1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2016 Intel Corporation 3 */ 4 5 #include <time.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <stdint.h> 10 #include <inttypes.h> 11 #include <sys/types.h> 12 #include <sys/queue.h> 13 #include <netinet/in.h> 14 #include <setjmp.h> 15 #include <stdarg.h> 16 #include <ctype.h> 17 #include <errno.h> 18 #include <getopt.h> 19 #include <fcntl.h> 20 #include <unistd.h> 21 #include <signal.h> 22 23 #include <rte_string_fns.h> 24 #include <rte_branch_prediction.h> 25 #include <rte_common.h> 26 #include <rte_cryptodev.h> 27 #include <rte_cycles.h> 28 #include <rte_debug.h> 29 #include <rte_eal.h> 30 #include <rte_ether.h> 31 #include <rte_ethdev.h> 32 #include <rte_interrupts.h> 33 #include <rte_ip.h> 34 #include <rte_launch.h> 35 #include <rte_lcore.h> 36 #include <rte_log.h> 37 #include <rte_malloc.h> 38 #include <rte_mbuf.h> 39 #include <rte_memcpy.h> 40 #include <rte_memory.h> 41 #include <rte_mempool.h> 42 #include <rte_per_lcore.h> 43 #include <rte_prefetch.h> 44 #include <rte_random.h> 45 #include <rte_hexdump.h> 46 #ifdef RTE_CRYPTO_SCHEDULER 47 #include <rte_cryptodev_scheduler.h> 48 #endif 49 50 enum cdev_type { 51 CDEV_TYPE_ANY, 52 CDEV_TYPE_HW, 53 CDEV_TYPE_SW 54 }; 55 56 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 57 58 #define NB_MBUF 8192 59 60 #define MAX_STR_LEN 32 61 #define MAX_KEY_SIZE 128 62 #define MAX_IV_SIZE 16 63 #define MAX_AAD_SIZE 65535 64 #define MAX_PKT_BURST 32 65 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 66 #define SESSION_POOL_CACHE_SIZE 0 67 68 #define MAXIMUM_IV_LENGTH 16 69 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 70 sizeof(struct rte_crypto_sym_op)) 71 72 /* 73 * Configurable number of RX/TX ring descriptors 74 */ 75 #define RTE_TEST_RX_DESC_DEFAULT 1024 76 #define RTE_TEST_TX_DESC_DEFAULT 1024 77 78 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 79 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 80 81 /* ethernet addresses of ports */ 82 static struct rte_ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 83 84 /* mask of enabled ports */ 85 static uint64_t l2fwd_enabled_port_mask; 86 static uint64_t l2fwd_enabled_crypto_mask; 87 88 /* list of enabled ports */ 89 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 90 91 92 struct pkt_buffer { 93 unsigned len; 94 struct rte_mbuf *buffer[MAX_PKT_BURST]; 95 }; 96 97 struct op_buffer { 98 unsigned len; 99 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 100 }; 101 102 #define MAX_RX_QUEUE_PER_LCORE 16 103 #define MAX_TX_QUEUE_PER_PORT 16 104 105 enum l2fwd_crypto_xform_chain { 106 L2FWD_CRYPTO_CIPHER_HASH, 107 L2FWD_CRYPTO_HASH_CIPHER, 108 L2FWD_CRYPTO_CIPHER_ONLY, 109 L2FWD_CRYPTO_HASH_ONLY, 110 L2FWD_CRYPTO_AEAD 111 }; 112 113 struct l2fwd_key { 114 uint8_t *data; 115 uint32_t length; 116 rte_iova_t phys_addr; 117 }; 118 119 struct l2fwd_iv { 120 uint8_t *data; 121 uint16_t length; 122 }; 123 124 /** l2fwd crypto application command line options */ 125 struct l2fwd_crypto_options { 126 unsigned portmask; 127 unsigned nb_ports_per_lcore; 128 unsigned refresh_period; 129 unsigned single_lcore:1; 130 131 enum cdev_type type; 132 unsigned sessionless:1; 133 134 enum l2fwd_crypto_xform_chain xform_chain; 135 136 struct rte_crypto_sym_xform cipher_xform; 137 unsigned ckey_param; 138 int ckey_random_size; 139 uint8_t cipher_key[MAX_KEY_SIZE]; 140 141 struct l2fwd_iv cipher_iv; 142 unsigned int cipher_iv_param; 143 int cipher_iv_random_size; 144 145 struct rte_crypto_sym_xform auth_xform; 146 uint8_t akey_param; 147 int akey_random_size; 148 uint8_t auth_key[MAX_KEY_SIZE]; 149 150 struct l2fwd_iv auth_iv; 151 unsigned int auth_iv_param; 152 int auth_iv_random_size; 153 154 struct rte_crypto_sym_xform aead_xform; 155 unsigned int aead_key_param; 156 int aead_key_random_size; 157 uint8_t aead_key[MAX_KEY_SIZE]; 158 159 struct l2fwd_iv aead_iv; 160 unsigned int aead_iv_param; 161 int aead_iv_random_size; 162 163 struct l2fwd_key aad; 164 unsigned aad_param; 165 int aad_random_size; 166 167 int digest_size; 168 169 uint16_t block_size; 170 char string_type[MAX_STR_LEN]; 171 172 uint64_t cryptodev_mask; 173 174 unsigned int mac_updating; 175 }; 176 177 /** l2fwd crypto lcore params */ 178 struct l2fwd_crypto_params { 179 uint8_t dev_id; 180 uint8_t qp_id; 181 182 unsigned digest_length; 183 unsigned block_size; 184 185 uint32_t cipher_dataunit_len; 186 187 struct l2fwd_iv cipher_iv; 188 struct l2fwd_iv auth_iv; 189 struct l2fwd_iv aead_iv; 190 struct l2fwd_key aad; 191 struct rte_cryptodev_sym_session *session; 192 193 uint8_t do_cipher; 194 uint8_t do_hash; 195 uint8_t do_aead; 196 uint8_t hash_verify; 197 198 enum rte_crypto_cipher_algorithm cipher_algo; 199 enum rte_crypto_auth_algorithm auth_algo; 200 enum rte_crypto_aead_algorithm aead_algo; 201 }; 202 203 /** lcore configuration */ 204 struct lcore_queue_conf { 205 unsigned nb_rx_ports; 206 uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 207 208 unsigned nb_crypto_devs; 209 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 210 211 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 212 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 213 } __rte_cache_aligned; 214 215 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 216 217 static struct rte_eth_conf port_conf = { 218 .rxmode = { 219 .mq_mode = RTE_ETH_MQ_RX_NONE, 220 .split_hdr_size = 0, 221 }, 222 .txmode = { 223 .mq_mode = RTE_ETH_MQ_TX_NONE, 224 }, 225 }; 226 227 struct rte_mempool *l2fwd_pktmbuf_pool; 228 struct rte_mempool *l2fwd_crypto_op_pool; 229 static struct { 230 struct rte_mempool *sess_mp; 231 } session_pool_socket[RTE_MAX_NUMA_NODES]; 232 233 /* Per-port statistics struct */ 234 struct l2fwd_port_statistics { 235 uint64_t tx; 236 uint64_t rx; 237 238 uint64_t crypto_enqueued; 239 uint64_t crypto_dequeued; 240 241 uint64_t dropped; 242 } __rte_cache_aligned; 243 244 struct l2fwd_crypto_statistics { 245 uint64_t enqueued; 246 uint64_t dequeued; 247 248 uint64_t errors; 249 } __rte_cache_aligned; 250 251 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 252 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 253 254 /* A tsc-based timer responsible for triggering statistics printout */ 255 #define TIMER_MILLISECOND (rte_get_tsc_hz() / 1000) 256 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 257 #define DEFAULT_TIMER_PERIOD 10UL 258 259 /* Global signal */ 260 static volatile bool signal_received; 261 262 /* Print out statistics on packets dropped */ 263 static void 264 print_stats(void) 265 { 266 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 267 uint64_t total_packets_enqueued, total_packets_dequeued, 268 total_packets_errors; 269 uint16_t portid; 270 uint64_t cdevid; 271 272 total_packets_dropped = 0; 273 total_packets_tx = 0; 274 total_packets_rx = 0; 275 total_packets_enqueued = 0; 276 total_packets_dequeued = 0; 277 total_packets_errors = 0; 278 279 const char clr[] = { 27, '[', '2', 'J', '\0' }; 280 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 281 282 /* Clear screen and move to top left */ 283 printf("%s%s", clr, topLeft); 284 285 printf("\nPort statistics ===================================="); 286 287 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 288 /* skip disabled ports */ 289 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 290 continue; 291 printf("\nStatistics for port %u ------------------------------" 292 "\nPackets sent: %32"PRIu64 293 "\nPackets received: %28"PRIu64 294 "\nPackets dropped: %29"PRIu64, 295 portid, 296 port_statistics[portid].tx, 297 port_statistics[portid].rx, 298 port_statistics[portid].dropped); 299 300 total_packets_dropped += port_statistics[portid].dropped; 301 total_packets_tx += port_statistics[portid].tx; 302 total_packets_rx += port_statistics[portid].rx; 303 } 304 printf("\nCrypto statistics =================================="); 305 306 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 307 /* skip disabled ports */ 308 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 309 continue; 310 printf("\nStatistics for cryptodev %"PRIu64 311 " -------------------------" 312 "\nPackets enqueued: %28"PRIu64 313 "\nPackets dequeued: %28"PRIu64 314 "\nPackets errors: %30"PRIu64, 315 cdevid, 316 crypto_statistics[cdevid].enqueued, 317 crypto_statistics[cdevid].dequeued, 318 crypto_statistics[cdevid].errors); 319 320 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 321 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 322 total_packets_errors += crypto_statistics[cdevid].errors; 323 } 324 printf("\nAggregate statistics ===============================" 325 "\nTotal packets received: %22"PRIu64 326 "\nTotal packets enqueued: %22"PRIu64 327 "\nTotal packets dequeued: %22"PRIu64 328 "\nTotal packets sent: %26"PRIu64 329 "\nTotal packets dropped: %23"PRIu64 330 "\nTotal packets crypto errors: %17"PRIu64, 331 total_packets_rx, 332 total_packets_enqueued, 333 total_packets_dequeued, 334 total_packets_tx, 335 total_packets_dropped, 336 total_packets_errors); 337 printf("\n====================================================\n"); 338 339 fflush(stdout); 340 } 341 342 /* l2fwd_crypto_send_burst 8< */ 343 static int 344 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 345 struct l2fwd_crypto_params *cparams) 346 { 347 struct rte_crypto_op **op_buffer; 348 unsigned ret; 349 350 op_buffer = (struct rte_crypto_op **) 351 qconf->op_buf[cparams->dev_id].buffer; 352 353 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 354 cparams->qp_id, op_buffer, (uint16_t) n); 355 356 crypto_statistics[cparams->dev_id].enqueued += ret; 357 if (unlikely(ret < n)) { 358 crypto_statistics[cparams->dev_id].errors += (n - ret); 359 do { 360 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 361 rte_crypto_op_free(op_buffer[ret]); 362 } while (++ret < n); 363 } 364 365 return 0; 366 } 367 /* >8 End of l2fwd_crypto_send_burst. */ 368 369 /* Crypto enqueue. 