xref: /dpdk/examples/l2fwd-crypto/main.c (revision d61f70b4c918035098c6e1d3ed548373492a06a3)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 
92 /*
93  * Configurable number of RX/TX ring descriptors
94  */
95 #define RTE_TEST_RX_DESC_DEFAULT 128
96 #define RTE_TEST_TX_DESC_DEFAULT 512
97 
98 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
99 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
100 
101 /* ethernet addresses of ports */
102 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
103 
104 /* mask of enabled ports */
105 static uint64_t l2fwd_enabled_port_mask;
106 static uint64_t l2fwd_enabled_crypto_mask;
107 
108 /* list of enabled ports */
109 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
110 
111 
112 struct pkt_buffer {
113 	unsigned len;
114 	struct rte_mbuf *buffer[MAX_PKT_BURST];
115 };
116 
117 struct op_buffer {
118 	unsigned len;
119 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
120 };
121 
122 #define MAX_RX_QUEUE_PER_LCORE 16
123 #define MAX_TX_QUEUE_PER_PORT 16
124 
125 enum l2fwd_crypto_xform_chain {
126 	L2FWD_CRYPTO_CIPHER_HASH,
127 	L2FWD_CRYPTO_HASH_CIPHER,
128 	L2FWD_CRYPTO_CIPHER_ONLY,
129 	L2FWD_CRYPTO_HASH_ONLY
130 };
131 
132 struct l2fwd_key {
133 	uint8_t *data;
134 	uint32_t length;
135 	phys_addr_t phys_addr;
136 };
137 
138 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
139 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
140 
141 /** l2fwd crypto application command line options */
142 struct l2fwd_crypto_options {
143 	unsigned portmask;
144 	unsigned nb_ports_per_lcore;
145 	unsigned refresh_period;
146 	unsigned single_lcore:1;
147 
148 	enum cdev_type type;
149 	unsigned sessionless:1;
150 
151 	enum l2fwd_crypto_xform_chain xform_chain;
152 
153 	struct rte_crypto_sym_xform cipher_xform;
154 	unsigned ckey_param;
155 	int ckey_random_size;
156 
157 	struct l2fwd_key iv;
158 	unsigned iv_param;
159 	int iv_random_size;
160 
161 	struct rte_crypto_sym_xform auth_xform;
162 	uint8_t akey_param;
163 	int akey_random_size;
164 
165 	struct l2fwd_key aad;
166 	unsigned aad_param;
167 	int aad_random_size;
168 
169 	int digest_size;
170 
171 	uint16_t block_size;
172 	char string_type[MAX_STR_LEN];
173 };
174 
175 /** l2fwd crypto lcore params */
176 struct l2fwd_crypto_params {
177 	uint8_t dev_id;
178 	uint8_t qp_id;
179 
180 	unsigned digest_length;
181 	unsigned block_size;
182 
183 	struct l2fwd_key iv;
184 	struct l2fwd_key aad;
185 	struct rte_cryptodev_sym_session *session;
186 
187 	uint8_t do_cipher;
188 	uint8_t do_hash;
189 	uint8_t hash_verify;
190 
191 	enum rte_crypto_cipher_algorithm cipher_algo;
192 	enum rte_crypto_auth_algorithm auth_algo;
193 };
194 
195 /** lcore configuration */
196 struct lcore_queue_conf {
197 	unsigned nb_rx_ports;
198 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
199 
200 	unsigned nb_crypto_devs;
201 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
202 
203 	struct op_buffer op_buf[RTE_MAX_ETHPORTS];
204 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
205 } __rte_cache_aligned;
206 
207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
208 
209 static const struct rte_eth_conf port_conf = {
210 	.rxmode = {
211 		.mq_mode = ETH_MQ_RX_NONE,
212 		.max_rx_pkt_len = ETHER_MAX_LEN,
213 		.split_hdr_size = 0,
214 		.header_split   = 0, /**< Header Split disabled */
215 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
216 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
217 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
218 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
219 	},
220 	.txmode = {
221 		.mq_mode = ETH_MQ_TX_NONE,
222 	},
223 };
224 
225 struct rte_mempool *l2fwd_pktmbuf_pool;
226 struct rte_mempool *l2fwd_crypto_op_pool;
227 
228 /* Per-port statistics struct */
229 struct l2fwd_port_statistics {
230 	uint64_t tx;
231 	uint64_t rx;
232 
233 	uint64_t crypto_enqueued;
234 	uint64_t crypto_dequeued;
235 
236 	uint64_t dropped;
237 } __rte_cache_aligned;
238 
239 struct l2fwd_crypto_statistics {
240 	uint64_t enqueued;
241 	uint64_t dequeued;
242 
243 	uint64_t errors;
244 } __rte_cache_aligned;
245 
246 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
247 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
248 
249 /* A tsc-based timer responsible for triggering statistics printout */
250 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
251 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
252 
253 /* default period is 10 seconds */
254 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
255 
256 /* Print out statistics on packets dropped */
257 static void
258 print_stats(void)
259 {
260 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
261 	uint64_t total_packets_enqueued, total_packets_dequeued,
262 		total_packets_errors;
263 	unsigned portid;
264 	uint64_t cdevid;
265 
266 	total_packets_dropped = 0;
267 	total_packets_tx = 0;
268 	total_packets_rx = 0;
269 	total_packets_enqueued = 0;
270 	total_packets_dequeued = 0;
271 	total_packets_errors = 0;
272 
273 	const char clr[] = { 27, '[', '2', 'J', '\0' };
274 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
275 
276 		/* Clear screen and move to top left */
277 	printf("%s%s", clr, topLeft);
278 
279 	printf("\nPort statistics ====================================");
280 
281 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
282 		/* skip disabled ports */
283 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
284 			continue;
285 		printf("\nStatistics for port %u ------------------------------"
286 			   "\nPackets sent: %32"PRIu64
287 			   "\nPackets received: %28"PRIu64
288 			   "\nPackets dropped: %29"PRIu64,
289 			   portid,
290 			   port_statistics[portid].tx,
291 			   port_statistics[portid].rx,
292 			   port_statistics[portid].dropped);
293 
294 		total_packets_dropped += port_statistics[portid].dropped;
295 		total_packets_tx += port_statistics[portid].tx;
296 		total_packets_rx += port_statistics[portid].rx;
297 	}
298 	printf("\nCrypto statistics ==================================");
299 
300 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
301 		/* skip disabled ports */
302 		if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
303 			continue;
304 		printf("\nStatistics for cryptodev %"PRIu64
305 				" -------------------------"
306 			   "\nPackets enqueued: %28"PRIu64
307 			   "\nPackets dequeued: %28"PRIu64
308 			   "\nPackets errors: %30"PRIu64,
309 			   cdevid,
310 			   crypto_statistics[cdevid].enqueued,
311 			   crypto_statistics[cdevid].dequeued,
312 			   crypto_statistics[cdevid].errors);
313 
314 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
315 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
316 		total_packets_errors += crypto_statistics[cdevid].errors;
317 	}
318 	printf("\nAggregate statistics ==============================="
319 		   "\nTotal packets received: %22"PRIu64
320 		   "\nTotal packets enqueued: %22"PRIu64
321 		   "\nTotal packets dequeued: %22"PRIu64
322 		   "\nTotal packets sent: %26"PRIu64
323 		   "\nTotal packets dropped: %23"PRIu64
324 		   "\nTotal packets crypto errors: %17"PRIu64,
325 		   total_packets_rx,
326 		   total_packets_enqueued,
327 		   total_packets_dequeued,
328 		   total_packets_tx,
329 		   total_packets_dropped,
330 		   total_packets_errors);
331 	printf("\n====================================================\n");
332 }
333 
334 static void
335 fill_supported_algorithm_tables(void)
336 {
337 	unsigned i;
338 
339 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
340 		strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
341 
342 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
343 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
344 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
