1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <unistd.h> 45 #include <signal.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_ip.h> 72 #include <rte_tcp.h> 73 #include <rte_udp.h> 74 #include <rte_string_fns.h> 75 #include <rte_timer.h> 76 #include <rte_power.h> 77 78 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1 79 80 #define MAX_PKT_BURST 32 81 82 #define MIN_ZERO_POLL_COUNT 5 83 84 /* around 100ms at 2 Ghz */ 85 #define TIMER_RESOLUTION_CYCLES 200000000ULL 86 /* 100 ms interval */ 87 #define TIMER_NUMBER_PER_SECOND 10 88 /* 100000 us */ 89 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND) 90 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25 91 92 #define APP_LOOKUP_EXACT_MATCH 0 93 #define APP_LOOKUP_LPM 1 94 #define DO_RFC_1812_CHECKS 95 96 #ifndef APP_LOOKUP_METHOD 97 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 98 #endif 99 100 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 101 #include <rte_hash.h> 102 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 103 #include <rte_lpm.h> 104 #else 105 #error "APP_LOOKUP_METHOD set to incorrect value" 106 #endif 107 108 #ifndef IPv6_BYTES 109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 110 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 111 #define IPv6_BYTES(addr) \ 112 addr[0], addr[1], addr[2], addr[3], \ 113 addr[4], addr[5], addr[6], addr[7], \ 114 addr[8], addr[9], addr[10], addr[11],\ 115 addr[12], addr[13],addr[14], addr[15] 116 #endif 117 118 #define MAX_JUMBO_PKT_LEN 9600 119 120 #define IPV6_ADDR_LEN 16 121 122 #define MEMPOOL_CACHE_SIZE 256 123 124 /* 125 * This expression is used to calculate the number of mbufs needed depending on 126 * user input, taking into account memory for rx and tx hardware rings, cache 127 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 128 * NB_MBUF never goes below a minimum value of 8192. 129 */ 130 131 #define NB_MBUF RTE_MAX ( \ 132 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ 133 nb_ports*nb_lcores*MAX_PKT_BURST + \ 134 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ 135 nb_lcores*MEMPOOL_CACHE_SIZE), \ 136 (unsigned)8192) 137 138 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 139 140 #define NB_SOCKETS 8 141 142 /* Configure how many packets ahead to prefetch, when reading packets */ 143 #define PREFETCH_OFFSET 3 144 145 /* 146 * Configurable number of RX/TX ring descriptors 147 */ 148 #define RTE_TEST_RX_DESC_DEFAULT 128 149 #define RTE_TEST_TX_DESC_DEFAULT 512 150 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 151 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 152 153 /* ethernet addresses of ports */ 154 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 155 156 /* mask of enabled ports */ 157 static uint32_t enabled_port_mask = 0; 158 /* Ports set in promiscuous mode off by default. */ 159 static int promiscuous_on = 0; 160 /* NUMA is enabled by default. */ 161 static int numa_on = 1; 162 163 enum freq_scale_hint_t 164 { 165 FREQ_LOWER = -1, 166 FREQ_CURRENT = 0, 167 FREQ_HIGHER = 1, 168 FREQ_HIGHEST = 2 169 }; 170 171 struct mbuf_table { 172 uint16_t len; 173 struct rte_mbuf *m_table[MAX_PKT_BURST]; 174 }; 175 176 struct lcore_rx_queue { 177 uint8_t port_id; 178 uint8_t queue_id; 179 enum freq_scale_hint_t freq_up_hint; 180 uint32_t zero_rx_packet_count; 181 uint32_t idle_hint; 182 } __rte_cache_aligned; 183 184 #define MAX_RX_QUEUE_PER_LCORE 16 185 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 186 #define MAX_RX_QUEUE_PER_PORT 128 187 188 #define MAX_LCORE_PARAMS 1024 189 struct lcore_params { 190 uint8_t port_id; 191 uint8_t queue_id; 192 uint8_t lcore_id; 193 } __rte_cache_aligned; 194 195 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 196 static struct lcore_params lcore_params_array_default[] = { 197 {0, 0, 2}, 198 {0, 1, 2}, 199 {0, 2, 2}, 200 {1, 0, 2}, 201 {1, 1, 2}, 202 {1, 2, 2}, 203 {2, 0, 2}, 204 {3, 0, 3}, 205 {3, 1, 3}, 206 }; 207 208 static struct lcore_params * lcore_params = lcore_params_array_default; 209 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / 210 sizeof(lcore_params_array_default[0]); 211 212 static struct rte_eth_conf port_conf = { 213 .rxmode = { 214 .mq_mode = ETH_MQ_RX_RSS, 215 .max_rx_pkt_len = ETHER_MAX_LEN, 216 .split_hdr_size = 0, 217 .header_split = 0, /**< Header Split disabled */ 218 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 219 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 220 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 221 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 222 }, 223 .rx_adv_conf = { 224 .rss_conf = { 225 .rss_key = NULL, 226 .rss_hf = ETH_RSS_IP, 227 }, 228 }, 229 .txmode = { 230 .mq_mode = ETH_DCB_NONE, 231 }, 232 }; 233 234 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS]; 235 236 237 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 238 239 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 240 #include <rte_hash_crc.h> 241 #define DEFAULT_HASH_FUNC rte_hash_crc 242 #else 243 #include <rte_jhash.h> 244 #define DEFAULT_HASH_FUNC rte_jhash 245 #endif 246 247 struct ipv4_5tuple { 248 uint32_t ip_dst; 249 uint32_t ip_src; 250 uint16_t port_dst; 251 uint16_t port_src; 252 uint8_t proto; 253 } __attribute__((__packed__)); 254 255 struct ipv6_5tuple { 256 uint8_t ip_dst[IPV6_ADDR_LEN]; 257 uint8_t ip_src[IPV6_ADDR_LEN]; 258 uint16_t port_dst; 259 uint16_t port_src; 260 uint8_t proto; 261 } __attribute__((__packed__)); 262 263 struct ipv4_l3fwd_route { 264 struct ipv4_5tuple key; 265 uint8_t if_out; 266 }; 267 268 struct ipv6_l3fwd_route { 269 struct ipv6_5tuple key; 270 uint8_t if_out; 271 }; 272 273 