8< */ 370 static int 371 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 372 struct l2fwd_crypto_params *cparams) 373 { 374 unsigned lcore_id, len; 375 struct lcore_queue_conf *qconf; 376 377 lcore_id = rte_lcore_id(); 378 379 qconf = &lcore_queue_conf[lcore_id]; 380 len = qconf->op_buf[cparams->dev_id].len; 381 qconf->op_buf[cparams->dev_id].buffer[len] = op; 382 len++; 383 384 /* enough ops to be sent */ 385 if (len == MAX_PKT_BURST) { 386 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 387 len = 0; 388 } 389 390 qconf->op_buf[cparams->dev_id].len = len; 391 return 0; 392 } 393 /* >8 End of crypto enqueue. */ 394 395 static int 396 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 397 struct rte_crypto_op *op, 398 struct l2fwd_crypto_params *cparams) 399 { 400 struct rte_ether_hdr *eth_hdr; 401 struct rte_ipv4_hdr *ip_hdr; 402 403 uint32_t ipdata_offset, data_len; 404 uint32_t pad_len = 0; 405 char *padding; 406 407 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 408 409 if (eth_hdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) 410 return -1; 411 412 ipdata_offset = sizeof(struct rte_ether_hdr); 413 414 ip_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 415 ipdata_offset); 416 417 ipdata_offset += (ip_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) 418 * RTE_IPV4_IHL_MULTIPLIER; 419 420 421 /* Zero pad data to be crypto'd so it is block aligned */ 422 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 423 424 if ((cparams->do_hash || cparams->do_aead) && cparams->hash_verify) 425 data_len -= cparams->digest_length; 426 427 if (cparams->do_cipher) { 428 /* 429 * Following algorithms are block cipher algorithms, 430 * and might need padding 431 */ 432 switch (cparams->cipher_algo) { 433 case RTE_CRYPTO_CIPHER_AES_CBC: 434 case RTE_CRYPTO_CIPHER_AES_ECB: 435 case RTE_CRYPTO_CIPHER_DES_CBC: 436 case RTE_CRYPTO_CIPHER_3DES_CBC: 437 case RTE_CRYPTO_CIPHER_3DES_ECB: 438 if (data_len % cparams->block_size) 439 pad_len = cparams->block_size - 440 (data_len % cparams->block_size); 441 break; 442 case RTE_CRYPTO_CIPHER_AES_XTS: 443 if (cparams->cipher_dataunit_len != 0 && 444 (data_len % cparams->cipher_dataunit_len)) 445 pad_len = cparams->cipher_dataunit_len - 446 (data_len % cparams->cipher_dataunit_len); 447 break; 448 default: 449 pad_len = 0; 450 } 451 452 if (pad_len) { 453 padding = rte_pktmbuf_append(m, pad_len); 454 if (unlikely(!padding)) 455 return -1; 456 457 data_len += pad_len; 458 memset(padding, 0, pad_len); 459 } 460 } 461 462 /* Set crypto operation data parameters */ 463 rte_crypto_op_attach_sym_session(op, cparams->session); 464 465 if (cparams->do_hash) { 466 if (cparams->auth_iv.length) { 467 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 468 uint8_t *, 469 IV_OFFSET + 470 cparams->cipher_iv.length); 471 /* 472 * Copy IV at the end of the crypto operation, 473 * after the cipher IV, if added 474 */ 475 rte_memcpy(iv_ptr, cparams->auth_iv.data, 476 cparams->auth_iv.length); 477 } 478 if (!cparams->hash_verify) { 479 /* Append space for digest to end of packet */ 480 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 481 cparams->digest_length); 482 } else { 483 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 484 uint8_t *) + ipdata_offset + data_len; 485 } 486 487 op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, 488 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 489 490 /* For wireless algorithms, offset/length must be in bits */ 491 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 492 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 493 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 494 op->sym->auth.data.offset = ipdata_offset << 3; 495 op->sym->auth.data.length = data_len << 3; 496 } else { 497 op->sym->auth.data.offset = ipdata_offset; 498 op->sym->auth.data.length = data_len; 499 } 500 } 501 502 if (cparams->do_cipher) { 503 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 504 IV_OFFSET); 505 /* Copy IV at the end of the crypto operation */ 506 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 507 cparams->cipher_iv.length); 508 509 /* For wireless algorithms, offset/length must be in bits */ 510 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 511 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 512 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 513 op->sym->cipher.data.offset = ipdata_offset << 3; 514 op->sym->cipher.data.length = data_len << 3; 515 } else { 516 op->sym->cipher.data.offset = ipdata_offset; 517 op->sym->cipher.data.length = data_len; 518 } 519 } 520 521 if (cparams->do_aead) { 522 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 523 IV_OFFSET); 524 /* Copy IV at the end of the crypto operation */ 525 /* 526 * If doing AES-CCM, nonce is copied one byte 527 * after the start of IV field 528 */ 529 if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 530 rte_memcpy(iv_ptr + 1, cparams->aead_iv.data, 531 cparams->aead_iv.length); 532 else 533 rte_memcpy(iv_ptr, cparams->aead_iv.data, 534 cparams->aead_iv.length); 535 536 op->sym->aead.data.offset = ipdata_offset; 537 op->sym->aead.data.length = data_len; 538 539 if (!cparams->hash_verify) { 540 /* Append space for digest to end of packet */ 541 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 542 cparams->digest_length); 543 } else { 544 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 545 uint8_t *) + ipdata_offset + data_len; 546 } 547 548 op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, 549 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 550 551 if (cparams->aad.length) { 552 op->sym->aead.aad.data = cparams->aad.data; 553 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 554 } 555 } 556 557 op->sym->m_src = m; 558 559 return l2fwd_crypto_enqueue(op, cparams); 560 } 561 562 563 /* Send the burst of packets on an output interface */ 564 static int 565 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 566 uint16_t port) 567 { 568 struct rte_mbuf **pkt_buffer; 569 unsigned ret; 570 571 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 572 573 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 574 port_statistics[port].tx += ret; 575 if (unlikely(ret < n)) { 576 port_statistics[port].dropped += (n - ret); 577 do { 578 rte_pktmbuf_free(pkt_buffer[ret]); 579 } while (++ret < n); 580 } 581 582 return 0; 583 } 584 585 /* Enqueue packets for TX and prepare them to be sent. 8< */ 586 static int 587 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 588 { 589 unsigned lcore_id, len; 590 struct lcore_queue_conf *qconf; 591 592 lcore_id = rte_lcore_id(); 593 594 qconf = &lcore_queue_conf[lcore_id]; 595 len = qconf->pkt_buf[port].len; 596 qconf->pkt_buf[port].buffer[len] = m; 597 len++; 598 599 /* enough pkts to be sent */ 600 if (unlikely(len == MAX_PKT_BURST)) { 601 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 602 len = 0; 603 } 604 605 qconf->pkt_buf[port].len = len; 606 return 0; 607 } 608 /* >8 End of Enqueuing packets for TX. */ 609 610 static void 611 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid) 612 { 613 struct rte_ether_hdr *eth; 614 void *tmp; 615 616 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 617 618 /* 02:00:00:00:00:xx */ 619 tmp = ð->dst_addr.addr_bytes[0]; 620 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 621 622 /* src addr */ 623 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->src_addr); 624 } 625 626 static void 627 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid, 628 struct l2fwd_crypto_options *options) 629 { 630 uint16_t dst_port; 631 uint32_t pad_len; 632 struct rte_ipv4_hdr *ip_hdr; 633 uint32_t ipdata_offset = sizeof(struct rte_ether_hdr); 634 635 ip_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 636 ipdata_offset); 637 dst_port = l2fwd_dst_ports[portid]; 638 639 if (options->mac_updating) 640 l2fwd_mac_updating(m, dst_port); 641 642 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 643 rte_pktmbuf_trim(m, options->auth_xform.auth.digest_length); 644 645 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { 646 pad_len = m->pkt_len - rte_be_to_cpu_16(ip_hdr->total_length) - 647 ipdata_offset; 648 rte_pktmbuf_trim(m, pad_len); 649 } 650 651 l2fwd_send_packet(m, dst_port); 652 } 653 654 /** Generate random key */ 655 static void 656 generate_random_key(uint8_t *key, unsigned length) 657 { 658 int fd; 659 int ret; 660 661 fd = open("/dev/urandom", O_RDONLY); 662 if (fd < 0) 663 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 664 665 ret = read(fd, key, length); 666 close(fd); 667 668 if (ret != (signed)length) 669 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 670 } 671 672 /* Session is created and is later attached to the crypto operation. 