345 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
346 		"AES_XCBC_MAC");
347 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
348 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
349 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
350 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
351 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
352 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
353 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_ZUC_EIA3], "ZUC_EIA3");
354 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
355 
356 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
357 		strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
358 
359 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
360 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
361 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
362 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
363 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
364 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_ZUC_EEA3], "ZUC_EEA3");
365 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
366 }
367 
368 
369 static int
370 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
371 		struct l2fwd_crypto_params *cparams)
372 {
373 	struct rte_crypto_op **op_buffer;
374 	unsigned ret;
375 
376 	op_buffer = (struct rte_crypto_op **)
377 			qconf->op_buf[cparams->dev_id].buffer;
378 
379 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
380 			cparams->qp_id,	op_buffer, (uint16_t) n);
381 
382 	crypto_statistics[cparams->dev_id].enqueued += ret;
383 	if (unlikely(ret < n)) {
384 		crypto_statistics[cparams->dev_id].errors += (n - ret);
385 		do {
386 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
387 			rte_crypto_op_free(op_buffer[ret]);
388 		} while (++ret < n);
389 	}
390 
391 	return 0;
392 }
393 
394 static int
395 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
396 		struct l2fwd_crypto_params *cparams)
397 {
398 	unsigned lcore_id, len;
399 	struct lcore_queue_conf *qconf;
400 
401 	lcore_id = rte_lcore_id();
402 
403 	qconf = &lcore_queue_conf[lcore_id];
404 	len = qconf->op_buf[cparams->dev_id].len;
405 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
406 	len++;
407 
408 	/* enough ops to be sent */
409 	if (len == MAX_PKT_BURST) {
410 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
411 		len = 0;
412 	}
413 
414 	qconf->op_buf[cparams->dev_id].len = len;
415 	return 0;
416 }
417 
418 static int
419 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
420 		struct rte_crypto_op *op,
421 		struct l2fwd_crypto_params *cparams)
422 {
423 	struct ether_hdr *eth_hdr;
424 	struct ipv4_hdr *ip_hdr;
425 
426 	unsigned ipdata_offset, pad_len, data_len;
427 	char *padding;
428 
429 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
430 
431 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
432 		return -1;
433 
434 	ipdata_offset = sizeof(struct ether_hdr);
435 
436 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
437 			ipdata_offset);
438 
439 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
440 			* IPV4_IHL_MULTIPLIER;
441 
442 
443 	/* Zero pad data to be crypto'd so it is block aligned */
444 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
445 	pad_len = data_len % cparams->block_size ? cparams->block_size -
446 			(data_len % cparams->block_size) : 0;
447 
448 	if (pad_len) {
449 		padding = rte_pktmbuf_append(m, pad_len);
450 		if (unlikely(!padding))
451 			return -1;
452 
453 		data_len += pad_len;
454 		memset(padding, 0, pad_len);
455 	}
456 
457 	/* Set crypto operation data parameters */
458 	rte_crypto_op_attach_sym_session(op, cparams->session);
459 
460 	if (cparams->do_hash) {
461 		if (!cparams->hash_verify) {
462 			/* Append space for digest to end of packet */
463 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
464 				cparams->digest_length);
465 		} else {
466 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
467 				cparams->digest_length);
468 		}
469 
470 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
471 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
472 		op->sym->auth.digest.length = cparams->digest_length;
473 
474 		/* For wireless algorithms, offset/length must be in bits */
475 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
476 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
477 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
478 			op->sym->auth.data.offset = ipdata_offset << 3;
479 			op->sym->auth.data.length = data_len << 3;
480 		} else {
481 			op->sym->auth.data.offset = ipdata_offset;
482 			op->sym->auth.data.length = data_len;
483 		}
484 
485 		if (cparams->aad.length) {
486 			op->sym->auth.aad.data = cparams->aad.data;
487 			op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
488 			op->sym->auth.aad.length = cparams->aad.length;
489 		}
490 	}
491 
492 	if (cparams->do_cipher) {
493 		op->sym->cipher.iv.data = cparams->iv.data;
494 		op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
495 		op->sym->cipher.iv.length = cparams->iv.length;
496 
497 		/* For wireless algorithms, offset/length must be in bits */
498 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
499 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
500 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
501 			op->sym->cipher.data.offset = ipdata_offset << 3;
502 			if (cparams->do_hash && cparams->hash_verify)
503 				/* Do not cipher the hash tag */
504 				op->sym->cipher.data.length = (data_len -
505 					cparams->digest_length) << 3;
506 			else
507 				op->sym->cipher.data.length = data_len << 3;
508 
509 		} else {
510 			op->sym->cipher.data.offset = ipdata_offset;
511 			if (cparams->do_hash && cparams->hash_verify)
512 				/* Do not cipher the hash tag */
513 				op->sym->cipher.data.length = data_len -
514 					cparams->digest_length;
515 			else
516 				op->sym->cipher.data.length = data_len;
517 		}
518 	}
519 
520 	op->sym->m_src = m;
521 
522 	return l2fwd_crypto_enqueue(op, cparams);
523 }
524 
525 
526 /* Send the burst of packets on an output interface */
527 static int
528 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
529 		uint8_t port)
530 {
531 	struct rte_mbuf **pkt_buffer;
532 	unsigned ret;
533 
534 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
535 
536 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
537 	port_statistics[port].tx += ret;
538 	if (unlikely(ret < n)) {
539 		port_statistics[port].dropped += (n - ret);
540 		do {
541 			rte_pktmbuf_free(pkt_buffer[ret]);
542 		} while (++ret < n);
543 	}
544 
545 	return 0;
546 }
547 
548 /* Enqueue packets for TX and prepare them to be sent */
549 static int
550 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
551 {
552 	unsigned lcore_id, len;
553 	struct lcore_queue_conf *qconf;
554 
555 	lcore_id = rte_lcore_id();
556 
557 	qconf = &lcore_queue_conf[lcore_id];
558 	len = qconf->pkt_buf[port].len;
559 	qconf->pkt_buf[port].buffer[len] = m;
560 	len++;
561 
562 	/* enough pkts to be sent */
563 	if (unlikely(len == MAX_PKT_BURST)) {
564 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
565 		len = 0;
566 	}
567 
568 	qconf->pkt_buf[port].len = len;
569 	return 0;
570 }
571 
572 static void
573 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
574 {
575 	struct ether_hdr *eth;
576 	void *tmp;
577 	unsigned dst_port;
578 
579 	dst_port = l2fwd_dst_ports[portid];
580 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
581 
582 	/* 02:00:00:00:00:xx */
583 	tmp = &eth->d_addr.addr_bytes[0];
584 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
585 
586 	/* src addr */
587 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
588 
589 	l2fwd_send_packet(m, (uint8_t) dst_port);
590 }
591 
592 /** Generate random key */
593 static void
