1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_pci.h> 71 #include <rte_per_lcore.h> 72 #include <rte_prefetch.h> 73 #include <rte_random.h> 74 #include <rte_hexdump.h> 75 76 enum cdev_type { 77 CDEV_TYPE_ANY, 78 CDEV_TYPE_HW, 79 CDEV_TYPE_SW 80 }; 81 82 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 83 84 #define NB_MBUF 8192 85 86 #define MAX_STR_LEN 32 87 #define MAX_KEY_SIZE 128 88 #define MAX_IV_SIZE 16 89 #define MAX_AAD_SIZE 65535 90 #define MAX_PKT_BURST 32 91 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 92 #define MAX_SESSIONS 32 93 #define SESSION_POOL_CACHE_SIZE 0 94 95 #define MAXIMUM_IV_LENGTH 16 96 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 97 sizeof(struct rte_crypto_sym_op)) 98 99 /* 100 * Configurable number of RX/TX ring descriptors 101 */ 102 #define RTE_TEST_RX_DESC_DEFAULT 128 103 #define RTE_TEST_TX_DESC_DEFAULT 512 104 105 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 106 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 107 108 /* ethernet addresses of ports */ 109 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 110 111 /* mask of enabled ports */ 112 static uint64_t l2fwd_enabled_port_mask; 113 static uint64_t l2fwd_enabled_crypto_mask; 114 115 /* list of enabled ports */ 116 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 117 118 119 struct pkt_buffer { 120 unsigned len; 121 struct rte_mbuf *buffer[MAX_PKT_BURST]; 122 }; 123 124 struct op_buffer { 125 unsigned len; 126 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 132 enum l2fwd_crypto_xform_chain { 133 L2FWD_CRYPTO_CIPHER_HASH, 134 L2FWD_CRYPTO_HASH_CIPHER, 135 L2FWD_CRYPTO_CIPHER_ONLY, 136 L2FWD_CRYPTO_HASH_ONLY, 137 L2FWD_CRYPTO_AEAD 138 }; 139 140 struct l2fwd_key { 141 uint8_t *data; 142 uint32_t length; 143 rte_iova_t phys_addr; 144 }; 145 146 struct l2fwd_iv { 147 uint8_t *data; 148 uint16_t length; 149 }; 150 151 /** l2fwd crypto application command line options */ 152 struct l2fwd_crypto_options { 153 unsigned portmask; 154 unsigned nb_ports_per_lcore; 155 unsigned refresh_period; 156 unsigned single_lcore:1; 157 158 enum cdev_type type; 159 unsigned sessionless:1; 160 161 enum l2fwd_crypto_xform_chain xform_chain; 162 163 struct rte_crypto_sym_xform cipher_xform; 164 unsigned ckey_param; 165 int ckey_random_size; 166 167 struct l2fwd_iv cipher_iv; 168 unsigned int cipher_iv_param; 169 int cipher_iv_random_size; 170 171 struct rte_crypto_sym_xform auth_xform; 172 uint8_t akey_param; 173 int akey_random_size; 174 175 struct l2fwd_iv auth_iv; 176 unsigned int auth_iv_param; 177 int auth_iv_random_size; 178 179 struct rte_crypto_sym_xform aead_xform; 180 unsigned int aead_key_param; 181 int aead_key_random_size; 182 183 struct l2fwd_iv aead_iv; 184 unsigned int aead_iv_param; 185 int aead_iv_random_size; 186 187 struct l2fwd_key aad; 188 unsigned aad_param; 189 int aad_random_size; 190 191 int digest_size; 192 193 uint16_t block_size; 194 char string_type[MAX_STR_LEN]; 195 196 uint64_t cryptodev_mask; 197 198 unsigned int mac_updating; 199 }; 200 201 /** l2fwd crypto lcore params */ 202 struct l2fwd_crypto_params { 203 uint8_t dev_id; 204 uint8_t qp_id; 205 206 unsigned digest_length; 207 unsigned block_size; 208 209 struct l2fwd_iv cipher_iv; 210 struct l2fwd_iv auth_iv; 211 struct l2fwd_iv aead_iv; 212 struct l2fwd_key aad; 213 struct rte_cryptodev_sym_session *session; 214 215 uint8_t do_cipher; 216 uint8_t do_hash; 217 uint8_t do_aead; 218 uint8_t hash_verify; 219 220 enum rte_crypto_cipher_algorithm cipher_algo; 221 enum rte_crypto_auth_algorithm auth_algo; 222 enum rte_crypto_aead_algorithm aead_algo; 223 }; 224 225 /** lcore configuration */ 226 struct lcore_queue_conf { 227 unsigned nb_rx_ports; 228 uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 229 230 unsigned nb_crypto_devs; 231 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 232 233 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 234 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 235 } __rte_cache_aligned; 236 237 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 238 239 static const struct rte_eth_conf port_conf = { 240 .rxmode = { 241 .mq_mode = ETH_MQ_RX_NONE, 242 .max_rx_pkt_len = ETHER_MAX_LEN, 243 .split_hdr_size = 0, 244 .header_split = 0, /**< Header Split disabled */ 245 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 246 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 247 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 248 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 249 }, 250 .txmode = { 251 .mq_mode = ETH_MQ_TX_NONE, 252 }, 253 }; 254 255 struct rte_mempool *l2fwd_pktmbuf_pool; 256 struct rte_mempool *l2fwd_crypto_op_pool; 257 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 258 259 /* Per-port statistics struct */ 260 struct l2fwd_port_statistics { 261 uint64_t tx; 262 uint64_t rx; 263 264 uint64_t crypto_enqueued; 265 uint64_t crypto_dequeued; 266 267 uint64_t dropped; 268 } __rte_cache_aligned; 269 270 struct l2fwd_crypto_statistics { 271 uint64_t enqueued; 272 uint64_t dequeued; 273 274 uint64_t errors; 275 } __rte_cache_aligned; 276 277 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 278 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 279 280 /* A tsc-based timer responsible for triggering statistics printout */ 281 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 282 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 283 284 /* default period is 10 seconds */ 285 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 286 287 /* Print out statistics on packets dropped */ 288 static void 289 print_stats(void) 290 { 291 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 292 uint64_t total_packets_enqueued, total_packets_dequeued, 293 total_packets_errors; 294 uint16_t portid; 295 uint64_t cdevid; 296 297 total_packets_dropped = 0; 298 total_packets_tx = 0; 299 total_packets_rx = 0; 300 total_packets_enqueued = 0; 301 total_packets_dequeued = 0; 302 total_packets_errors = 0; 303 304 const char clr[] = { 27, '[', '2', 'J', '\0' }; 305 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 306 307 /* Clear screen and move to top left */ 308 printf("%s%s", clr, topLeft); 309 310 printf("\nPort statistics ===================================="); 311 312 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 313 /* skip disabled ports */ 314 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 315 continue; 316 printf("\nStatistics for port %u ------------------------------" 317 "\nPackets sent: %32"PRIu64 318 "\nPackets received: %28"PRIu64 319 "\nPackets dropped: %29"PRIu64, 320 portid, 321 port_statistics[portid].tx, 322 port_statistics[portid].rx, 323 port_statistics[portid].dropped); 324 325 total_packets_dropped += port_statistics[portid].dropped; 326 total_packets_tx += port_statistics[portid].tx; 327 total_packets_rx += port_statistics[portid].rx; 328 } 329 printf("\nCrypto statistics =================================="); 330 331 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 332 /* skip disabled ports */ 333 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 334 continue; 335 printf("\nStatistics for cryptodev %"PRIu64 336 " -------------------------" 337 "\nPackets enqueued: %28"PRIu64 338 "\nPackets dequeued: %28"PRIu64 339 "\nPackets errors: %30"PRIu64, 340 cdevid, 341 crypto_statistics[cdevid].enqueued, 342 crypto_statistics[cdevid].dequeued, 343 crypto_statistics[cdevid].errors); 344 345 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 346 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 347 total_packets_errors += crypto_statistics[cdevid].errors; 348 } 349 printf("\nAggregate statistics ===============================" 350 "\nTotal packets received: %22"PRIu64 351 "\nTotal packets enqueued: %22"PRIu64 352 "\nTotal packets dequeued: %22"PRIu64 353 "\nTotal packets sent: %26"PRIu64 354 "\nTotal packets dropped: %23"PRIu64 355 "\nTotal packets crypto errors: %17"PRIu64, 356 total_packets_rx, 357 total_packets_enqueued, 358 total_packets_dequeued, 359 total_packets_tx, 360 total_packets_dropped, 361 total_packets_errors); 362 printf("\n====================================================\n"); 363 } 364 365 static int 366 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 367 struct l2fwd_crypto_params *cparams) 368 { 369 struct rte_crypto_op **op_buffer; 370 unsigned ret; 371 372 op_buffer = (struct rte_crypto_op **) 373 qconf->op_buf[cparams->dev_id].buffer; 374 375 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 376 cparams->qp_id, op_buffer, (uint16_t) n); 377 378 crypto_statistics[cparams->dev_id].enqueued += ret; 379 if (unlikely(ret < n)) { 380 crypto_statistics[cparams->dev_id].errors += (n - ret); 381 do { 382 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 383 rte_crypto_op_free(op_buffer[ret]); 384 } while (++ret < n); 385 } 386 387 return 0; 388 } 389 390 static int 391 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 392 struct l2fwd_crypto_params *cparams) 393 { 394 unsigned lcore_id, len; 395 struct lcore_queue_conf *qconf; 396 397 lcore_id = rte_lcore_id(); 398 399 qconf = &lcore_queue_conf[lcore_id]; 400 len = qconf->op_buf[cparams->dev_id].len; 401 qconf->op_buf[cparams->dev_id].buffer[len] = op; 402 len++; 403 404 /* enough ops to be sent */ 405 if (len == MAX_PKT_BURST) { 406 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 407 len = 0; 408 } 409 410 