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 274 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0}, 275 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1}, 276 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2}, 277 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3}, 278 }; 279 280 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 281 { 282 { 283 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 284 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 285 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 286 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a}, 287 1, 10, IPPROTO_UDP 288 }, 4 289 }, 290 }; 291 292 typedef struct rte_hash lookup_struct_t; 293 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 294 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 295 296 #define L3FWD_HASH_ENTRIES 1024 297 298 #define IPV4_L3FWD_NUM_ROUTES \ 299 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 300 301 #define IPV6_L3FWD_NUM_ROUTES \ 302 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0])) 303 304 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 305 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 306 #endif 307 308 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 309 struct ipv4_l3fwd_route { 310 uint32_t ip; 311 uint8_t depth; 312 uint8_t if_out; 313 }; 314 315 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 316 {IPv4(1,1,1,0), 24, 0}, 317 {IPv4(2,1,1,0), 24, 1}, 318 {IPv4(3,1,1,0), 24, 2}, 319 {IPv4(4,1,1,0), 24, 3}, 320 {IPv4(5,1,1,0), 24, 4}, 321 {IPv4(6,1,1,0), 24, 5}, 322 {IPv4(7,1,1,0), 24, 6}, 323 {IPv4(8,1,1,0), 24, 7}, 324 }; 325 326 #define IPV4_L3FWD_NUM_ROUTES \ 327 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0])) 328 329 #define IPV4_L3FWD_LPM_MAX_RULES 1024 330 331 typedef struct rte_lpm lookup_struct_t; 332 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 333 #endif 334 335 struct lcore_conf { 336 uint16_t n_rx_queue; 337 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 338 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 339 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 340 lookup_struct_t * ipv4_lookup_struct; 341 lookup_struct_t * ipv6_lookup_struct; 342 } __rte_cache_aligned; 343 344 struct lcore_stats { 345 /* total sleep time in ms since last frequency scaling down */ 346 uint32_t sleep_time; 347 /* number of long sleep recently */ 348 uint32_t nb_long_sleep; 349 /* freq. scaling up trend */ 350 uint32_t trend; 351 /* total packet processed recently */ 352 uint64_t nb_rx_processed; 353 /* total iterations looped recently */ 354 uint64_t nb_iteration_looped; 355 uint32_t padding[9]; 356 } __rte_cache_aligned; 357 358 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned; 359 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned; 360 static struct rte_timer power_timers[RTE_MAX_LCORE]; 361 362 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count); 363 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \ 364 unsigned lcore_id, uint8_t port_id, uint16_t queue_id); 365 366 /* exit signal handler */ 367 static void 368 signal_exit_now(int sigtype) 369 { 370 unsigned lcore_id; 371 int ret; 372 373 if (sigtype == SIGINT) { 374 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 375 if (rte_lcore_is_enabled(lcore_id) == 0) 376 continue; 377 378 /* init power management library */ 379 ret = rte_power_exit(lcore_id); 380 if (ret) 381 rte_exit(EXIT_FAILURE, "Power management " 382 "library de-initialization failed on " 383 "core%u\n", lcore_id); 384 } 385 } 386 387 rte_exit(EXIT_SUCCESS, "User forced exit\n"); 388 } 389 390 /* Freqency scale down timer callback */ 391 static void 392 power_timer_cb(__attribute__((unused)) struct rte_timer *tim, 393 __attribute__((unused)) void *arg) 394 { 395 uint64_t hz; 396 float sleep_time_ratio; 397 unsigned lcore_id = rte_lcore_id(); 398 399 /* accumulate total execution time in us when callback is invoked */ 400 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) / 401 (float)SCALING_PERIOD; 402 403 /** 404 * check whether need to scale down frequency a step if it sleep a lot. 405 */ 406 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) 407 rte_power_freq_down(lcore_id); 408 else if ( (unsigned)(stats[lcore_id].nb_rx_processed / 409 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) 410 /** 411 * scale down a step if average packet per iteration less 412 * than expectation. 413 */ 414 rte_power_freq_down(lcore_id); 415 416 /** 417 * initialize another timer according to current frequency to ensure 418 * timer interval is relatively fixed. 419 */ 420 hz = rte_get_timer_hz(); 421 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, 422 SINGLE, lcore_id, power_timer_cb, NULL); 423 424 stats[lcore_id].nb_rx_processed = 0; 425 stats[lcore_id].nb_iteration_looped = 0; 426 427 stats[lcore_id].sleep_time = 0; 428 } 429 430 /* Send burst of packets on an output interface */ 431 static inline int 432 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) 433 { 434 struct rte_mbuf **m_table; 435 int ret; 436 uint16_t queueid; 437 438 queueid = qconf->tx_queue_id[port]; 439 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 440 441 ret = rte_eth_tx_burst(port, queueid, m_table, n); 442 if (unlikely(ret < n)) { 443 do { 444 rte_pktmbuf_free(m_table[ret]); 445 } while (++ret < n); 446 } 447 448 return 0; 449 } 450 451 /* Enqueue a single packet, and send burst if queue is filled */ 452 static inline int 453 send_single_packet(struct rte_mbuf *m, uint8_t port) 454 { 455 uint32_t lcore_id; 456 uint16_t len; 457 struct lcore_conf *qconf; 458 459 lcore_id = rte_lcore_id(); 460 461 qconf = &lcore_conf[lcore_id]; 462 len = qconf->tx_mbufs[port].len; 463 qconf->tx_mbufs[port].m_table[len] = m; 464 len++; 465 466 /* enough pkts to be sent */ 467 if (unlikely(len == MAX_PKT_BURST)) { 468 send_burst(qconf, MAX_PKT_BURST, port); 469 len = 0; 470 } 471 472 qconf->tx_mbufs[port].len = len; 473 return 0; 474 } 475 476 #ifdef DO_RFC_1812_CHECKS 477 static inline int 478 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 479 { 480 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 481 /* 482 * 1. The packet length reported by the Link Layer must be large 483 * enough to hold the minimum length legal IP datagram (20 bytes). 