594 generate_random_key(uint8_t *key, unsigned length)
595 {
596 	int fd;
597 	int ret;
598 
599 	fd = open("/dev/urandom", O_RDONLY);
600 	if (fd < 0)
601 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
602 
603 	ret = read(fd, key, length);
604 	close(fd);
605 
606 	if (ret != (signed)length)
607 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
608 }
609 
610 static struct rte_cryptodev_sym_session *
611 initialize_crypto_session(struct l2fwd_crypto_options *options,
612 		uint8_t cdev_id)
613 {
614 	struct rte_crypto_sym_xform *first_xform;
615 
616 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
617 		first_xform = &options->cipher_xform;
618 		first_xform->next = &options->auth_xform;
619 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
620 		first_xform = &options->auth_xform;
621 		first_xform->next = &options->cipher_xform;
622 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
623 		first_xform = &options->cipher_xform;
624 	} else {
625 		first_xform = &options->auth_xform;
626 	}
627 
628 	/* Setup Cipher Parameters */
629 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
630 }
631 
632 static void
633 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
634 
635 /* main processing loop */
636 static void
637 l2fwd_main_loop(struct l2fwd_crypto_options *options)
638 {
639 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
640 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
641 
642 	unsigned lcore_id = rte_lcore_id();
643 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
644 	unsigned i, j, portid, nb_rx, len;
645 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
646 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
647 			US_PER_S * BURST_TX_DRAIN_US;
648 	struct l2fwd_crypto_params *cparams;
649 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
650 
651 	if (qconf->nb_rx_ports == 0) {
652 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
653 		return;
654 	}
655 
656 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
657 
658 	for (i = 0; i < qconf->nb_rx_ports; i++) {
659 
660 		portid = qconf->rx_port_list[i];
661 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
662 			portid);
663 	}
664 
665 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
666 		port_cparams[i].do_cipher = 0;
667 		port_cparams[i].do_hash = 0;
668 
669 		switch (options->xform_chain) {
670 		case L2FWD_CRYPTO_CIPHER_HASH:
671 		case L2FWD_CRYPTO_HASH_CIPHER:
672 			port_cparams[i].do_cipher = 1;
673 			port_cparams[i].do_hash = 1;
674 			break;
675 		case L2FWD_CRYPTO_HASH_ONLY:
676 			port_cparams[i].do_hash = 1;
677 			break;
678 		case L2FWD_CRYPTO_CIPHER_ONLY:
679 			port_cparams[i].do_cipher = 1;
680 			break;
681 		}
682 
683 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
684 		port_cparams[i].qp_id = 0;
685 
686 		port_cparams[i].block_size = options->block_size;
687 
688 		if (port_cparams[i].do_hash) {
689 			port_cparams[i].digest_length =
690 					options->auth_xform.auth.digest_length;
691 			if (options->auth_xform.auth.add_auth_data_length) {
692 				port_cparams[i].aad.data = options->aad.data;
693 				port_cparams[i].aad.length =
694 					options->auth_xform.auth.add_auth_data_length;
695 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
696 				if (!options->aad_param)
697 					generate_random_key(port_cparams[i].aad.data,
698 						port_cparams[i].aad.length);
699 
700 			}
701 
702 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
703 				port_cparams[i].hash_verify = 1;
704 			else
705 				port_cparams[i].hash_verify = 0;
706 
707 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
708 		}
709 
710 		if (port_cparams[i].do_cipher) {
711 			port_cparams[i].iv.data = options->iv.data;
712 			port_cparams[i].iv.length = options->iv.length;
713 			port_cparams[i].iv.phys_addr = options->iv.phys_addr;
714 			if (!options->iv_param)
715 				generate_random_key(port_cparams[i].iv.data,
716 						port_cparams[i].iv.length);
717 
718 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
719 		}
720 
721 		port_cparams[i].session = initialize_crypto_session(options,
722 				port_cparams[i].dev_id);
723 
724 		if (port_cparams[i].session == NULL)
725 			return;
726 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
727 				port_cparams[i].dev_id);
728 	}
729 
730 	l2fwd_crypto_options_print(options);
731 
732 	/*
733 	 * Initialize previous tsc timestamp before the loop,
734 	 * to avoid showing the port statistics immediately,
735 	 * so user can see the crypto information.
736 	 */
737 	prev_tsc = rte_rdtsc();
738 	while (1) {
739 
740 		cur_tsc = rte_rdtsc();
741 
742 		/*
743 		 * Crypto device/TX burst queue drain
744 		 */
745 		diff_tsc = cur_tsc - prev_tsc;
746 		if (unlikely(diff_tsc > drain_tsc)) {
747 			/* Enqueue all crypto ops remaining in buffers */
748 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
749 				cparams = &port_cparams[i];
750 				len = qconf->op_buf[cparams->dev_id].len;
751 				l2fwd_crypto_send_burst(qconf, len, cparams);
752 				qconf->op_buf[cparams->dev_id].len = 0;
753 			}
754 			/* Transmit all packets remaining in buffers */
755 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
756 				if (qconf->pkt_buf[portid].len == 0)
757 					continue;
758 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
759 						 qconf->pkt_buf[portid].len,
760 						 (uint8_t) portid);
761 				qconf->pkt_buf[portid].len = 0;
762 			}
763 
764 			/* if timer is enabled */
765 			if (timer_period > 0) {
766 
767 				/* advance the timer */
768 				timer_tsc += diff_tsc;
769 
770 				/* if timer has reached its timeout */
771 				if (unlikely(timer_tsc >=
772 						(uint64_t)timer_period)) {
773 
774 					/* do this only on master core */
775 					if (lcore_id == rte_get_master_lcore()
776 						&& options->refresh_period) {
777 						print_stats();
778 						timer_tsc = 0;
779 					}
780 				}
781 			}
782 
783 			prev_tsc = cur_tsc;
784 		}
785 
786 		/*
787 		 * Read packet from RX queues
788 		 */
789 		for (i = 0; i < qconf->nb_rx_ports; i++) {
790 			portid = qconf->rx_port_list[i];
791 
792 			cparams = &port_cparams[i];
793 
794 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
795 						 pkts_burst, MAX_PKT_BURST);
796 
797 			port_statistics[portid].rx += nb_rx;
798 
799 			if (nb_rx) {
800 				/*
801 				 * If we can't allocate a crypto_ops, then drop
802 				 * the rest of the burst and dequeue and
803 				 * process the packets to free offload structs
804 				 */
805 				if (rte_crypto_op_bulk_alloc(
806 						l2fwd_crypto_op_pool,
807 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
808 						ops_burst, nb_rx) !=
809 								nb_rx) {
810 					for (j = 0; j < nb_rx; j++)
811 						rte_pktmbuf_free(pkts_burst[i]);
812 
813 					nb_rx = 0;
814 				}
815 
816 				/* Enqueue packets from Crypto device*/
817 				for (j = 0; j < nb_rx; j++) {
818 					m = pkts_burst[j];
819 
820 					l2fwd_simple_crypto_enqueue(m,
821 							ops_burst[j], cparams);
822 				}
823 			}
824 
825 			/* Dequeue packets from Crypto device */
826 			do {
827 				nb_rx = rte_cryptodev_dequeue_burst(
828 						cparams->dev_id, cparams->qp_id,
829 						ops_burst, MAX_PKT_BURST);
830 
831 				crypto_statistics[cparams->dev_id].dequeued +=
832 						nb_rx;
833 
834 				/* Forward crypto'd packets */
835 				for (j = 0; j < nb_rx; j++) {
836 					m = ops_burst[j]->sym->m_src;
837 
838 					rte_crypto_op_free(ops_burst[j]);
839 					l2fwd_simple_forward(m, portid);
840 				}
841 			} while (nb_rx == MAX_PKT_BURST);
842 		}
843 	}
844 }
845 
846 static int
847 l2fwd_launch_one_lcore(void *arg)
848 {
849 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
850 	return 0;
851 }
852 
853 /* Display command line arguments usage */
854 static void
855 l2fwd_crypto_usage(const char *prgname)
856 {
