xref: /dpdk/examples/l2fwd-crypto/main.c (revision e2cdfbd07c8aad0dfd0d3159adddba1e80c57fdc)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_IV_SIZE 16
90 #define MAX_AAD_SIZE 65535
91 #define MAX_PKT_BURST 32
92 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
93 #define MAX_SESSIONS 32
94 #define SESSION_POOL_CACHE_SIZE 0
95 
96 #define MAXIMUM_IV_LENGTH	16
97 #define IV_OFFSET		(sizeof(struct rte_crypto_op) + \
98 				sizeof(struct rte_crypto_sym_op))
99 
100 /*
101  * Configurable number of RX/TX ring descriptors
102  */
103 #define RTE_TEST_RX_DESC_DEFAULT 128
104 #define RTE_TEST_TX_DESC_DEFAULT 512
105 
106 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
107 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
108 
109 /* ethernet addresses of ports */
110 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
111 
112 /* mask of enabled ports */
113 static uint64_t l2fwd_enabled_port_mask;
114 static uint64_t l2fwd_enabled_crypto_mask;
115 
116 /* list of enabled ports */
117 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
118 
119 
120 struct pkt_buffer {
121 	unsigned len;
122 	struct rte_mbuf *buffer[MAX_PKT_BURST];
123 };
124 
125 struct op_buffer {
126 	unsigned len;
127 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
128 };
129 
130 #define MAX_RX_QUEUE_PER_LCORE 16
131 #define MAX_TX_QUEUE_PER_PORT 16
132 
133 enum l2fwd_crypto_xform_chain {
134 	L2FWD_CRYPTO_CIPHER_HASH,
135 	L2FWD_CRYPTO_HASH_CIPHER,
136 	L2FWD_CRYPTO_CIPHER_ONLY,
137 	L2FWD_CRYPTO_HASH_ONLY,
138 	L2FWD_CRYPTO_AEAD
139 };
140 
141 struct l2fwd_key {
142 	uint8_t *data;
143 	uint32_t length;
144 	phys_addr_t phys_addr;
145 };
146 
147 struct l2fwd_iv {
148 	uint8_t *data;
149 	uint16_t length;
150 };
151 
152 /** l2fwd crypto application command line options */
153 struct l2fwd_crypto_options {
154 	unsigned portmask;
155 	unsigned nb_ports_per_lcore;
156 	unsigned refresh_period;
157 	unsigned single_lcore:1;
158 
159 	enum cdev_type type;
160 	unsigned sessionless:1;
161 
162 	enum l2fwd_crypto_xform_chain xform_chain;
163 
164 	struct rte_crypto_sym_xform cipher_xform;
165 	unsigned ckey_param;
166 	int ckey_random_size;
167 
168 	struct l2fwd_iv cipher_iv;
169 	unsigned int cipher_iv_param;
170 	int cipher_iv_random_size;
171 
172 	struct rte_crypto_sym_xform auth_xform;
173 	uint8_t akey_param;
174 	int akey_random_size;
175 
176 	struct l2fwd_iv auth_iv;
177 	unsigned int auth_iv_param;
178 	int auth_iv_random_size;
179 
180 	struct rte_crypto_sym_xform aead_xform;
181 	unsigned int aead_key_param;
182 	int aead_key_random_size;
183 
184 	struct l2fwd_iv aead_iv;
185 	unsigned int aead_iv_param;
186 	int aead_iv_random_size;
187 
188 	struct l2fwd_key aad;
189 	unsigned aad_param;
190 	int aad_random_size;
191 
192 	int digest_size;
193 
194 	uint16_t block_size;
195 	char string_type[MAX_STR_LEN];
196 
197 	uint64_t cryptodev_mask;
198 
199 	unsigned int mac_updating;
200 };
201 
202 /** l2fwd crypto lcore params */
203 struct l2fwd_crypto_params {
204 	uint8_t dev_id;
205 	uint8_t qp_id;
206 
207 	unsigned digest_length;
208 	unsigned block_size;
209 
210 	struct l2fwd_iv cipher_iv;
211 	struct l2fwd_iv auth_iv;
212 	struct l2fwd_iv aead_iv;
213 	struct l2fwd_key aad;
214 	struct rte_cryptodev_sym_session *session;
215 
216 	uint8_t do_cipher;
217 	uint8_t do_hash;
218 	uint8_t do_aead;
219 	uint8_t hash_verify;
220 
221 	enum rte_crypto_cipher_algorithm cipher_algo;
222 	enum rte_crypto_auth_algorithm auth_algo;
223 	enum rte_crypto_aead_algorithm aead_algo;
224 };
225 
226 /** lcore configuration */
227 struct lcore_queue_conf {
228 	unsigned nb_rx_ports;
229 	uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE];
230 
231 	unsigned nb_crypto_devs;
232 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
233 
234 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
235 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
236 } __rte_cache_aligned;
237 
238 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
239 
240 static const struct rte_eth_conf port_conf = {
241 	.rxmode = {
242 		.mq_mode = ETH_MQ_RX_NONE,
243 		.max_rx_pkt_len = ETHER_MAX_LEN,
244 		.split_hdr_size = 0,
245 		.header_split   = 0, /**< Header Split disabled */
246 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
247 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
248 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
249 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
250 	},
251 	.txmode = {
252 		.mq_mode = ETH_MQ_TX_NONE,
253 	},
254 };
255 
256 struct rte_mempool *l2fwd_pktmbuf_pool;
257 struct rte_mempool *l2fwd_crypto_op_pool;
258 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 };
259 
260 /* Per-port statistics struct */
261 struct l2fwd_port_statistics {
262 	uint64_t tx;
263 	uint64_t rx;
264 
265 	uint64_t crypto_enqueued;
266 	uint64_t crypto_dequeued;
267 
268 	uint64_t dropped;
269 } __rte_cache_aligned;
270 
271 struct l2fwd_crypto_statistics {
272 	uint64_t enqueued;
273 	uint64_t dequeued;
274 
275 	uint64_t errors;
276 } __rte_cache_aligned;
277 
278 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
279 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
280 
281 /* A tsc-based timer responsible for triggering statistics printout */
282 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
283 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
284 
285 /* default period is 10 seconds */
286 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
287 
288 /* Print out statistics on packets dropped */
289 static void
290 print_stats(void)
291 {
292 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
293 	uint64_t total_packets_enqueued, total_packets_dequeued,
294 		total_packets_errors;
295 	uint16_t portid;
296 	uint64_t cdevid;
297 
298 	total_packets_dropped = 0;
299 	total_packets_tx = 0;
300 	total_packets_rx = 0;
301 	total_packets_enqueued = 0;
302 	total_packets_dequeued = 0;
303 	total_packets_errors = 0;
304 
305 	const char clr[] = { 27, '[', '2', 'J', '\0' };
306 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
307 
308 		/* Clear screen and move to top left */
309 	printf("%s%s", clr, topLeft);
310 
311 	printf("\nPort statistics ====================================");
312 
313 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
314 		/* skip disabled ports */
315 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
316 			continue;
317 		printf("\nStatistics for port %u ------------------------------"
318 			   "\nPackets sent: %32"PRIu64
319 			   "\nPackets received: %28"PRIu64
320 			   "\nPackets dropped: %29"PRIu64,
321 			   portid,
322 			   port_statistics[portid].tx,
323 			   port_statistics[portid].rx,
324 			   port_statistics[portid].dropped);
325 
326 		total_packets_dropped += port_statistics[portid].dropped;
327 		total_packets_tx += port_statistics[portid].tx;
328 		total_packets_rx += port_statistics[portid].rx;
329 	}
330 	printf("\nCrypto statistics ==================================");
331 
332 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
333 		/* skip disabled ports */
334 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
335 			continue;
336 		printf("\nStatistics for cryptodev %"PRIu64
337 				" -------------------------"
338 			   "\nPackets enqueued: %28"PRIu64
339 			   "\nPackets dequeued: %28"PRIu64
340 			   "\nPackets errors: %30"PRIu64,
341 			   cdevid,
342 			   crypto_statistics[cdevid].enqueued,
343 			   crypto_statistics[cdevid].dequeued,
344 			   crypto_statistics[cdevid].errors);
345 
346 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
347 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
348 		total_packets_errors += crypto_statistics[cdevid].errors;
349 	}
350 	printf("\nAggregate statistics ==============================="
351 		   "\nTotal packets received: %22"PRIu64
352 		   "\nTotal packets enqueued: %22"PRIu64
353 		   "\nTotal packets dequeued: %22"PRIu64
354 		   "\nTotal packets sent: %26"PRIu64
355 		   "\nTotal packets dropped: %23"PRIu64
356 		   "\nTotal packets crypto errors: %17"PRIu64,
357 		   total_packets_rx,
358 		   total_packets_enqueued,
359 		   total_packets_dequeued,
360 		   total_packets_tx,
361 		   total_packets_dropped,
362 		   total_packets_errors);
363 	printf("\n====================================================\n");
364 }
365 
366 static int
367 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
368 		struct l2fwd_crypto_params *cparams)
369 {
370 	struct rte_crypto_op **op_buffer;
371 	unsigned ret;
372 
373 	op_buffer = (struct rte_crypto_op **)
374 			qconf->op_buf[cparams->dev_id].buffer;
375 
376 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
377 			cparams->qp_id,	op_buffer, (uint16_t) n);
378 
379 	crypto_statistics[cparams->dev_id].enqueued += ret;
380 	if (unlikely(ret < n)) {
381 		crypto_statistics[cparams->dev_id].errors += (n - ret);
382 		do {
383 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
384 			rte_crypto_op_free(op_buffer[ret]);
385 		} while (++ret < n);
386 	}
387 
388 	return 0;
389 }
390 
391 static int
392 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
393 		struct l2fwd_crypto_params *cparams)
394 {
395 	unsigned lcore_id, len;
396 	struct lcore_queue_conf *qconf;
397 
398 	lcore_id = rte_lcore_id();
399 
400 	qconf = &lcore_queue_conf[lcore_id];
401 	len = qconf->op_buf[cparams->dev_id].len;
402 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
403 	len++;
404 
405 	/* enough ops to be sent */
406 	if (len == MAX_PKT_BURST) {
407 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
408 		len = 0;
409 	}
410 
411 	qconf->op_buf[cparams->dev_id].len = len;
412 	return 0;
413 }
414 
415 static int
416 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
417 		struct rte_crypto_op *op,
418 		struct l2fwd_crypto_params *cparams)
419 {
420 	struct ether_hdr *eth_hdr;
421 	struct ipv4_hdr *ip_hdr;
422 
423 	uint32_t ipdata_offset, data_len;
424 	uint32_t pad_len = 0;
425 	char *padding;
426 
427 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
428 
429 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
430 		return -1;
431 
432 	ipdata_offset = sizeof(struct ether_hdr);
433 
434 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