qconf->op_buf[cparams->dev_id].len = len; 411 return 0; 412 } 413 414 static int 415 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 416 struct rte_crypto_op *op, 417 struct l2fwd_crypto_params *cparams) 418 { 419 struct ether_hdr *eth_hdr; 420 struct ipv4_hdr *ip_hdr; 421 422 uint32_t ipdata_offset, data_len; 423 uint32_t pad_len = 0; 424 char *padding; 425 426 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 427 428 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 429 return -1; 430 431 ipdata_offset = sizeof(struct ether_hdr); 432 433 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 434 ipdata_offset); 435 436 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 437 * IPV4_IHL_MULTIPLIER; 438 439 440 /* Zero pad data to be crypto'd so it is block aligned */ 441 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 442 443 if (cparams->do_hash && cparams->hash_verify) 444 data_len -= cparams->digest_length; 445 446 if (cparams->do_cipher) { 447 /* 448 * Following algorithms are block cipher algorithms, 449 * and might need padding 450 */ 451 switch (cparams->cipher_algo) { 452 case RTE_CRYPTO_CIPHER_AES_CBC: 453 case RTE_CRYPTO_CIPHER_AES_ECB: 454 case RTE_CRYPTO_CIPHER_DES_CBC: 455 case RTE_CRYPTO_CIPHER_3DES_CBC: 456 case RTE_CRYPTO_CIPHER_3DES_ECB: 457 if (data_len % cparams->block_size) 458 pad_len = cparams->block_size - 459 (data_len % cparams->block_size); 460 break; 461 default: 462 pad_len = 0; 463 } 464 465 if (pad_len) { 466 padding = rte_pktmbuf_append(m, pad_len); 467 if (unlikely(!padding)) 468 return -1; 469 470 data_len += pad_len; 471 memset(padding, 0, pad_len); 472 } 473 } 474 475 /* Set crypto operation data parameters */ 476 rte_crypto_op_attach_sym_session(op, cparams->session); 477 478 if (cparams->do_hash) { 479 if (cparams->auth_iv.length) { 480 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 481 uint8_t *, 482 IV_OFFSET + 483 cparams->cipher_iv.length); 484 /* 485 * Copy IV at the end of the crypto operation, 486 * after the cipher IV, if added 487 */ 488 rte_memcpy(iv_ptr, cparams->auth_iv.data, 489 cparams->auth_iv.length); 490 } 491 if (!cparams->hash_verify) { 492 /* Append space for digest to end of packet */ 493 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 494 cparams->digest_length); 495 } else { 496 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 497 uint8_t *) + ipdata_offset + data_len; 498 } 499 500 op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, 501 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 502 503 /* For wireless algorithms, offset/length must be in bits */ 504 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 505 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 506 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 507 op->sym->auth.data.offset = ipdata_offset << 3; 508 op->sym->auth.data.length = data_len << 3; 509 } else { 510 op->sym->auth.data.offset = ipdata_offset; 511 op->sym->auth.data.length = data_len; 512 } 513 } 514 515 if (cparams->do_cipher) { 516 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 517 IV_OFFSET); 518 /* Copy IV at the end of the crypto operation */ 519 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 520 cparams->cipher_iv.length); 521 522 /* For wireless algorithms, offset/length must be in bits */ 523 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 524 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 525 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 526 op->sym->cipher.data.offset = ipdata_offset << 3; 527 op->sym->cipher.data.length = data_len << 3; 528 } else { 529 op->sym->cipher.data.offset = ipdata_offset; 530 op->sym->cipher.data.length = data_len; 531 } 532 } 533 534 if (cparams->do_aead) { 535 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 536 IV_OFFSET); 537 /* Copy IV at the end of the crypto operation */ 538 /* 539 * If doing AES-CCM, nonce is copied one byte 540 * after the start of IV field 541 */ 542 if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 543 rte_memcpy(iv_ptr + 1, cparams->aead_iv.data, 544 cparams->aead_iv.length); 545 else 546 rte_memcpy(iv_ptr, cparams->aead_iv.data, 547 cparams->aead_iv.length); 548 549 op->sym->aead.data.offset = ipdata_offset; 550 op->sym->aead.data.length = data_len; 551 552 if (!cparams->hash_verify) { 553 /* Append space for digest to end of packet */ 554 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 555 cparams->digest_length); 556 } else { 557 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 558 uint8_t *) + ipdata_offset + data_len; 559 } 560 561 op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, 562 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 563 564 if (cparams->aad.length) { 565 op->sym->aead.aad.data = cparams->aad.data; 566 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 567 } 568 } 569 570 op->sym->m_src = m; 571 572 return l2fwd_crypto_enqueue(op, cparams); 573 } 574 575 576 /* Send the burst of packets on an output interface */ 577 static int 578 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 579 uint16_t port) 580 { 581 struct rte_mbuf **pkt_buffer; 582 unsigned ret; 583 584 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 585 586 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 587 port_statistics[port].tx += ret; 588 if (unlikely(ret < n)) { 589 port_statistics[port].dropped += (n - ret); 590 do { 591 rte_pktmbuf_free(pkt_buffer[ret]); 592 } while (++ret < n); 593 } 594 595 return 0; 596 } 597 598 /* Enqueue packets for TX and prepare them to be sent */ 599 static int 600 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 601 { 602 unsigned lcore_id, len; 603 struct lcore_queue_conf *qconf; 604 605 lcore_id = rte_lcore_id(); 606 607 qconf = &lcore_queue_conf[lcore_id]; 608 len = qconf->pkt_buf[port].len; 609 qconf->pkt_buf[port].buffer[len] = m; 610 len++; 611 612 /* enough pkts to be sent */ 613 if (unlikely(len == MAX_PKT_BURST)) { 614 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 615 len = 0; 616 } 617 618 qconf->pkt_buf[port].len = len; 619 return 0; 620 } 621 622 static void 623 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid) 624 { 625 struct ether_hdr *eth; 626 void *tmp; 627 628 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 629 630 /* 02:00:00:00:00:xx */ 631 tmp = ð->d_addr.addr_bytes[0]; 632 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 633 634 /* src addr */ 635 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 636 } 637 638 static void 639 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid, 640 struct l2fwd_crypto_options *options) 641 { 642 uint16_t dst_port; 643 644 dst_port = l2fwd_dst_ports[portid]; 645 646 if (options->mac_updating) 647 l2fwd_mac_updating(m, dst_port); 648 649 l2fwd_send_packet(m, dst_port); 650 } 651 652 /** Generate random key */ 653 static void 654 generate_random_key(uint8_t *key, unsigned length) 655 { 656 int fd; 657 int ret; 658 659 fd = open("/dev/urandom", O_RDONLY); 660 if (fd < 0) 661 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 662 663 ret = read(fd, key, length); 664 close(fd); 665 666 if (ret != (signed)length) 667 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 668 } 669 670 static struct rte_cryptodev_sym_session * 671 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 672 { 673 struct rte_crypto_sym_xform *first_xform; 674 struct rte_cryptodev_sym_session *session; 675 int retval = rte_cryptodev_socket_id(cdev_id); 676 677 if (retval < 0) 678 return NULL; 679 680 uint8_t socket_id = (uint8_t) retval; 681 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 682 683 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 684 first_xform = &options->aead_xform; 685 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 686 first_xform = &options->cipher_xform; 687 first_xform->next = &options->auth_xform; 688 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 689 first_xform = &options->auth_xform; 690 first_xform->next = &options->cipher_xform; 691 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 692 first_xform = &options->cipher_xform; 693 } else { 694 first_xform = &options->auth_xform; 695 } 696 697 session = rte_cryptodev_sym_session_create(sess_mp); 698 699 if (session == NULL) 700 return NULL; 701 702 if (rte_cryptodev_sym_session_init(cdev_id, session, 703 first_xform, sess_mp) < 0) 704 return NULL; 705 706 return session; 707 } 708 709 static void 710 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 711 712 /* main processing loop */ 713 static void 714 l2fwd_main_loop(struct l2fwd_crypto_options *options) 715 { 716 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 717 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 718 719 unsigned lcore_id = rte_lcore_id(); 720 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 721 unsigned int i, j, nb_rx, len; 722 uint16_t portid; 723 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 724 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 725 US_PER_S * BURST_TX_DRAIN_US; 726 struct l2fwd_crypto_params *cparams; 727 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 728 struct rte_cryptodev_sym_session *session; 729 730 if (qconf->nb_rx_ports == 0) { 731 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 732 return; 733 } 734 735 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 736 737 for (i = 0; i < qconf->nb_rx_ports; i++) { 738 