857 	printf("%s [EAL options] --\n"
858 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
859 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
860 		"  -s manage all ports from single lcore\n"
861 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
862 		" (0 to disable, 10 default, 86400 maximum)\n"
863 
864 		"  --cdev_type HW / SW / ANY\n"
865 		"  --chain HASH_CIPHER / CIPHER_HASH\n"
866 
867 		"  --cipher_algo ALGO\n"
868 		"  --cipher_op ENCRYPT / DECRYPT\n"
869 		"  --cipher_key KEY (bytes separated with \":\")\n"
870 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
871 		"  --iv IV (bytes separated with \":\")\n"
872 		"  --iv_random_size SIZE: size of IV when generated randomly\n"
873 
874 		"  --auth_algo ALGO\n"
875 		"  --auth_op GENERATE / VERIFY\n"
876 		"  --auth_key KEY (bytes separated with \":\")\n"
877 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
878 		"  --aad AAD (bytes separated with \":\")\n"
879 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
880 		"  --digest_size SIZE: size of digest to be generated/verified\n"
881 
882 		"  --sessionless\n",
883 	       prgname);
884 }
885 
886 /** Parse crypto device type command line argument */
887 static int
888 parse_cryptodev_type(enum cdev_type *type, char *optarg)
889 {
890 	if (strcmp("HW", optarg) == 0) {
891 		*type = CDEV_TYPE_HW;
892 		return 0;
893 	} else if (strcmp("SW", optarg) == 0) {
894 		*type = CDEV_TYPE_SW;
895 		return 0;
896 	} else if (strcmp("ANY", optarg) == 0) {
897 		*type = CDEV_TYPE_ANY;
898 		return 0;
899 	}
900 
901 	return -1;
902 }
903 
904 /** Parse crypto chain xform command line argument */
905 static int
906 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
907 {
908 	if (strcmp("CIPHER_HASH", optarg) == 0) {
909 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
910 		return 0;
911 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
912 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
913 		return 0;
914 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
915 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
916 		return 0;
917 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
918 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
919 		return 0;
920 	}
921 
922 	return -1;
923 }
924 
925 /** Parse crypto cipher algo option command line argument */
926 static int
927 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
928 {
929 	unsigned i;
930 
931 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
932 		if (!strcmp(supported_cipher_algo[i], optarg)) {
933 			*algo = (enum rte_crypto_cipher_algorithm)i;
934 			return 0;
935 		}
936 	}
937 
938 	printf("Cipher algorithm  not supported!\n");
939 	return -1;
940 }
941 
942 /** Parse crypto cipher operation command line argument */
943 static int
944 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
945 {
946 	if (strcmp("ENCRYPT", optarg) == 0) {
947 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
948 		return 0;
949 	} else if (strcmp("DECRYPT", optarg) == 0) {
950 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
951 		return 0;
952 	}
953 
954 	printf("Cipher operation not supported!\n");
955 	return -1;
956 }
957 
958 /** Parse crypto key command line argument */
959 static int
960 parse_key(uint8_t *data, char *input_arg)
961 {
962 	unsigned byte_count;
963 	char *token;
964 
965 	for (byte_count = 0, token = strtok(input_arg, ":");
966 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
967 			token = strtok(NULL, ":")) {
968 
969 		int number = (int)strtol(token, NULL, 16);
970 
971 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
972 			return -1;
973 
974 		data[byte_count++] = (uint8_t)number;
975 	}
976 
977 	return byte_count;
978 }
979 
980 /** Parse size param*/
981 static int
982 parse_size(int *size, const char *q_arg)
983 {
984 	char *end = NULL;
985 	unsigned long n;
986 
987 	/* parse hexadecimal string */
988 	n = strtoul(q_arg, &end, 10);
989 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
990 		n = 0;
991 
992 	if (n == 0) {
993 		printf("invalid size\n");
994 		return -1;
995 	}
996 
997 	*size = n;
998 	return 0;
999 }
1000 
1001 /** Parse crypto cipher operation command line argument */
1002 static int
1003 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1004 {
1005 	unsigned i;
1006 
1007 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
1008 		if (!strcmp(supported_auth_algo[i], optarg)) {
1009 			*algo = (enum rte_crypto_auth_algorithm)i;
1010 			return 0;
1011 		}
1012 	}
1013 
1014 	printf("Authentication algorithm specified not supported!\n");
1015 	return -1;
1016 }
1017 
1018 static int
1019 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1020 {
1021 	if (strcmp("VERIFY", optarg) == 0) {
1022 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1023 		return 0;
1024 	} else if (strcmp("GENERATE", optarg) == 0) {
1025 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1026 		return 0;
1027 	}
1028 
1029 	printf("Authentication operation specified not supported!\n");
1030 	return -1;
1031 }
1032 
1033 /** Parse long options */
1034 static int
1035 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1036 		struct option *lgopts, int option_index)
1037 {
1038 	int retval;
1039 
1040 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1041 		retval = parse_cryptodev_type(&options->type, optarg);
1042 		if (retval == 0)
1043 			snprintf(options->string_type, MAX_STR_LEN,
1044 				"%s", optarg);
1045 		return retval;
1046 	}
1047 
1048 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1049 		return parse_crypto_opt_chain(options, optarg);
1050 
1051 	/* Cipher options */
1052 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1053 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1054 				optarg);
1055 
1056 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1057 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1058 				optarg);
1059 
1060 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1061 		options->ckey_param = 1;
1062 		options->cipher_xform.cipher.key.length =
1063 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1064 		if (options->cipher_xform.cipher.key.length > 0)
1065 			return 0;
1066 		else
1067 			return -1;
1068 	}
1069 
1070 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1071 		return parse_size(&options->ckey_random_size, optarg);
1072 
1073 	else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1074 		options->iv_param = 1;
1075 		options->iv.length =
1076 			parse_key(options->iv.data, optarg);
1077 		if (options->iv.length > 0)
1078 			return 0;
1079 		else
1080 			return -1;
1081 	}
1082 
1083 	else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1084 		return parse_size(&options->iv_random_size, optarg);
1085 
1086 	/* Authentication options */
1087 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1088 		return parse_auth_algo(&options->auth_xform.auth.algo,
1089 				optarg);
1090 	}
1091 
1092 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1093 		return parse_auth_op(&options->auth_xform.auth.op,
1094 				optarg);
1095 
1096 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1097 		options->akey_param = 1;
1098 		options->auth_xform.auth.key.length =
1099 			parse_key(options->auth_xform.auth.key.data, optarg);
1100 		if (options->auth_xform.auth.key.length > 0)
1101 			return 0;
1102 		else
1103 			return -1;
1104 	}
1105 
1106 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1107 		return parse_size(&options->akey_random_size, optarg);
1108 	}
1109 
1110 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1111 		options->aad_param = 1;
1112 		options->aad.length =
1113 			parse_key(options->aad.data, optarg);
1114 		if (options->aad.length > 0)
1115 			return 0;
1116 		else
1117 			return -1;
1118 	}
1119 