435 			ipdata_offset);
436 
437 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
438 			* IPV4_IHL_MULTIPLIER;
439 
440 
441 	/* Zero pad data to be crypto'd so it is block aligned */
442 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
443 
444 	if (cparams->do_hash && cparams->hash_verify)
445 		data_len -= cparams->digest_length;
446 
447 	if (cparams->do_cipher) {
448 		/*
449 		 * Following algorithms are block cipher algorithms,
450 		 * and might need padding
451 		 */
452 		switch (cparams->cipher_algo) {
453 		case RTE_CRYPTO_CIPHER_AES_CBC:
454 		case RTE_CRYPTO_CIPHER_AES_ECB:
455 		case RTE_CRYPTO_CIPHER_DES_CBC:
456 		case RTE_CRYPTO_CIPHER_3DES_CBC:
457 		case RTE_CRYPTO_CIPHER_3DES_ECB:
458 			if (data_len % cparams->block_size)
459 				pad_len = cparams->block_size -
460 					(data_len % cparams->block_size);
461 			break;
462 		default:
463 			pad_len = 0;
464 		}
465 
466 		if (pad_len) {
467 			padding = rte_pktmbuf_append(m, pad_len);
468 			if (unlikely(!padding))
469 				return -1;
470 
471 			data_len += pad_len;
472 			memset(padding, 0, pad_len);
473 		}
474 	}
475 
476 	/* Set crypto operation data parameters */
477 	rte_crypto_op_attach_sym_session(op, cparams->session);
478 
479 	if (cparams->do_hash) {
480 		if (cparams->auth_iv.length) {
481 			uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op,
482 						uint8_t *,
483 						IV_OFFSET +
484 						cparams->cipher_iv.length);
485 			/*
486 			 * Copy IV at the end of the crypto operation,
487 			 * after the cipher IV, if added
488 			 */
489 			rte_memcpy(iv_ptr, cparams->auth_iv.data,
490 					cparams->auth_iv.length);
491 		}
492 		if (!cparams->hash_verify) {
493 			/* Append space for digest to end of packet */
494 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
495 				cparams->digest_length);
496 		} else {
497 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
498 				uint8_t *) + ipdata_offset + data_len;
499 		}
500 
501 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
502 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
503 
504 		/* For wireless algorithms, offset/length must be in bits */
505 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
506 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
507 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
508 			op->sym->auth.data.offset = ipdata_offset << 3;
509 			op->sym->auth.data.length = data_len << 3;
510 		} else {
511 			op->sym->auth.data.offset = ipdata_offset;
512 			op->sym->auth.data.length = data_len;
513 		}
514 	}
515 
516 	if (cparams->do_cipher) {
517 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
518 							IV_OFFSET);
519 		/* Copy IV at the end of the crypto operation */
520 		rte_memcpy(iv_ptr, cparams->cipher_iv.data,
521 				cparams->cipher_iv.length);
522 
523 		/* For wireless algorithms, offset/length must be in bits */
524 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
525 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
526 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
527 			op->sym->cipher.data.offset = ipdata_offset << 3;
528 			op->sym->cipher.data.length = data_len << 3;
529 		} else {
530 			op->sym->cipher.data.offset = ipdata_offset;
531 			op->sym->cipher.data.length = data_len;
532 		}
533 	}
534 
535 	if (cparams->do_aead) {
536 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
537 							IV_OFFSET);
538 		/* Copy IV at the end of the crypto operation */
539 		/*
540 		 * If doing AES-CCM, nonce is copied one byte
541 		 * after the start of IV field
542 		 */
543 		if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
544 			rte_memcpy(iv_ptr + 1, cparams->aead_iv.data,
545 					cparams->aead_iv.length);
546 		else
547 			rte_memcpy(iv_ptr, cparams->aead_iv.data,
548 					cparams->aead_iv.length);
549 
550 		op->sym->aead.data.offset = ipdata_offset;
551 		op->sym->aead.data.length = data_len;
552 
553 		if (!cparams->hash_verify) {
554 			/* Append space for digest to end of packet */
555 			op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m,
556 				cparams->digest_length);
557 		} else {
558 			op->sym->aead.digest.data = rte_pktmbuf_mtod(m,
559 				uint8_t *) + ipdata_offset + data_len;
560 		}
561 
562 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
563 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
564 
565 		if (cparams->aad.length) {
566 			op->sym->aead.aad.data = cparams->aad.data;
567 			op->sym->aead.aad.phys_addr = cparams->aad.phys_addr;
568 		}
569 	}
570 
571 	op->sym->m_src = m;
572 
573 	return l2fwd_crypto_enqueue(op, cparams);
574 }
575 
576 
577 /* Send the burst of packets on an output interface */
578 static int
579 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
580 		uint16_t port)
581 {
582 	struct rte_mbuf **pkt_buffer;
583 	unsigned ret;
584 
585 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
586 
587 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
588 	port_statistics[port].tx += ret;
589 	if (unlikely(ret < n)) {
590 		port_statistics[port].dropped += (n - ret);
591 		do {
592 			rte_pktmbuf_free(pkt_buffer[ret]);
593 		} while (++ret < n);
594 	}
595 
596 	return 0;
597 }
598 
599 /* Enqueue packets for TX and prepare them to be sent */
600 static int
601 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
602 {
603 	unsigned lcore_id, len;
604 	struct lcore_queue_conf *qconf;
605 
606 	lcore_id = rte_lcore_id();
607 
608 	qconf = &lcore_queue_conf[lcore_id];
609 	len = qconf->pkt_buf[port].len;
610 	qconf->pkt_buf[port].buffer[len] = m;
611 	len++;
612 
613 	/* enough pkts to be sent */
614 	if (unlikely(len == MAX_PKT_BURST)) {
615 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
616 		len = 0;
617 	}
618 
619 	qconf->pkt_buf[port].len = len;
620 	return 0;
621 }
622 
623 static void
624 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid)
625 {
626 	struct ether_hdr *eth;
627 	void *tmp;
628 
629 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
630 
631 	/* 02:00:00:00:00:xx */
632 	tmp = &eth->d_addr.addr_bytes[0];
633 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
634 
635 	/* src addr */
636 	ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], &eth->s_addr);
637 }
638 
639 static void
640 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
641 		struct l2fwd_crypto_options *options)
642 {
643 	uint16_t dst_port;
644 
645 	dst_port = l2fwd_dst_ports[portid];
646 
647 	if (options->mac_updating)
648 		l2fwd_mac_updating(m, dst_port);
649 
650 	l2fwd_send_packet(m, dst_port);
651 }
652 
653 /** Generate random key */
654 static void
655 generate_random_key(uint8_t *key, unsigned length)
656 {
657 	int fd;
658 	int ret;
659 
660 	fd = open("/dev/urandom", O_RDONLY);
661 	if (fd < 0)
662 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
663 
664 	ret = read(fd, key, length);
665 	close(fd);
666 
667 	if (ret != (signed)length)
668 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
669 }
670 
671 static struct rte_cryptodev_sym_session *
672 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
673 {
674 	struct rte_crypto_sym_xform *first_xform;
675 	struct rte_cryptodev_sym_session *session;
676 	int retval = rte_cryptodev_socket_id(cdev_id);
677 
678 	if (retval < 0)
679 		return NULL;
680 
681 	uint8_t socket_id = (uint8_t) retval;
682 	struct rte_mempool *sess_mp = session_pool_socket[socket_id];
683 
684 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
685 		first_xform = &options->aead_xform;
686 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
687 		first_xform = &options->cipher_xform;
688 		first_xform->next = &options->auth_xform;
689 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
690 		first_xform = &options->auth_xform;
691 		first_xform->next = &options->cipher_xform;
692 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
693 		first_xform = &options->cipher_xform;
694 	} else {
695 		first_xform = &options->auth_xform;
696 	}
697 
698 	session = rte_cryptodev_sym_session_create(sess_mp);
699 
700 	if (session == NULL)
701 		return NULL;
702 
703 	if (rte_cryptodev_sym_session_init(cdev_id, session,
704 				first_xform, sess_mp) < 0)
705 		return NULL;
706 
707 	return session;
708 }
709 
710 static void
711 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
712 
713 /* main processing loop */
714 static void
715 l2fwd_main_loop(struct l2fwd_crypto_options *options)
716 {
717 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
718 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
719 
720 	unsigned lcore_id = rte_lcore_id();
721 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
722 	unsigned int i, j, nb_rx, len;
723 	uint16_t portid;
724 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
725 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
726 			US_PER_S * BURST_TX_DRAIN_US;
727 	struct l2fwd_crypto_params *cparams;
728 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
729 	struct rte_cryptodev_sym_session *session;
730 
731 	if (qconf->nb_rx_ports == 0) {
732 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
733 		return;
734 	}
735 
736 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
737 
738 	for (i = 0; i < qconf->nb_rx_ports; i++) {
739 
740 		portid = qconf->rx_port_list[i];
741 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
742 			portid);
743 	}
744 
745 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
746 		port_cparams[i].do_cipher = 0;
747 		port_cparams[i].do_hash = 0;
748 		port_cparams[i].do_aead = 0;
749 
750 		switch (options->xform_chain) {
751 		case L2FWD_CRYPTO_AEAD:
752 			port_cparams[i].do_aead = 1;
753 			break;
754 		case L2FWD_CRYPTO_CIPHER_HASH:
755 		case L2FWD_CRYPTO_HASH_CIPHER:
756 			port_cparams[i].do_cipher = 1;
757 			port_cparams[i].do_hash = 1;
758 			break;
759 		case L2FWD_CRYPTO_HASH_ONLY:
760 			port_cparams[i].do_hash = 1;
761 			break;
762 		case L2FWD_CRYPTO_CIPHER_ONLY:
763 			port_cparams[i].do_cipher = 1;
764 			break;
765 		}
766 
767 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
768 		port_cparams[i].qp_id = 0;
769 
770 		port_cparams[i].block_size = options->block_size;
771 
772 		if (port_cparams[i].do_hash) {
773 			port_cparams[i].auth_iv.data = options->auth_iv.data;