739 portid = qconf->rx_port_list[i]; 740 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 741 portid); 742 } 743 744 for (i = 0; i < qconf->nb_crypto_devs; i++) { 745 port_cparams[i].do_cipher = 0; 746 port_cparams[i].do_hash = 0; 747 port_cparams[i].do_aead = 0; 748 749 switch (options->xform_chain) { 750 case L2FWD_CRYPTO_AEAD: 751 port_cparams[i].do_aead = 1; 752 break; 753 case L2FWD_CRYPTO_CIPHER_HASH: 754 case L2FWD_CRYPTO_HASH_CIPHER: 755 port_cparams[i].do_cipher = 1; 756 port_cparams[i].do_hash = 1; 757 break; 758 case L2FWD_CRYPTO_HASH_ONLY: 759 port_cparams[i].do_hash = 1; 760 break; 761 case L2FWD_CRYPTO_CIPHER_ONLY: 762 port_cparams[i].do_cipher = 1; 763 break; 764 } 765 766 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 767 port_cparams[i].qp_id = 0; 768 769 port_cparams[i].block_size = options->block_size; 770 771 if (port_cparams[i].do_hash) { 772 port_cparams[i].auth_iv.data = options->auth_iv.data; 773 port_cparams[i].auth_iv.length = options->auth_iv.length; 774 if (!options->auth_iv_param) 775 generate_random_key(port_cparams[i].auth_iv.data, 776 port_cparams[i].auth_iv.length); 777 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 778 port_cparams[i].hash_verify = 1; 779 else 780 port_cparams[i].hash_verify = 0; 781 782 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 783 port_cparams[i].digest_length = 784 options->auth_xform.auth.digest_length; 785 /* Set IV parameters */ 786 if (options->auth_iv.length) { 787 options->auth_xform.auth.iv.offset = 788 IV_OFFSET + options->cipher_iv.length; 789 options->auth_xform.auth.iv.length = 790 options->auth_iv.length; 791 } 792 } 793 794 if (port_cparams[i].do_aead) { 795 port_cparams[i].aead_iv.data = options->aead_iv.data; 796 port_cparams[i].aead_iv.length = options->aead_iv.length; 797 if (!options->aead_iv_param) 798 generate_random_key(port_cparams[i].aead_iv.data, 799 port_cparams[i].aead_iv.length); 800 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 801 port_cparams[i].digest_length = 802 options->aead_xform.aead.digest_length; 803 if (options->aead_xform.aead.aad_length) { 804 port_cparams[i].aad.data = options->aad.data; 805 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 806 port_cparams[i].aad.length = options->aad.length; 807 if (!options->aad_param) 808 generate_random_key(port_cparams[i].aad.data, 809 port_cparams[i].aad.length); 810 /* 811 * If doing AES-CCM, first 18 bytes has to be reserved, 812 * and actual AAD should start from byte 18 813 */ 814 if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 815 memmove(port_cparams[i].aad.data + 18, 816 port_cparams[i].aad.data, 817 port_cparams[i].aad.length); 818 819 } else 820 port_cparams[i].aad.length = 0; 821 822 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 823 port_cparams[i].hash_verify = 1; 824 else 825 port_cparams[i].hash_verify = 0; 826 827 /* Set IV parameters */ 828 options->aead_xform.aead.iv.offset = IV_OFFSET; 829 options->aead_xform.aead.iv.length = options->aead_iv.length; 830 } 831 832 if (port_cparams[i].do_cipher) { 833 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 834 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 835 if (!options->cipher_iv_param) 836 generate_random_key(port_cparams[i].cipher_iv.data, 837 port_cparams[i].cipher_iv.length); 838 839 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 840 /* Set IV parameters */ 841 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 842 options->cipher_xform.cipher.iv.length = 843 options->cipher_iv.length; 844 } 845 846 session = initialize_crypto_session(options, 847 port_cparams[i].dev_id); 848 if (session == NULL) 849 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 850 851 port_cparams[i].session = session; 852 853 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 854 port_cparams[i].dev_id); 855 } 856 857 l2fwd_crypto_options_print(options); 858 859 /* 860 * Initialize previous tsc timestamp before the loop, 861 * to avoid showing the port statistics immediately, 862 * so user can see the crypto information. 863 */ 864 prev_tsc = rte_rdtsc(); 865 while (1) { 866 867 cur_tsc = rte_rdtsc(); 868 869 /* 870 * Crypto device/TX burst queue drain 871 */ 872 diff_tsc = cur_tsc - prev_tsc; 873 if (unlikely(diff_tsc > drain_tsc)) { 874 /* Enqueue all crypto ops remaining in buffers */ 875 for (i = 0; i < qconf->nb_crypto_devs; i++) { 876 cparams = &port_cparams[i]; 877 len = qconf->op_buf[cparams->dev_id].len; 878 l2fwd_crypto_send_burst(qconf, len, cparams); 879 qconf->op_buf[cparams->dev_id].len = 0; 880 } 881 /* Transmit all packets remaining in buffers */ 882 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 883 if (qconf->pkt_buf[portid].len == 0) 884 continue; 885 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 886 qconf->pkt_buf[portid].len, 887 portid); 888 qconf->pkt_buf[portid].len = 0; 889 } 890 891 /* if timer is enabled */ 892 if (timer_period > 0) { 893 894 /* advance the timer */ 895 timer_tsc += diff_tsc; 896 897 /* if timer has reached its timeout */ 898 if (unlikely(timer_tsc >= 899 (uint64_t)timer_period)) { 900 901 /* do this only on master core */ 902 if (lcore_id == rte_get_master_lcore() 903 && options->refresh_period) { 904 print_stats(); 905 timer_tsc = 0; 906 } 907 } 908 } 909 910 prev_tsc = cur_tsc; 911 } 912 913 /* 914 * Read packet from RX queues 915 */ 916 for (i = 0; i < qconf->nb_rx_ports; i++) { 917 portid = qconf->rx_port_list[i]; 918 919 cparams = &port_cparams[i]; 920 921 nb_rx = rte_eth_rx_burst(portid, 0, 922 pkts_burst, MAX_PKT_BURST); 923 924 port_statistics[portid].rx += nb_rx; 925 926 if (nb_rx) { 927 /* 928 * If we can't allocate a crypto_ops, then drop 929 * the rest of the burst and dequeue and 930 * process the packets to free offload structs 931 */ 932 if (rte_crypto_op_bulk_alloc( 933 l2fwd_crypto_op_pool, 934 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 935 ops_burst, nb_rx) != 936 nb_rx) { 937 for (j = 0; j < nb_rx; j++) 938 rte_pktmbuf_free(pkts_burst[j]); 939 940 nb_rx = 0; 941 } 942 943 /* Enqueue packets from Crypto device*/ 944 for (j = 0; j < nb_rx; j++) { 945 m = pkts_burst[j]; 946 947 l2fwd_simple_crypto_enqueue(m, 948 ops_burst[j], cparams); 949 } 950 } 951 952 /* Dequeue packets from Crypto device */ 953 do { 954 nb_rx = rte_cryptodev_dequeue_burst( 955 cparams->dev_id, cparams->qp_id, 956 ops_burst, MAX_PKT_BURST); 957 958 crypto_statistics[cparams->dev_id].dequeued += 959 nb_rx; 960 961 /* Forward crypto'd packets */ 962 for (j = 0; j < nb_rx; j++) { 963 m = ops_burst[j]->sym->m_src; 964 965 rte_crypto_op_free(ops_burst[j]); 966 l2fwd_simple_forward(m, portid, 967 options); 968 } 969 } while (nb_rx == MAX_PKT_BURST); 970 } 971 } 972 } 973 974 static int 975 l2fwd_launch_one_lcore(void *arg) 976 { 977 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 978 return 0; 979 } 980 981 /* Display command line arguments usage */ 982 static void 983 l2fwd_crypto_usage(const char *prgname) 984 { 985 printf("%s [EAL options] --\n" 986 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 987 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 988 " -s manage all ports from single lcore\n" 989 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 990 " (0 to disable, 10 default, 86400 maximum)\n" 991 992 " --cdev_type HW / SW / ANY\n" 993 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 994 " HASH_ONLY / AEAD\n" 995 996 " --cipher_algo ALGO\n" 997 " --cipher_op ENCRYPT / DECRYPT\n" 998 " --cipher_key KEY (bytes separated with \":\")\n" 999 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 1000 " --cipher_iv IV (bytes separated with \":\")\n" 1001 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 1002 1003 " --auth_algo ALGO\n" 1004 " --auth_op GENERATE / VERIFY\n" 1005 " --auth_key KEY (bytes separated with \":\")\n" 1006 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 1007 " --auth_iv IV (bytes separated with \":\")\n" 1008 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 1009 1010 " --aead_algo ALGO\n" 1011 " --aead_op ENCRYPT / DECRYPT\n" 1012 " --aead_key KEY (bytes separated with \":\")\n" 1013 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 1014 " --aead_iv IV (bytes separated with \":\")\n" 1015 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 1016 " --aad AAD (bytes separated with \":\")\n" 1017 " --aad_random_size SIZE: size of AAD when generated randomly\n" 1018 1019 " --digest_size SIZE: size of digest to be generated/verified\n" 1020 1021 " --sessionless\n" 1022 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 1023 1024 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1025 " When enabled:\n" 1026 " - The source MAC address is replaced by the TX port MAC address\n" 1027 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1028 prgname); 1029 } 1030 1031 /** Parse crypto device type command line argument */ 1032 static int 1033 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1034 { 1035 if (strcmp("HW", optarg) == 0) { 1036 *type = CDEV_TYPE_HW; 1037 return 0; 1038 } else if (strcmp("SW", optarg) == 0) { 1039 *type = CDEV_TYPE_SW; 1040 return 0; 1041 } else if (strcmp("ANY", optarg) == 0) { 1042 *type = CDEV_TYPE_ANY; 1043 return 0; 1044 } 1045 1046 return -1; 1047 } 1048 1049 /** Parse crypto chain xform command line argument */ 1050 static int 1051 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1052 { 1053 if (strcmp("CIPHER_HASH", optarg) == 0) { 1054 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1055 return 0; 1056 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1057 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1058 return 0; 1059 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1060 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1061 return 0; 1062 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1063 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1064 return 0; 1065 } else if (strcmp("AEAD", optarg) == 0) { 1066 options->xform_chain = L2FWD_CRYPTO_AEAD; 1067 return 0; 1068 } 1069 1070 return -1; 1071 } 1072 1073 /** Parse crypto cipher algo option command line argument */ 1074 static int 1075 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1076 { 1077 1078 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1079 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1080 "not supported!