1120 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1121 		return parse_size(&options->aad_random_size, optarg);
1122 	}
1123 
1124 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1125 		return parse_size(&options->digest_size, optarg);
1126 	}
1127 
1128 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1129 		options->sessionless = 1;
1130 		return 0;
1131 	}
1132 
1133 	return -1;
1134 }
1135 
1136 /** Parse port mask */
1137 static int
1138 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1139 		const char *q_arg)
1140 {
1141 	char *end = NULL;
1142 	unsigned long pm;
1143 
1144 	/* parse hexadecimal string */
1145 	pm = strtoul(q_arg, &end, 16);
1146 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1147 		pm = 0;
1148 
1149 	options->portmask = pm;
1150 	if (options->portmask == 0) {
1151 		printf("invalid portmask specified\n");
1152 		return -1;
1153 	}
1154 
1155 	return pm;
1156 }
1157 
1158 /** Parse number of queues */
1159 static int
1160 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1161 		const char *q_arg)
1162 {
1163 	char *end = NULL;
1164 	unsigned long n;
1165 
1166 	/* parse hexadecimal string */
1167 	n = strtoul(q_arg, &end, 10);
1168 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1169 		n = 0;
1170 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1171 		n = 0;
1172 
1173 	options->nb_ports_per_lcore = n;
1174 	if (options->nb_ports_per_lcore == 0) {
1175 		printf("invalid number of ports selected\n");
1176 		return -1;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 /** Parse timer period */
1183 static int
1184 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1185 		const char *q_arg)
1186 {
1187 	char *end = NULL;
1188 	unsigned long n;
1189 
1190 	/* parse number string */
1191 	n = (unsigned)strtol(q_arg, &end, 10);
1192 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1193 		n = 0;
1194 
1195 	if (n >= MAX_TIMER_PERIOD) {
1196 		printf("Warning refresh period specified %lu is greater than "
1197 				"max value %lu! using max value",
1198 				n, MAX_TIMER_PERIOD);
1199 		n = MAX_TIMER_PERIOD;
1200 	}
1201 
1202 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1203 
1204 	return 0;
1205 }
1206 
1207 /** Generate default options for application */
1208 static void
1209 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1210 {
1211 	options->portmask = 0xffffffff;
1212 	options->nb_ports_per_lcore = 1;
1213 	options->refresh_period = 10000;
1214 	options->single_lcore = 0;
1215 	options->sessionless = 0;
1216 
1217 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1218 
1219 	/* Cipher Data */
1220 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1221 	options->cipher_xform.next = NULL;
1222 	options->ckey_param = 0;
1223 	options->ckey_random_size = -1;
1224 	options->cipher_xform.cipher.key.length = 0;
1225 	options->iv_param = 0;
1226 	options->iv_random_size = -1;
1227 	options->iv.length = 0;
1228 
1229 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1230 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1231 
1232 	/* Authentication Data */
1233 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1234 	options->auth_xform.next = NULL;
1235 	options->akey_param = 0;
1236 	options->akey_random_size = -1;
1237 	options->auth_xform.auth.key.length = 0;
1238 	options->aad_param = 0;
1239 	options->aad_random_size = -1;
1240 	options->aad.length = 0;
1241 	options->digest_size = -1;
1242 
1243 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1244 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1245 
1246 	options->type = CDEV_TYPE_ANY;
1247 }
1248 
1249 static void
1250 display_cipher_info(struct l2fwd_crypto_options *options)
1251 {
1252 	printf("\n---- Cipher information ---\n");
1253 	printf("Algorithm: %s\n",
1254 		supported_cipher_algo[options->cipher_xform.cipher.algo]);
1255 	rte_hexdump(stdout, "Cipher key:",
1256 			options->cipher_xform.cipher.key.data,
1257 			options->cipher_xform.cipher.key.length);
1258 	rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1259 }
1260 
1261 static void
1262 display_auth_info(struct l2fwd_crypto_options *options)
1263 {
1264 	printf("\n---- Authentication information ---\n");
1265 	printf("Algorithm: %s\n",
1266 		supported_auth_algo[options->auth_xform.auth.algo]);
1267 	rte_hexdump(stdout, "Auth key:",
1268 			options->auth_xform.auth.key.data,
1269 			options->auth_xform.auth.key.length);
1270 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1271 }
1272 
1273 static void
1274 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1275 {
1276 	char string_cipher_op[MAX_STR_LEN];
1277 	char string_auth_op[MAX_STR_LEN];
1278 
1279 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1280 		strcpy(string_cipher_op, "Encrypt");
1281 	else
1282 		strcpy(string_cipher_op, "Decrypt");
1283 
1284 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1285 		strcpy(string_auth_op, "Auth generate");
1286 	else
1287 		strcpy(string_auth_op, "Auth verify");
1288 
1289 	printf("Options:-\nn");
1290 	printf("portmask: %x\n", options->portmask);
1291 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1292 	printf("refresh period : %u\n", options->refresh_period);
1293 	printf("single lcore mode: %s\n",
1294 			options->single_lcore ? "enabled" : "disabled");
1295 	printf("stats_printing: %s\n",
1296 			options->refresh_period == 0 ? "disabled" : "enabled");
1297 
1298 	printf("sessionless crypto: %s\n",
1299 			options->sessionless ? "enabled" : "disabled");
1300 
1301 	if (options->ckey_param && (options->ckey_random_size != -1))
1302 		printf("Cipher key already parsed, ignoring size of random key\n");
1303 
1304 	if (options->akey_param && (options->akey_random_size != -1))
1305 		printf("Auth key already parsed, ignoring size of random key\n");
1306 
1307 	if (options->iv_param && (options->iv_random_size != -1))
1308 		printf("IV already parsed, ignoring size of random IV\n");
1309 
1310 	if (options->aad_param && (options->aad_random_size != -1))
1311 		printf("AAD already parsed, ignoring size of random AAD\n");
1312 
1313 	printf("\nCrypto chain: ");
1314 	switch (options->xform_chain) {
1315 	case L2FWD_CRYPTO_CIPHER_HASH:
1316 		printf("Input --> %s --> %s --> Output\n",
1317 			string_cipher_op, string_auth_op);
1318 		display_cipher_info(options);
1319 		display_auth_info(options);
1320 		break;
1321 	case L2FWD_CRYPTO_HASH_CIPHER:
1322 		printf("Input --> %s --> %s --> Output\n",
1323 			string_auth_op, string_cipher_op);
1324 		display_cipher_info(options);
1325 		display_auth_info(options);
1326 		break;
1327 	case L2FWD_CRYPTO_HASH_ONLY:
1328 		printf("Input --> %s --> Output\n", string_auth_op);
1329 		display_auth_info(options);
1330 		break;
1331 	case L2FWD_CRYPTO_CIPHER_ONLY:
1332 		printf("Input --> %s --> Output\n", string_cipher_op);
1333 		display_cipher_info(options);
1334 		break;
1335 	}
1336 }
1337 
1338 /* Parse the argument given in the command line of the application */
1339 static int
1340 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1341 		int argc, char **argv)
1342 {
1343 	int opt, retval, option_index;
1344 	char **argvopt = argv, *prgname = argv[0];
1345 
1346 	static struct option lgopts[] = {
1347 			{ "sessionless", no_argument, 0, 0 },
1348 
1349 			{ "cdev_type", required_argument, 0, 0 },
1350 			{ "chain", required_argument, 0, 0 },
1351 
1352 			{ "cipher_algo", required_argument, 0, 0 },
1353 			{ "cipher_op", required_argument, 0, 0 },
1354 			{ "cipher_key", required_argument, 0, 0 },
1355 			{ "cipher_key_random_size", required_argument, 0, 0 },
1356 
1357 			{ "auth_algo", required_argument, 0, 0 },
1358 			{ "auth_op", required_argument, 0, 0 },
1359 			{ "auth_key", required_argument, 0, 0 },
1360 			{ "auth_key_random_size", required_argument, 0, 0 },
1361 
1362 			{ "iv", required_argument, 0, 0 },