8< */ 673 static struct rte_cryptodev_sym_session * 674 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 675 { 676 struct rte_crypto_sym_xform *first_xform; 677 int retval = rte_cryptodev_socket_id(cdev_id); 678 679 if (retval < 0) 680 return NULL; 681 682 uint8_t socket_id = (uint8_t) retval; 683 684 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 685 first_xform = &options->aead_xform; 686 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 687 first_xform = &options->cipher_xform; 688 first_xform->next = &options->auth_xform; 689 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 690 first_xform = &options->auth_xform; 691 first_xform->next = &options->cipher_xform; 692 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 693 first_xform = &options->cipher_xform; 694 } else { 695 first_xform = &options->auth_xform; 696 } 697 698 return rte_cryptodev_sym_session_create(cdev_id, first_xform, 699 session_pool_socket[socket_id].sess_mp); 700 } 701 /* >8 End of creation of session. */ 702 703 static void 704 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 705 706 /* main processing loop */ 707 static void 708 l2fwd_main_loop(struct l2fwd_crypto_options *options) 709 { 710 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 711 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 712 713 unsigned lcore_id = rte_lcore_id(); 714 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 715 unsigned int i, j, nb_rx, len; 716 uint16_t portid; 717 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 718 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 719 US_PER_S * BURST_TX_DRAIN_US; 720 struct l2fwd_crypto_params *cparams; 721 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 722 struct rte_cryptodev_sym_session *session; 723 724 if (qconf->nb_rx_ports == 0) { 725 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 726 return; 727 } 728 729 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 730 731 for (i = 0; i < qconf->nb_rx_ports; i++) { 732 733 portid = qconf->rx_port_list[i]; 734 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 735 portid); 736 } 737 738 for (i = 0; i < qconf->nb_crypto_devs; i++) { 739 port_cparams[i].do_cipher = 0; 740 port_cparams[i].do_hash = 0; 741 port_cparams[i].do_aead = 0; 742 743 switch (options->xform_chain) { 744 case L2FWD_CRYPTO_AEAD: 745 port_cparams[i].do_aead = 1; 746 break; 747 case L2FWD_CRYPTO_CIPHER_HASH: 748 case L2FWD_CRYPTO_HASH_CIPHER: 749 port_cparams[i].do_cipher = 1; 750 port_cparams[i].do_hash = 1; 751 break; 752 case L2FWD_CRYPTO_HASH_ONLY: 753 port_cparams[i].do_hash = 1; 754 break; 755 case L2FWD_CRYPTO_CIPHER_ONLY: 756 port_cparams[i].do_cipher = 1; 757 break; 758 } 759 760 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 761 port_cparams[i].qp_id = 0; 762 763 port_cparams[i].block_size = options->block_size; 764 765 if (port_cparams[i].do_hash) { 766 port_cparams[i].auth_iv.data = options->auth_iv.data; 767 port_cparams[i].auth_iv.length = options->auth_iv.length; 768 if (!options->auth_iv_param) 769 generate_random_key(port_cparams[i].auth_iv.data, 770 port_cparams[i].auth_iv.length); 771 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 772 port_cparams[i].hash_verify = 1; 773 else 774 port_cparams[i].hash_verify = 0; 775 776 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 777 port_cparams[i].digest_length = 778 options->auth_xform.auth.digest_length; 779 /* Set IV parameters */ 780 if (options->auth_iv.length) { 781 options->auth_xform.auth.iv.offset = 782 IV_OFFSET + options->cipher_iv.length; 783 options->auth_xform.auth.iv.length = 784 options->auth_iv.length; 785 } 786 } 787 788 if (port_cparams[i].do_aead) { 789 port_cparams[i].aead_iv.data = options->aead_iv.data; 790 port_cparams[i].aead_iv.length = options->aead_iv.length; 791 if (!options->aead_iv_param) 792 generate_random_key(port_cparams[i].aead_iv.data, 793 port_cparams[i].aead_iv.length); 794 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 795 port_cparams[i].digest_length = 796 options->aead_xform.aead.digest_length; 797 if (options->aead_xform.aead.aad_length) { 798 port_cparams[i].aad.data = options->aad.data; 799 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 800 port_cparams[i].aad.length = options->aad.length; 801 if (!options->aad_param) 802 generate_random_key(port_cparams[i].aad.data, 803 port_cparams[i].aad.length); 804 /* 805 * If doing AES-CCM, first 18 bytes has to be reserved, 806 * and actual AAD should start from byte 18 807 */ 808 if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 809 memmove(port_cparams[i].aad.data + 18, 810 port_cparams[i].aad.data, 811 port_cparams[i].aad.length); 812 813 } else 814 port_cparams[i].aad.length = 0; 815 816 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 817 port_cparams[i].hash_verify = 1; 818 else 819 port_cparams[i].hash_verify = 0; 820 821 /* Set IV parameters */ 822 options->aead_xform.aead.iv.offset = IV_OFFSET; 823 options->aead_xform.aead.iv.length = options->aead_iv.length; 824 } 825 826 if (port_cparams[i].do_cipher) { 827 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 828 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 829 if (!options->cipher_iv_param) 830 generate_random_key(port_cparams[i].cipher_iv.data, 831 port_cparams[i].cipher_iv.length); 832 833 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 834 port_cparams[i].cipher_dataunit_len = 835 options->cipher_xform.cipher.dataunit_len; 836 /* Set IV parameters */ 837 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 838 options->cipher_xform.cipher.iv.length = 839 options->cipher_iv.length; 840 } 841 842 session = initialize_crypto_session(options, 843 port_cparams[i].dev_id); 844 if (session == NULL) 845 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 846 847 port_cparams[i].session = session; 848 849 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 850 port_cparams[i].dev_id); 851 } 852 853 l2fwd_crypto_options_print(options); 854 855 /* 856 * Initialize previous tsc timestamp before the loop, 857 * to avoid showing the port statistics immediately, 858 * so user can see the crypto information. 859 */ 860 prev_tsc = rte_rdtsc(); 861 while (1) { 862 863 cur_tsc = rte_rdtsc(); 864 865 /* 866 * Crypto device/TX burst queue drain 867 */ 868 diff_tsc = cur_tsc - prev_tsc; 869 if (unlikely(diff_tsc > drain_tsc)) { 870 /* Enqueue all crypto ops remaining in buffers */ 871 for (i = 0; i < qconf->nb_crypto_devs; i++) { 872 cparams = &port_cparams[i]; 873 len = qconf->op_buf[cparams->dev_id].len; 874 l2fwd_crypto_send_burst(qconf, len, cparams); 875 qconf->op_buf[cparams->dev_id].len = 0; 876 } 877 /* Transmit all packets remaining in buffers */ 878 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 879 if (qconf->pkt_buf[portid].len == 0) 880 continue; 881 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 882 qconf->pkt_buf[portid].len, 883 portid); 884 qconf->pkt_buf[portid].len = 0; 885 } 886 887 /* if timer is enabled */ 888 if (options->refresh_period > 0) { 889 890 /* advance the timer */ 891 timer_tsc += diff_tsc; 892 893 /* if timer has reached its timeout */ 894 if (unlikely(timer_tsc >= 895 options->refresh_period)) { 896 897 /* do this only on main core */ 898 if (lcore_id == rte_get_main_lcore()) { 899 print_stats(); 900 timer_tsc = 0; 901 } 902 } 903 } 904 905 prev_tsc = cur_tsc; 906 } 907 908 /* 909 * Read packet from RX queues 910 */ 911 for (i = 0; i < qconf->nb_rx_ports; i++) { 912 portid = qconf->rx_port_list[i]; 913 914 cparams = &port_cparams[i]; 915 916 nb_rx = rte_eth_rx_burst(portid, 0, 917 pkts_burst, MAX_PKT_BURST); 918 if (unlikely(signal_received)) 919 return; 920 921 port_statistics[portid].rx += nb_rx; 922 923 /* Allocate and fillcrypto operations. 8< */ 924 if (nb_rx) { 925 /* 926 * If we can't allocate a crypto_ops, then drop 927 * the rest of the burst and dequeue and 928 * process the packets to free offload structs 929 */ 930 if (rte_crypto_op_bulk_alloc( 931 l2fwd_crypto_op_pool, 932 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 933 ops_burst, nb_rx) != 934 nb_rx) { 935 for (j = 0; j < nb_rx; j++) 936 rte_pktmbuf_free(pkts_burst[j]); 937 938 nb_rx = 0; 939 } 940 /* >8 End of crypto operation allocated and filled. */ 941 942 /* Enqueue packets from Crypto device*/ 943 for (j = 0; j < nb_rx; j++) { 944 m = pkts_burst[j]; 945 946 l2fwd_simple_crypto_enqueue(m, 947 ops_burst[j], cparams); 948 } 949 } 950 951 /* Dequeue packets from Crypto device. 8< */ 952 do { 953 nb_rx = rte_cryptodev_dequeue_burst( 954 cparams->dev_id, cparams->qp_id, 955 ops_burst, MAX_PKT_BURST); 956 957 crypto_statistics[cparams->dev_id].dequeued += 958 nb_rx; 959 960 /* Forward crypto'd packets */ 961 for (j = 0; j < nb_rx; j++) { 962 m = ops_burst[j]->sym->m_src; 963 964 rte_crypto_op_free(ops_burst[j]); 965 l2fwd_simple_forward(m, portid, 966 options); 967 } 968 } while (nb_rx == MAX_PKT_BURST); 969 /* >8 End of dequeue packets from crypto device. */ 970 } 971 } 972 } 973 974 static int 975 l2fwd_launch_one_lcore(void *arg) 976 { 977 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 978 return 0; 979 } 980 981 /* Display command line arguments usage */ 982 static void 983 l2fwd_crypto_usage(const char *prgname) 984 { 985 printf("%s [EAL options] --\n" 986 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 987 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 988 " -s manage all ports from single lcore\n" 989 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 990 " (0 to disable, 10 default, 86400 maximum)\n" 991 992 " --cdev_type HW / SW / ANY\n" 993 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 994 " HASH_ONLY / AEAD\n" 995 996 " --cipher_algo ALGO\n" 997 " --cipher_op ENCRYPT / DECRYPT\n" 998 " --cipher_key KEY (bytes separated with \":\")\n" 999 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 1000 " --cipher_iv IV (bytes separated with \":\")\n" 1001 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 1002 " --cipher_dataunit_len SIZE: length of the algorithm data-unit\n" 1003 1004 " --auth_algo ALGO\n" 1005 " --auth_op GENERATE / VERIFY\n" 1006 " --auth_key KEY (bytes separated with \":\")\n" 1007 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 