\n"); 1081 return -1; 1082 } 1083 1084 return 0; 1085 } 1086 1087 /** Parse crypto cipher operation command line argument */ 1088 static int 1089 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1090 { 1091 if (strcmp("ENCRYPT", optarg) == 0) { 1092 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1093 return 0; 1094 } else if (strcmp("DECRYPT", optarg) == 0) { 1095 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1096 return 0; 1097 } 1098 1099 printf("Cipher operation not supported!\n"); 1100 return -1; 1101 } 1102 1103 /** Parse bytes from command line argument */ 1104 static int 1105 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size) 1106 { 1107 unsigned byte_count; 1108 char *token; 1109 1110 errno = 0; 1111 for (byte_count = 0, token = strtok(input_arg, ":"); 1112 (byte_count < max_size) && (token != NULL); 1113 token = strtok(NULL, ":")) { 1114 1115 int number = (int)strtol(token, NULL, 16); 1116 1117 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1118 return -1; 1119 1120 data[byte_count++] = (uint8_t)number; 1121 } 1122 1123 return byte_count; 1124 } 1125 1126 /** Parse size param*/ 1127 static int 1128 parse_size(int *size, const char *q_arg) 1129 { 1130 char *end = NULL; 1131 unsigned long n; 1132 1133 /* parse hexadecimal string */ 1134 n = strtoul(q_arg, &end, 10); 1135 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1136 n = 0; 1137 1138 if (n == 0) { 1139 printf("invalid size\n"); 1140 return -1; 1141 } 1142 1143 *size = n; 1144 return 0; 1145 } 1146 1147 /** Parse crypto cipher operation command line argument */ 1148 static int 1149 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1150 { 1151 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1152 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1153 "not supported!\n"); 1154 return -1; 1155 } 1156 1157 return 0; 1158 } 1159 1160 static int 1161 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1162 { 1163 if (strcmp("VERIFY", optarg) == 0) { 1164 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1165 return 0; 1166 } else if (strcmp("GENERATE", optarg) == 0) { 1167 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1168 return 0; 1169 } 1170 1171 printf("Authentication operation specified not supported!\n"); 1172 return -1; 1173 } 1174 1175 static int 1176 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1177 { 1178 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1179 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1180 "not supported!\n"); 1181 return -1; 1182 } 1183 1184 return 0; 1185 } 1186 1187 static int 1188 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1189 { 1190 if (strcmp("ENCRYPT", optarg) == 0) { 1191 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1192 return 0; 1193 } else if (strcmp("DECRYPT", optarg) == 0) { 1194 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1195 return 0; 1196 } 1197 1198 printf("AEAD operation specified not supported!\n"); 1199 return -1; 1200 } 1201 static int 1202 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1203 const char *q_arg) 1204 { 1205 char *end = NULL; 1206 uint64_t pm; 1207 1208 /* parse hexadecimal string */ 1209 pm = strtoul(q_arg, &end, 16); 1210 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1211 pm = 0; 1212 1213 options->cryptodev_mask = pm; 1214 if (options->cryptodev_mask == 0) { 1215 printf("invalid cryptodev_mask specified\n"); 1216 return -1; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** Parse long options */ 1223 static int 1224 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1225 struct option *lgopts, int option_index) 1226 { 1227 int retval; 1228 1229 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1230 retval = parse_cryptodev_type(&options->type, optarg); 1231 if (retval == 0) 1232 snprintf(options->string_type, MAX_STR_LEN, 1233 "%s", optarg); 1234 return retval; 1235 } 1236 1237 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1238 return parse_crypto_opt_chain(options, optarg); 1239 1240 /* Cipher options */ 1241 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1242 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1243 optarg); 1244 1245 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1246 return parse_cipher_op(&options->cipher_xform.cipher.op, 1247 optarg); 1248 1249 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1250 options->ckey_param = 1; 1251 options->cipher_xform.cipher.key.length = 1252 parse_bytes(options->cipher_xform.cipher.key.data, optarg, 1253 MAX_KEY_SIZE); 1254 if (options->cipher_xform.cipher.key.length > 0) 1255 return 0; 1256 else 1257 return -1; 1258 } 1259 1260 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1261 return parse_size(&options->ckey_random_size, optarg); 1262 1263 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1264 options->cipher_iv_param = 1; 1265 options->cipher_iv.length = 1266 parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE); 1267 if (options->cipher_iv.length > 0) 1268 return 0; 1269 else 1270 return -1; 1271 } 1272 1273 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1274 return parse_size(&options->cipher_iv_random_size, optarg); 1275 1276 /* Authentication options */ 1277 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1278 return parse_auth_algo(&options->auth_xform.auth.algo, 1279 optarg); 1280 } 1281 1282 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1283 return parse_auth_op(&options->auth_xform.auth.op, 1284 optarg); 1285 1286 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1287 options->akey_param = 1; 1288 options->auth_xform.auth.key.length = 1289 parse_bytes(options->auth_xform.auth.key.data, optarg, 1290 MAX_KEY_SIZE); 1291 if (options->auth_xform.auth.key.length > 0) 1292 return 0; 1293 else 1294 return -1; 1295 } 1296 1297 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1298 return parse_size(&options->akey_random_size, optarg); 1299 } 1300 1301 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1302 options->auth_iv_param = 1; 1303 options->auth_iv.length = 1304 parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE); 1305 if (options->auth_iv.length > 0) 1306 return 0; 1307 else 1308 return -1; 1309 } 1310 1311 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1312 return parse_size(&options->auth_iv_random_size, optarg); 1313 1314 /* AEAD options */ 1315 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1316 return parse_aead_algo(&options->aead_xform.aead.algo, 1317 optarg); 1318 } 1319 1320 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1321 return parse_aead_op(&options->aead_xform.aead.op, 1322 optarg); 1323 1324 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1325 options->aead_key_param = 1; 1326 options->aead_xform.aead.key.length = 1327 parse_bytes(options->aead_xform.aead.key.data, optarg, 1328 MAX_KEY_SIZE); 1329 if (options->aead_xform.aead.key.length > 0) 1330 return 0; 1331 else 1332 return -1; 1333 } 1334 1335 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1336 return parse_size(&options->aead_key_random_size, optarg); 1337 1338 1339 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1340 options->aead_iv_param = 1; 1341 options->aead_iv.length = 1342 parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE); 1343 if (options->aead_iv.length > 0) 1344 return 0; 1345 else 1346 return -1; 1347 } 1348 1349 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1350 return parse_size(&options->aead_iv_random_size, optarg); 1351 1352 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1353 options->aad_param = 1; 1354 options->aad.length = 1355 parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE); 1356 if (options->aad.length > 0) 1357 return 0; 1358 else 1359 return -1; 1360 } 1361 1362 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1363 return parse_size(&options->aad_random_size, optarg); 1364 } 1365 1366 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1367 return parse_size(&options->digest_size, optarg); 1368 } 1369 1370 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1371 options->sessionless = 1; 1372 return 0; 1373 } 1374 1375 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1376 return parse_cryptodev_mask(options, optarg); 1377 1378 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1379 options->mac_updating = 1; 1380 return 0; 1381 } 1382 1383 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1384 options->mac_updating = 0; 1385 return 0; 1386 } 1387 1388 return -1; 