1363 			{ "iv_random_size", required_argument, 0, 0 },
1364 			{ "aad", required_argument, 0, 0 },
1365 			{ "aad_random_size", required_argument, 0, 0 },
1366 			{ "digest_size", required_argument, 0, 0 },
1367 
1368 			{ "sessionless", no_argument, 0, 0 },
1369 
1370 			{ NULL, 0, 0, 0 }
1371 	};
1372 
1373 	l2fwd_crypto_default_options(options);
1374 
1375 	while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1376 			&option_index)) != EOF) {
1377 		switch (opt) {
1378 		/* long options */
1379 		case 0:
1380 			retval = l2fwd_crypto_parse_args_long_options(options,
1381 					lgopts, option_index);
1382 			if (retval < 0) {
1383 				l2fwd_crypto_usage(prgname);
1384 				return -1;
1385 			}
1386 			break;
1387 
1388 		/* portmask */
1389 		case 'p':
1390 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1391 			if (retval < 0) {
1392 				l2fwd_crypto_usage(prgname);
1393 				return -1;
1394 			}
1395 			break;
1396 
1397 		/* nqueue */
1398 		case 'q':
1399 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1400 			if (retval < 0) {
1401 				l2fwd_crypto_usage(prgname);
1402 				return -1;
1403 			}
1404 			break;
1405 
1406 		/* single  */
1407 		case 's':
1408 			options->single_lcore = 1;
1409 
1410 			break;
1411 
1412 		/* timer period */
1413 		case 'T':
1414 			retval = l2fwd_crypto_parse_timer_period(options,
1415 					optarg);
1416 			if (retval < 0) {
1417 				l2fwd_crypto_usage(prgname);
1418 				return -1;
1419 			}
1420 			break;
1421 
1422 		default:
1423 			l2fwd_crypto_usage(prgname);
1424 			return -1;
1425 		}
1426 	}
1427 
1428 
1429 	if (optind >= 0)
1430 		argv[optind-1] = prgname;
1431 
1432 	retval = optind-1;
1433 	optind = 0; /* reset getopt lib */
1434 
1435 	return retval;
1436 }
1437 
1438 /* Check the link status of all ports in up to 9s, and print them finally */
1439 static void
1440 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1441 {
1442 #define CHECK_INTERVAL 100 /* 100ms */
1443 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1444 	uint8_t portid, count, all_ports_up, print_flag = 0;
1445 	struct rte_eth_link link;
1446 
1447 	printf("\nChecking link status");
1448 	fflush(stdout);
1449 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1450 		all_ports_up = 1;
1451 		for (portid = 0; portid < port_num; portid++) {
1452 			if ((port_mask & (1 << portid)) == 0)
1453 				continue;
1454 			memset(&link, 0, sizeof(link));
1455 			rte_eth_link_get_nowait(portid, &link);
1456 			/* print link status if flag set */
1457 			if (print_flag == 1) {
1458 				if (link.link_status)
1459 					printf("Port %d Link Up - speed %u "
1460 						"Mbps - %s\n", (uint8_t)portid,
1461 						(unsigned)link.link_speed,
1462 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1463 					("full-duplex") : ("half-duplex\n"));
1464 				else
1465 					printf("Port %d Link Down\n",
1466 						(uint8_t)portid);
1467 				continue;
1468 			}
1469 			/* clear all_ports_up flag if any link down */
1470 			if (link.link_status == ETH_LINK_DOWN) {
1471 				all_ports_up = 0;
1472 				break;
1473 			}
1474 		}
1475 		/* after finally printing all link status, get out */
1476 		if (print_flag == 1)
1477 			break;
1478 
1479 		if (all_ports_up == 0) {
1480 			printf(".");
1481 			fflush(stdout);
1482 			rte_delay_ms(CHECK_INTERVAL);
1483 		}
1484 
1485 		/* set the print_flag if all ports up or timeout */
1486 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1487 			print_flag = 1;
1488 			printf("done\n");
1489 		}
1490 	}
1491 }
1492 
1493 /* Check if device has to be HW/SW or any */
1494 static int
1495 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1496 {
1497 	if (options->type == CDEV_TYPE_HW &&
1498 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1499 		return 0;
1500 	if (options->type == CDEV_TYPE_SW &&
1501 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1502 		return 0;
1503 	if (options->type == CDEV_TYPE_ANY)
1504 		return 0;
1505 
1506 	return -1;
1507 }
1508 
1509 static inline int
1510 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1511 		uint16_t increment)
1512 {
1513 	uint16_t supp_size;
1514 
1515 	/* Single value */
1516 	if (increment == 0) {
1517 		if (length == min)
1518 			return 0;
1519 		else
1520 			return -1;
1521 	}
1522 
1523 	/* Range of values */
1524 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1525 		if (length == supp_size)
1526 			return 0;
1527 	}
1528 
1529 	return -1;
1530 }
1531 static int
1532 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1533 		uint8_t *enabled_cdevs)
1534 {
1535 	unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1536 	const struct rte_cryptodev_capabilities *cap;
1537 	enum rte_crypto_auth_algorithm cap_auth_algo;
1538 	enum rte_crypto_auth_algorithm opt_auth_algo;
1539 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1540 	enum rte_crypto_cipher_algorithm opt_cipher_algo;
1541 	int retval;
1542 
1543 	cdev_count = rte_cryptodev_count();
1544 	if (cdev_count == 0) {
1545 		printf("No crypto devices available\n");
1546 		return -1;
1547 	}
1548 
1549 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1550 			cdev_id++) {
1551 		struct rte_cryptodev_qp_conf qp_conf;
1552 		struct rte_cryptodev_info dev_info;
1553 
1554 		struct rte_cryptodev_config conf = {
1555 			.nb_queue_pairs = 1,
1556 			.socket_id = SOCKET_ID_ANY,
1557 			.session_mp = {
1558 				.nb_objs = 2048,
1559 				.cache_size = 64
1560 			}
1561 		};
1562 
1563 		rte_cryptodev_info_get(cdev_id, &dev_info);
1564 
1565 		/* Set cipher parameters */
1566 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1567 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1568 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1569 			/* Check if device supports cipher algo */
1570 			i = 0;
1571 			opt_cipher_algo = options->cipher_xform.cipher.algo;
1572 			cap = &dev_info.capabilities[i];
1573 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1574 				cap_cipher_algo = cap->sym.cipher.algo;
1575 				if (cap->sym.xform_type ==
1576 						RTE_CRYPTO_SYM_XFORM_CIPHER) {
1577 					if (cap_cipher_algo == opt_cipher_algo) {
1578 						if (check_type(options, &dev_info) == 0)
1579 							break;
1580 					}
1581 				}
1582 				cap = &dev_info.capabilities[++i];
1583 			}
1584 
1585 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1586 				printf("Algorithm %s not supported by cryptodev %u"
1587 					" or device not of preferred type (%s)\n",
1588 					supported_cipher_algo[opt_cipher_algo],
1589 					cdev_id,
1590 					options->string_type);
1591 				continue;
1592 			}
1593 
1594 			options->block_size = cap->sym.cipher.block_size;
1595 			/*
1596 			 * Check if length of provided IV is supported
1597 			 * by the algorithm chosen.
1598 			 */
1599 			if (options->iv_param) {
1600 				if (check_supported_size(options->iv.length,
1601 						cap->sym.cipher.iv_size.min,
1602 						cap->sym.cipher.iv_size.max,
1603 						cap->sym.cipher.iv_size.increment)
1604 							!= 0) {
1605 					printf("Unsupported IV length\n");
1606 					return -1;
1607 				}
1608 			/*
1609 			 * Check if length of IV to be randomly generated
1610 			 * is supported by the algorithm chosen.
1611 			 */
1612 			} else if (options->iv_random_size != -1) {
1613 				if (check_supported_size(options->iv_random_size,
1614 						cap->sym.cipher.iv_size.min,
1615 						cap->sym.cipher.iv_size.max,
1616 						cap->sym.cipher.iv_size.increment)
1617 							!= 0) {
1618 					printf("Unsupported IV length\n");
1619 					return -1;
1620 				}
1621 				options->iv.length = options->iv_random_size;
1622 			/* No size provided, use minimum size. */
1623 			} else
1624 				options->iv.length = cap->sym.cipher.iv_size.min;
1625 
1626 			/*
1627 			 * Check if length of provided cipher key is supported
1628 			 * by the algorithm chosen.