774 			port_cparams[i].auth_iv.length = options->auth_iv.length;
775 			if (!options->auth_iv_param)
776 				generate_random_key(port_cparams[i].auth_iv.data,
777 						port_cparams[i].auth_iv.length);
778 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
779 				port_cparams[i].hash_verify = 1;
780 			else
781 				port_cparams[i].hash_verify = 0;
782 
783 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
784 			port_cparams[i].digest_length =
785 					options->auth_xform.auth.digest_length;
786 			/* Set IV parameters */
787 			if (options->auth_iv.length) {
788 				options->auth_xform.auth.iv.offset =
789 					IV_OFFSET + options->cipher_iv.length;
790 				options->auth_xform.auth.iv.length =
791 					options->auth_iv.length;
792 			}
793 		}
794 
795 		if (port_cparams[i].do_aead) {
796 			port_cparams[i].aead_iv.data = options->aead_iv.data;
797 			port_cparams[i].aead_iv.length = options->aead_iv.length;
798 			if (!options->aead_iv_param)
799 				generate_random_key(port_cparams[i].aead_iv.data,
800 						port_cparams[i].aead_iv.length);
801 			port_cparams[i].aead_algo = options->aead_xform.aead.algo;
802 			port_cparams[i].digest_length =
803 					options->aead_xform.aead.digest_length;
804 			if (options->aead_xform.aead.aad_length) {
805 				port_cparams[i].aad.data = options->aad.data;
806 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
807 				port_cparams[i].aad.length = options->aad.length;
808 				if (!options->aad_param)
809 					generate_random_key(port_cparams[i].aad.data,
810 						port_cparams[i].aad.length);
811 				/*
812 				 * If doing AES-CCM, first 18 bytes has to be reserved,
813 				 * and actual AAD should start from byte 18
814 				 */
815 				if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
816 					memmove(port_cparams[i].aad.data + 18,
817 							port_cparams[i].aad.data,
818 							port_cparams[i].aad.length);
819 
820 			} else
821 				port_cparams[i].aad.length = 0;
822 
823 			if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT)
824 				port_cparams[i].hash_verify = 1;
825 			else
826 				port_cparams[i].hash_verify = 0;
827 
828 			/* Set IV parameters */
829 			options->aead_xform.aead.iv.offset = IV_OFFSET;
830 			options->aead_xform.aead.iv.length = options->aead_iv.length;
831 		}
832 
833 		if (port_cparams[i].do_cipher) {
834 			port_cparams[i].cipher_iv.data = options->cipher_iv.data;
835 			port_cparams[i].cipher_iv.length = options->cipher_iv.length;
836 			if (!options->cipher_iv_param)
837 				generate_random_key(port_cparams[i].cipher_iv.data,
838 						port_cparams[i].cipher_iv.length);
839 
840 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
841 			/* Set IV parameters */
842 			options->cipher_xform.cipher.iv.offset = IV_OFFSET;
843 			options->cipher_xform.cipher.iv.length =
844 						options->cipher_iv.length;
845 		}
846 
847 		session = initialize_crypto_session(options,
848 				port_cparams[i].dev_id);
849 		if (session == NULL)
850 			rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n");
851 
852 		port_cparams[i].session = session;
853 
854 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
855 				port_cparams[i].dev_id);
856 	}
857 
858 	l2fwd_crypto_options_print(options);
859 
860 	/*
861 	 * Initialize previous tsc timestamp before the loop,
862 	 * to avoid showing the port statistics immediately,
863 	 * so user can see the crypto information.
864 	 */
865 	prev_tsc = rte_rdtsc();
866 	while (1) {
867 
868 		cur_tsc = rte_rdtsc();
869 
870 		/*
871 		 * Crypto device/TX burst queue drain
872 		 */
873 		diff_tsc = cur_tsc - prev_tsc;
874 		if (unlikely(diff_tsc > drain_tsc)) {
875 			/* Enqueue all crypto ops remaining in buffers */
876 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
877 				cparams = &port_cparams[i];
878 				len = qconf->op_buf[cparams->dev_id].len;
879 				l2fwd_crypto_send_burst(qconf, len, cparams);
880 				qconf->op_buf[cparams->dev_id].len = 0;
881 			}
882 			/* Transmit all packets remaining in buffers */
883 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
884 				if (qconf->pkt_buf[portid].len == 0)
885 					continue;
886 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
887 						 qconf->pkt_buf[portid].len,
888 						 portid);
889 				qconf->pkt_buf[portid].len = 0;
890 			}
891 
892 			/* if timer is enabled */
893 			if (timer_period > 0) {
894 
895 				/* advance the timer */
896 				timer_tsc += diff_tsc;
897 
898 				/* if timer has reached its timeout */
899 				if (unlikely(timer_tsc >=
900 						(uint64_t)timer_period)) {
901 
902 					/* do this only on master core */
903 					if (lcore_id == rte_get_master_lcore()
904 						&& options->refresh_period) {
905 						print_stats();
906 						timer_tsc = 0;
907 					}
908 				}
909 			}
910 
911 			prev_tsc = cur_tsc;
912 		}
913 
914 		/*
915 		 * Read packet from RX queues
916 		 */
917 		for (i = 0; i < qconf->nb_rx_ports; i++) {
918 			portid = qconf->rx_port_list[i];
919 
920 			cparams = &port_cparams[i];
921 
922 			nb_rx = rte_eth_rx_burst(portid, 0,
923 						 pkts_burst, MAX_PKT_BURST);
924 
925 			port_statistics[portid].rx += nb_rx;
926 
927 			if (nb_rx) {
928 				/*
929 				 * If we can't allocate a crypto_ops, then drop
930 				 * the rest of the burst and dequeue and
931 				 * process the packets to free offload structs
932 				 */
933 				if (rte_crypto_op_bulk_alloc(
934 						l2fwd_crypto_op_pool,
935 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
936 						ops_burst, nb_rx) !=
937 								nb_rx) {
938 					for (j = 0; j < nb_rx; j++)
939 						rte_pktmbuf_free(pkts_burst[j]);
940 
941 					nb_rx = 0;
942 				}
943 
944 				/* Enqueue packets from Crypto device*/
945 				for (j = 0; j < nb_rx; j++) {
946 					m = pkts_burst[j];
947 
948 					l2fwd_simple_crypto_enqueue(m,
949 							ops_burst[j], cparams);
950 				}
951 			}
952 
953 			/* Dequeue packets from Crypto device */
954 			do {
955 				nb_rx = rte_cryptodev_dequeue_burst(
956 						cparams->dev_id, cparams->qp_id,
957 						ops_burst, MAX_PKT_BURST);
958 
959 				crypto_statistics[cparams->dev_id].dequeued +=
960 						nb_rx;
961 
962 				/* Forward crypto'd packets */
963 				for (j = 0; j < nb_rx; j++) {
964 					m = ops_burst[j]->sym->m_src;
965 
966 					rte_crypto_op_free(ops_burst[j]);
967 					l2fwd_simple_forward(m, portid,
968 							options);
969 				}
970 			} while (nb_rx == MAX_PKT_BURST);
971 		}
972 	}
973 }
974 
975 static int
976 l2fwd_launch_one_lcore(void *arg)
977 {
978 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
979 	return 0;
980 }
981 
982 /* Display command line arguments usage */
983 static void
984 l2fwd_crypto_usage(const char *prgname)
985 {
986 	printf("%s [EAL options] --\n"
987 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
988 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
989 		"  -s manage all ports from single lcore\n"
990 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
991 		" (0 to disable, 10 default, 86400 maximum)\n"
992 
993 		"  --cdev_type HW / SW / ANY\n"
994 		"  --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
995 		" HASH_ONLY / AEAD\n"
996 
997 		"  --cipher_algo ALGO\n"
998 		"  --cipher_op ENCRYPT / DECRYPT\n"
999 		"  --cipher_key KEY (bytes separated with \":\")\n"
1000 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
1001 		"  --cipher_iv IV (bytes separated with \":\")\n"
1002 		"  --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
1003 
1004 		"  --auth_algo ALGO\n"
1005 		"  --auth_op GENERATE / VERIFY\n"
1006 		"  --auth_key KEY (bytes separated with \":\")\n"
1007 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
1008 		"  --auth_iv IV (bytes separated with \":\")\n"
1009 		"  --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
1010 
1011 		"  --aead_algo ALGO\n"
1012 		"  --aead_op ENCRYPT / DECRYPT\n"
1013 		"  --aead_key KEY (bytes separated with \":\")\n"
1014 		"  --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
1015 		"  --aead_iv IV (bytes separated with \":\")\n"
1016 		"  --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
1017 		"  --aad AAD (bytes separated with \":\")\n"
1018 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
1019 
1020 		"  --digest_size SIZE: size of digest to be generated/verified\n"
1021 
1022 		"  --sessionless\n"
1023 		"  --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n"
1024 
1025 		"  --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n"
1026 		"      When enabled:\n"
1027 		"       - The source MAC address is replaced by the TX port MAC address\n"
1028 		"       - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n",
1029 	       prgname);
1030 }
1031 
1032 /** Parse crypto device type command line argument */
1033 static int
1034 parse_cryptodev_type(enum cdev_type *type, char *optarg)
1035 {
1036 	if (strcmp("HW", optarg) == 0) {
1037 		*type = CDEV_TYPE_HW;
1038 		return 0;
1039 	} else if (strcmp("SW", optarg) == 0) {
1040 		*type = CDEV_TYPE_SW;
1041 		return 0;
1042 	} else if (strcmp("ANY", optarg) == 0) {
1043 		*type = CDEV_TYPE_ANY;
1044 		return 0;
1045 	}
1046 
1047 	return -1;
1048 }
1049 
1050 /** Parse crypto chain xform command line argument */
1051 static int
1052 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
1053 {
1054 	if (strcmp("CIPHER_HASH", optarg) == 0) {
1055 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1056 		return 0;
1057 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
1058 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
1059 		return 0;
1060 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
1061 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
1062 		return 0;
1063 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
1064 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
1065 		return 0;
1066 	} else if (strcmp("AEAD", optarg) == 0) {
1067 		options->xform_chain = L2FWD_CRYPTO_AEAD;
1068 		return 0;
1069 	}
1070 
1071 	return -1;
1072 }
1073 
1074 /** Parse crypto cipher algo option command line argument */
1075 static int
1076 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
1077 {
1078 
1079 	if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) {
1080 		RTE_LOG(ERR, USER1, "Cipher algorithm specified "