1389 } 1390 1391 /** Parse port mask */ 1392 static int 1393 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1394 const char *q_arg) 1395 { 1396 char *end = NULL; 1397 unsigned long pm; 1398 1399 /* parse hexadecimal string */ 1400 pm = strtoul(q_arg, &end, 16); 1401 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1402 pm = 0; 1403 1404 options->portmask = pm; 1405 if (options->portmask == 0) { 1406 printf("invalid portmask specified\n"); 1407 return -1; 1408 } 1409 1410 return pm; 1411 } 1412 1413 /** Parse number of queues */ 1414 static int 1415 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1416 const char *q_arg) 1417 { 1418 char *end = NULL; 1419 unsigned long n; 1420 1421 /* parse hexadecimal string */ 1422 n = strtoul(q_arg, &end, 10); 1423 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1424 n = 0; 1425 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1426 n = 0; 1427 1428 options->nb_ports_per_lcore = n; 1429 if (options->nb_ports_per_lcore == 0) { 1430 printf("invalid number of ports selected\n"); 1431 return -1; 1432 } 1433 1434 return 0; 1435 } 1436 1437 /** Parse timer period */ 1438 static int 1439 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1440 const char *q_arg) 1441 { 1442 char *end = NULL; 1443 unsigned long n; 1444 1445 /* parse number string */ 1446 n = (unsigned)strtol(q_arg, &end, 10); 1447 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1448 n = 0; 1449 1450 if (n >= MAX_TIMER_PERIOD) { 1451 printf("Warning refresh period specified %lu is greater than " 1452 "max value %lu! using max value", 1453 n, MAX_TIMER_PERIOD); 1454 n = MAX_TIMER_PERIOD; 1455 } 1456 1457 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1458 1459 return 0; 1460 } 1461 1462 /** Generate default options for application */ 1463 static void 1464 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1465 { 1466 options->portmask = 0xffffffff; 1467 options->nb_ports_per_lcore = 1; 1468 options->refresh_period = 10000; 1469 options->single_lcore = 0; 1470 options->sessionless = 0; 1471 1472 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1473 1474 /* Cipher Data */ 1475 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1476 options->cipher_xform.next = NULL; 1477 options->ckey_param = 0; 1478 options->ckey_random_size = -1; 1479 options->cipher_xform.cipher.key.length = 0; 1480 options->cipher_iv_param = 0; 1481 options->cipher_iv_random_size = -1; 1482 options->cipher_iv.length = 0; 1483 1484 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1485 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1486 1487 /* Authentication Data */ 1488 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1489 options->auth_xform.next = NULL; 1490 options->akey_param = 0; 1491 options->akey_random_size = -1; 1492 options->auth_xform.auth.key.length = 0; 1493 options->auth_iv_param = 0; 1494 options->auth_iv_random_size = -1; 1495 options->auth_iv.length = 0; 1496 1497 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1498 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1499 1500 /* AEAD Data */ 1501 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1502 options->aead_xform.next = NULL; 1503 options->aead_key_param = 0; 1504 options->aead_key_random_size = -1; 1505 options->aead_xform.aead.key.length = 0; 1506 options->aead_iv_param = 0; 1507 options->aead_iv_random_size = -1; 1508 options->aead_iv.length = 0; 1509 1510 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1511 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1512 1513 options->aad_param = 0; 1514 options->aad_random_size = -1; 1515 options->aad.length = 0; 1516 1517 options->digest_size = -1; 1518 1519 options->type = CDEV_TYPE_ANY; 1520 options->cryptodev_mask = UINT64_MAX; 1521 1522 options->mac_updating = 1; 1523 } 1524 1525 static void 1526 display_cipher_info(struct l2fwd_crypto_options *options) 1527 { 1528 printf("\n---- Cipher information ---\n"); 1529 printf("Algorithm: %s\n", 1530 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1531 rte_hexdump(stdout, "Cipher key:", 1532 options->cipher_xform.cipher.key.data, 1533 options->cipher_xform.cipher.key.length); 1534 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1535 } 1536 1537 static void 1538 display_auth_info(struct l2fwd_crypto_options *options) 1539 { 1540 printf("\n---- Authentication information ---\n"); 1541 printf("Algorithm: %s\n", 1542 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1543 rte_hexdump(stdout, "Auth key:", 1544 options->auth_xform.auth.key.data, 1545 options->auth_xform.auth.key.length); 1546 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1547 } 1548 1549 static void 1550 display_aead_info(struct l2fwd_crypto_options *options) 1551 { 1552 printf("\n---- AEAD information ---\n"); 1553 printf("Algorithm: %s\n", 1554 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1555 rte_hexdump(stdout, "AEAD key:", 1556 options->aead_xform.aead.key.data, 1557 options->aead_xform.aead.key.length); 1558 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1559 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1560 } 1561 1562 static void 1563 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1564 { 1565 char string_cipher_op[MAX_STR_LEN]; 1566 char string_auth_op[MAX_STR_LEN]; 1567 char string_aead_op[MAX_STR_LEN]; 1568 1569 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1570 strcpy(string_cipher_op, "Encrypt"); 1571 else 1572 strcpy(string_cipher_op, "Decrypt"); 1573 1574 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1575 strcpy(string_auth_op, "Auth generate"); 1576 else 1577 strcpy(string_auth_op, "Auth verify"); 1578 1579 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1580 strcpy(string_aead_op, "Authenticated encryption"); 1581 else 1582 strcpy(string_aead_op, "Authenticated decryption"); 1583 1584 1585 printf("Options:-\nn"); 1586 printf("portmask: %x\n", options->portmask); 1587 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1588 printf("refresh period : %u\n", options->refresh_period); 1589 printf("single lcore mode: %s\n", 1590 options->single_lcore ? "enabled" : "disabled"); 1591 printf("stats_printing: %s\n", 1592 options->refresh_period == 0 ? "disabled" : "enabled"); 1593 1594 printf("sessionless crypto: %s\n", 1595 options->sessionless ? "enabled" : "disabled"); 1596 1597 if (options->ckey_param && (options->ckey_random_size != -1)) 1598 printf("Cipher key already parsed, ignoring size of random key\n"); 1599 1600 if (options->akey_param && (options->akey_random_size != -1)) 1601 printf("Auth key already parsed, ignoring size of random key\n"); 1602 1603 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1604 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1605 1606 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1607 printf("Auth IV already parsed, ignoring size of random IV\n"); 1608 1609 if (options->aad_param && (options->aad_random_size != -1)) 1610 printf("AAD already parsed, ignoring size of random AAD\n"); 1611 1612 printf("\nCrypto chain: "); 1613 switch (options->xform_chain) { 1614 case L2FWD_CRYPTO_AEAD: 1615 printf("Input --> %s --> Output\n", string_aead_op); 1616 display_aead_info(options); 1617 break; 1618 case L2FWD_CRYPTO_CIPHER_HASH: 1619 printf("Input --> %s --> %s --> Output\n", 1620 string_cipher_op, string_auth_op); 1621 display_cipher_info(options); 1622 display_auth_info(options); 1623 break; 1624 case L2FWD_CRYPTO_HASH_CIPHER: 1625 printf("Input --> %s --> %s --> Output\n", 1626 string_auth_op, string_cipher_op); 1627 display_cipher_info(options); 1628 display_auth_info(options); 1629 break; 1630 case L2FWD_CRYPTO_HASH_ONLY: 1631 printf("Input --> %s --> Output\n", string_auth_op); 1632 display_auth_info(options); 1633 break; 1634 case L2FWD_CRYPTO_CIPHER_ONLY: 1635 printf("Input --> %s --> Output\n", string_cipher_op); 1636 display_cipher_info(options); 1637 break; 1638 } 1639 } 1640 1641 /* Parse the argument given in the command line of the application */ 1642 static int 1643 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1644 int argc, char **argv) 1645 { 1646 int opt, retval, option_index; 1647 char **argvopt = argv, *prgname = argv[0]; 1648 1649 static struct option lgopts[] = { 1650 { "sessionless", no_argument, 0, 0 }, 1651 1652 { "cdev_type", required_argument, 0, 0 }, 1653 { "chain", required_argument, 0, 0 }, 1654 1655 { "cipher_algo", required_argument, 0, 0 }, 1656 { "cipher_op", required_argument, 0, 0 }, 1657 { "cipher_key", required_argument, 0, 0 }, 1658 { "cipher_key_random_size", required_argument, 0, 0 }, 1659 { "cipher_iv", required_argument, 0, 0 }, 1660 { "cipher_iv_random_size", required_argument, 0, 0 }, 1661 1662 { "auth_algo", required_argument, 0, 0 }, 1663 { "auth_op", required_argument, 0, 0 }, 1664 { "auth_key", required_argument, 0, 0 }, 1665 { "auth_key_random_size", required_argument, 0, 0 }, 1666 { "auth_iv", required_argument, 0, 0 }, 1667 { "auth_iv_random_size", required_argument, 0, 0 }, 1668 1669 { "aead_algo", required_argument, 0, 0 }, 1670 { "aead_op", required_argument, 0, 0 }, 1671 { "aead_key", required_argument, 0, 0 }, 1672 { "aead_key_random_size", required_argument, 0, 0 }, 1673 { "aead_iv", required_argument, 0, 0 }, 1674 { "aead_iv_random_size", required_argument, 0, 0 }, 1675 1676 { "aad", required_argument, 0, 0 }, 1677 { "aad_random_size", required_argument, 0, 0 }, 1678 1679 { "digest_size", required_argument, 0, 0 }, 1680 1681 { "sessionless", no_argument, 0, 0 }, 1682 { "cryptodev_mask", required_argument, 0, 0}, 1683 1684 { "mac-updating", no_argument, 0, 0}, 1685 { "no-mac-updating", no_argument, 0, 0}, 1686 1687 { NULL, 0, 0, 0 } 1688 }; 1689 1690 l2fwd_crypto_default_options(options); 1691 1692 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1693 &option_index)) != EOF) { 1694 switch (opt) { 1695 /* long options */ 1696 case 0: 1697 retval = l2fwd_crypto_parse_args_long_options(options, 1698 lgopts, option_index); 1699 if (retval < 0) { 1700 l2fwd_crypto_usage(prgname); 1701 return -1; 1702 } 1703 break; 1704 1705 /* portmask */ 1706 case 'p': 1707 retval = l2fwd_crypto_parse_portmask(options, optarg); 1708 if (retval < 0) { 1709 l2fwd_crypto_usage(prgname); 1710 return -1; 1711 } 1712 break; 1713 1714 /* nqueue */ 1715 case 'q': 1716 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1717 if (retval < 0) { 1718 l2fwd_crypto_usage(prgname); 1719 return -1; 1720 } 1721 break; 1722 1723 /* single */ 1724 case 's': 1725 options->single_lcore = 1; 1726 1727 break; 1728 1729 /* timer period */ 1730 case 'T': 1731 retval = l2fwd_crypto_parse_timer_period(options, 1732 optarg); 1733 if (retval < 0) { 1734 l2fwd_crypto_usage(prgname); 1735 return -1; 1736 } 1737 break; 1738 1739 default: 1740 l2fwd_crypto_usage(prgname); 1741 return -1; 1742 } 1743 } 1744 1745 1746 if (optind >= 0) 1747 argv[optind-1] = prgname; 1748 1749 retval = optind-1; 1750 optind = 1; /* reset getopt lib */ 1751 1752 return retval; 1753 } 1754 1755 /* Check the link status of all ports in up to 9s, and print them finally */ 1756 static void 1757 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 1758 { 1759 #define CHECK_INTERVAL 100 /* 100ms */ 1760 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1761 uint16_t portid; 1762 uint8_t count, all_ports_up, print_flag = 0; 1763 struct rte_eth_link link; 1764 1765 printf("\nChecking link status"); 1766 fflush(stdout); 1767 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1768 all_ports_up = 1; 1769 for (portid = 0; portid < port_num; portid++) { 1770 if ((port_mask & (1 << portid)) == 0) 1771 continue; 1772 memset(&link, 0, sizeof(link)); 1773 rte_eth_link_get_nowait(portid, &link); 1774 /* print link status if flag set */ 1775 if (print_flag == 1) { 1776 if (link.link_status) 1777 printf( 1778 "Port%d Link Up. Speed %u Mbps - %s\n", 1779 portid, link.link_speed, 1780 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1781 ("full-duplex") : ("half-duplex\n")); 1782 else 1783 printf("Port %d Link Down\n", portid); 1784 continue; 1785 } 1786 /* clear all_ports_up flag if any link down */ 1787 if (link.link_status == ETH_LINK_DOWN) { 1788 all_ports_up = 0; 1789 break; 1790 } 1791 } 1792 /* after finally printing all link status, get out */ 1793 if (print_flag == 1) 1794 break; 1795 1796 if (all_ports_up == 0) { 1797 printf("."); 1798 fflush(stdout); 1799 rte_delay_ms(CHECK_INTERVAL); 1800 } 1801 1802 /* set the print_flag if all ports up or timeout */ 1803 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1804 print_flag = 1; 1805 printf("done\n"); 1806 } 1807 } 1808 } 1809 1810 /* Check if device has to be HW/SW or any */ 1811 static int 1812 check_type(const struct l2fwd_crypto_options *options, 1813 const struct rte_cryptodev_info *dev_info) 1814 { 1815 if (options->type == CDEV_TYPE_HW && 1816 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1817 return 0; 1818 if (options->type == CDEV_TYPE_SW && 1819 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1820 return 0; 1821 if (options->type == CDEV_TYPE_ANY) 1822 return 0; 1823 1824 return -1; 1825 } 1826 1827 static const struct rte_cryptodev_capabilities * 1828 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1829 const struct rte_cryptodev_info *dev_info, 1830 uint8_t cdev_id) 1831 { 1832 unsigned int i = 0; 1833 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1834 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1835 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1836 options->cipher_xform.cipher.algo; 1837 1838 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1839 cap_cipher_algo = cap->sym.cipher.algo; 1840 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1841 if (cap_cipher_algo == opt_cipher_algo) { 1842 if (check_type(options, dev_info) == 0) 1843 break; 1844 } 1845 } 1846 cap = &dev_info->capabilities[++i]; 1847 } 1848 1849 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1850 printf("Algorithm %s not supported by cryptodev %u" 1851 " or device not of preferred type (%s)\n", 1852 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1853 cdev_id, 1854 options->string_type); 1855 return NULL; 1856 } 1857 1858 return cap; 1859 } 1860 1861 static const struct rte_cryptodev_capabilities * 1862 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1863 const struct rte_cryptodev_info *dev_info, 1864 uint8_t cdev_id) 1865 { 1866 unsigned int i = 0; 1867 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1868 enum rte_crypto_auth_algorithm cap_auth_algo; 1869 enum rte_crypto_auth_algorithm opt_auth_algo = 1870 options->auth_xform.auth.algo; 1871 1872 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1873 cap_auth_algo = cap->sym.auth.algo; 1874 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1875 if (cap_auth_algo == opt_auth_algo) { 1876 if (check_type(options, dev_info) == 0) 1877 break; 1878 } 1879 } 1880 cap = &dev_info->capabilities[++i]; 1881 } 1882 1883 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1884 printf("Algorithm %s not supported by cryptodev %u" 1885 " or device not of preferred type (%s)\n", 1886 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1887 cdev_id, 1888 options->string_type); 1889 return NULL; 1890 } 1891 1892 return cap; 1893 } 1894 1895 static const struct rte_cryptodev_capabilities * 1896 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1897 const struct rte_cryptodev_info *dev_info, 1898 uint8_t cdev_id) 1899 { 1900 unsigned int i = 0; 1901 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1902 enum rte_crypto_aead_algorithm cap_aead_algo; 1903 enum rte_crypto_aead_algorithm opt_aead_algo = 1904 options->aead_xform.aead.algo; 1905 1906 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1907 cap_aead_algo = cap->sym.aead.algo; 1908 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1909 if (cap_aead_algo == opt_aead_algo) { 1910 if (check_type(options, dev_info) == 0) 1911 break; 1912 } 1913 } 1914 cap = &dev_info->capabilities[++i]; 1915 } 1916 1917 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1918 printf("Algorithm %s not supported by cryptodev %u" 1919 " or device not of preferred type (%s)\n", 1920 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1921 cdev_id, 1922 options->string_type); 1923 return NULL; 1924 } 1925 1926 return cap; 1927 } 1928 1929 /* Check if the device is enabled by cryptodev_mask */ 1930 static int 1931 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1932 uint8_t cdev_id) 1933 { 1934 if (options->cryptodev_mask & (1 << cdev_id)) 1935 return 0; 1936 1937 return -1; 1938 } 1939 1940 static inline int 1941 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1942 uint16_t increment) 1943 { 1944 uint16_t supp_size; 1945 1946 /* Single value */ 1947 if (increment == 0) { 1948 if (length == min) 1949 return 0; 1950 else 1951 return -1; 1952 } 1953 1954 /* Range of values */ 1955 for (supp_size = min; supp_size <= max; supp_size += increment) { 1956 if (length == supp_size) 1957 return 0; 1958 } 1959 1960 return -1; 1961 } 1962 1963 static int 1964 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1965 unsigned int iv_param, int iv_random_size, 1966 uint16_t *iv_length) 1967 { 1968 /* 1969 * Check if length of provided IV is supported 1970 * by the algorithm chosen. 1971 */ 1972 if (iv_param) { 1973 if (check_supported_size(*iv_length, 1974 iv_range_size->min, 1975 iv_range_size->max, 1976 iv_range_size->increment) 1977 != 0) { 1978 printf("Unsupported IV length\n"); 1979 return -1; 1980 } 1981 /* 1982 * Check if length of IV to be randomly generated 1983 * is supported by the algorithm chosen. 