1008 " --auth_iv IV (bytes separated with \":\")\n" 1009 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 1010 1011 " --aead_algo ALGO\n" 1012 " --aead_op ENCRYPT / DECRYPT\n" 1013 " --aead_key KEY (bytes separated with \":\")\n" 1014 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 1015 " --aead_iv IV (bytes separated with \":\")\n" 1016 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 1017 " --aad AAD (bytes separated with \":\")\n" 1018 " --aad_random_size SIZE: size of AAD when generated randomly\n" 1019 1020 " --digest_size SIZE: size of digest to be generated/verified\n" 1021 1022 " --sessionless\n" 1023 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 1024 1025 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1026 " When enabled:\n" 1027 " - The source MAC address is replaced by the TX port MAC address\n" 1028 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1029 prgname); 1030 } 1031 1032 /** Parse crypto device type command line argument */ 1033 static int 1034 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1035 { 1036 if (strcmp("HW", optarg) == 0) { 1037 *type = CDEV_TYPE_HW; 1038 return 0; 1039 } else if (strcmp("SW", optarg) == 0) { 1040 *type = CDEV_TYPE_SW; 1041 return 0; 1042 } else if (strcmp("ANY", optarg) == 0) { 1043 *type = CDEV_TYPE_ANY; 1044 return 0; 1045 } 1046 1047 return -1; 1048 } 1049 1050 /** Parse crypto chain xform command line argument */ 1051 static int 1052 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1053 { 1054 if (strcmp("CIPHER_HASH", optarg) == 0) { 1055 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1056 return 0; 1057 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1058 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1059 return 0; 1060 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1061 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1062 return 0; 1063 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1064 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1065 return 0; 1066 } else if (strcmp("AEAD", optarg) == 0) { 1067 options->xform_chain = L2FWD_CRYPTO_AEAD; 1068 return 0; 1069 } 1070 1071 return -1; 1072 } 1073 1074 /** Parse crypto cipher algo option command line argument */ 1075 static int 1076 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1077 { 1078 1079 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1080 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1081 "not supported!\n"); 1082 return -1; 1083 } 1084 1085 return 0; 1086 } 1087 1088 /** Parse crypto cipher operation command line argument */ 1089 static int 1090 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1091 { 1092 if (strcmp("ENCRYPT", optarg) == 0) { 1093 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1094 return 0; 1095 } else if (strcmp("DECRYPT", optarg) == 0) { 1096 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1097 return 0; 1098 } 1099 1100 printf("Cipher operation not supported!\n"); 1101 return -1; 1102 } 1103 1104 /** Parse bytes from command line argument */ 1105 static int 1106 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size) 1107 { 1108 unsigned byte_count; 1109 char *token; 1110 1111 errno = 0; 1112 for (byte_count = 0, token = strtok(input_arg, ":"); 1113 (byte_count < max_size) && (token != NULL); 1114 token = strtok(NULL, ":")) { 1115 1116 int number = (int)strtol(token, NULL, 16); 1117 1118 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1119 return -1; 1120 1121 data[byte_count++] = (uint8_t)number; 1122 } 1123 1124 return byte_count; 1125 } 1126 1127 /** Parse size param*/ 1128 static int 1129 parse_size(int *size, const char *q_arg) 1130 { 1131 char *end = NULL; 1132 unsigned long n; 1133 1134 /* parse hexadecimal string */ 1135 n = strtoul(q_arg, &end, 10); 1136 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1137 n = 0; 1138 1139 if (n == 0) { 1140 printf("invalid size\n"); 1141 return -1; 1142 } 1143 1144 *size = n; 1145 return 0; 1146 } 1147 1148 /** Parse crypto cipher operation command line argument */ 1149 static int 1150 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1151 { 1152 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1153 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1154 "not supported!\n"); 1155 return -1; 1156 } 1157 1158 return 0; 1159 } 1160 1161 static int 1162 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1163 { 1164 if (strcmp("VERIFY", optarg) == 0) { 1165 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1166 return 0; 1167 } else if (strcmp("GENERATE", optarg) == 0) { 1168 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1169 return 0; 1170 } 1171 1172 printf("Authentication operation specified not supported!\n"); 1173 return -1; 1174 } 1175 1176 static int 1177 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1178 { 1179 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1180 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1181 "not supported!\n"); 1182 return -1; 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int 1189 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1190 { 1191 if (strcmp("ENCRYPT", optarg) == 0) { 1192 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1193 return 0; 1194 } else if (strcmp("DECRYPT", optarg) == 0) { 1195 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1196 return 0; 1197 } 1198 1199 printf("AEAD operation specified not supported!\n"); 1200 return -1; 1201 } 1202 static int 1203 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1204 const char *q_arg) 1205 { 1206 char *end = NULL; 1207 uint64_t pm; 1208 1209 /* parse hexadecimal string */ 1210 pm = strtoul(q_arg, &end, 16); 1211 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1212 pm = 0; 1213 1214 options->cryptodev_mask = pm; 1215 if (options->cryptodev_mask == 0) { 1216 printf("invalid cryptodev_mask specified\n"); 1217 return -1; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /** Parse long options */ 1224 static int 1225 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1226 struct option *lgopts, int option_index) 1227 { 1228 int retval; 1229 int val; 1230 1231 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1232 retval = parse_cryptodev_type(&options->type, optarg); 1233 if (retval == 0) 1234 strlcpy(options->string_type, optarg, MAX_STR_LEN); 1235 return retval; 1236 } 1237 1238 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1239 return parse_crypto_opt_chain(options, optarg); 1240 1241 /* Cipher options */ 1242 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1243 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1244 optarg); 1245 1246 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1247 return parse_cipher_op(&options->cipher_xform.cipher.op, 1248 optarg); 1249 1250 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1251 options->ckey_param = 1; 1252 options->cipher_xform.cipher.key.length = 1253 parse_bytes(options->cipher_key, optarg, MAX_KEY_SIZE); 1254 if (options->cipher_xform.cipher.key.length > 0) 1255 return 0; 1256 else 1257 return -1; 1258 } 1259 1260 else if (strcmp(lgopts[option_index].name, "cipher_dataunit_len") == 0) { 1261 retval = parse_size(&val, optarg); 1262 if (retval == 0 && val >= 0) { 1263 options->cipher_xform.cipher.dataunit_len = 1264 (uint32_t)val; 1265 return 0; 1266 } else 1267 return -1; 1268 } 1269 1270 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1271 return parse_size(&options->ckey_random_size, optarg); 1272 1273 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1274 options->cipher_iv_param = 1; 1275 options->cipher_iv.length = 1276 parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE); 1277 if (options->cipher_iv.length > 0) 1278 return 0; 1279 else 1280 return -1; 1281 } 1282 1283 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1284 return parse_size(&options->cipher_iv_random_size, optarg); 1285 1286 /* Authentication options */ 1287 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1288 return parse_auth_algo(&options->auth_xform.auth.algo, 1289 optarg); 1290 } 1291 1292 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1293 return parse_auth_op(&options->auth_xform.auth.op, 1294 optarg); 1295 1296 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1297 options->akey_param = 1; 1298 options->auth_xform.auth.key.length = 1299 parse_bytes(options->auth_key, optarg, MAX_KEY_SIZE); 1300 if (options->auth_xform.auth.key.length > 0) 1301 return 0; 1302 else 1303 return -1; 1304 } 1305 1306 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1307 return parse_size(&options->akey_random_size, optarg); 1308 } 1309 1310 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1311 options->auth_iv_param = 1; 1312 options->auth_iv.length = 1313 parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE); 1314 if (options->auth_iv.length > 0) 1315 return 0; 1316 else 1317 return -1; 1318 } 1319 1320 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1321 return parse_size(&options->auth_iv_random_size, optarg); 1322 1323 /* AEAD options */ 1324 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1325 return parse_aead_algo(&options->aead_xform.aead.algo, 1326 optarg); 1327 } 1328 1329 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1330 return parse_aead_op(&options->aead_xform.aead.op, 1331 optarg); 1332 1333 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1334 options->aead_key_param = 1; 1335 options->aead_xform.aead.key.length = 1336 parse_bytes(options->aead_key, optarg, MAX_KEY_SIZE); 1337 if (options->aead_xform.aead.key.length > 0) 1338 return 0; 1339 else 1340 return -1; 1341 } 1342 1343 