1081 				"not supported!\n");
1082 		return -1;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /** Parse crypto cipher operation command line argument */
1089 static int
1090 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
1091 {
1092 	if (strcmp("ENCRYPT", optarg) == 0) {
1093 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1094 		return 0;
1095 	} else if (strcmp("DECRYPT", optarg) == 0) {
1096 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1097 		return 0;
1098 	}
1099 
1100 	printf("Cipher operation not supported!\n");
1101 	return -1;
1102 }
1103 
1104 /** Parse bytes from command line argument */
1105 static int
1106 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size)
1107 {
1108 	unsigned byte_count;
1109 	char *token;
1110 
1111 	errno = 0;
1112 	for (byte_count = 0, token = strtok(input_arg, ":");
1113 			(byte_count < max_size) && (token != NULL);
1114 			token = strtok(NULL, ":")) {
1115 
1116 		int number = (int)strtol(token, NULL, 16);
1117 
1118 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
1119 			return -1;
1120 
1121 		data[byte_count++] = (uint8_t)number;
1122 	}
1123 
1124 	return byte_count;
1125 }
1126 
1127 /** Parse size param*/
1128 static int
1129 parse_size(int *size, const char *q_arg)
1130 {
1131 	char *end = NULL;
1132 	unsigned long n;
1133 
1134 	/* parse hexadecimal string */
1135 	n = strtoul(q_arg, &end, 10);
1136 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1137 		n = 0;
1138 
1139 	if (n == 0) {
1140 		printf("invalid size\n");
1141 		return -1;
1142 	}
1143 
1144 	*size = n;
1145 	return 0;
1146 }
1147 
1148 /** Parse crypto cipher operation command line argument */
1149 static int
1150 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1151 {
1152 	if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) {
1153 		RTE_LOG(ERR, USER1, "Authentication algorithm specified "
1154 				"not supported!\n");
1155 		return -1;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1163 {
1164 	if (strcmp("VERIFY", optarg) == 0) {
1165 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1166 		return 0;
1167 	} else if (strcmp("GENERATE", optarg) == 0) {
1168 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1169 		return 0;
1170 	}
1171 
1172 	printf("Authentication operation specified not supported!\n");
1173 	return -1;
1174 }
1175 
1176 static int
1177 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg)
1178 {
1179 	if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) {
1180 		RTE_LOG(ERR, USER1, "AEAD algorithm specified "
1181 				"not supported!\n");
1182 		return -1;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int
1189 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg)
1190 {
1191 	if (strcmp("ENCRYPT", optarg) == 0) {
1192 		*op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1193 		return 0;
1194 	} else if (strcmp("DECRYPT", optarg) == 0) {
1195 		*op = RTE_CRYPTO_AEAD_OP_DECRYPT;
1196 		return 0;
1197 	}
1198 
1199 	printf("AEAD operation specified not supported!\n");
1200 	return -1;
1201 }
1202 static int
1203 parse_cryptodev_mask(struct l2fwd_crypto_options *options,
1204 		const char *q_arg)
1205 {
1206 	char *end = NULL;
1207 	uint64_t pm;
1208 
1209 	/* parse hexadecimal string */
1210 	pm = strtoul(q_arg, &end, 16);
1211 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1212 		pm = 0;
1213 
1214 	options->cryptodev_mask = pm;
1215 	if (options->cryptodev_mask == 0) {
1216 		printf("invalid cryptodev_mask specified\n");
1217 		return -1;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /** Parse long options */
1224 static int
1225 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1226 		struct option *lgopts, int option_index)
1227 {
1228 	int retval;
1229 
1230 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1231 		retval = parse_cryptodev_type(&options->type, optarg);
1232 		if (retval == 0)
1233 			snprintf(options->string_type, MAX_STR_LEN,
1234 				"%s", optarg);
1235 		return retval;
1236 	}
1237 
1238 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1239 		return parse_crypto_opt_chain(options, optarg);
1240 
1241 	/* Cipher options */
1242 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1243 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1244 				optarg);
1245 
1246 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1247 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1248 				optarg);
1249 
1250 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1251 		options->ckey_param = 1;
1252 		options->cipher_xform.cipher.key.length =
1253 			parse_bytes(options->cipher_xform.cipher.key.data, optarg,
1254 					MAX_KEY_SIZE);
1255 		if (options->cipher_xform.cipher.key.length > 0)
1256 			return 0;
1257 		else
1258 			return -1;
1259 	}
1260 
1261 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1262 		return parse_size(&options->ckey_random_size, optarg);
1263 
1264 	else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
1265 		options->cipher_iv_param = 1;
1266 		options->cipher_iv.length =
1267 			parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE);
1268 		if (options->cipher_iv.length > 0)
1269 			return 0;
1270 		else
1271 			return -1;
1272 	}
1273 
1274 	else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
1275 		return parse_size(&options->cipher_iv_random_size, optarg);
1276 
1277 	/* Authentication options */
1278 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1279 		return parse_auth_algo(&options->auth_xform.auth.algo,
1280 				optarg);
1281 	}
1282 
1283 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1284 		return parse_auth_op(&options->auth_xform.auth.op,
1285 				optarg);
1286 
1287 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1288 		options->akey_param = 1;
1289 		options->auth_xform.auth.key.length =
1290 			parse_bytes(options->auth_xform.auth.key.data, optarg,
1291 					MAX_KEY_SIZE);
1292 		if (options->auth_xform.auth.key.length > 0)
1293 			return 0;
1294 		else
1295 			return -1;
1296 	}
1297 
1298 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1299 		return parse_size(&options->akey_random_size, optarg);
1300 	}
1301 
1302 	else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
1303 		options->auth_iv_param = 1;
1304 		options->auth_iv.length =
1305 			parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE);
1306 		if (options->auth_iv.length > 0)
1307 			return 0;
1308 		else
1309 			return -1;
1310 	}
1311 
1312 	else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
1313 		return parse_size(&options->auth_iv_random_size, optarg);
1314 
1315 	/* AEAD options */
1316 	else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
1317 		return parse_aead_algo(&options->aead_xform.aead.algo,
1318 				optarg);
1319 	}
1320 
1321 	else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
1322 		return parse_aead_op(&options->aead_xform.aead.op,
1323 				optarg);
1324 
1325 	else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
1326 		options->aead_key_param = 1;
1327 		options->aead_xform.aead.key.length =
1328 			parse_bytes(options->aead_xform.aead.key.data, optarg,
1329 					MAX_KEY_SIZE);
1330 		if (options->aead_xform.aead.key.length > 0)
1331 			return 0;
1332 		else
1333 			return -1;
1334 	}
1335 
1336 	else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
1337 		return parse_size(&options->aead_key_random_size, optarg);
1338 
1339 
1340 	else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
1341 		options->aead_iv_param = 1;
1342 		options->aead_iv.length =
1343 			parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE);
1344 		if (options->aead_iv.length > 0)
1345 			return 0;
1346 		else
1347 			return -1;
1348 	}
1349 
1350 	else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
1351 		return parse_size(&options->aead_iv_random_size, optarg);
1352 
1353 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1354 		options->aad_param = 1;
1355 		options->aad.length =
1356 			parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE);
1357 		if (options->aad.length > 0)
1358 			return 0;
1359 		else
1360 			return -1;
1361 	}
1362 
1363 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1364 		return parse_size(&options->aad_random_size, optarg);
1365 	}
1366 
1367 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1368 		return parse_size(&options->digest_size, optarg);
1369 	}
1370 
1371 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1372 		options->sessionless = 1;
1373 		return 0;
1374 	}
1375 
1376 	else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
1377 		return parse_cryptodev_mask(options, optarg);
1378 
1379 	else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) {
1380 		options->mac_updating = 1;
1381 		return 0;
1382 	}
1383 
1384 	else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) {
1385 		options->mac_updating = 0;
1386 		return 0;
1387 	}
1388 
1389 	return -1;
1390 }
1391 
1392 /** Parse port mask */
1393 static int
1394 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1395 		const char *q_arg)
1396 {
1397 	char *end = NULL;
1398 	unsigned long pm;
1399 
1400 	/* parse hexadecimal string */
1401 	pm = strtoul(q_arg, &end, 16);
1402 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1403 		pm = 0;
1404 
1405 	options->portmask = pm;
1406 	if (options->portmask == 0) {
1407 		printf("invalid portmask specified\n");
1408 		return -1;
1409 	}
1410 
1411 	return pm;
1412 }
1413 
1414 /** Parse number of queues */
1415 static int
1416 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1417 		const char *q_arg)
1418 {
1419 	char *end = NULL;
1420 	unsigned long n;
1421 
1422 	/* parse hexadecimal string */
1423 	n = strtoul(q_arg, &end, 10);
1424 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1425 		n = 0;
1426 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1427 		n = 0;
1428 
1429 	options->nb_ports_per_lcore = n;
1430 	if (options->nb_ports_per_lcore == 0) {
1431 		printf("invalid number of ports selected\n");
1432 		return -1;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 /** Parse timer period */
1439 static int
1440 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1441 		const char *q_arg)
1442 {
1443 	char *end = NULL;
1444 	unsigned long n;