484 */ 485 if (link_len < sizeof(struct ipv4_hdr)) 486 return -1; 487 488 /* 2. The IP checksum must be correct. */ 489 /* this is checked in H/W */ 490 491 /* 492 * 3. The IP version number must be 4. If the version number is not 4 493 * then the packet may be another version of IP, such as IPng or 494 * ST-II. 495 */ 496 if (((pkt->version_ihl) >> 4) != 4) 497 return -3; 498 /* 499 * 4. The IP header length field must be large enough to hold the 500 * minimum length legal IP datagram (20 bytes = 5 words). 501 */ 502 if ((pkt->version_ihl & 0xf) < 5) 503 return -4; 504 505 /* 506 * 5. The IP total length field must be large enough to hold the IP 507 * datagram header, whose length is specified in the IP header length 508 * field. 509 */ 510 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 511 return -5; 512 513 return 0; 514 } 515 #endif 516 517 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 518 static void 519 print_ipv4_key(struct ipv4_5tuple key) 520 { 521 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, " 522 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src, 523 key.port_dst, key.port_src, key.proto); 524 } 525 static void 526 print_ipv6_key(struct ipv6_5tuple key) 527 { 528 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", " 529 "port dst = %d, port src = %d, proto = %d\n", 530 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src), 531 key.port_dst, key.port_src, key.proto); 532 } 533 534 static inline uint8_t 535 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 536 lookup_struct_t * ipv4_l3fwd_lookup_struct) 537 { 538 struct ipv4_5tuple key; 539 struct tcp_hdr *tcp; 540 struct udp_hdr *udp; 541 int ret = 0; 542 543 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr); 544 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr); 545 key.proto = ipv4_hdr->next_proto_id; 546 547 switch (ipv4_hdr->next_proto_id) { 548 case IPPROTO_TCP: 549 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr + 550 sizeof(struct ipv4_hdr)); 551 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 552 key.port_src = rte_be_to_cpu_16(tcp->src_port); 553 break; 554 555 case IPPROTO_UDP: 556 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr + 557 sizeof(struct ipv4_hdr)); 558 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 559 key.port_src = rte_be_to_cpu_16(udp->src_port); 560 break; 561 562 default: 563 key.port_dst = 0; 564 key.port_src = 0; 565 break; 566 } 567 568 /* Find destination port */ 569 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 570 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]); 571 } 572 573 static inline uint8_t 574 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, 575 lookup_struct_t *ipv6_l3fwd_lookup_struct) 576 { 577 struct ipv6_5tuple key; 578 struct tcp_hdr *tcp; 579 struct udp_hdr *udp; 580 int ret = 0; 581 582 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN); 583 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN); 584 585 key.proto = ipv6_hdr->proto; 586 587 switch (ipv6_hdr->proto) { 588 case IPPROTO_TCP: 589 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr + 590 sizeof(struct ipv6_hdr)); 591 key.port_dst = rte_be_to_cpu_16(tcp->dst_port); 592 key.port_src = rte_be_to_cpu_16(tcp->src_port); 593 break; 594 595 case IPPROTO_UDP: 596 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr + 597 sizeof(struct ipv6_hdr)); 598 key.port_dst = rte_be_to_cpu_16(udp->dst_port); 599 key.port_src = rte_be_to_cpu_16(udp->src_port); 600 break; 601 602 default: 603 key.port_dst = 0; 604 key.port_src = 0; 605 break; 606 } 607 608 /* Find destination port */ 609 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 610 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]); 611 } 612 #endif 613 614 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 615 static inline uint8_t 616 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, 617 lookup_struct_t *ipv4_l3fwd_lookup_struct) 618 { 619 uint8_t next_hop; 620 621 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 622 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? 623 next_hop : portid); 624 } 625 #endif 626 627 static inline void 628 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, 629 struct lcore_conf *qconf) 630 { 631 struct ether_hdr *eth_hdr; 632 struct ipv4_hdr *ipv4_hdr; 633 void *d_addr_bytes; 634 uint8_t dst_port; 635 636 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 637 638 if (m->ol_flags & PKT_RX_IPV4_HDR) { 639 /* Handle IPv4 headers.