1629 			 */
1630 			if (options->ckey_param) {
1631 				if (check_supported_size(
1632 						options->cipher_xform.cipher.key.length,
1633 						cap->sym.cipher.key_size.min,
1634 						cap->sym.cipher.key_size.max,
1635 						cap->sym.cipher.key_size.increment)
1636 							!= 0) {
1637 					printf("Unsupported cipher key length\n");
1638 					return -1;
1639 				}
1640 			/*
1641 			 * Check if length of the cipher key to be randomly generated
1642 			 * is supported by the algorithm chosen.
1643 			 */
1644 			} else if (options->ckey_random_size != -1) {
1645 				if (check_supported_size(options->ckey_random_size,
1646 						cap->sym.cipher.key_size.min,
1647 						cap->sym.cipher.key_size.max,
1648 						cap->sym.cipher.key_size.increment)
1649 							!= 0) {
1650 					printf("Unsupported cipher key length\n");
1651 					return -1;
1652 				}
1653 				options->cipher_xform.cipher.key.length =
1654 							options->ckey_random_size;
1655 			/* No size provided, use minimum size. */
1656 			} else
1657 				options->cipher_xform.cipher.key.length =
1658 						cap->sym.cipher.key_size.min;
1659 
1660 			if (!options->ckey_param)
1661 				generate_random_key(
1662 					options->cipher_xform.cipher.key.data,
1663 					options->cipher_xform.cipher.key.length);
1664 
1665 		}
1666 
1667 		/* Set auth parameters */
1668 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1669 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1670 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1671 			/* Check if device supports auth algo */
1672 			i = 0;
1673 			opt_auth_algo = options->auth_xform.auth.algo;
1674 			cap = &dev_info.capabilities[i];
1675 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1676 				cap_auth_algo = cap->sym.auth.algo;
1677 				if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1678 						(cap_auth_algo == opt_auth_algo) &&
1679 						(check_type(options, &dev_info) == 0)) {
1680 					break;
1681 				}
1682 				cap = &dev_info.capabilities[++i];
1683 			}
1684 
1685 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1686 				printf("Algorithm %s not supported by cryptodev %u"
1687 					" or device not of preferred type (%s)\n",
1688 					supported_auth_algo[opt_auth_algo],
1689 					cdev_id,
1690 					options->string_type);
1691 				continue;
1692 			}
1693 
1694 			options->block_size = cap->sym.auth.block_size;
1695 			/*
1696 			 * Check if length of provided AAD is supported
1697 			 * by the algorithm chosen.
1698 			 */
1699 			if (options->aad_param) {
1700 				if (check_supported_size(options->aad.length,
1701 						cap->sym.auth.aad_size.min,
1702 						cap->sym.auth.aad_size.max,
1703 						cap->sym.auth.aad_size.increment)
1704 							!= 0) {
1705 					printf("Unsupported AAD length\n");
1706 					return -1;
1707 				}
1708 			/*
1709 			 * Check if length of AAD to be randomly generated
1710 			 * is supported by the algorithm chosen.
1711 			 */
1712 			} else if (options->aad_random_size != -1) {
1713 				if (check_supported_size(options->aad_random_size,
1714 						cap->sym.auth.aad_size.min,
1715 						cap->sym.auth.aad_size.max,
1716 						cap->sym.auth.aad_size.increment)
1717 							!= 0) {
1718 					printf("Unsupported AAD length\n");
1719 					return -1;
1720 				}
1721 				options->aad.length = options->aad_random_size;
1722 			/* No size provided, use minimum size. */
1723 			} else
1724 				options->aad.length = cap->sym.auth.aad_size.min;
1725 
1726 			options->auth_xform.auth.add_auth_data_length =
1727 						options->aad.length;
1728 
1729 			/*
1730 			 * Check if length of provided auth key is supported
1731 			 * by the algorithm chosen.
1732 			 */
1733 			if (options->akey_param) {
1734 				if (check_supported_size(
1735 						options->auth_xform.auth.key.length,
1736 						cap->sym.auth.key_size.min,
1737 						cap->sym.auth.key_size.max,
1738 						cap->sym.auth.key_size.increment)
1739 							!= 0) {
1740 					printf("Unsupported auth key length\n");
1741 					return -1;
1742 				}
1743 			/*
1744 			 * Check if length of the auth key to be randomly generated
1745 			 * is supported by the algorithm chosen.
1746 			 */
1747 			} else if (options->akey_random_size != -1) {
1748 				if (check_supported_size(options->akey_random_size,
1749 						cap->sym.auth.key_size.min,
1750 						cap->sym.auth.key_size.max,
1751 						cap->sym.auth.key_size.increment)
1752 							!= 0) {
1753 					printf("Unsupported auth key length\n");
1754 					return -1;
1755 				}
1756 				options->auth_xform.auth.key.length =
1757 							options->akey_random_size;
1758 			/* No size provided, use minimum size. */
1759 			} else
1760 				options->auth_xform.auth.key.length =
1761 						cap->sym.auth.key_size.min;
1762 
1763 			if (!options->akey_param)
1764 				generate_random_key(
1765 					options->auth_xform.auth.key.data,
1766 					options->auth_xform.auth.key.length);
1767 
1768 			/* Check if digest size is supported by the algorithm. */
1769 			if (options->digest_size != -1) {
1770 				if (check_supported_size(options->digest_size,
1771 						cap->sym.auth.digest_size.min,
1772 						cap->sym.auth.digest_size.max,
1773 						cap->sym.auth.digest_size.increment)
1774 							!= 0) {
1775 					printf("Unsupported digest length\n");
1776 					return -1;
1777 				}
1778 				options->auth_xform.auth.digest_length =
1779 							options->digest_size;
1780 			/* No size provided, use minimum size. */
1781 			} else
1782 				options->auth_xform.auth.digest_length =
1783 						cap->sym.auth.digest_size.min;
1784 		}
1785 
1786 		retval = rte_cryptodev_configure(cdev_id, &conf);
1787 		if (retval < 0) {
1788 			printf("Failed to configure cryptodev %u", cdev_id);
1789 			return -1;
1790 		}
1791 
1792 		qp_conf.nb_descriptors = 2048;
1793 
1794 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1795 				SOCKET_ID_ANY);
1796 		if (retval < 0) {
1797 			printf("Failed to setup queue pair %u on cryptodev %u",
1798 					0, cdev_id);
1799 			return -1;
1800 		}
1801 
1802 		retval = rte_cryptodev_start(cdev_id);
1803 		if (retval < 0) {
1804 			printf("Failed to start device %u: error %d\n",
1805 					cdev_id, retval);
1806 			return -1;
1807 		}
1808 
1809 		l2fwd_enabled_crypto_mask |= (1 << cdev_id);
1810 
1811 		enabled_cdevs[cdev_id] = 1;
1812 		enabled_cdev_count++;
1813 	}
1814 
1815 	return enabled_cdev_count;
1816 }
1817 
1818 static int
1819 initialize_ports(struct l2fwd_crypto_options *options)
1820 {
1821 	uint8_t last_portid, portid;
1822 	unsigned enabled_portcount = 0;
1823 	unsigned nb_ports = rte_eth_dev_count();
1824 
1825 	if (nb_ports == 0) {
1826 		printf("No Ethernet ports - bye\n");
1827 		return -1;
1828 	}
1829 
1830 	/* Reset l2fwd_dst_ports */
1831 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1832 		l2fwd_dst_ports[portid] = 0;
1833 
1834 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1835 		int retval;
1836 
1837 		/* Skip ports that are not enabled */
1838 		if ((options->portmask & (1 << portid)) == 0)
1839 			continue;
1840 
1841 		/* init port */
1842 		printf("Initializing port %u... ", (unsigned) portid);
1843 		fflush(stdout);
1844 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1845 		if (retval < 0) {
1846 			printf("Cannot configure device: err=%d, port=%u\n",
1847 				  retval, (unsigned) portid);
1848 			return -1;
1849 		}
1850 
1851 		/* init one RX queue */
1852 		fflush(stdout);
1853 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1854 					     rte_eth_dev_socket_id(portid),
1855 					     NULL, l2fwd_pktmbuf_pool);
1856 		if (retval < 0) {
1857 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1858 					retval, (unsigned) portid);
1859 			return -1;
1860 		}
1861 
1862 		/* init one TX queue on each port */
1863 		fflush(stdout);
1864 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1865 				rte_eth_dev_socket_id(portid),