1984 */ 1985 } else if (iv_random_size != -1) { 1986 if (check_supported_size(iv_random_size, 1987 iv_range_size->min, 1988 iv_range_size->max, 1989 iv_range_size->increment) 1990 != 0) { 1991 printf("Unsupported IV length\n"); 1992 return -1; 1993 } 1994 *iv_length = iv_random_size; 1995 /* No size provided, use minimum size. */ 1996 } else 1997 *iv_length = iv_range_size->min; 1998 1999 return 0; 2000 } 2001 2002 static int 2003 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 2004 uint8_t *enabled_cdevs) 2005 { 2006 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 2007 const struct rte_cryptodev_capabilities *cap; 2008 unsigned int sess_sz, max_sess_sz = 0; 2009 int retval; 2010 2011 cdev_count = rte_cryptodev_count(); 2012 if (cdev_count == 0) { 2013 printf("No crypto devices available\n"); 2014 return -1; 2015 } 2016 2017 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 2018 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 2019 if (sess_sz > max_sess_sz) 2020 max_sess_sz = sess_sz; 2021 } 2022 2023 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 2024 cdev_id++) { 2025 struct rte_cryptodev_qp_conf qp_conf; 2026 struct rte_cryptodev_info dev_info; 2027 retval = rte_cryptodev_socket_id(cdev_id); 2028 2029 if (retval < 0) { 2030 printf("Invalid crypto device id used\n"); 2031 return -1; 2032 } 2033 2034 uint8_t socket_id = (uint8_t) retval; 2035 2036 struct rte_cryptodev_config conf = { 2037 .nb_queue_pairs = 1, 2038 .socket_id = socket_id, 2039 }; 2040 2041 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2042 continue; 2043 2044 rte_cryptodev_info_get(cdev_id, &dev_info); 2045 2046 if (session_pool_socket[socket_id] == NULL) { 2047 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2048 struct rte_mempool *sess_mp; 2049 2050 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2051 "sess_mp_%u", socket_id); 2052 2053 /* 2054 * Create enough objects for session headers and 2055 * device private data 2056 */ 2057 sess_mp = rte_mempool_create(mp_name, 2058 MAX_SESSIONS * 2, 2059 max_sess_sz, 2060 SESSION_POOL_CACHE_SIZE, 2061 0, NULL, NULL, NULL, 2062 NULL, socket_id, 2063 0); 2064 2065 if (sess_mp == NULL) { 2066 printf("Cannot create session pool on socket %d\n", 2067 socket_id); 2068 return -ENOMEM; 2069 } 2070 2071 printf("Allocated session pool on socket %d\n", socket_id); 2072 session_pool_socket[socket_id] = sess_mp; 2073 } 2074 2075 /* Set AEAD parameters */ 2076 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2077 /* Check if device supports AEAD algo */ 2078 cap = check_device_support_aead_algo(options, &dev_info, 2079 cdev_id); 2080 if (cap == NULL) 2081 continue; 2082 2083 options->block_size = cap->sym.aead.block_size; 2084 2085 check_iv_param(&cap->sym.aead.iv_size, 2086 options->aead_iv_param, 2087 options->aead_iv_random_size, 2088 &options->aead_iv.length); 2089 2090 /* 2091 * Check if length of provided AEAD key is supported 2092 * by the algorithm chosen. 2093 */ 2094 if (options->aead_key_param) { 2095 if (check_supported_size( 2096 options->aead_xform.aead.key.length, 2097 cap->sym.aead.key_size.min, 2098 cap->sym.aead.key_size.max, 2099 cap->sym.aead.key_size.increment) 2100 != 0) { 2101 printf("Unsupported aead key length\n"); 2102 return -1; 2103 } 2104 /* 2105 * Check if length of the aead key to be randomly generated 2106 * is supported by the algorithm chosen. 2107 */ 2108 } else if (options->aead_key_random_size != -1) { 2109 if (check_supported_size(options->aead_key_random_size, 2110 cap->sym.aead.key_size.min, 2111 cap->sym.aead.key_size.max, 2112 cap->sym.aead.key_size.increment) 2113 != 0) { 2114 printf("Unsupported aead key length\n"); 2115 return -1; 2116 } 2117 options->aead_xform.aead.key.length = 2118 options->aead_key_random_size; 2119 /* No size provided, use minimum size. */ 2120 } else 2121 options->aead_xform.aead.key.length = 2122 cap->sym.aead.key_size.min; 2123 2124 if (!options->aead_key_param) 2125 generate_random_key( 2126 options->aead_xform.aead.key.data, 2127 options->aead_xform.aead.key.length); 2128 2129 /* 2130 * Check if length of provided AAD is supported 2131 * by the algorithm chosen. 2132 */ 2133 if (options->aad_param) { 2134 if (check_supported_size(options->aad.length, 2135 cap->sym.aead.aad_size.min, 2136 cap->sym.aead.aad_size.max, 2137 cap->sym.aead.aad_size.increment) 2138 != 0) { 2139 printf("Unsupported AAD length\n"); 2140 return -1; 2141 } 2142 /* 2143 * Check if length of AAD to be randomly generated 2144 * is supported by the algorithm chosen. 2145 */ 2146 } else if (options->aad_random_size != -1) { 2147 if (check_supported_size(options->aad_random_size, 2148 cap->sym.aead.aad_size.min, 2149 cap->sym.aead.aad_size.max, 2150 cap->sym.aead.aad_size.increment) 2151 != 0) { 2152 printf("Unsupported AAD length\n"); 2153 return -1; 2154 } 2155 options->aad.length = options->aad_random_size; 2156 /* No size provided, use minimum size. */ 2157 } else 2158 options->aad.length = cap->sym.auth.aad_size.min; 2159 2160 options->aead_xform.aead.aad_length = 2161 options->aad.length; 2162 2163 /* Check if digest size is supported by the algorithm. */ 2164 if (options->digest_size != -1) { 2165 if (check_supported_size(options->digest_size, 2166 cap->sym.aead.digest_size.min, 2167 cap->sym.aead.digest_size.max, 2168 cap->sym.aead.digest_size.increment) 2169 != 0) { 2170 printf("Unsupported digest length\n"); 2171 return -1; 2172 } 2173 options->aead_xform.aead.digest_length = 2174 options->digest_size; 2175 /* No size provided, use minimum size. */ 2176 } else 2177 options->aead_xform.aead.digest_length = 2178 cap->sym.aead.digest_size.min; 2179 } 2180 2181 /* Set cipher parameters */ 2182 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2183 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2184 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2185 /* Check if device supports cipher algo */ 2186 cap = check_device_support_cipher_algo(options, &dev_info, 2187 cdev_id); 2188 if (cap == NULL) 2189 continue; 2190 2191 options->block_size = cap->sym.cipher.block_size; 2192 2193 check_iv_param(&cap->sym.cipher.iv_size, 2194 options->cipher_iv_param, 2195 options->cipher_iv_random_size, 2196 &options->cipher_iv.length); 2197 2198 /* 2199 * Check if length of provided cipher key is supported 2200 * by the algorithm chosen. 2201 */ 2202 if (options->ckey_param) { 2203 if (check_supported_size( 2204 options->cipher_xform.cipher.key.length, 2205 cap->sym.cipher.key_size.min, 2206 cap->sym.cipher.key_size.max, 2207 cap->sym.cipher.key_size.increment) 2208 != 0) { 2209 printf("Unsupported cipher key length\n"); 2210 return -1; 2211 } 2212 /* 2213 * Check if length of the cipher key to be randomly generated 2214 * is supported by the algorithm chosen. 2215 */ 2216 } else if (options->ckey_random_size != -1) { 2217 if (check_supported_size(options->ckey_random_size, 2218 cap->sym.cipher.key_size.min, 2219 cap->sym.cipher.key_size.max, 2220 cap->sym.cipher.key_size.increment) 2221 != 0) { 2222 printf("Unsupported cipher key length\n"); 2223 return -1; 2224 } 2225 options->cipher_xform.cipher.key.length = 2226 options->ckey_random_size; 2227 /* No size provided, use minimum size. */ 2228 } else 2229 options->cipher_xform.cipher.key.length = 2230 cap->sym.cipher.key_size.min; 2231 2232 if (!options->ckey_param) 2233 generate_random_key( 2234 options->cipher_xform.cipher.key.data, 2235 options->cipher_xform.cipher.key.length); 2236 2237 } 2238 2239 /* Set auth parameters */ 2240 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2241 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2242 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2243 /* Check if device supports auth algo */ 2244 cap = check_device_support_auth_algo(options, &dev_info, 2245 cdev_id); 2246 if (cap == NULL) 2247 continue; 2248 2249 check_iv_param(&cap->sym.auth.iv_size, 2250 options->auth_iv_param, 2251 options->auth_iv_random_size, 2252 &options->auth_iv.length); 2253 /* 2254 * Check if length of provided auth key is supported 2255 * by the algorithm chosen. 2256 */ 2257 if (options->akey_param) { 2258 if (check_supported_size( 2259 options->auth_xform.auth.key.length, 2260 cap->sym.auth.key_size.min, 2261 cap->sym.auth.key_size.max, 2262 cap->sym.auth.key_size.increment) 2263 != 0) { 2264 printf("Unsupported auth key length\n"); 2265 return -1; 2266 } 2267 /* 2268 * Check if length of the auth key to be randomly generated 2269 * is supported by the algorithm chosen. 2270 */ 2271 } else if (options->akey_random_size != -1) { 2272 if (check_supported_size(options->akey_random_size, 2273 cap->sym.auth.key_size.min, 2274 cap->sym.auth.key_size.max, 2275 cap->sym.auth.key_size.increment) 2276 != 0) { 2277 printf("Unsupported auth key length\n"); 2278 return -1; 2279 } 2280 options->auth_xform.auth.key.length = 2281 options->akey_random_size; 2282 /* No size provided, use minimum size. */ 2283 } else 2284 options->auth_xform.auth.key.length = 2285 cap->sym.auth.key_size.min; 2286 2287 if (!options->akey_param) 2288 generate_random_key( 2289 options->auth_xform.auth.key.data, 2290 options->auth_xform.auth.key.length); 2291 2292 /* Check if digest size is supported by the algorithm. */ 2293 if (options->digest_size != -1) { 2294 if (check_supported_size(options->digest_size, 2295 cap->sym.auth.digest_size.min, 2296 cap->sym.auth.digest_size.max, 2297 cap->sym.auth.digest_size.increment) 2298 != 0) { 2299 printf("Unsupported digest length\n"); 2300 return -1; 2301 } 2302 options->auth_xform.auth.digest_length = 2303 options->digest_size; 2304 /* No size provided, use minimum size. */ 2305 } else 2306 options->auth_xform.auth.digest_length = 2307 cap->sym.auth.digest_size.min; 2308 } 2309 2310 retval = rte_cryptodev_configure(cdev_id, &conf); 2311 if (retval < 0) { 2312 printf("Failed to configure cryptodev %u", cdev_id); 2313 return -1; 2314 } 2315 2316 qp_conf.nb_descriptors = 2048; 2317 2318 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2319 socket_id, session_pool_socket[socket_id]); 2320 if (retval < 0) { 2321 printf("Failed to setup queue pair %u on cryptodev %u", 2322 0, cdev_id); 2323 return -1; 2324 } 2325 2326 retval = rte_cryptodev_start(cdev_id); 2327 if (retval < 0) { 2328 printf("Failed to start device %u: error %d\n", 2329 cdev_id, retval); 2330 return -1; 2331 } 2332 2333 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2334 2335 enabled_cdevs[cdev_id] = 1; 2336 enabled_cdev_count++; 2337 } 2338 2339 return enabled_cdev_count; 2340 } 2341 2342 static int 2343 initialize_ports(struct l2fwd_crypto_options *options) 2344 { 2345 uint16_t