*/ 640 ipv4_hdr = 641 (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 642 + sizeof(struct ether_hdr)); 643 644 #ifdef DO_RFC_1812_CHECKS 645 /* Check to make sure the packet is valid (RFC1812) */ 646 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 647 rte_pktmbuf_free(m); 648 return; 649 } 650 #endif 651 652 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 653 qconf->ipv4_lookup_struct); 654 if (dst_port >= RTE_MAX_ETHPORTS || 655 (enabled_port_mask & 1 << dst_port) == 0) 656 dst_port = portid; 657 658 /* 02:00:00:00:00:xx */ 659 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 660 *((uint64_t *)d_addr_bytes) = 661 0x000000000002 + ((uint64_t)dst_port << 40); 662 663 #ifdef DO_RFC_1812_CHECKS 664 /* Update time to live and header checksum */ 665 --(ipv4_hdr->time_to_live); 666 ++(ipv4_hdr->hdr_checksum); 667 #endif 668 669 /* src addr */ 670 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 671 672 send_single_packet(m, dst_port); 673 } 674 else { 675 /* Handle IPv6 headers.*/ 676 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 677 struct ipv6_hdr *ipv6_hdr; 678 679 ipv6_hdr = 680 (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*) 681 + sizeof(struct ether_hdr)); 682 683 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 684 qconf->ipv6_lookup_struct); 685 686 if (dst_port >= RTE_MAX_ETHPORTS || 687 (enabled_port_mask & 1 << dst_port) == 0) 688 dst_port = portid; 689 690 /* 02:00:00:00:00:xx */ 691 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 692 *((uint64_t *)d_addr_bytes) = 693 0x000000000002 + ((uint64_t)dst_port << 40); 694 695 /* src addr */ 696 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 697 698 send_single_packet(m, dst_port); 699 #else 700 /* We don't currently handle IPv6 packets in LPM mode. */ 701 rte_pktmbuf_free(m); 702 #endif 703 } 704 705 } 706 707 #define SLEEP_GEAR1_THRESHOLD 100 708 #define SLEEP_GEAR2_THRESHOLD 1000 709 710 static inline uint32_t 711 power_idle_heuristic(uint32_t zero_rx_packet_count) 712 { 713 /* If zero count is less than 100, use it as the sleep time in us */ 714 if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD) 715 return zero_rx_packet_count; 716 /* If zero count is less than 1000, sleep time should be 100 us */ 717 else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) && 718 (zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD)) 719 return SLEEP_GEAR1_THRESHOLD; 720 /* If zero count is greater than 1000, sleep time should be 1000 us */ 721 else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD) 722 return SLEEP_GEAR2_THRESHOLD; 723 724 return 0; 725 } 726 727 static inline enum freq_scale_hint_t 728 power_freq_scaleup_heuristic(unsigned lcore_id, 729 uint8_t port_id, 730 uint16_t queue_id) 731 { 732 /** 733 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries 734 * per iteration 735 */ 736 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST 737 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2) 738 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3) 739 #define FREQ_UP_TREND1_ACC 1 740 #define FREQ_UP_TREND2_ACC 100 741 #define FREQ_UP_THRESHOLD 10000 742 743 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 744 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) { 745 stats[lcore_id].trend = 0; 746 return FREQ_HIGHEST; 747 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 748 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0)) 749 stats[lcore_id].trend += FREQ_UP_TREND2_ACC; 750 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id, 751 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0)) 752 stats[lcore_id].trend += FREQ_UP_TREND1_ACC; 753 754 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) { 755 stats[lcore_id].trend = 0; 756 return FREQ_HIGHER; 757 } 758 759 return FREQ_CURRENT; 760 } 761 762 /* main processing loop */ 763 static int 764 main_loop(__attribute__((unused)) void *dummy) 765 { 766 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 767 unsigned lcore_id; 768 uint64_t prev_tsc, diff_tsc, cur_tsc; 769 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power; 770 int i, j, nb_rx; 771 uint8_t portid, queueid; 772 struct lcore_conf *qconf; 773 struct lcore_rx_queue *rx_queue; 774 enum freq_scale_hint_t lcore_scaleup_hint; 775 776 uint32_t lcore_rx_idle_count = 0; 777 uint32_t lcore_idle_hint = 0; 778 779 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 780 781 prev_tsc = 0; 782 783 lcore_id = rte_lcore_id(); 784 qconf = &lcore_conf[lcore_id]; 785 786 if (qconf->n_rx_queue == 0) { 787 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id); 788 return 0; 789 } 790 791 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id); 792 793 for (i = 0; i < qconf->n_rx_queue; i++) { 794 795 portid = qconf->rx_queue_list[i].port_id; 796 queueid = qconf->rx_queue_list[i].queue_id; 797 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu " 798 "rxqueueid=%hhu\n", lcore_id, portid, queueid); 799 } 800 801 while (1) { 802 stats[lcore_id].nb_iteration_looped++; 803 804 cur_tsc = rte_rdtsc(); 805 cur_tsc_power = cur_tsc; 806 807 /* 808 * TX burst queue drain 809 */ 810 diff_tsc = cur_tsc - prev_tsc; 811 if (unlikely(diff_tsc > drain_tsc)) { 812 813 /* 814 * This could be optimized (use queueid instead of 815 * portid), but it is not called so often 816 */ 817 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 818 if (qconf->tx_mbufs[portid].len == 0) 819 continue; 820 send_burst(&lcore_conf[lcore_id], 821 qconf->tx_mbufs[portid].len, 822 portid); 823 qconf->tx_mbufs[portid].len = 0; 824 } 825 826 prev_tsc = cur_tsc; 827 } 828 829 diff_tsc_power = cur_tsc_power - prev_tsc_power; 830 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) { 831 rte_timer_manage(); 832 prev_tsc_power = cur_tsc_power; 833 } 834 835 /* 836 * Read packet from RX queues 837 */ 838 lcore_scaleup_hint = FREQ_CURRENT; 839 lcore_rx_idle_count = 0; 840 for (i = 0; i < qconf->n_rx_queue; ++i) { 841 rx_queue = &(qconf->rx_queue_list[i]); 842 rx_queue->idle_hint = 0; 843 portid = rx_queue->port_id; 844 queueid = rx_queue->queue_id; 845 846 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 847 MAX_PKT_BURST); 848 stats[lcore_id].nb_rx_processed += nb_rx; 849 if (unlikely(nb_rx == 0)) { 850 /** 851 * no packet received from rx queue, try to 852 * sleep for a while forcing CPU enter deeper 853 * C states. 