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1344 return parse_size(&options->aead_key_random_size, optarg); 1345 1346 1347 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1348 options->aead_iv_param = 1; 1349 options->aead_iv.length = 1350 parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE); 1351 if (options->aead_iv.length > 0) 1352 return 0; 1353 else 1354 return -1; 1355 } 1356 1357 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1358 return parse_size(&options->aead_iv_random_size, optarg); 1359 1360 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1361 options->aad_param = 1; 1362 options->aad.length = 1363 parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE); 1364 if (options->aad.length > 0) 1365 return 0; 1366 else 1367 return -1; 1368 } 1369 1370 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1371 return parse_size(&options->aad_random_size, optarg); 1372 } 1373 1374 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1375 return parse_size(&options->digest_size, optarg); 1376 } 1377 1378 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1379 options->sessionless = 1; 1380 return 0; 1381 } 1382 1383 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1384 return parse_cryptodev_mask(options, optarg); 1385 1386 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1387 options->mac_updating = 1; 1388 return 0; 1389 } 1390 1391 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1392 options->mac_updating = 0; 1393 return 0; 1394 } 1395 1396 return -1; 1397 } 1398 1399 /** Parse port mask */ 1400 static int 1401 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1402 const char *q_arg) 1403 { 1404 char *end = NULL; 1405 unsigned long pm; 1406 1407 /* parse hexadecimal string */ 1408 pm = strtoul(q_arg, &end, 16); 1409 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1410 pm = 0; 1411 1412 options->portmask = pm; 1413 if (options->portmask == 0) { 1414 printf("invalid portmask specified\n"); 1415 return -1; 1416 } 1417 1418 return pm; 1419 } 1420 1421 /** Parse number of queues */ 1422 static int 1423 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1424 const char *q_arg) 1425 { 1426 char *end = NULL; 1427 unsigned long n; 1428 1429 /* parse hexadecimal string */ 1430 n = strtoul(q_arg, &end, 10); 1431 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1432 n = 0; 1433 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1434 n = 0; 1435 1436 options->nb_ports_per_lcore = n; 1437 if (options->nb_ports_per_lcore == 0) { 1438 printf("invalid number of ports selected\n"); 1439 return -1; 1440 } 1441 1442 return 0; 1443 } 1444 1445 /** Parse timer period */ 1446 static int 1447 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1448 const char *q_arg) 1449 { 1450 char *end = NULL; 1451 unsigned long n; 1452 1453 /* parse number string */ 1454 n = (unsigned)strtol(q_arg, &end, 10); 1455 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1456 n = 0; 1457 1458 if (n >= MAX_TIMER_PERIOD) { 1459 printf("Warning refresh period specified %lu is greater than " 1460 "max value %lu! using max value", 1461 n, MAX_TIMER_PERIOD); 1462 n = MAX_TIMER_PERIOD; 1463 } 1464 1465 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1466 1467 return 0; 1468 } 1469 1470 /** Generate default options for application */ 1471 static void 1472 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1473 { 1474 options->portmask = 0xffffffff; 1475 options->nb_ports_per_lcore = 1; 1476 options->refresh_period = DEFAULT_TIMER_PERIOD * 1477 TIMER_MILLISECOND * 1000; 1478 options->single_lcore = 0; 1479 options->sessionless = 0; 1480 1481 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1482 1483 /* Cipher Data */ 1484 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1485 options->cipher_xform.next = NULL; 1486 options->ckey_param = 0; 1487 options->ckey_random_size = -1; 1488 options->cipher_xform.cipher.key.length = 0; 1489 options->cipher_iv_param = 0; 1490 options->cipher_iv_random_size = -1; 1491 options->cipher_iv.length = 0; 1492 1493 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1494 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1495 options->cipher_xform.cipher.dataunit_len = 0; 1496 1497 /* Authentication Data */ 1498 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1499 options->auth_xform.next = NULL; 1500 options->akey_param = 0; 1501 options->akey_random_size = -1; 1502 options->auth_xform.auth.key.length = 0; 1503 options->auth_iv_param = 0; 1504 options->auth_iv_random_size = -1; 1505 options->auth_iv.length = 0; 1506 1507 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1508 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1509 1510 /* AEAD Data */ 1511 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1512 options->aead_xform.next = NULL; 1513 options->aead_key_param = 0; 1514 options->aead_key_random_size = -1; 1515 options->aead_xform.aead.key.length = 0; 1516 options->aead_iv_param = 0; 1517 options->aead_iv_random_size = -1; 1518 options->aead_iv.length = 0; 1519 1520 options->aead_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1521 options->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1522 1523 options->aad_param = 0; 1524 options->aad_random_size = -1; 1525 options->aad.length = 0; 1526 1527 options->digest_size = -1; 1528 1529 options->type = CDEV_TYPE_ANY; 1530 options->cryptodev_mask = UINT64_MAX; 1531 1532 options->mac_updating = 1; 1533 } 1534 1535 static void 1536 display_cipher_info(struct l2fwd_crypto_options *options) 1537 { 1538 printf("\n---- Cipher information ---\n"); 1539 printf("Algorithm: %s\n", 1540 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1541 rte_hexdump(stdout, "Cipher key:", 1542 options->cipher_xform.cipher.key.data, 1543 options->cipher_xform.cipher.key.length); 1544 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1545 } 1546 1547 static void 1548 display_auth_info(struct l2fwd_crypto_options *options) 1549 { 1550 printf("\n---- Authentication information ---\n"); 1551 printf("Algorithm: %s\n", 1552 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1553 rte_hexdump(stdout, "Auth key:", 1554 options->auth_xform.auth.key.data, 1555 options->auth_xform.auth.key.length); 1556 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1557 } 1558 1559 static void 1560 display_aead_info(struct l2fwd_crypto_options *options) 1561 { 1562 printf("\n---- AEAD information ---\n"); 1563 printf("Algorithm: %s\n", 1564 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1565 rte_hexdump(stdout, "AEAD key:", 1566 options->aead_xform.aead.key.data, 1567 options->aead_xform.aead.key.length); 1568 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1569 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1570 } 1571 1572 static void 1573 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1574 { 1575 char string_cipher_op[MAX_STR_LEN]; 1576 char string_auth_op[MAX_STR_LEN]; 1577 char string_aead_op[MAX_STR_LEN]; 1578 1579 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1580 strcpy(string_cipher_op, "Encrypt"); 1581 else 1582 strcpy(string_cipher_op, "Decrypt"); 1583 1584 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1585 strcpy(string_auth_op, "Auth generate"); 1586 else 1587 strcpy(string_auth_op, "Auth verify"); 1588 1589 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1590 strcpy(string_aead_op, "Authenticated encryption"); 1591 else 1592 strcpy(string_aead_op, "Authenticated decryption"); 1593 1594 1595 printf("Options:-\nn"); 1596 printf("portmask: %x\n", options->portmask); 1597 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1598 printf("refresh period : %u\n", options->refresh_period); 1599 printf("single lcore mode: %s\n", 1600 options->single_lcore ? "enabled" : "disabled"); 1601 printf("stats_printing: %s\n", 1602 options->refresh_period == 0 ? "disabled" : "enabled"); 1603 1604 printf("sessionless crypto: %s\n", 1605 options->sessionless ? "enabled" : "disabled"); 1606 1607 if (options->ckey_param && (options->ckey_random_size != -1)) 1608 printf("Cipher key already parsed, ignoring size of random key\n"); 1609 1610 if (options->akey_param && (options->akey_random_size != -1)) 1611 printf("Auth key already parsed, ignoring size of random key\n"); 1612 1613 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1614 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1615 1616 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1617 printf("Auth IV already parsed, ignoring size of random IV\n"); 1618 1619 if (options->aad_param && (options->aad_random_size != -1)) 1620 printf("AAD already parsed, ignoring size of random AAD\n"); 1621 1622 printf("\nCrypto chain: "); 1623 switch (options->xform_chain) { 1624 case L2FWD_CRYPTO_AEAD: 1625 printf("Input --> %s --> Output\n", string_aead_op); 1626 display_aead_info(options); 1627 break; 1628 case L2FWD_CRYPTO_CIPHER_HASH: 1629 printf("Input --> %s --> %s --> Output\n", 1630 string_cipher_op, string_auth_op); 1631 display_cipher_info(options); 1632 display_auth_info(options); 1633 break; 1634 case L2FWD_CRYPTO_HASH_CIPHER: 1635 printf("Input --> %s --> %s --> Output\n", 1636 string_auth_op, string_cipher_op); 1637 display_cipher_info(options); 1638 display_auth_info(options); 1639 break; 1640 case L2FWD_CRYPTO_HASH_ONLY: 1641 printf("Input --> %s --> Output\n", string_auth_op); 1642 display_auth_info(options); 1643 break; 1644 case L2FWD_CRYPTO_CIPHER_ONLY: 1645 printf("Input --> %s --> Output\n", string_cipher_op); 1646 display_cipher_info(options); 1647 break; 1648 } 1649 } 1650 1651 /* Parse the argument given in the command line of the application */ 1652 static int 1653 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1654 int argc, char **argv) 1655 { 1656 int opt, retval, option_index; 1657 char **argvopt = argv, *prgname = argv[0]; 1658 1659 static struct option lgopts[] = { 1660 { "sessionless", no_argument, 0, 0 }, 1661 1662 { "cdev_type", required_argument, 0, 0 }, 1663 { "chain", required_argument, 0, 0 }, 1664 1665 { "cipher_algo", required_argument, 0, 0 }, 1666 { "cipher_op", required_argument, 0, 0 }, 1667 { "cipher_key", required_argument, 0, 0 }, 1668 { "cipher_key_random_size", required_argument, 0, 0 }, 1669 { "cipher_iv", required_argument, 0, 0 }, 1670 { "cipher_iv_random_size", required_argument, 0, 0 }, 1671 { "cipher_dataunit_len", required_argument, 0, 0}, 1672 1673 { "auth_algo", required_argument, 0, 0 }, 1674 { "auth_op", required_argument, 0, 0 }, 1675 { "auth_key", required_argument, 0, 0 }, 1676 { "auth_key_random_size", required_argument, 0, 0 }, 1677 { "auth_iv", required_argument, 0, 0 }, 1678 { "auth_iv_random_size", required_argument, 0, 0 }, 1679 1680 { "aead_algo", required_argument, 0, 0 }, 1681 { "aead_op", required_argument, 0, 0 }, 1682 { "aead_key", required_argument, 0, 0 }, 1683 { "aead_key_random_size", required_argument, 0, 0 }, 1684 { "aead_iv", required_argument, 0, 0 }, 1685 { "aead_iv_random_size", required_argument, 0, 0 }, 1686 1687 { "aad", required_argument, 0, 0 }, 1688 { "aad_random_size", required_argument, 0, 0 }, 1689 1690 { "digest_size", required_argument, 0, 0 }, 1691 1692 { "sessionless", no_argument, 0, 0 }, 1693 { "cryptodev_mask", required_argument, 0, 0}, 1694 1695 { "mac-updating", no_argument, 0, 0}, 1696 { "no-mac-updating", no_argument, 0, 0}, 1697 1698 { NULL, 0, 0, 0 } 1699 }; 1700 1701 l2fwd_crypto_default_options(options); 1702 1703 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1704 &option_index)) != EOF) { 1705 switch (opt) { 1706 /* long options */ 1707 case 0: 1708 retval = l2fwd_crypto_parse_args_long_options(options, 1709 lgopts, option_index); 1710 if (retval < 0) { 1711 l2fwd_crypto_usage(prgname); 1712 return -1; 1713 } 1714 break; 1715 1716 /* portmask */ 1717 case 'p': 1718 retval = l2fwd_crypto_parse_portmask(options, optarg); 1719 if (retval < 0) { 1720 l2fwd_crypto_usage(prgname); 1721 return -1; 1722 } 1723 break; 1724 1725 /* nqueue */ 1726 case 'q': 1727 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1728 if (retval < 0) { 1729 l2fwd_crypto_usage(prgname); 1730 return -1; 1731 } 1732 break; 1733 1734 /* single */ 1735 case 's': 1736 options->single_lcore = 1; 1737 1738 break; 1739 1740 /* timer period */ 1741 case 'T': 1742 retval = l2fwd_crypto_parse_timer_period(options, 1743 optarg); 1744 if (retval < 0) { 1745 l2fwd_crypto_usage(prgname); 1746 return -1; 1747 } 1748 break; 1749 1750 default: 1751 l2fwd_crypto_usage(prgname); 1752 return -1; 1753 } 1754 } 1755 1756 1757 if (optind >= 0) 1758 argv[optind-1] = prgname; 1759 1760 retval = optind-1; 1761 optind = 1; /* reset getopt lib */ 1762 1763 return retval; 1764 } 1765 1766 /* Check the link status of all ports in up to 9s, and print them finally */ 1767 static void 1768 check_all_ports_link_status(uint32_t port_mask) 1769 { 1770 #define CHECK_INTERVAL 100 /* 100ms */ 1771 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1772 uint16_t portid; 1773 uint8_t count, all_ports_up, print_flag = 0; 1774 struct rte_eth_link link; 1775 int ret; 1776 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 1777 1778 printf("\nChecking link status"); 1779 fflush(stdout); 1780 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1781 all_ports_up = 1; 1782 RTE_ETH_FOREACH_DEV(portid) { 1783 if ((port_mask & (1 << portid)) == 0) 1784 continue; 1785 memset(&link, 0, sizeof(link)); 1786 ret = rte_eth_link_get_nowait(portid, &link); 1787 if (ret < 0) { 1788 all_ports_up = 0; 1789 if (print_flag == 1) 1790 printf("Port %u link get failed: %s\n", 1791 portid, rte_strerror(-ret)); 1792 continue; 1793 } 1794 /* print link status if flag set */ 1795 if (print_flag == 1) { 1796 rte_eth_link_to_str(link_status_text, 1797 sizeof(link_status_text), &link); 1798 printf("Port %d %s\n", portid, 1799 link_status_text); 1800 continue; 1801 } 1802 /* clear all_ports_up flag if any link down */ 1803 if (link.link_status == RTE_ETH_LINK_DOWN) { 1804 all_ports_up = 0; 1805 break; 1806 } 1807 } 1808 /* after finally printing all link status, get out */ 1809 if (print_flag == 1) 1810 break; 1811 1812 if (all_ports_up == 0) { 1813 printf("."); 1814 fflush(stdout); 1815 rte_delay_ms(CHECK_INTERVAL); 1816 } 1817 1818 /* set the print_flag if all ports up or timeout */ 1819 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1820 print_flag = 1; 1821 printf("done\n"); 1822 } 1823 } 1824 } 1825 1826 /* Check if device has to be HW/SW or any */ 1827 static int 1828 check_type(const struct l2fwd_crypto_options *options, 1829 const struct rte_cryptodev_info *dev_info) 1830 { 1831 if (options->type == CDEV_TYPE_HW && 1832 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1833 return 0; 1834 if (options->type == CDEV_TYPE_SW && 1835 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1836 return 0; 1837 if (options->type == CDEV_TYPE_ANY) 1838 return 0; 1839 1840 return -1; 1841 } 1842 1843 static const struct rte_cryptodev_capabilities * 1844 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1845 const struct rte_cryptodev_info *dev_info, 1846 uint8_t cdev_id) 1847 { 1848 unsigned int i = 0; 1849 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1850 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1851 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1852 options->cipher_xform.cipher.algo; 1853 1854 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1855 cap_cipher_algo = cap->sym.cipher.algo; 1856 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1857 if (cap_cipher_algo == opt_cipher_algo) { 1858 if (check_type(options, dev_info) == 0) 1859 break; 1860 } 1861 } 1862 cap = &dev_info->capabilities[++i]; 1863 } 1864 1865 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1866 printf("Algorithm %s not supported by cryptodev %u" 1867 " or device not of preferred type (%s)\n", 1868 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1869 cdev_id, 1870 options->string_type); 1871 return NULL; 1872 } 1873 1874 return cap; 1875 } 1876 1877 static const struct rte_cryptodev_capabilities * 1878 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1879 const struct rte_cryptodev_info *dev_info, 1880 uint8_t cdev_id) 1881 { 1882 unsigned int i = 0; 1883 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1884 enum rte_crypto_auth_algorithm cap_auth_algo; 1885 enum rte_crypto_auth_algorithm opt_auth_algo = 1886 options->auth_xform.auth.algo; 1887 1888 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1889 cap_auth_algo = cap->sym.auth.algo; 1890 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1891 if (cap_auth_algo == opt_auth_algo) { 1892 if (check_type(options, dev_info) == 0) 1893 break; 1894 } 1895 } 1896 cap = &dev_info->capabilities[++i]; 1897 } 1898 1899 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1900 printf("Algorithm %s not supported by cryptodev %u" 1901 " or device not of preferred type (%s)\n", 1902 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1903 cdev_id, 1904 options->string_type); 1905 return NULL; 1906 } 1907 1908 return cap; 1909 } 1910 1911 static const struct rte_cryptodev_capabilities * 1912 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1913 const struct rte_cryptodev_info *dev_info, 1914 uint8_t cdev_id) 1915 { 1916 unsigned int i = 0; 1917 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1918 enum rte_crypto_aead_algorithm cap_aead_algo; 1919 enum rte_crypto_aead_algorithm opt_aead_algo = 1920 options->aead_xform.aead.algo; 1921 1922 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1923 cap_aead_algo = cap->sym.aead.algo; 1924 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1925 if (cap_aead_algo == opt_aead_algo) { 1926 if (check_type(options, dev_info) == 0) 1927 break; 1928 } 1929 } 1930 cap = &dev_info->capabilities[++i]; 1931 } 1932 1933 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1934 printf("Algorithm %s not supported by cryptodev %u" 1935 " or device not of preferred type (%s)\n", 1936 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1937 cdev_id, 1938 options->string_type); 1939 return NULL; 1940 } 1941 1942 return cap; 1943 } 1944 1945 /* Check if the device is enabled by cryptodev_mask */ 1946 static int 1947 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1948 uint8_t cdev_id) 1949 { 1950 if (options->cryptodev_mask & (1 << cdev_id)) 1951 return 0; 1952 1953 return -1; 1954 } 1955 1956 static inline int 1957 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1958 uint16_t increment) 1959 { 1960 uint16_t supp_size; 1961 1962 /* Single value */ 1963 if (increment == 0) { 1964 if (length == min) 1965 return 0; 1966 else 1967 return -1; 1968 } 1969 1970 /* Range of values */ 1971 for (supp_size = min; supp_size <= max; supp_size += increment) { 1972 if (length == supp_size) 1973 return 0; 1974 } 1975 1976 return -1; 1977 } 1978 1979 static int 1980 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1981 unsigned int iv_param, int iv_random_size, 1982 uint16_t iv_length) 1983 { 1984 /* 1985 * Check if length of provided IV is supported 1986 * by the algorithm chosen. 1987 */ 1988 if (iv_param) { 1989 if (check_supported_size(iv_length, 1990 iv_range_size->min, 1991 iv_range_size->max, 1992 iv_range_size->increment) 1993 != 0) 1994 return -1; 1995 /* 1996 * Check if length of IV to be randomly generated 1997 * is supported by the algorithm chosen. 