
1542 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1543 
1544 		/* init one TX queue per couple (lcore,port) */
1545 		queueid = 0;
1546 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1547 			if (rte_lcore_is_enabled(lcore_id) == 0)
1548 				continue;
1549 
1550 			if (numa_on)
1551 				socketid = \
1552 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1553 			else
1554 				socketid = 0;
1555 
1556 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1557 			fflush(stdout);
1558 
1559 			rte_eth_dev_info_get(portid, &dev_info);
1560 			txconf = &dev_info.default_txconf;
1561 			if (port_conf.rxmode.jumbo_frame)
1562 				txconf->txq_flags = 0;
1563 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1564 						     socketid, txconf);
1565 			if (ret < 0)
1566 				rte_exit(EXIT_FAILURE,
1567 					"rte_eth_tx_queue_setup: err=%d, "
1568 						"port=%d\n", ret, portid);
1569 
1570 			qconf = &lcore_conf[lcore_id];
1571 			qconf->tx_queue_id[portid] = queueid;
1572 			queueid++;
1573 		}
1574 		printf("\n");
1575 	}
1576 
1577 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1578 		if (rte_lcore_is_enabled(lcore_id) == 0)
1579 			continue;
1580 
1581 		/* init power management library */
1582 		ret = rte_power_init(lcore_id);
1583 		if (ret)
1584 			rte_exit(EXIT_FAILURE, "Power management library "
1585 				"initialization failed on core%u\n", lcore_id);
1586 
1587 		/* init timer structures for each enabled lcore */
1588 		rte_timer_init(&power_timers[lcore_id]);
1589 		hz = rte_get_timer_hz();
1590 		rte_timer_reset(&power_timers[lcore_id],
1591 			hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1592 						power_timer_cb, NULL);
1593 
1594 		qconf = &lcore_conf[lcore_id];
1595 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1596 		fflush(stdout);
1597 		/* init RX queues */
1598 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1599 			portid = qconf->rx_queue_list[queue].port_id;
1600 			queueid = qconf->rx_queue_list[queue].queue_id;
1601 
1602 			if (numa_on)
1603 				socketid = \
1604 				(uint8_t)rte_lcore_to_socket_id(lcore_id);
1605 			else
1606 				socketid = 0;
1607 
1608 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1609 			fflush(stdout);
1610 
1611 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1612 				socketid, NULL,
1613 				pktmbuf_pool[socketid]);
1614 			if (ret < 0)
1615 				rte_exit(EXIT_FAILURE,
1616 					"rte_eth_rx_queue_setup: err=%d, "
1617 						"port=%d\n", ret, portid);
1618 		}
1619 	}
1620 
1621 	printf("\n");
1622 
1623 	/* start ports */
1624 	for (portid = 0; portid < nb_ports; portid++) {
1625 		if ((enabled_port_mask & (1 << portid)) == 0) {
1626 			continue;
1627 		}
1628 		/* Start device */
1629 		ret = rte_eth_dev_start(portid);
1630 		if (ret < 0)
1631 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1632 						"port=%d\n", ret, portid);
1633 
1634 		/*
1635 		 * If enabled, put device in promiscuous mode.
1636 		 * This allows IO forwarding mode to forward packets
1637 		 * to itself through 2 cross-connected  ports of the
1638 		 * target machine.
1639 		 */
1640 		if (promiscuous_on)
1641 			rte_eth_promiscuous_enable(portid);
1642 	}
1643 
1644 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1645 
1646 	/* launch per-lcore init on every lcore */
1647 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1648 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1649 		if (rte_eal_wait_lcore(lcore_id) < 0)
1650 			return -1;
1651 	}
1652 
1653 	return 0;
1654 }
1655