854 */ 855 rx_queue->zero_rx_packet_count++; 856 857 if (rx_queue->zero_rx_packet_count <= 858 MIN_ZERO_POLL_COUNT) 859 continue; 860 861 rx_queue->idle_hint = power_idle_heuristic(\ 862 rx_queue->zero_rx_packet_count); 863 lcore_rx_idle_count++; 864 } else { 865 rx_queue->zero_rx_packet_count = 0; 866 867 /** 868 * do not scale up frequency immediately as 869 * user to kernel space communication is costly 870 * which might impact packet I/O for received 871 * packets. 872 */ 873 rx_queue->freq_up_hint = 874 power_freq_scaleup_heuristic(lcore_id, 875 portid, queueid); 876 } 877 878 /* Prefetch first packets */ 879 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 880 rte_prefetch0(rte_pktmbuf_mtod( 881 pkts_burst[j], void *)); 882 } 883 884 /* Prefetch and forward already prefetched packets */ 885 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 886 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 887 j + PREFETCH_OFFSET], void *)); 888 l3fwd_simple_forward(pkts_burst[j], portid, 889 qconf); 890 } 891 892 /* Forward remaining prefetched packets */ 893 for (; j < nb_rx; j++) { 894 l3fwd_simple_forward(pkts_burst[j], portid, 895 qconf); 896 } 897 } 898 899 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) { 900 for (i = 1, lcore_scaleup_hint = 901 qconf->rx_queue_list[0].freq_up_hint; 902 i < qconf->n_rx_queue; ++i) { 903 rx_queue = &(qconf->rx_queue_list[i]); 904 if (rx_queue->freq_up_hint > 905 lcore_scaleup_hint) 906 lcore_scaleup_hint = 907 rx_queue->freq_up_hint; 908 } 909 910 if (lcore_scaleup_hint == FREQ_HIGHEST) 911 rte_power_freq_max(lcore_id); 912 else if (lcore_scaleup_hint == FREQ_HIGHER) 913 rte_power_freq_up(lcore_id); 914 } else { 915 /** 916 * All Rx queues empty in recent consecutive polls, 917 * sleep in a conservative manner, meaning sleep as 918 * less as possible. 919 */ 920 for (i = 1, lcore_idle_hint = 921 qconf->rx_queue_list[0].idle_hint; 922 i < qconf->n_rx_queue; ++i) { 923 rx_queue = &(qconf->rx_queue_list[i]); 924 if (rx_queue->idle_hint < lcore_idle_hint) 925 lcore_idle_hint = rx_queue->idle_hint; 926 } 927 928 if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD) 929 /** 930 * execute "pause" instruction to avoid context 931 * switch for short sleep. 932 */ 933 rte_delay_us(lcore_idle_hint); 934 else 935 /* long sleep force runing thread to suspend */ 936 usleep(lcore_idle_hint); 937 938 stats[lcore_id].sleep_time += lcore_idle_hint; 939 } 940 } 941 } 942 943 static int 944 check_lcore_params(void) 945 { 946 uint8_t queue, lcore; 947 uint16_t i; 948 int socketid; 949 950 for (i = 0; i < nb_lcore_params; ++i) { 951 queue = lcore_params[i].queue_id; 952 if (queue >= MAX_RX_QUEUE_PER_PORT) { 953 printf("invalid queue number: %hhu\n", queue); 954 return -1; 955 } 956 lcore = lcore_params[i].lcore_id; 957 if (!rte_lcore_is_enabled(lcore)) { 958 printf("error: lcore %hhu is not enabled in lcore " 959 "mask\n", lcore); 960 return -1; 961 } 962 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && 963 (numa_on == 0)) { 964 printf("warning: lcore %hhu is on socket %d with numa " 965 "off\n", lcore, socketid); 966 } 967 } 968 return 0; 969 } 970 971 static int 972 check_port_config(const unsigned nb_ports) 973 { 974 unsigned portid; 975 uint16_t i; 976 977 for (i = 0; i < nb_lcore_params; ++i) { 978 portid = lcore_params[i].port_id; 979 if ((enabled_port_mask & (1 << portid)) == 0) { 980 printf("port %u is not enabled in port mask\n", 981 portid); 982 return -1; 983 } 984 if (portid >= nb_ports) { 985 printf("port %u is not present on the board\n", 986 portid); 987 return -1; 988 } 989 } 990 return 0; 991 } 992 993 static uint8_t 994 get_port_n_rx_queues(const uint8_t port) 995 { 996 int queue = -1; 997 uint16_t i; 998 999 for (i = 0; i < nb_lcore_params; ++i) { 1000 if (lcore_params[i].port_id == port && 1001 lcore_params[i].queue_id > queue) 1002 queue = lcore_params[i].queue_id; 1003 } 1004 return (uint8_t)(++queue); 1005 } 1006 1007 static int 1008 init_lcore_rx_queues(void) 1009 { 1010 uint16_t i, nb_rx_queue; 1011 uint8_t lcore; 1012 1013 for (i = 0; i < nb_lcore_params; ++i) { 1014 lcore = lcore_params[i].lcore_id; 1015 nb_rx_queue = lcore_conf[lcore].n_rx_queue; 1016 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1017 printf("error: too many queues (%u) for lcore: %u\n", 1018 (unsigned)nb_rx_queue + 1, (unsigned)lcore); 1019 return -1; 1020 } else { 1021 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1022 lcore_params[i].port_id; 1023 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1024 lcore_params[i].queue_id; 1025 lcore_conf[lcore].n_rx_queue++; 1026 } 1027 } 1028 return 0; 1029 } 1030 1031 /* display usage */ 1032 static void 1033 print_usage(const char *prgname) 1034 { 1035 printf ("%s [EAL options] -- -p PORTMASK -P" 1036 " [--config (port,queue,lcore)[,(port,queue,lcore]]" 1037 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 1038 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 1039 " -P : enable promiscuous mode\n" 1040 " --config (port,queue,lcore): rx queues configuration\n" 1041 " --no-numa: optional, disable numa awareness\n" 1042 " --enable-jumbo: enable jumbo frame" 1043 " which max packet len is PKTLEN in decimal (64-9600)\n", 1044 prgname); 1045 } 1046 1047 static int parse_max_pkt_len(const char *pktlen) 1048 { 1049 char *end = NULL; 1050 unsigned long len; 