1998 */ 1999 } else if (iv_random_size != -1) { 2000 if (check_supported_size(iv_random_size, 2001 iv_range_size->min, 2002 iv_range_size->max, 2003 iv_range_size->increment) 2004 != 0) 2005 return -1; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static int 2012 check_capabilities(struct l2fwd_crypto_options *options, uint8_t cdev_id) 2013 { 2014 struct rte_cryptodev_info dev_info; 2015 const struct rte_cryptodev_capabilities *cap; 2016 2017 rte_cryptodev_info_get(cdev_id, &dev_info); 2018 2019 /* Set AEAD parameters */ 2020 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2021 /* Check if device supports AEAD algo */ 2022 cap = check_device_support_aead_algo(options, &dev_info, 2023 cdev_id); 2024 if (cap == NULL) 2025 return -1; 2026 2027 if (check_iv_param(&cap->sym.aead.iv_size, 2028 options->aead_iv_param, 2029 options->aead_iv_random_size, 2030 options->aead_iv.length) != 0) { 2031 RTE_LOG(DEBUG, USER1, 2032 "Device %u does not support IV length\n", 2033 cdev_id); 2034 return -1; 2035 } 2036 2037 /* 2038 * Check if length of provided AEAD key is supported 2039 * by the algorithm chosen. 2040 */ 2041 if (options->aead_key_param) { 2042 if (check_supported_size( 2043 options->aead_xform.aead.key.length, 2044 cap->sym.aead.key_size.min, 2045 cap->sym.aead.key_size.max, 2046 cap->sym.aead.key_size.increment) 2047 != 0) { 2048 RTE_LOG(DEBUG, USER1, 2049 "Device %u does not support " 2050 "AEAD key length\n", 2051 cdev_id); 2052 return -1; 2053 } 2054 /* 2055 * Check if length of the aead key to be randomly generated 2056 * is supported by the algorithm chosen. 2057 */ 2058 } else if (options->aead_key_random_size != -1) { 2059 if (check_supported_size(options->aead_key_random_size, 2060 cap->sym.aead.key_size.min, 2061 cap->sym.aead.key_size.max, 2062 cap->sym.aead.key_size.increment) 2063 != 0) { 2064 RTE_LOG(DEBUG, USER1, 2065 "Device %u does not support " 2066 "AEAD key length\n", 2067 cdev_id); 2068 return -1; 2069 } 2070 } 2071 2072 2073 /* 2074 * Check if length of provided AAD is supported 2075 * by the algorithm chosen. 2076 */ 2077 if (options->aad_param) { 2078 if (check_supported_size(options->aad.length, 2079 cap->sym.aead.aad_size.min, 2080 cap->sym.aead.aad_size.max, 2081 cap->sym.aead.aad_size.increment) 2082 != 0) { 2083 RTE_LOG(DEBUG, USER1, 2084 "Device %u does not support " 2085 "AAD length\n", 2086 cdev_id); 2087 return -1; 2088 } 2089 /* 2090 * Check if length of AAD to be randomly generated 2091 * is supported by the algorithm chosen. 2092 */ 2093 } else if (options->aad_random_size != -1) { 2094 if (check_supported_size(options->aad_random_size, 2095 cap->sym.aead.aad_size.min, 2096 cap->sym.aead.aad_size.max, 2097 cap->sym.aead.aad_size.increment) 2098 != 0) { 2099 RTE_LOG(DEBUG, USER1, 2100 "Device %u does not support " 2101 "AAD length\n", 2102 cdev_id); 2103 return -1; 2104 } 2105 } 2106 2107 /* Check if digest size is supported by the algorithm. */ 2108 if (options->digest_size != -1) { 2109 if (check_supported_size(options->digest_size, 2110 cap->sym.aead.digest_size.min, 2111 cap->sym.aead.digest_size.max, 2112 cap->sym.aead.digest_size.increment) 2113 != 0) { 2114 RTE_LOG(DEBUG, USER1, 2115 "Device %u does not support " 2116 "digest length\n", 2117 cdev_id); 2118 return -1; 2119 } 2120 } 2121 } 2122 2123 /* Set cipher parameters */ 2124 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2125 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2126 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2127 2128 /* Check if device supports cipher algo. 8< */ 2129 cap = check_device_support_cipher_algo(options, &dev_info, 2130 cdev_id); 2131 if (cap == NULL) 2132 return -1; 2133 2134 if (check_iv_param(&cap->sym.cipher.iv_size, 2135 options->cipher_iv_param, 2136 options->cipher_iv_random_size, 2137 options->cipher_iv.length) != 0) { 2138 RTE_LOG(DEBUG, USER1, 2139 "Device %u does not support IV length\n", 2140 cdev_id); 2141 return -1; 2142 } 2143 /* >8 End of check if device supports cipher algo. */ 2144 2145 /* Check if capable cipher is supported. 8< */ 2146 2147 /* 2148 * Check if length of provided cipher key is supported 2149 * by the algorithm chosen. 2150 */ 2151 if (options->ckey_param) { 2152 if (check_supported_size( 2153 options->cipher_xform.cipher.key.length, 2154 cap->sym.cipher.key_size.min, 2155 cap->sym.cipher.key_size.max, 2156 cap->sym.cipher.key_size.increment) 2157 != 0) { 2158 if (dev_info.feature_flags & 2159 RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY) { 2160 RTE_LOG(DEBUG, USER1, 2161 "Key length does not match the device " 2162 "%u capability. Key may be wrapped\n", 2163 cdev_id); 2164 } else { 2165 RTE_LOG(DEBUG, USER1, 2166 "Key length does not match the device " 2167 "%u capability\n", 2168 cdev_id); 2169 return -1; 2170 } 2171 } 2172 2173 /* 2174 * Check if length of the cipher key to be randomly generated 2175 * is supported by the algorithm chosen. 2176 */ 2177 } else if (options->ckey_random_size != -1) { 2178 if (check_supported_size(options->ckey_random_size, 2179 cap->sym.cipher.key_size.min, 2180 cap->sym.cipher.key_size.max, 2181 cap->sym.cipher.key_size.increment) 2182 != 0) { 2183 RTE_LOG(DEBUG, USER1, 2184 "Device %u does not support cipher " 2185 "key length\n", 2186 cdev_id); 2187 return -1; 2188 } 2189 } 2190 2191 if (options->cipher_xform.cipher.dataunit_len > 0) { 2192 if (!(dev_info.feature_flags & 2193 RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)) { 2194 RTE_LOG(DEBUG, USER1, 2195 "Device %u does not support " 2196 "cipher multiple data units\n", 2197 cdev_id); 2198 return -1; 2199 } 2200 if (cap->sym.cipher.dataunit_set != 0) { 2201 int ret = 0; 2202 2203 switch (options->cipher_xform.cipher.dataunit_len) { 2204 case 512: 2205 if (!(cap->sym.cipher.dataunit_set & 2206 RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES)) 2207 ret = -1; 2208 break; 2209 case 4096: 2210 if (!(cap->sym.cipher.dataunit_set & 2211 RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES)) 2212 ret = -1; 2213 break; 2214 case 1048576: 2215 if (!(cap->sym.cipher.dataunit_set & 2216 RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES)) 2217 ret = -1; 2218 break; 2219 default: 2220 ret = -1; 2221 } 2222 if (ret == -1) { 2223 RTE_LOG(DEBUG, USER1, 2224 "Device %u does not support " 2225 "data-unit length %u\n", 2226 cdev_id, 2227 options->cipher_xform.cipher.dataunit_len); 2228 return -1; 2229 } 2230 } 2231 } 2232 /* >8 End of checking if cipher is supported. */ 2233 } 2234 2235 /* Set auth parameters */ 2236 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2237 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2238 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2239 /* Check if device supports auth algo */ 2240 cap = check_device_support_auth_algo(options, &dev_info, 2241 cdev_id); 2242 if (cap == NULL) 2243 return -1; 2244 2245 if (check_iv_param(&cap->sym.auth.iv_size, 2246 options->auth_iv_param, 2247 options->auth_iv_random_size, 2248 options->auth_iv.length) != 0) { 2249 RTE_LOG(DEBUG, USER1, 2250 "Device %u does not support IV length\n", 2251 cdev_id); 2252 return -1; 2253 } 2254 /* 2255 * Check if length of provided auth key is supported 2256 * by the algorithm chosen. 2257 */ 2258 if (options->akey_param) { 2259 if (check_supported_size( 2260 options->auth_xform.auth.key.length, 2261 cap->sym.auth.key_size.min, 2262 cap->sym.auth.key_size.max, 2263 cap->sym.auth.key_size.increment) 2264 != 0) { 2265 RTE_LOG(DEBUG, USER1, 2266 "Device %u does not support auth " 2267 "key length\n", 2268 cdev_id); 2269 return -1; 2270 } 2271 /* 2272 * Check if length of the auth key to be randomly generated 2273 * is supported by the algorithm chosen. 2274 */ 2275 } else if (options->akey_random_size != -1) { 2276 if (check_supported_size(options->akey_random_size, 2277 cap->sym.auth.key_size.min, 2278 cap->sym.auth.key_size.max, 2279 cap->sym.auth.key_size.increment) 2280 != 0) { 2281 RTE_LOG(DEBUG, USER1, 2282 "Device %u does not support auth " 2283 "key length\n", 2284 cdev_id); 2285 return -1; 2286 } 2287 } 2288 2289 /* Check if digest size is supported by the algorithm. */ 2290 if (options->digest_size != -1) { 2291 if (check_supported_size(options->digest_size, 2292 cap->sym.auth.digest_size.min, 2293 cap->sym.auth.digest_size.max, 2294 cap->sym.auth.digest_size.increment) 2295 != 0) { 2296 RTE_LOG(DEBUG, USER1, 2297 "Device %u does not support " 2298 "digest length\n", 2299 cdev_id); 2300 return -1; 2301 } 2302 } 2303 } 2304 2305 return 0; 2306 } 2307 2308 static int 2309 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 2310 uint8_t *enabled_cdevs) 2311 { 2312 uint8_t cdev_id, cdev_count, enabled_cdev_count = 0; 2313 const struct rte_cryptodev_capabilities *cap; 2314 unsigned int sess_sz, max_sess_sz = 0; 2315 uint32_t sessions_needed = 0; 2316 int retval; 2317 2318 cdev_count = rte_cryptodev_count(); 2319 if (cdev_count == 0) { 2320 printf("No crypto devices available\n"); 2321 return -1; 2322 } 2323 2324 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 2325 cdev_id++) { 2326 if (check_cryptodev_mask(options, cdev_id) < 0) 2327 continue; 2328 2329 if (check_capabilities(options, cdev_id) < 0) 2330 continue; 2331 2332 sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id); 2333 if (sess_sz > max_sess_sz) 2334 max_sess_sz = sess_sz; 2335 2336 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2337 2338 enabled_cdevs[cdev_id] = 1; 2339 enabled_cdev_count++; 2340 } 2341 2342 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 2343 struct