1445 
1446 	/* parse number string */
1447 	n = (unsigned)strtol(q_arg, &end, 10);
1448 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1449 		n = 0;
1450 
1451 	if (n >= MAX_TIMER_PERIOD) {
1452 		printf("Warning refresh period specified %lu is greater than "
1453 				"max value %lu! using max value",
1454 				n, MAX_TIMER_PERIOD);
1455 		n = MAX_TIMER_PERIOD;
1456 	}
1457 
1458 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1459 
1460 	return 0;
1461 }
1462 
1463 /** Generate default options for application */
1464 static void
1465 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1466 {
1467 	options->portmask = 0xffffffff;
1468 	options->nb_ports_per_lcore = 1;
1469 	options->refresh_period = 10000;
1470 	options->single_lcore = 0;
1471 	options->sessionless = 0;
1472 
1473 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1474 
1475 	/* Cipher Data */
1476 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1477 	options->cipher_xform.next = NULL;
1478 	options->ckey_param = 0;
1479 	options->ckey_random_size = -1;
1480 	options->cipher_xform.cipher.key.length = 0;
1481 	options->cipher_iv_param = 0;
1482 	options->cipher_iv_random_size = -1;
1483 	options->cipher_iv.length = 0;
1484 
1485 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1486 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1487 
1488 	/* Authentication Data */
1489 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1490 	options->auth_xform.next = NULL;
1491 	options->akey_param = 0;
1492 	options->akey_random_size = -1;
1493 	options->auth_xform.auth.key.length = 0;
1494 	options->auth_iv_param = 0;
1495 	options->auth_iv_random_size = -1;
1496 	options->auth_iv.length = 0;
1497 
1498 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1499 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1500 
1501 	/* AEAD Data */
1502 	options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD;
1503 	options->aead_xform.next = NULL;
1504 	options->aead_key_param = 0;
1505 	options->aead_key_random_size = -1;
1506 	options->aead_xform.aead.key.length = 0;
1507 	options->aead_iv_param = 0;
1508 	options->aead_iv_random_size = -1;
1509 	options->aead_iv.length = 0;
1510 
1511 	options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM;
1512 	options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1513 
1514 	options->aad_param = 0;
1515 	options->aad_random_size = -1;
1516 	options->aad.length = 0;
1517 
1518 	options->digest_size = -1;
1519 
1520 	options->type = CDEV_TYPE_ANY;
1521 	options->cryptodev_mask = UINT64_MAX;
1522 
1523 	options->mac_updating = 1;
1524 }
1525 
1526 static void
1527 display_cipher_info(struct l2fwd_crypto_options *options)
1528 {
1529 	printf("\n---- Cipher information ---\n");
1530 	printf("Algorithm: %s\n",
1531 		rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]);
1532 	rte_hexdump(stdout, "Cipher key:",
1533 			options->cipher_xform.cipher.key.data,
1534 			options->cipher_xform.cipher.key.length);
1535 	rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length);
1536 }
1537 
1538 static void
1539 display_auth_info(struct l2fwd_crypto_options *options)
1540 {
1541 	printf("\n---- Authentication information ---\n");
1542 	printf("Algorithm: %s\n",
1543 		rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]);
1544 	rte_hexdump(stdout, "Auth key:",
1545 			options->auth_xform.auth.key.data,
1546 			options->auth_xform.auth.key.length);
1547 	rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length);
1548 }
1549 
1550 static void
1551 display_aead_info(struct l2fwd_crypto_options *options)
1552 {
1553 	printf("\n---- AEAD information ---\n");
1554 	printf("Algorithm: %s\n",
1555 		rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]);
1556 	rte_hexdump(stdout, "AEAD key:",
1557 			options->aead_xform.aead.key.data,
1558 			options->aead_xform.aead.key.length);
1559 	rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length);
1560 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1561 }
1562 
1563 static void
1564 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1565 {
1566 	char string_cipher_op[MAX_STR_LEN];
1567 	char string_auth_op[MAX_STR_LEN];
1568 	char string_aead_op[MAX_STR_LEN];
1569 
1570 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1571 		strcpy(string_cipher_op, "Encrypt");
1572 	else
1573 		strcpy(string_cipher_op, "Decrypt");
1574 
1575 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1576 		strcpy(string_auth_op, "Auth generate");
1577 	else
1578 		strcpy(string_auth_op, "Auth verify");
1579 
1580 	if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
1581 		strcpy(string_aead_op, "Authenticated encryption");
1582 	else
1583 		strcpy(string_aead_op, "Authenticated decryption");
1584 
1585 
1586 	printf("Options:-\nn");
1587 	printf("portmask: %x\n", options->portmask);
1588 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1589 	printf("refresh period : %u\n", options->refresh_period);
1590 	printf("single lcore mode: %s\n",
1591 			options->single_lcore ? "enabled" : "disabled");
1592 	printf("stats_printing: %s\n",
1593 			options->refresh_period == 0 ? "disabled" : "enabled");
1594 
1595 	printf("sessionless crypto: %s\n",
1596 			options->sessionless ? "enabled" : "disabled");
1597 
1598 	if (options->ckey_param && (options->ckey_random_size != -1))
1599 		printf("Cipher key already parsed, ignoring size of random key\n");
1600 
1601 	if (options->akey_param && (options->akey_random_size != -1))
1602 		printf("Auth key already parsed, ignoring size of random key\n");
1603 
1604 	if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
1605 		printf("Cipher IV already parsed, ignoring size of random IV\n");
1606 
1607 	if (options->auth_iv_param && (options->auth_iv_random_size != -1))
1608 		printf("Auth IV already parsed, ignoring size of random IV\n");
1609 
1610 	if (options->aad_param && (options->aad_random_size != -1))
1611 		printf("AAD already parsed, ignoring size of random AAD\n");
1612 
1613 	printf("\nCrypto chain: ");
1614 	switch (options->xform_chain) {
1615 	case L2FWD_CRYPTO_AEAD:
1616 		printf("Input --> %s --> Output\n", string_aead_op);
1617 		display_aead_info(options);
1618 		break;
1619 	case L2FWD_CRYPTO_CIPHER_HASH:
1620 		printf("Input --> %s --> %s --> Output\n",
1621 			string_cipher_op, string_auth_op);
1622 		display_cipher_info(options);
1623 		display_auth_info(options);
1624 		break;
1625 	case L2FWD_CRYPTO_HASH_CIPHER:
1626 		printf("Input --> %s --> %s --> Output\n",
1627 			string_auth_op, string_cipher_op);
1628 		display_cipher_info(options);
1629 		display_auth_info(options);
1630 		break;
1631 	case L2FWD_CRYPTO_HASH_ONLY:
1632 		printf("Input --> %s --> Output\n", string_auth_op);
1633 		display_auth_info(options);
1634 		break;
1635 	case L2FWD_CRYPTO_CIPHER_ONLY:
1636 		printf("Input --> %s --> Output\n", string_cipher_op);
1637 		display_cipher_info(options);
1638 		break;
1639 	}
1640 }
1641 
1642 /* Parse the argument given in the command line of the application */
1643 static int
1644 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1645 		int argc, char **argv)
1646 {
1647 	int opt, retval, option_index;
1648 	char **argvopt = argv, *prgname = argv[0];
1649 
1650 	static struct option lgopts[] = {
1651 			{ "sessionless", no_argument, 0, 0 },
1652 
1653 			{ "cdev_type", required_argument, 0, 0 },
1654 			{ "chain", required_argument, 0, 0 },
1655 
1656 			{ "cipher_algo", required_argument, 0, 0 },
1657 			{ "cipher_op", required_argument, 0, 0 },
1658 			{ "cipher_key", required_argument, 0, 0 },
1659 			{ "cipher_key_random_size", required_argument, 0, 0 },
1660 			{ "cipher_iv", required_argument, 0, 0 },
1661 			{ "cipher_iv_random_size", required_argument, 0, 0 },
1662 
1663 			{ "auth_algo", required_argument, 0, 0 },
1664 			{ "auth_op", required_argument, 0, 0 },
1665 			{ "auth_key", required_argument, 0, 0 },
1666 			{ "auth_key_random_size", required_argument, 0, 0 },
1667 			{ "auth_iv", required_argument, 0, 0 },
1668 			{ "auth_iv_random_size", required_argument, 0, 0 },
1669 
1670 			{ "aead_algo", required_argument, 0, 0 },
1671 			{ "aead_op", required_argument, 0, 0 },
1672 			{ "aead_key", required_argument, 0, 0 },
1673 			{ "aead_key_random_size", required_argument, 0, 0 },
1674 			{ "aead_iv", required_argument, 0, 0 },
1675 			{ "aead_iv_random_size", required_argument, 0, 0 },
1676 
1677 			{ "aad", required_argument, 0, 0 },
1678 			{ "aad_random_size", required_argument, 0, 0 },
1679 
1680 			{ "digest_size", required_argument, 0, 0 },
1681 
1682 			{ "sessionless", no_argument, 0, 0 },
1683 			{ "cryptodev_mask", required_argument, 0, 0},
1684 
1685 			{ "mac-updating", no_argument, 0, 0},
1686 			{ "no-mac-updating", no_argument, 0, 0},
1687 
1688 			{ NULL, 0, 0, 0 }
1689 	};
1690 
1691 	l2fwd_crypto_default_options(options);
1692 
1693 	while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
1694 			&option_index)) != EOF) {
1695 		switch (opt) {
1696 		/* long options */
1697 		case 0:
1698 			retval = l2fwd_crypto_parse_args_long_options(options,
1699 					lgopts, option_index);
1700 			if (retval < 0) {
1701 				l2fwd_crypto_usage(prgname);
1702 				return -1;
1703 			}
1704 			break;
1705 
1706 		/* portmask */
1707 		case 'p':
1708 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1709 			if (retval < 0) {
1710 				l2fwd_crypto_usage(prgname);
1711 				return -1;
1712 			}
1713 			break;
1714 
1715 		/* nqueue */
1716 		case 'q':
1717 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1718 			if (retval < 0) {
1719 				l2fwd_crypto_usage(prgname);
1720 				return -1;
1721 			}
1722 			break;
1723 
1724 		/* single  */
1725 		case 's':
1726 			options->single_lcore = 1;
1727 
1728 			break;
1729 
1730 		/* timer period */
1731 		case 'T':
1732 			retval = l2fwd_crypto_parse_timer_period(options,
1733 					optarg);
1734 			if (retval < 0) {
1735 				l2fwd_crypto_usage(prgname);
1736 				return -1;
1737 			}
1738 			break;
1739 
1740 		default:
1741 			l2fwd_crypto_usage(prgname);
1742 			return -1;
1743 		}
1744 	}
1745 
1746 
1747 	if (optind >= 0)
1748 		argv[optind-1] = prgname;
1749 
1750 	retval = optind-1;
1751 	optind = 1; /* reset getopt lib */
1752 
1753 	return retval;