1051 1052 /* parse decimal string */ 1053 len = strtoul(pktlen, &end, 10); 1054 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 1055 return -1; 1056 1057 if (len == 0) 1058 return -1; 1059 1060 return len; 1061 } 1062 1063 static int 1064 parse_portmask(const char *portmask) 1065 { 1066 char *end = NULL; 1067 unsigned long pm; 1068 1069 /* parse hexadecimal string */ 1070 pm = strtoul(portmask, &end, 16); 1071 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1072 return -1; 1073 1074 if (pm == 0) 1075 return -1; 1076 1077 return pm; 1078 } 1079 1080 static int 1081 parse_config(const char *q_arg) 1082 { 1083 char s[256]; 1084 const char *p, *p0 = q_arg; 1085 char *end; 1086 enum fieldnames { 1087 FLD_PORT = 0, 1088 FLD_QUEUE, 1089 FLD_LCORE, 1090 _NUM_FLD 1091 }; 1092 unsigned long int_fld[_NUM_FLD]; 1093 char *str_fld[_NUM_FLD]; 1094 int i; 1095 unsigned size; 1096 1097 nb_lcore_params = 0; 1098 1099 while ((p = strchr(p0,'(')) != NULL) { 1100 ++p; 1101 if((p0 = strchr(p,')')) == NULL) 1102 return -1; 1103 1104 size = p0 - p; 1105 if(size >= sizeof(s)) 1106 return -1; 1107 1108 snprintf(s, sizeof(s), "%.*s", size, p); 1109 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1110 _NUM_FLD) 1111 return -1; 1112 for (i = 0; i < _NUM_FLD; i++){ 1113 errno = 0; 1114 int_fld[i] = strtoul(str_fld[i], &end, 0); 1115 if (errno != 0 || end == str_fld[i] || int_fld[i] > 1116 255) 1117 return -1; 1118 } 1119 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1120 printf("exceeded max number of lcore params: %hu\n", 1121 nb_lcore_params); 1122 return -1; 1123 } 1124 lcore_params_array[nb_lcore_params].port_id = 1125 (uint8_t)int_fld[FLD_PORT]; 1126 lcore_params_array[nb_lcore_params].queue_id = 1127 (uint8_t)int_fld[FLD_QUEUE]; 1128 lcore_params_array[nb_lcore_params].lcore_id = 1129 (uint8_t)int_fld[FLD_LCORE]; 1130 ++nb_lcore_params; 1131 } 1132 lcore_params = lcore_params_array; 1133 1134 return 0; 1135 } 1136 1137 /* Parse the argument given in the command line of the application */ 1138 static int 1139 parse_args(int argc, char **argv) 1140 { 1141 int opt, ret; 1142 char **argvopt; 1143 int option_index; 1144 char *prgname = argv[0]; 1145 static struct option lgopts[] = { 1146 {"config", 1, 0, 0}, 1147 {"no-numa", 0, 0, 0}, 1148 {"enable-jumbo", 0, 0, 0}, 1149 {NULL, 0, 0, 0} 1150 }; 1151 1152 argvopt = argv; 1153 1154 while ((opt = getopt_long(argc, argvopt, "p:P", 1155 lgopts, &option_index)) != EOF) { 1156 1157 switch (opt) { 1158 /* portmask */ 1159 case 'p': 1160 enabled_port_mask = parse_portmask(optarg); 1161 if (enabled_port_mask == 0) { 1162 printf("invalid portmask\n"); 1163 print_usage(prgname); 1164 return -1; 1165 } 1166 break; 1167 case 'P': 1168 printf("Promiscuous mode selected\n"); 1169 promiscuous_on = 1; 1170 break; 1171 1172 /* long options */ 1173 case 0: 1174 if (!strncmp(lgopts[option_index].name, "config", 6)) { 1175 ret = parse_config(optarg); 1176 if (ret) { 1177 printf("invalid config\n"); 1178 print_usage(prgname); 1179 return -1; 1180 } 1181 } 1182 1183 if (!strncmp(lgopts[option_index].name, 1184 "no-numa", 7)) { 1185 printf("numa is disabled \n"); 1186 numa_on = 0; 1187 } 1188 1189 if (!strncmp(lgopts[option_index].name, 1190 "enable-jumbo", 12)) { 1191 struct option lenopts = 1192 {"max-pkt-len", required_argument, \ 1193 0, 0}; 1194 1195 printf("jumbo frame is enabled \n"); 1196 port_conf.rxmode.jumbo_frame = 1; 1197 1198 /** 1199 * if no max-pkt-len set, use the default value 1200 * ETHER_MAX_LEN 1201 */ 1202 if (0 == getopt_long(argc, argvopt, "", 1203 &lenopts, &option_index)) { 1204 ret = parse_max_pkt_len(optarg); 1205 if ((ret < 64) || 1206 (ret > MAX_JUMBO_PKT_LEN)){ 1207 printf("invalid packet " 1208 "length\n"); 1209 print_usage(prgname); 1210 return -1; 1211 } 1212 port_conf.rxmode.max_rx_pkt_len = ret; 1213 } 1214 printf("set jumbo frame " 1215 "max packet length to %u\n", 1216 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 1217 } 1218 1219 break; 1220 1221 default: 1222 print_usage(prgname); 1223 return -1; 1224 } 1225 } 1226 1227 if (optind >= 0) 1228 argv[optind-1] = prgname; 1229 1230 ret = optind-1; 1231 optind = 0; /* reset getopt lib */ 1232 return ret; 1233 } 1234 1235 static void 1236 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 1237 { 1238 char buf[ETHER_ADDR_FMT_SIZE]; 1239 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 1240 printf("%s%s", name, buf); 1241 } 1242 1243 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1244 static void 1245 setup_hash(int socketid) 1246 { 1247 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 1248 .name = NULL, 1249 .entries = L3FWD_HASH_ENTRIES, 1250 .bucket_entries = 4, 1251 .key_len = sizeof(struct ipv4_5tuple), 1252 .hash_func = DEFAULT_HASH_FUNC, 1253 .hash_func_init_val = 0, 1254 }; 1255 1256 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 1257 .name = NULL, 1258 .entries = L3FWD_HASH_ENTRIES, 1259 .bucket_entries = 4, 1260 .key_len = sizeof(struct ipv6_5tuple), 1261 .hash_func = DEFAULT_HASH_FUNC, 1262 .hash_func_init_val = 0, 1263 }; 1264 1265 unsigned i; 1266 int ret; 1267 char s[64]; 1268 1269 /* create ipv4 hash */ 1270 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 1271 ipv4_l3fwd_hash_params.name = s; 1272 ipv4_l3fwd_hash_params.socket_id = socketid; 1273 ipv4_l3fwd_lookup_struct[socketid] = 1274 rte_hash_create(&ipv4_l3fwd_hash_params); 1275 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1276 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1277 "socket %d\n", socketid); 1278 1279 /* create ipv6 hash */ 1280 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 1281 