last_portid, portid; 2346 unsigned enabled_portcount = 0; 2347 unsigned nb_ports = rte_eth_dev_count(); 2348 2349 if (nb_ports == 0) { 2350 printf("No Ethernet ports - bye\n"); 2351 return -1; 2352 } 2353 2354 /* Reset l2fwd_dst_ports */ 2355 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2356 l2fwd_dst_ports[portid] = 0; 2357 2358 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2359 int retval; 2360 2361 /* Skip ports that are not enabled */ 2362 if ((options->portmask & (1 << portid)) == 0) 2363 continue; 2364 2365 /* init port */ 2366 printf("Initializing port %u... ", portid); 2367 fflush(stdout); 2368 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2369 if (retval < 0) { 2370 printf("Cannot configure device: err=%d, port=%u\n", 2371 retval, portid); 2372 return -1; 2373 } 2374 2375 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2376 &nb_txd); 2377 if (retval < 0) { 2378 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2379 retval, portid); 2380 return -1; 2381 } 2382 2383 /* init one RX queue */ 2384 fflush(stdout); 2385 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2386 rte_eth_dev_socket_id(portid), 2387 NULL, l2fwd_pktmbuf_pool); 2388 if (retval < 0) { 2389 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2390 retval, portid); 2391 return -1; 2392 } 2393 2394 /* init one TX queue on each port */ 2395 fflush(stdout); 2396 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2397 rte_eth_dev_socket_id(portid), 2398 NULL); 2399 if (retval < 0) { 2400 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2401 retval, portid); 2402 2403 return -1; 2404 } 2405 2406 /* Start device */ 2407 retval = rte_eth_dev_start(portid); 2408 if (retval < 0) { 2409 printf("rte_eth_dev_start:err=%d, port=%u\n", 2410 retval, portid); 2411 return -1; 2412 } 2413 2414 rte_eth_promiscuous_enable(portid); 2415 2416 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2417 2418 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2419 portid, 2420 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2421 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2422 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2423 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2424 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2425 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2426 2427 /* initialize port stats */ 2428 memset(&port_statistics, 0, sizeof(port_statistics)); 2429 2430 /* Setup port forwarding table */ 2431 if (enabled_portcount % 2) { 2432 l2fwd_dst_ports[portid] = last_portid; 2433 l2fwd_dst_ports[last_portid] = portid; 2434 } else { 2435 last_portid = portid; 2436 } 2437 2438 l2fwd_enabled_port_mask |= (1 << portid); 2439 enabled_portcount++; 2440 } 2441 2442 if (enabled_portcount == 1) { 2443 l2fwd_dst_ports[last_portid] = last_portid; 2444 } else if (enabled_portcount % 2) { 2445 printf("odd number of ports in portmask- bye\n"); 2446 return -1; 2447 } 2448 2449 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2450 2451 return enabled_portcount; 2452 } 2453 2454 static void 2455 reserve_key_memory(struct l2fwd_crypto_options *options) 2456 { 2457 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2458 MAX_KEY_SIZE, 0); 2459 if (options->cipher_xform.cipher.key.data == NULL) 2460 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2461 2462 options->auth_xform.auth.key.data = rte_malloc("auth key", 2463 MAX_KEY_SIZE, 0); 2464 if (options->auth_xform.auth.key.data == NULL) 2465 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2466 2467 options->aead_xform.aead.key.data = rte_malloc("aead key", 2468 MAX_KEY_SIZE, 0); 2469 if (options->aead_xform.aead.key.data == NULL) 2470 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2471 2472 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2473 if (options->cipher_iv.data == NULL) 2474 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2475 2476 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2477 if (options->auth_iv.data == NULL) 2478 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2479 2480 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2481 if (options->aead_iv.data == NULL) 2482 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2483 2484 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2485 if (options->aad.data == NULL) 2486 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2487 options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data); 2488 } 2489 2490 int 2491 main(int argc, char **argv) 2492 { 2493 struct lcore_queue_conf *qconf; 2494 struct l2fwd_crypto_options options; 2495 2496 uint8_t nb_cryptodevs, cdev_id; 2497 uint16_t nb_ports, portid; 2498 unsigned lcore_id, rx_lcore_id; 2499 int ret, enabled_cdevcount, enabled_portcount; 2500 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2501 2502 /* init EAL */ 2503 ret = rte_eal_init(argc, argv); 2504 if (ret < 0) 2505 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2506 argc -= ret; 2507 argv += ret; 2508 2509 /* reserve memory for Cipher/Auth key and IV */ 2510 reserve_key_memory(&options); 2511 2512 /* parse application arguments (after the EAL ones) */ 2513 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2514 if (ret < 0) 2515 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2516 2517 printf("MAC updating %s\n", 2518 options.mac_updating ? "enabled" : "disabled"); 2519 2520 /* create the mbuf pool */ 2521 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2522 sizeof(struct rte_crypto_op), 2523 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2524 if (l2fwd_pktmbuf_pool == NULL) 2525 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2526 2527 /* create crypto op pool */ 2528 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2529 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2530 rte_socket_id()); 2531 if (l2fwd_crypto_op_pool == NULL) 2532 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2533 2534 /* Enable Ethernet ports */ 2535 enabled_portcount = initialize_ports(&options); 2536 if (enabled_portcount < 1) 2537 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2538 2539 nb_ports = rte_eth_dev_count(); 2540 /* Initialize the port/queue configuration of each logical core */ 2541 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2542 portid < nb_ports; portid++) { 2543 2544 /* skip ports that are not enabled */ 2545 if ((options.portmask & (1 << portid)) == 0) 2546 continue; 2547 2548 if (options.single_lcore && qconf == NULL) { 2549 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2550 rx_lcore_id++; 2551 if (rx_lcore_id >= RTE_MAX_LCORE) 2552 rte_exit(EXIT_FAILURE, 2553 "Not enough cores\n"); 2554 } 2555 } else if (!options.single_lcore) { 2556 /* get the lcore_id for this port */ 2557 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2558 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2559 options.nb_ports_per_lcore) { 2560 rx_lcore_id++; 2561 if (rx_lcore_id >= RTE_MAX_LCORE) 2562 rte_exit(EXIT_FAILURE, 2563 "Not enough cores\n"); 2564 } 2565 } 2566 2567 /* Assigned a new logical core in the loop above. */ 2568 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2569 qconf = &lcore_queue_conf[rx_lcore_id]; 2570 2571 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2572 qconf->nb_rx_ports++; 2573 2574 printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); 2575 } 2576 2577 /* Enable Crypto devices */ 2578 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2579 enabled_cdevs); 2580 if (enabled_cdevcount < 0) 2581 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2582 2583 if (enabled_cdevcount < enabled_portcount) 2584 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2585 "has to be more or equal to number of ports (%d)\n", 2586 enabled_cdevcount, enabled_portcount); 2587 2588 nb_cryptodevs = rte_cryptodev_count(); 2589 2590 /* Initialize the port/cryptodev configuration of each logical core */ 2591 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2592 cdev_id < nb_cryptodevs && enabled_cdevcount; 2593 cdev_id++) { 2594 /* Crypto op not supported by crypto device */ 2595 if (!enabled_cdevs[cdev_id]) 2596 continue; 2597 2598 if (options.single_lcore && qconf == NULL) { 2599 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2600 rx_lcore_id++; 2601 if (rx_lcore_id >= RTE_MAX_LCORE) 2602 rte_exit(EXIT_FAILURE, 2603 "Not enough cores\n"); 2604 } 2605 } else if (!options.single_lcore) { 2606 /* get the lcore_id for this port */ 2607 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2608 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2609 options.nb_ports_per_lcore) { 2610 rx_lcore_id++; 2611 if (rx_lcore_id >= RTE_MAX_LCORE) 2612 rte_exit(EXIT_FAILURE, 2613 "Not enough cores\n"); 2614 } 2615 } 2616 2617 /* Assigned a new logical core in the loop above. */ 2618 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2619 qconf = &lcore_queue_conf[rx_lcore_id]; 2620 2621 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2622 qconf->nb_crypto_devs++; 2623 2624 enabled_cdevcount--; 2625 2626 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2627 (unsigned)cdev_id); 2628 } 2629 2630 /* launch per-lcore init on every lcore */ 2631 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2632 CALL_MASTER); 2633 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2634 if (rte_eal_wait_lcore(lcore_id) < 0) 2635 return -1; 2636 } 2637 2638 return 0; 2639 } 2640