1754 }
1755 
1756 /* Check the link status of all ports in up to 9s, and print them finally */
1757 static void
1758 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
1759 {
1760 #define CHECK_INTERVAL 100 /* 100ms */
1761 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1762 	uint16_t portid;
1763 	uint8_t count, all_ports_up, print_flag = 0;
1764 	struct rte_eth_link link;
1765 
1766 	printf("\nChecking link status");
1767 	fflush(stdout);
1768 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1769 		all_ports_up = 1;
1770 		for (portid = 0; portid < port_num; portid++) {
1771 			if ((port_mask & (1 << portid)) == 0)
1772 				continue;
1773 			memset(&link, 0, sizeof(link));
1774 			rte_eth_link_get_nowait(portid, &link);
1775 			/* print link status if flag set */
1776 			if (print_flag == 1) {
1777 				if (link.link_status)
1778 					printf(
1779 					"Port%d Link Up. Speed %u Mbps - %s\n",
1780 						portid, link.link_speed,
1781 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1782 					("full-duplex") : ("half-duplex\n"));
1783 				else
1784 					printf("Port %d Link Down\n", portid);
1785 				continue;
1786 			}
1787 			/* clear all_ports_up flag if any link down */
1788 			if (link.link_status == ETH_LINK_DOWN) {
1789 				all_ports_up = 0;
1790 				break;
1791 			}
1792 		}
1793 		/* after finally printing all link status, get out */
1794 		if (print_flag == 1)
1795 			break;
1796 
1797 		if (all_ports_up == 0) {
1798 			printf(".");
1799 			fflush(stdout);
1800 			rte_delay_ms(CHECK_INTERVAL);
1801 		}
1802 
1803 		/* set the print_flag if all ports up or timeout */
1804 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1805 			print_flag = 1;
1806 			printf("done\n");
1807 		}
1808 	}
1809 }
1810 
1811 /* Check if device has to be HW/SW or any */
1812 static int
1813 check_type(const struct l2fwd_crypto_options *options,
1814 		const struct rte_cryptodev_info *dev_info)
1815 {
1816 	if (options->type == CDEV_TYPE_HW &&
1817 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1818 		return 0;
1819 	if (options->type == CDEV_TYPE_SW &&
1820 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1821 		return 0;
1822 	if (options->type == CDEV_TYPE_ANY)
1823 		return 0;
1824 
1825 	return -1;
1826 }
1827 
1828 static const struct rte_cryptodev_capabilities *
1829 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
1830 		const struct rte_cryptodev_info *dev_info,
1831 		uint8_t cdev_id)
1832 {
1833 	unsigned int i = 0;
1834 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1835 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1836 	enum rte_crypto_cipher_algorithm opt_cipher_algo =
1837 					options->cipher_xform.cipher.algo;
1838 
1839 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1840 		cap_cipher_algo = cap->sym.cipher.algo;
1841 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1842 			if (cap_cipher_algo == opt_cipher_algo) {
1843 				if (check_type(options, dev_info) == 0)
1844 					break;
1845 			}
1846 		}
1847 		cap = &dev_info->capabilities[++i];
1848 	}
1849 
1850 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1851 		printf("Algorithm %s not supported by cryptodev %u"
1852 			" or device not of preferred type (%s)\n",
1853 			rte_crypto_cipher_algorithm_strings[opt_cipher_algo],
1854 			cdev_id,
1855 			options->string_type);
1856 		return NULL;
1857 	}
1858 
1859 	return cap;
1860 }
1861 
1862 static const struct rte_cryptodev_capabilities *
1863 check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
1864 		const struct rte_cryptodev_info *dev_info,
1865 		uint8_t cdev_id)
1866 {
1867 	unsigned int i = 0;
1868 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1869 	enum rte_crypto_auth_algorithm cap_auth_algo;
1870 	enum rte_crypto_auth_algorithm opt_auth_algo =
1871 					options->auth_xform.auth.algo;
1872 
1873 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1874 		cap_auth_algo = cap->sym.auth.algo;
1875 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1876 			if (cap_auth_algo == opt_auth_algo) {
1877 				if (check_type(options, dev_info) == 0)
1878 					break;
1879 			}
1880 		}
1881 		cap = &dev_info->capabilities[++i];
1882 	}
1883 
1884 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1885 		printf("Algorithm %s not supported by cryptodev %u"
1886 			" or device not of preferred type (%s)\n",
1887 			rte_crypto_auth_algorithm_strings[opt_auth_algo],
1888 			cdev_id,
1889 			options->string_type);
1890 		return NULL;
1891 	}
1892 
1893 	return cap;
1894 }
1895 
1896 static const struct rte_cryptodev_capabilities *
1897 check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
1898 		const struct rte_cryptodev_info *dev_info,
1899 		uint8_t cdev_id)
1900 {
1901 	unsigned int i = 0;
1902 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1903 	enum rte_crypto_aead_algorithm cap_aead_algo;
1904 	enum rte_crypto_aead_algorithm opt_aead_algo =
1905 					options->aead_xform.aead.algo;
1906 
1907 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1908 		cap_aead_algo = cap->sym.aead.algo;
1909 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1910 			if (cap_aead_algo == opt_aead_algo) {
1911 				if (check_type(options, dev_info) == 0)
1912 					break;
1913 			}
1914 		}
1915 		cap = &dev_info->capabilities[++i];
1916 	}
1917 
1918 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1919 		printf("Algorithm %s not supported by cryptodev %u"
1920 			" or device not of preferred type (%s)\n",
1921 			rte_crypto_aead_algorithm_strings[opt_aead_algo],
1922 			cdev_id,
1923 			options->string_type);
1924 		return NULL;
1925 	}
1926 
1927 	return cap;
1928 }
1929 
1930 /* Check if the device is enabled by cryptodev_mask */
1931 static int
1932 check_cryptodev_mask(struct l2fwd_crypto_options *options,
1933 		uint8_t cdev_id)
1934 {
1935 	if (options->cryptodev_mask & (1 << cdev_id))
1936 		return 0;
1937 
1938 	return -1;
1939 }
1940 
1941 static inline int
1942 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1943 		uint16_t increment)
1944 {
1945 	uint16_t supp_size;
1946 
1947 	/* Single value */
1948 	if (increment == 0) {
1949 		if (length == min)
1950 			return 0;
1951 		else
1952 			return -1;
1953 	}
1954 
1955 	/* Range of values */
1956 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1957 		if (length == supp_size)
1958 			return 0;
1959 	}
1960 
1961 	return -1;
1962 }
1963 
1964 static int
1965 check_iv_param(const struct rte_crypto_param_range *iv_range_size,
1966 		unsigned int iv_param, int iv_random_size,
1967 		uint16_t *iv_length)
1968 {
1969 	/*
1970 	 * Check if length of provided IV is supported
1971 	 * by the algorithm chosen.
1972 	 */
1973 	if (iv_param) {
1974 		if (check_supported_size(*iv_length,
1975 				iv_range_size->min,
1976 				iv_range_size->max,
1977 				iv_range_size->increment)
1978 					!= 0) {
1979 			printf("Unsupported IV length\n");
1980 			return -1;
1981 		}
1982 	/*
1983 	 * Check if length of IV to be randomly generated
1984 	 * is supported by the algorithm chosen.
1985 	 */
1986 	} else if (iv_random_size != -1) {
1987 		if (check_supported_size(iv_random_size,
1988 				iv_range_size->min,
1989 				iv_range_size->max,
1990 				iv_range_size->increment)
1991 					!= 0) {
1992 			printf("Unsupported IV length\n");
1993 			return -1;
1994 		}
1995 		*iv_length = iv_random_size;
1996 	/* No size provided, use minimum size. */
1997 	} else
1998 		*iv_length = iv_range_size->min;
1999 
2000 	return 0;
2001 }
2002 
2003 static int
2004 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
2005 		uint8_t *enabled_cdevs)
2006 {
2007 	unsigned int cdev_id, cdev_count, enabled_cdev_count = 0;
2008 	const struct rte_cryptodev_capabilities *cap;
2009 	unsigned int sess_sz, max_sess_sz = 0;
2010 	int retval;
2011 
2012 	cdev_count = rte_cryptodev_count();
2013 	if (cdev_count == 0) {
2014 		printf("No crypto devices available\n");
2015 		return -1;
2016 	}
2017 
2018 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
2019 		sess_sz = rte_cryptodev_get_private_session_size(cdev_id);
2020 		if (sess_sz > max_sess_sz)
2021 			max_sess_sz = sess_sz;
2022 	}
2023 
2024 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
2025 			cdev_id++) {
2026 		struct rte_cryptodev_qp_conf qp_conf;
2027 		struct rte_cryptodev_info dev_info;
2028 		retval = rte_cryptodev_socket_id(cdev_id);
2029 
2030 		if (retval < 0) {
2031 			printf("Invalid crypto device id used\n");
2032 			return -1;
2033 		}
2034 
2035 		uint8_t socket_id = (uint8_t) retval;
2036 
2037 		struct rte_cryptodev_config conf = {
2038 			.nb_queue_pairs = 1,
2039 			.socket_id = socket_id,
2040 		};
2041 
2042 		if (check_cryptodev_mask(options, (uint8_t)cdev_id))
2043 			continue;
2044 
2045 		rte_cryptodev_info_get(cdev_id, &dev_info);
2046 
2047 		if (session_pool_socket[socket_id] == NULL) {
2048 			char mp_name[RTE_MEMPOOL_NAMESIZE];
2049 			struct rte_mempool *sess_mp;
2050 
2051 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2052 				"sess_mp_%u", socket_id);
2053 
2054 			/*
2055 			 * Create enough objects for session headers and
2056 			 * device private data
2057 			 */
2058 			sess_mp = rte_mempool_create(mp_name,
2059 						MAX_SESSIONS * 2,
2060 						max_sess_sz,
2061 						SESSION_POOL_CACHE_SIZE,
2062 						0, NULL, NULL, NULL,
2063 						NULL, socket_id,
2064 						0);
2065 
2066 			if (sess_mp == NULL) {
2067 				printf("Cannot create session pool on socket %d\n",
2068 					socket_id);
2069 				return -ENOMEM;
2070 			}
2071 
2072 			printf("Allocated session pool on socket %d\n", socket_id);
2073 			session_pool_socket[socket_id] = sess_mp;
2074 		}
2075 
2076 		/* Set AEAD parameters */
2077 		if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
2078 			/* Check if device supports AEAD algo */
2079 			cap = check_device_support_aead_algo(options, &dev_info,
2080 							cdev_id);
2081 			if (cap == NULL)
2082 				continue;
2083 
2084 			options->block_size = cap->sym.aead.block_size;
2085 
2086 			check_iv_param(&cap->sym.aead.iv_size,
2087 					options->aead_iv_param,
2088 					options->aead_iv_random_size,
2089 					&options->aead_iv.length);
2090 
2091 			/*
2092 			 * Check if length of provided AEAD key is supported
2093 			 * by the algorithm chosen.