ipv6_l3fwd_hash_params.name = s; 1282 ipv6_l3fwd_hash_params.socket_id = socketid; 1283 ipv6_l3fwd_lookup_struct[socketid] = 1284 rte_hash_create(&ipv6_l3fwd_hash_params); 1285 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 1286 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 1287 "socket %d\n", socketid); 1288 1289 1290 /* populate the ipv4 hash */ 1291 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1292 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid], 1293 (void *) &ipv4_l3fwd_route_array[i].key); 1294 if (ret < 0) { 1295 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1296 "l3fwd hash on socket %d\n", i, socketid); 1297 } 1298 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out; 1299 printf("Hash: Adding key\n"); 1300 print_ipv4_key(ipv4_l3fwd_route_array[i].key); 1301 } 1302 1303 /* populate the ipv6 hash */ 1304 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 1305 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid], 1306 (void *) &ipv6_l3fwd_route_array[i].key); 1307 if (ret < 0) { 1308 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the" 1309 "l3fwd hash on socket %d\n", i, socketid); 1310 } 1311 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out; 1312 printf("Hash: Adding key\n"); 1313 print_ipv6_key(ipv6_l3fwd_route_array[i].key); 1314 } 1315 } 1316 #endif 1317 1318 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1319 static void 1320 setup_lpm(int socketid) 1321 { 1322 unsigned i; 1323 int ret; 1324 char s[64]; 1325 1326 /* create the LPM table */ 1327 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 1328 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, 1329 IPV4_L3FWD_LPM_MAX_RULES, 0); 1330 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 1331 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 1332 " on socket %d\n", socketid); 1333 1334 /* populate the LPM table */ 1335 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 1336 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 1337 ipv4_l3fwd_route_array[i].ip, 1338 ipv4_l3fwd_route_array[i].depth, 1339 ipv4_l3fwd_route_array[i].if_out); 1340 1341 if (ret < 0) { 1342 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 1343 "l3fwd LPM table on socket %d\n", 1344 i, socketid); 1345 } 1346 1347 printf("LPM: Adding route 0x%08x / %d (%d)\n", 1348 (unsigned)ipv4_l3fwd_route_array[i].ip, 1349 ipv4_l3fwd_route_array[i].depth, 1350 ipv4_l3fwd_route_array[i].if_out); 1351 } 1352 } 1353 #endif 1354 1355 static int 1356 init_mem(unsigned nb_mbuf) 1357 { 1358 struct lcore_conf *qconf; 1359 int socketid; 1360 unsigned lcore_id; 1361 char s[64]; 1362 1363 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1364 if (rte_lcore_is_enabled(lcore_id) == 0) 1365 continue; 1366 1367 if (numa_on) 1368 socketid = rte_lcore_to_socket_id(lcore_id); 1369 else 1370 socketid = 0; 1371 1372 if (socketid >= NB_SOCKETS) { 1373 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is " 1374 "out of range %d\n", socketid, 1375 lcore_id, NB_SOCKETS); 1376 } 1377 if (pktmbuf_pool[socketid] == NULL) { 1378 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 1379 pktmbuf_pool[socketid] = 1380 rte_pktmbuf_pool_create(s, nb_mbuf, 1381 MEMPOOL_CACHE_SIZE, 0, 1382 RTE_MBUF_DEFAULT_BUF_SIZE, 1383 socketid); 1384 if (pktmbuf_pool[socketid] == NULL) 1385 rte_exit(EXIT_FAILURE, 1386 "Cannot init mbuf pool on socket %d\n", 1387 socketid); 1388 else 1389 printf("Allocated mbuf pool on socket %d\n", 1390 socketid); 1391 1392 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1393 setup_lpm(socketid); 1394 #else 1395 setup_hash(socketid); 1396 #endif 1397 } 1398 qconf = &lcore_conf[lcore_id]; 1399 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 1400 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1401 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 1402 #endif 1403 } 1404 return 0; 1405 } 1406 1407 /* Check the link status of all ports in up to 9s, and print them finally */ 1408 static void 1409 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1410 { 1411 #define CHECK_INTERVAL 100 /* 100ms */ 1412 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1413 uint8_t portid, count, all_ports_up, print_flag = 0; 1414 struct rte_eth_link link; 1415 1416 printf("\nChecking link status"); 1417 fflush(stdout); 1418 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1419 all_ports_up = 1; 1420 for (portid = 0; portid < port_num; portid++) { 1421 if ((port_mask & (1 << portid)) == 0) 1422 continue; 1423 memset(&link, 0, sizeof(link)); 1424 rte_eth_link_get_nowait(portid, &link); 1425 /* print link status if flag set */ 1426 if (print_flag == 1) { 1427 if (link.link_status) 1428 printf("Port %d Link Up - speed %u " 1429 "Mbps - %s\n", (uint8_t)portid, 1430 (unsigned)link.link_speed, 1431 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1432 ("full-duplex") : ("half-duplex\n")); 1433 else 1434 printf("Port %d Link Down\n", 1435 (uint8_t)portid); 1436 continue; 1437 } 1438 /* clear all_ports_up flag if any link down */ 1439 if (link.link_status == 0) { 1440 all_ports_up = 0; 1441 break; 1442 } 1443 } 1444 /* after finally printing all link status, get out */ 1445 if (print_flag == 1) 1446 break; 1447 1448 if (all_ports_up == 0) { 1449 printf("."); 1450 fflush(stdout); 1451 rte_delay_ms(CHECK_INTERVAL); 1452 } 1453 1454 /* set the print_flag if all ports up or timeout */ 1455 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1456 print_flag = 1; 1457 printf("done\n"); 1458 } 1459 } 1460 } 1461 1462 int 1463 main(int argc, char **argv) 1464 { 1465 struct lcore_conf *qconf; 1466 struct rte_eth_dev_info dev_info; 