1866 				NULL);
1867 		if (retval < 0) {
1868 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1869 				retval, (unsigned) portid);
1870 
1871 			return -1;
1872 		}
1873 
1874 		/* Start device */
1875 		retval = rte_eth_dev_start(portid);
1876 		if (retval < 0) {
1877 			printf("rte_eth_dev_start:err=%d, port=%u\n",
1878 					retval, (unsigned) portid);
1879 			return -1;
1880 		}
1881 
1882 		rte_eth_promiscuous_enable(portid);
1883 
1884 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1885 
1886 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1887 				(unsigned) portid,
1888 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
1889 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
1890 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
1891 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
1892 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
1893 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1894 
1895 		/* initialize port stats */
1896 		memset(&port_statistics, 0, sizeof(port_statistics));
1897 
1898 		/* Setup port forwarding table */
1899 		if (enabled_portcount % 2) {
1900 			l2fwd_dst_ports[portid] = last_portid;
1901 			l2fwd_dst_ports[last_portid] = portid;
1902 		} else {
1903 			last_portid = portid;
1904 		}
1905 
1906 		l2fwd_enabled_port_mask |= (1 << portid);
1907 		enabled_portcount++;
1908 	}
1909 
1910 	if (enabled_portcount == 1) {
1911 		l2fwd_dst_ports[last_portid] = last_portid;
1912 	} else if (enabled_portcount % 2) {
1913 		printf("odd number of ports in portmask- bye\n");
1914 		return -1;
1915 	}
1916 
1917 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1918 
1919 	return enabled_portcount;
1920 }
1921 
1922 static void
1923 reserve_key_memory(struct l2fwd_crypto_options *options)
1924 {
1925 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1926 						MAX_KEY_SIZE, 0);
1927 	if (options->cipher_xform.cipher.key.data == NULL)
1928 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1929 
1930 
1931 	options->auth_xform.auth.key.data = rte_malloc("auth key",
1932 						MAX_KEY_SIZE, 0);
1933 	if (options->auth_xform.auth.key.data == NULL)
1934 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1935 
1936 	options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1937 	if (options->iv.data == NULL)
1938 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1939 	options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1940 
1941 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1942 	if (options->aad.data == NULL)
1943 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1944 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1945 }
1946 
1947 int
1948 main(int argc, char **argv)
1949 {
1950 	struct lcore_queue_conf *qconf;
1951 	struct l2fwd_crypto_options options;
1952 
1953 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1954 	unsigned lcore_id, rx_lcore_id;
1955 	int ret, enabled_cdevcount, enabled_portcount;
1956 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1957 
1958 	/* init EAL */
1959 	ret = rte_eal_init(argc, argv);
1960 	if (ret < 0)
1961 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1962 	argc -= ret;
1963 	argv += ret;
1964 
1965 	/* reserve memory for Cipher/Auth key and IV */
1966 	reserve_key_memory(&options);
1967 
1968 	/* fill out the supported algorithm tables */
1969 	fill_supported_algorithm_tables();
1970 
1971 	/* parse application arguments (after the EAL ones) */
1972 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
1973 	if (ret < 0)
1974 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1975 
1976 	/* create the mbuf pool */
1977 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1978 			sizeof(struct rte_crypto_op),
1979 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
1980 	if (l2fwd_pktmbuf_pool == NULL)
1981 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1982 
1983 	/* create crypto op pool */
1984 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
1985 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
1986 			rte_socket_id());
1987 	if (l2fwd_crypto_op_pool == NULL)
1988 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
1989 
1990 	/* Enable Ethernet ports */
1991 	enabled_portcount = initialize_ports(&options);
1992 	if (enabled_portcount < 1)
1993 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
1994 
1995 	nb_ports = rte_eth_dev_count();
1996 	/* Initialize the port/queue configuration of each logical core */
1997 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
1998 			portid < nb_ports; portid++) {
1999 
2000 		/* skip ports that are not enabled */
2001 		if ((options.portmask & (1 << portid)) == 0)
2002 			continue;
2003 
2004 		if (options.single_lcore && qconf == NULL) {
2005 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2006 				rx_lcore_id++;
2007 				if (rx_lcore_id >= RTE_MAX_LCORE)
2008 					rte_exit(EXIT_FAILURE,
2009 							"Not enough cores\n");
2010 			}
2011 		} else if (!options.single_lcore) {
2012 			/* get the lcore_id for this port */
2013 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2014 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2015 			       options.nb_ports_per_lcore) {
2016 				rx_lcore_id++;
2017 				if (rx_lcore_id >= RTE_MAX_LCORE)
2018 					rte_exit(EXIT_FAILURE,
2019 							"Not enough cores\n");
2020 			}
2021 		}
2022 
2023 		/* Assigned a new logical core in the loop above. */
2024 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2025 			qconf = &lcore_queue_conf[rx_lcore_id];
2026 
2027 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2028 		qconf->nb_rx_ports++;
2029 
2030 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2031 	}
2032 
2033 	/* Enable Crypto devices */
2034 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2035 			enabled_cdevs);
2036 	if (enabled_cdevcount < 0)
2037 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2038 
2039 	if (enabled_cdevcount < enabled_portcount)
2040 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2041 				"has to be more or equal to number of ports (%d)\n",
2042 				enabled_cdevcount, enabled_portcount);
2043 
2044 	nb_cryptodevs = rte_cryptodev_count();
2045 
2046 	/* Initialize the port/cryptodev configuration of each logical core */
2047 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2048 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2049 			cdev_id++) {
2050 		/* Crypto op not supported by crypto device */
2051 		if (!enabled_cdevs[cdev_id])
2052 			continue;
2053 
2054 		if (options.single_lcore && qconf == NULL) {
2055 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2056 				rx_lcore_id++;
2057 				if (rx_lcore_id >= RTE_MAX_LCORE)
2058 					rte_exit(EXIT_FAILURE,
2059 							"Not enough cores\n");
2060 			}
2061 		} else if (!options.single_lcore) {
2062 			/* get the lcore_id for this port */
2063 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2064 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2065 			       options.nb_ports_per_lcore) {
2066 				rx_lcore_id++;
2067 				if (rx_lcore_id >= RTE_MAX_LCORE)
2068 					rte_exit(EXIT_FAILURE,
2069 							"Not enough cores\n");
2070 			}
2071 		}
2072 
2073 		/* Assigned a new logical core in the loop above. */
2074 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2075 			qconf = &lcore_queue_conf[rx_lcore_id];
2076 
2077 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2078 		qconf->nb_crypto_devs++;
2079 
2080 		enabled_cdevcount--;
2081 
2082 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2083 				(unsigned)cdev_id);
2084 	}
2085 
2086 	/* launch per-lcore init on every lcore */
2087 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2088 			CALL_MASTER);
2089 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2090 		if (rte_eal_wait_lcore(lcore_id) < 0)
2091 			return -1;
2092 	}
2093 
2094 	return 0;
2095 }
2096