2094 			 */
2095 			if (options->aead_key_param) {
2096 				if (check_supported_size(
2097 						options->aead_xform.aead.key.length,
2098 						cap->sym.aead.key_size.min,
2099 						cap->sym.aead.key_size.max,
2100 						cap->sym.aead.key_size.increment)
2101 							!= 0) {
2102 					printf("Unsupported aead key length\n");
2103 					return -1;
2104 				}
2105 			/*
2106 			 * Check if length of the aead key to be randomly generated
2107 			 * is supported by the algorithm chosen.
2108 			 */
2109 			} else if (options->aead_key_random_size != -1) {
2110 				if (check_supported_size(options->aead_key_random_size,
2111 						cap->sym.aead.key_size.min,
2112 						cap->sym.aead.key_size.max,
2113 						cap->sym.aead.key_size.increment)
2114 							!= 0) {
2115 					printf("Unsupported aead key length\n");
2116 					return -1;
2117 				}
2118 				options->aead_xform.aead.key.length =
2119 							options->aead_key_random_size;
2120 			/* No size provided, use minimum size. */
2121 			} else
2122 				options->aead_xform.aead.key.length =
2123 						cap->sym.aead.key_size.min;
2124 
2125 			if (!options->aead_key_param)
2126 				generate_random_key(
2127 					options->aead_xform.aead.key.data,
2128 					options->aead_xform.aead.key.length);
2129 
2130 			/*
2131 			 * Check if length of provided AAD is supported
2132 			 * by the algorithm chosen.
2133 			 */
2134 			if (options->aad_param) {
2135 				if (check_supported_size(options->aad.length,
2136 						cap->sym.aead.aad_size.min,
2137 						cap->sym.aead.aad_size.max,
2138 						cap->sym.aead.aad_size.increment)
2139 							!= 0) {
2140 					printf("Unsupported AAD length\n");
2141 					return -1;
2142 				}
2143 			/*
2144 			 * Check if length of AAD to be randomly generated
2145 			 * is supported by the algorithm chosen.
2146 			 */
2147 			} else if (options->aad_random_size != -1) {
2148 				if (check_supported_size(options->aad_random_size,
2149 						cap->sym.aead.aad_size.min,
2150 						cap->sym.aead.aad_size.max,
2151 						cap->sym.aead.aad_size.increment)
2152 							!= 0) {
2153 					printf("Unsupported AAD length\n");
2154 					return -1;
2155 				}
2156 				options->aad.length = options->aad_random_size;
2157 			/* No size provided, use minimum size. */
2158 			} else
2159 				options->aad.length = cap->sym.auth.aad_size.min;
2160 
2161 			options->aead_xform.aead.aad_length =
2162 						options->aad.length;
2163 
2164 			/* Check if digest size is supported by the algorithm. */
2165 			if (options->digest_size != -1) {
2166 				if (check_supported_size(options->digest_size,
2167 						cap->sym.aead.digest_size.min,
2168 						cap->sym.aead.digest_size.max,
2169 						cap->sym.aead.digest_size.increment)
2170 							!= 0) {
2171 					printf("Unsupported digest length\n");
2172 					return -1;
2173 				}
2174 				options->aead_xform.aead.digest_length =
2175 							options->digest_size;
2176 			/* No size provided, use minimum size. */
2177 			} else
2178 				options->aead_xform.aead.digest_length =
2179 						cap->sym.aead.digest_size.min;
2180 		}
2181 
2182 		/* Set cipher parameters */
2183 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2184 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2185 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2186 			/* Check if device supports cipher algo */
2187 			cap = check_device_support_cipher_algo(options, &dev_info,
2188 							cdev_id);
2189 			if (cap == NULL)
2190 				continue;
2191 
2192 			options->block_size = cap->sym.cipher.block_size;
2193 
2194 			check_iv_param(&cap->sym.cipher.iv_size,
2195 					options->cipher_iv_param,
2196 					options->cipher_iv_random_size,
2197 					&options->cipher_iv.length);
2198 
2199 			/*
2200 			 * Check if length of provided cipher key is supported
2201 			 * by the algorithm chosen.
2202 			 */
2203 			if (options->ckey_param) {
2204 				if (check_supported_size(
2205 						options->cipher_xform.cipher.key.length,
2206 						cap->sym.cipher.key_size.min,
2207 						cap->sym.cipher.key_size.max,
2208 						cap->sym.cipher.key_size.increment)
2209 							!= 0) {
2210 					printf("Unsupported cipher key length\n");
2211 					return -1;
2212 				}
2213 			/*
2214 			 * Check if length of the cipher key to be randomly generated
2215 			 * is supported by the algorithm chosen.
2216 			 */
2217 			} else if (options->ckey_random_size != -1) {
2218 				if (check_supported_size(options->ckey_random_size,
2219 						cap->sym.cipher.key_size.min,
2220 						cap->sym.cipher.key_size.max,
2221 						cap->sym.cipher.key_size.increment)
2222 							!= 0) {
2223 					printf("Unsupported cipher key length\n");
2224 					return -1;
2225 				}
2226 				options->cipher_xform.cipher.key.length =
2227 							options->ckey_random_size;
2228 			/* No size provided, use minimum size. */
2229 			} else
2230 				options->cipher_xform.cipher.key.length =
2231 						cap->sym.cipher.key_size.min;
2232 
2233 			if (!options->ckey_param)
2234 				generate_random_key(
2235 					options->cipher_xform.cipher.key.data,
2236 					options->cipher_xform.cipher.key.length);
2237 
2238 		}
2239 
2240 		/* Set auth parameters */
2241 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2242 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2243 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2244 			/* Check if device supports auth algo */
2245 			cap = check_device_support_auth_algo(options, &dev_info,
2246 							cdev_id);
2247 			if (cap == NULL)
2248 				continue;
2249 
2250 			check_iv_param(&cap->sym.auth.iv_size,
2251 					options->auth_iv_param,
2252 					options->auth_iv_random_size,
2253 					&options->auth_iv.length);
2254 			/*
2255 			 * Check if length of provided auth key is supported
2256 			 * by the algorithm chosen.
2257 			 */
2258 			if (options->akey_param) {
2259 				if (check_supported_size(
2260 						options->auth_xform.auth.key.length,
2261 						cap->sym.auth.key_size.min,
2262 						cap->sym.auth.key_size.max,
2263 						cap->sym.auth.key_size.increment)
2264 							!= 0) {
2265 					printf("Unsupported auth key length\n");
2266 					return -1;
2267 				}
2268 			/*
2269 			 * Check if length of the auth key to be randomly generated
2270 			 * is supported by the algorithm chosen.