1467 struct rte_eth_txconf *txconf; 1468 int ret; 1469 unsigned nb_ports; 1470 uint16_t queueid; 1471 unsigned lcore_id; 1472 uint64_t hz; 1473 uint32_t n_tx_queue, nb_lcores; 1474 uint8_t portid, nb_rx_queue, queue, socketid; 1475 1476 /* catch SIGINT and restore cpufreq governor to ondemand */ 1477 signal(SIGINT, signal_exit_now); 1478 1479 /* init EAL */ 1480 ret = rte_eal_init(argc, argv); 1481 if (ret < 0) 1482 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1483 argc -= ret; 1484 argv += ret; 1485 1486 /* init RTE timer library to be used late */ 1487 rte_timer_subsystem_init(); 1488 1489 /* parse application arguments (after the EAL ones) */ 1490 ret = parse_args(argc, argv); 1491 if (ret < 0) 1492 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 1493 1494 if (check_lcore_params() < 0) 1495 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 1496 1497 ret = init_lcore_rx_queues(); 1498 if (ret < 0) 1499 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 1500 1501 1502 nb_ports = rte_eth_dev_count(); 1503 if (nb_ports > RTE_MAX_ETHPORTS) 1504 nb_ports = RTE_MAX_ETHPORTS; 1505 1506 if (check_port_config(nb_ports) < 0) 1507 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 1508 1509 nb_lcores = rte_lcore_count(); 1510 1511 /* initialize all ports */ 1512 for (portid = 0; portid < nb_ports; portid++) { 1513 /* skip ports that are not enabled */ 1514 if ((enabled_port_mask & (1 << portid)) == 0) { 1515 printf("\nSkipping disabled port %d\n", portid); 1516 continue; 1517 } 1518 1519 /* init port */ 1520 printf("Initializing port %d ... ", portid ); 1521 fflush(stdout); 1522 1523 nb_rx_queue = get_port_n_rx_queues(portid); 1524 n_tx_queue = nb_lcores; 1525 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1526 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1527 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 1528 nb_rx_queue, (unsigned)n_tx_queue ); 1529 ret = rte_eth_dev_configure(portid, nb_rx_queue, 1530 (uint16_t)n_tx_queue, &port_conf); 1531 if (ret < 0) 1532 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1533 "err=%d, port=%d\n", ret, portid); 1534 1535 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1536 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1537 printf(", "); 1538 1539 /* init memory */ 1540 ret = init_mem(NB_MBUF); 1541 if (ret < 0) 1542 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 1543 1544 /* init one TX queue per couple (lcore,port) */ 1545 queueid = 0; 1546 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1547 if (rte_lcore_is_enabled(lcore_id) == 0) 1548 continue; 1549 1550 if (numa_on) 1551 socketid = \ 1552 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1553 else 1554 socketid = 0; 1555 1556 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 1557 fflush(stdout); 1558 1559 rte_eth_dev_info_get(portid, &dev_info); 1560 txconf = &dev_info.default_txconf; 1561 if (port_conf.rxmode.jumbo_frame) 1562 txconf->txq_flags = 0; 1563 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1564 socketid, txconf); 1565 if (ret < 0) 1566 rte_exit(EXIT_FAILURE, 1567 "rte_eth_tx_queue_setup: err=%d, " 1568 "port=%d\n", ret, portid); 1569 1570 qconf = &lcore_conf[lcore_id]; 1571 qconf->tx_queue_id[portid] = queueid; 1572 queueid++; 1573 } 1574 printf("\n"); 1575 } 1576 1577 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1578 if (rte_lcore_is_enabled(lcore_id) == 0) 1579 continue; 1580 1581 /* init power management library */ 1582 ret = rte_power_init(lcore_id); 1583 if (ret) 1584 rte_exit(EXIT_FAILURE, "Power management library " 1585 "initialization failed on core%u\n", lcore_id); 1586 1587 /* init timer structures for each enabled lcore */ 1588 rte_timer_init(&power_timers[lcore_id]); 1589 hz = rte_get_timer_hz(); 1590 rte_timer_reset(&power_timers[lcore_id], 1591 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, 1592 power_timer_cb, NULL); 1593 1594 qconf = &lcore_conf[lcore_id]; 1595 printf("\nInitializing rx queues on lcore %u ... ", lcore_id ); 1596 fflush(stdout); 1597 /* init RX queues */ 1598 for(queue = 0; queue < qconf->n_rx_queue; ++queue) { 1599 portid = qconf->rx_queue_list[queue].port_id; 1600 queueid = qconf->rx_queue_list[queue].queue_id; 1601 1602 if (numa_on) 1603 socketid = \ 1604 (uint8_t)rte_lcore_to_socket_id(lcore_id); 1605 else 1606 socketid = 0; 1607 1608 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 1609 fflush(stdout); 1610 1611 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 1612 socketid, NULL, 1613 pktmbuf_pool[socketid]); 1614 if (ret < 0) 1615 rte_exit(EXIT_FAILURE, 1616 "rte_eth_rx_queue_setup: err=%d, " 1617 "port=%d\n", ret, portid); 1618 } 1619 } 1620 1621 printf("\n"); 1622 1623 /* start ports */ 1624 for (portid = 0; portid < nb_ports; portid++) { 1625 if ((enabled_port_mask & (1 << portid)) == 0) { 1626 continue; 1627 } 1628 /* Start device */ 1629 ret = rte_eth_dev_start(portid); 1630 if (ret < 0) 1631 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, " 1632 "port=%d\n", ret, portid); 1633 1634 /* 1635 * If enabled, put device in promiscuous mode. 1636 * This allows IO forwarding mode to forward packets 1637 * to itself through 2 cross-connected ports of the 1638 * target machine. 1639 */ 1640 if (promiscuous_on) 1641 rte_eth_promiscuous_enable(portid); 1642 } 1643 1644 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1645 1646 /* launch per-lcore init on every lcore */ 1647 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1648 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1649 if (rte_eal_wait_lcore(lcore_id) < 0) 1650 return -1; 1651 } 1652 1653 return 0; 1654 } 1655