2271 			 */
2272 			} else if (options->akey_random_size != -1) {
2273 				if (check_supported_size(options->akey_random_size,
2274 						cap->sym.auth.key_size.min,
2275 						cap->sym.auth.key_size.max,
2276 						cap->sym.auth.key_size.increment)
2277 							!= 0) {
2278 					printf("Unsupported auth key length\n");
2279 					return -1;
2280 				}
2281 				options->auth_xform.auth.key.length =
2282 							options->akey_random_size;
2283 			/* No size provided, use minimum size. */
2284 			} else
2285 				options->auth_xform.auth.key.length =
2286 						cap->sym.auth.key_size.min;
2287 
2288 			if (!options->akey_param)
2289 				generate_random_key(
2290 					options->auth_xform.auth.key.data,
2291 					options->auth_xform.auth.key.length);
2292 
2293 			/* Check if digest size is supported by the algorithm. */
2294 			if (options->digest_size != -1) {
2295 				if (check_supported_size(options->digest_size,
2296 						cap->sym.auth.digest_size.min,
2297 						cap->sym.auth.digest_size.max,
2298 						cap->sym.auth.digest_size.increment)
2299 							!= 0) {
2300 					printf("Unsupported digest length\n");
2301 					return -1;
2302 				}
2303 				options->auth_xform.auth.digest_length =
2304 							options->digest_size;
2305 			/* No size provided, use minimum size. */
2306 			} else
2307 				options->auth_xform.auth.digest_length =
2308 						cap->sym.auth.digest_size.min;
2309 		}
2310 
2311 		retval = rte_cryptodev_configure(cdev_id, &conf);
2312 		if (retval < 0) {
2313 			printf("Failed to configure cryptodev %u", cdev_id);
2314 			return -1;
2315 		}
2316 
2317 		qp_conf.nb_descriptors = 2048;
2318 
2319 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
2320 				socket_id, session_pool_socket[socket_id]);
2321 		if (retval < 0) {
2322 			printf("Failed to setup queue pair %u on cryptodev %u",
2323 					0, cdev_id);
2324 			return -1;
2325 		}
2326 
2327 		retval = rte_cryptodev_start(cdev_id);
2328 		if (retval < 0) {
2329 			printf("Failed to start device %u: error %d\n",
2330 					cdev_id, retval);
2331 			return -1;
2332 		}
2333 
2334 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
2335 
2336 		enabled_cdevs[cdev_id] = 1;
2337 		enabled_cdev_count++;
2338 	}
2339 
2340 	return enabled_cdev_count;
2341 }
2342 
2343 static int
2344 initialize_ports(struct l2fwd_crypto_options *options)
2345 {
2346 	uint16_t last_portid, portid;
2347 	unsigned enabled_portcount = 0;
2348 	unsigned nb_ports = rte_eth_dev_count();
2349 
2350 	if (nb_ports == 0) {
2351 		printf("No Ethernet ports - bye\n");
2352 		return -1;
2353 	}
2354 
2355 	/* Reset l2fwd_dst_ports */
2356 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
2357 		l2fwd_dst_ports[portid] = 0;
2358 
2359 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
2360 		int retval;
2361 
2362 		/* Skip ports that are not enabled */
2363 		if ((options->portmask & (1 << portid)) == 0)
2364 			continue;
2365 
2366 		/* init port */
2367 		printf("Initializing port %u... ", portid);
2368 		fflush(stdout);
2369 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
2370 		if (retval < 0) {
2371 			printf("Cannot configure device: err=%d, port=%u\n",
2372 				  retval, portid);
2373 			return -1;
2374 		}
2375 
2376 		retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2377 							  &nb_txd);
2378 		if (retval < 0) {
2379 			printf("Cannot adjust number of descriptors: err=%d, port=%u\n",
2380 				retval, portid);
2381 			return -1;
2382 		}
2383 
2384 		/* init one RX queue */
2385 		fflush(stdout);
2386 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
2387 					     rte_eth_dev_socket_id(portid),
2388 					     NULL, l2fwd_pktmbuf_pool);
2389 		if (retval < 0) {
2390 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
2391 					retval, portid);
2392 			return -1;
2393 		}
2394 
2395 		/* init one TX queue on each port */
2396 		fflush(stdout);
2397 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
2398 				rte_eth_dev_socket_id(portid),
2399 				NULL);
2400 		if (retval < 0) {
2401 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
2402 				retval, portid);
2403 
2404 			return -1;
2405 		}
2406 
2407 		/* Start device */
2408 		retval = rte_eth_dev_start(portid);
2409 		if (retval < 0) {
2410 			printf("rte_eth_dev_start:err=%d, port=%u\n",
2411 					retval, portid);
2412 			return -1;
2413 		}
2414 
2415 		rte_eth_promiscuous_enable(portid);
2416 
2417 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
2418 
2419 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
2420 				portid,
2421 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
2422 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
2423 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
2424 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
2425 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
2426 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
2427 
2428 		/* initialize port stats */
2429 		memset(&port_statistics, 0, sizeof(port_statistics));
2430 
2431 		/* Setup port forwarding table */
2432 		if (enabled_portcount % 2) {
2433 			l2fwd_dst_ports[portid] = last_portid;
2434 			l2fwd_dst_ports[last_portid] = portid;
2435 		} else {
2436 			last_portid = portid;
2437 		}
2438 
2439 		l2fwd_enabled_port_mask |= (1 << portid);
2440 		enabled_portcount++;
2441 	}
2442 
2443 	if (enabled_portcount == 1) {
2444 		l2fwd_dst_ports[last_portid] = last_portid;
2445 	} else if (enabled_portcount % 2) {
2446 		printf("odd number of ports in portmask- bye\n");
2447 		return -1;
2448 	}
2449 
2450 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
2451 
2452 	return enabled_portcount;
2453 }
2454 
2455 static void
2456 reserve_key_memory(struct l2fwd_crypto_options *options)
2457 {
2458 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
2459 						MAX_KEY_SIZE, 0);
2460 	if (options->cipher_xform.cipher.key.data == NULL)
2461 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
2462 
2463 	options->auth_xform.auth.key.data = rte_malloc("auth key",
2464 						MAX_KEY_SIZE, 0);
2465 	if (options->auth_xform.auth.key.data == NULL)
2466 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
2467 
2468 	options->aead_xform.aead.key.data = rte_malloc("aead key",
2469 						MAX_KEY_SIZE, 0);
2470 	if (options->aead_xform.aead.key.data == NULL)
2471 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key");
2472 
2473 	options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0);
2474 	if (options->cipher_iv.data == NULL)
2475 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV");
2476 
2477 	options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0);
2478 	if (options->auth_iv.data == NULL)
2479 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV");
2480 
2481 	options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0);
2482 	if (options->aead_iv.data == NULL)
2483 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv");
2484 
2485 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
2486 	if (options->aad.data == NULL)
2487 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
2488 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
2489 }
2490 
2491 int
2492 main(int argc, char **argv)
2493 {
2494 	struct lcore_queue_conf *qconf;
2495 	struct l2fwd_crypto_options options;
2496 
2497 	uint8_t nb_cryptodevs, cdev_id;
2498 	uint16_t nb_ports, portid;
2499 	unsigned lcore_id, rx_lcore_id;
2500 	int ret, enabled_cdevcount, enabled_portcount;
2501 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
2502 
2503 	/* init EAL */
2504 	ret = rte_eal_init(argc, argv);
2505 	if (ret < 0)
2506 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
2507 	argc -= ret;
2508 	argv += ret;
2509 
2510 	/* reserve memory for Cipher/Auth key and IV */
2511 	reserve_key_memory(&options);
2512 
2513 	/* parse application arguments (after the EAL ones) */
2514 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
2515 	if (ret < 0)
2516 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
2517 
2518 	printf("MAC updating %s\n",
2519 			options.mac_updating ? "enabled" : "disabled");
2520 
2521 	/* create the mbuf pool */
2522 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
2523 			sizeof(struct rte_crypto_op),
2524 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2525 	if (l2fwd_pktmbuf_pool == NULL)
2526 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2527 
2528 	/* create crypto op pool */
2529 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2530 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH,
2531 			rte_socket_id());
2532 	if (l2fwd_crypto_op_pool == NULL)
2533 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2534 
2535 	/* Enable Ethernet ports */
2536 	enabled_portcount = initialize_ports(&options);
2537 	if (enabled_portcount < 1)
2538 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2539 
2540 	nb_ports = rte_eth_dev_count();
2541 	/* Initialize the port/queue configuration of each logical core */
2542 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
2543 			portid < nb_ports; portid++) {
2544 
2545 		/* skip ports that are not enabled */
2546 		if ((options.portmask & (1 << portid)) == 0)
2547 			continue;
2548 
2549 		if (options.single_lcore && qconf == NULL) {
2550 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2551 				rx_lcore_id++;
2552 				if (rx_lcore_id >= RTE_MAX_LCORE)
2553 					rte_exit(EXIT_FAILURE,
2554 							"Not enough cores\n");
2555 			}
2556 		} else if (!options.single_lcore) {
2557 			/* get the lcore_id for this port */
2558 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2559 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2560 			       options.nb_ports_per_lcore) {
2561 				rx_lcore_id++;
2562 				if (rx_lcore_id >= RTE_MAX_LCORE)
2563 					rte_exit(EXIT_FAILURE,
2564 							"Not enough cores\n");
2565 			}
2566 		}
2567 
2568 		/* Assigned a new logical core in the loop above. */
2569 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2570 			qconf = &lcore_queue_conf[rx_lcore_id];
2571 
2572 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2573 		qconf->nb_rx_ports++;
2574 
2575 		printf("Lcore %u: RX port %u\n", rx_lcore_id, portid);
2576 	}
2577 
2578 	/* Enable Crypto devices */
2579 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2580 			enabled_cdevs);
2581 	if (enabled_cdevcount < 0)
2582 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2583 
2584 	if (enabled_cdevcount < enabled_portcount)
2585 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2586 				"has to be more or equal to number of ports (%d)\n",
2587 				enabled_cdevcount, enabled_portcount);
2588 
2589 	nb_cryptodevs = rte_cryptodev_count();
2590 
2591 	/* Initialize the port/cryptodev configuration of each logical core */
2592 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2593 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2594 			cdev_id++) {
2595 		/* Crypto op not supported by crypto device */
2596 		if (!enabled_cdevs[cdev_id])
2597 			continue;
2598 
2599 		if (options.single_lcore && qconf == NULL) {
2600 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2601 				rx_lcore_id++;
2602 				if (rx_lcore_id >= RTE_MAX_LCORE)
2603 					rte_exit(EXIT_FAILURE,
2604 							"Not enough cores\n");
2605 			}
2606 		} else if (!options.single_lcore) {
2607 			/* get the lcore_id for this port */
2608 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2609 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2610 			       options.nb_ports_per_lcore) {
2611 				rx_lcore_id++;
2612 				if (rx_lcore_id >= RTE_MAX_LCORE)
2613 					rte_exit(EXIT_FAILURE,
2614 							"Not enough cores\n");
2615 			}
2616 		}
2617 
2618 		/* Assigned a new logical core in the loop above. */
2619 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2620 			qconf = &lcore_queue_conf[rx_lcore_id];
2621 
2622 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2623 		qconf->nb_crypto_devs++;
2624 
2625 		enabled_cdevcount--;
2626 
2627 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2628 				(unsigned)cdev_id);
2629 	}
2630 
2631 	/* launch per-lcore init on every lcore */
2632 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2633 			CALL_MASTER);
2634 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2635 		if (rte_eal_wait_lcore(lcore_id) < 0)
2636 			return -1;
2637 	}
2638 
2639 	return 0;
2640 }
2641