rte_cryptodev_qp_conf qp_conf; 2344 struct rte_cryptodev_info dev_info; 2345 2346 if (enabled_cdevs[cdev_id] == 0) 2347 continue; 2348 2349 if (check_cryptodev_mask(options, cdev_id) < 0) 2350 continue; 2351 2352 if (check_capabilities(options, cdev_id) < 0) 2353 continue; 2354 2355 retval = rte_cryptodev_socket_id(cdev_id); 2356 2357 if (retval < 0) { 2358 printf("Invalid crypto device id used\n"); 2359 return -1; 2360 } 2361 2362 uint8_t socket_id = (uint8_t) retval; 2363 2364 struct rte_cryptodev_config conf = { 2365 .nb_queue_pairs = 1, 2366 .socket_id = socket_id, 2367 .ff_disable = RTE_CRYPTODEV_FF_SECURITY, 2368 }; 2369 2370 rte_cryptodev_info_get(cdev_id, &dev_info); 2371 2372 if (!strcmp(dev_info.driver_name, "crypto_scheduler")) { 2373 #ifdef RTE_CRYPTO_SCHEDULER 2374 /* scheduler session header + 1 session per worker */ 2375 uint32_t nb_workers = 1 + 2376 rte_cryptodev_scheduler_workers_get(cdev_id, 2377 NULL); 2378 2379 sessions_needed = enabled_cdev_count * nb_workers; 2380 #endif 2381 } else 2382 sessions_needed = enabled_cdev_count; 2383 2384 if (session_pool_socket[socket_id].sess_mp == NULL) { 2385 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2386 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2387 "sess_mp_%u", socket_id); 2388 2389 session_pool_socket[socket_id].sess_mp = 2390 rte_cryptodev_sym_session_pool_create( 2391 mp_name, sessions_needed, max_sess_sz, 2392 0, 0, socket_id); 2393 if (session_pool_socket[socket_id].sess_mp == NULL) { 2394 printf("Cannot create pool on socket %d\n", 2395 socket_id); 2396 return -ENOMEM; 2397 } 2398 2399 printf("Allocated pool \"%s\" on socket %d\n", 2400 mp_name, socket_id); 2401 } 2402 2403 /* Set AEAD parameters */ 2404 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2405 cap = check_device_support_aead_algo(options, &dev_info, 2406 cdev_id); 2407 2408 options->block_size = cap->sym.aead.block_size; 2409 2410 /* Set IV if not provided from command line */ 2411 if (options->aead_iv_param == 0) { 2412 if (options->aead_iv_random_size != -1) 2413 options->aead_iv.length = 2414 options->aead_iv_random_size; 2415 /* No size provided, use minimum size. */ 2416 else 2417 options->aead_iv.length = 2418 cap->sym.aead.iv_size.min; 2419 } 2420 2421 /* Set key if not provided from command line */ 2422 if (options->aead_key_param == 0) { 2423 if (options->aead_key_random_size != -1) 2424 options->aead_xform.aead.key.length = 2425 options->aead_key_random_size; 2426 /* No size provided, use minimum size. */ 2427 else 2428 options->aead_xform.aead.key.length = 2429 cap->sym.aead.key_size.min; 2430 2431 generate_random_key(options->aead_key, 2432 options->aead_xform.aead.key.length); 2433 } 2434 2435 /* Set AAD if not provided from command line */ 2436 if (options->aad_param == 0) { 2437 if (options->aad_random_size != -1) 2438 options->aad.length = 2439 options->aad_random_size; 2440 /* No size provided, use minimum size. */ 2441 else 2442 options->aad.length = 2443 cap->sym.auth.aad_size.min; 2444 } 2445 2446 options->aead_xform.aead.aad_length = 2447 options->aad.length; 2448 2449 /* Set digest size if not provided from command line */ 2450 if (options->digest_size != -1) 2451 options->aead_xform.aead.digest_length = 2452 options->digest_size; 2453 /* No size provided, use minimum size. */ 2454 else 2455 options->aead_xform.aead.digest_length = 2456 cap->sym.aead.digest_size.min; 2457 } 2458 2459 /* Set cipher parameters */ 2460 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2461 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2462 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2463 cap = check_device_support_cipher_algo(options, &dev_info, 2464 cdev_id); 2465 options->block_size = cap->sym.cipher.block_size; 2466 2467 /* Set IV if not provided from command line */ 2468 if (options->cipher_iv_param == 0) { 2469 if (options->cipher_iv_random_size != -1) 2470 options->cipher_iv.length = 2471 options->cipher_iv_random_size; 2472 /* No size provided, use minimum size. */ 2473 else 2474 options->cipher_iv.length = 2475 cap->sym.cipher.iv_size.min; 2476 } 2477 2478 /* Set key if not provided from command line */ 2479 if (options->ckey_param == 0) { 2480 if (options->ckey_random_size != -1) 2481 options->cipher_xform.cipher.key.length = 2482 options->ckey_random_size; 2483 /* No size provided, use minimum size. */ 2484 else 2485 options->cipher_xform.cipher.key.length = 2486 cap->sym.cipher.key_size.min; 2487 2488 generate_random_key(options->cipher_key, 2489 options->cipher_xform.cipher.key.length); 2490 } 2491 } 2492 2493 /* Set auth parameters */ 2494 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2495 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2496 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2497 cap = check_device_support_auth_algo(options, &dev_info, 2498 cdev_id); 2499 2500 /* Set IV if not provided from command line */ 2501 if (options->auth_iv_param == 0) { 2502 if (options->auth_iv_random_size != -1) 2503 options->auth_iv.length = 2504 options->auth_iv_random_size; 2505 /* No size provided, use minimum size. */ 2506 else 2507 options->auth_iv.length = 2508 cap->sym.auth.iv_size.min; 2509 } 2510 2511 /* Set key if not provided from command line */ 2512 if (options->akey_param == 0) { 2513 if (options->akey_random_size != -1) 2514 options->auth_xform.auth.key.length = 2515 options->akey_random_size; 2516 /* No size provided, use minimum size. */ 2517 else 2518 options->auth_xform.auth.key.length = 2519 cap->sym.auth.key_size.min; 2520 2521 generate_random_key(options->auth_key, 2522 options->auth_xform.auth.key.length); 2523 } 2524 2525 /* Set digest size if not provided from command line */ 2526 if (options->digest_size != -1) 2527 options->auth_xform.auth.digest_length = 2528 options->digest_size; 2529 /* No size provided, use minimum size. */ 2530 else 2531 options->auth_xform.auth.digest_length = 2532 cap->sym.auth.digest_size.min; 2533 } 2534 2535 retval = rte_cryptodev_configure(cdev_id, &conf); 2536 if (retval < 0) { 2537 printf("Failed to configure cryptodev %u", cdev_id); 2538 return -1; 2539 } 2540 2541 qp_conf.nb_descriptors = 2048; 2542 qp_conf.mp_session = session_pool_socket[socket_id].sess_mp; 2543 2544 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2545 socket_id); 2546 if (retval < 0) { 2547 printf("Failed to setup queue pair %u on cryptodev %u", 2548 0, cdev_id); 2549 return -1; 2550 } 2551 2552 retval = rte_cryptodev_start(cdev_id); 2553 if (retval < 0) { 2554 printf("Failed to start device %u: error %d\n", 2555 cdev_id, retval); 2556 return -1; 2557 } 2558 } 2559 2560 return enabled_cdev_count; 2561 } 2562 2563 static int 2564 initialize_ports(struct l2fwd_crypto_options *options) 2565 { 2566 uint16_t last_portid = 0, portid; 2567 unsigned enabled_portcount = 0; 2568 unsigned nb_ports = rte_eth_dev_count_avail(); 2569 2570 if (nb_ports == 0) { 2571 printf("No Ethernet ports - bye\n"); 2572 return -1; 2573 } 2574 2575 /* Reset l2fwd_dst_ports */ 2576 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2577 l2fwd_dst_ports[portid] = 0; 2578 2579 RTE_ETH_FOREACH_DEV(portid) { 2580 int retval; 2581 struct rte_eth_dev_info dev_info; 2582 struct rte_eth_rxconf rxq_conf; 2583 struct rte_eth_txconf txq_conf; 2584 struct rte_eth_conf local_port_conf = port_conf; 2585 2586 /* Skip ports that are not enabled */ 2587 if ((options->portmask & (1 << portid)) == 0) 2588 continue; 2589 2590 /* init port */ 2591 printf("Initializing port %u... ", portid); 2592 fflush(stdout); 2593 2594 retval = rte_eth_dev_info_get(portid, &dev_info); 2595 if (retval != 0) { 2596 printf("Error during getting device (port %u) info: %s\n", 2597 portid, strerror(-retval)); 2598 return retval; 2599 } 2600 2601 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) 2602 local_port_conf.txmode.offloads |= 2603 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; 2604 retval = rte_eth_dev_configure(portid, 1, 1, &local_port_conf); 2605 if (retval < 0) { 2606 printf("Cannot configure device: err=%d, port=%u\n", 2607 retval, portid); 2608 return -1; 2609 } 2610 2611 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2612 &nb_txd); 2613 if (retval < 0) { 2614 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2615 retval, portid); 2616 return -1; 2617 } 2618 2619 /* init one RX queue */ 2620 fflush(stdout); 2621 rxq_conf = dev_info.default_rxconf; 2622 rxq_conf.offloads = local_port_conf.rxmode.offloads; 2623 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2624 rte_eth_dev_socket_id(portid), 2625 &rxq_conf, l2fwd_pktmbuf_pool); 2626 if (retval < 0) { 2627 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2628 retval, portid); 2629 return -1; 2630 } 2631 2632 /* init one TX queue on each port */ 2633 fflush(stdout); 2634 txq_conf = dev_info.default_txconf; 2635 txq_conf.offloads = local_port_conf.txmode.offloads; 2636 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2637 rte_eth_dev_socket_id(portid), 2638 &txq_conf); 2639 if (retval < 0) { 2640 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2641 retval, portid); 2642 2643 return -1; 2644 } 2645 2646 /* Start device */ 2647 retval = rte_eth_dev_start(portid); 2648 if (retval < 0) { 2649 printf("rte_eth_dev_start:err=%d, port=%u\n", 2650 retval, portid); 2651 return -1; 2652 } 2653 2654 retval = rte_eth_promiscuous_enable(portid); 2655 if (retval != 0) { 2656 printf("rte_eth_promiscuous_enable:err=%s, port=%u\n", 2657 rte_strerror(-retval), portid); 2658 return -1; 2659 } 2660 2661 retval = rte_eth_macaddr_get(portid, 2662 &l2fwd_ports_eth_addr[portid]); 2663 if (retval < 0) { 2664 printf("rte_eth_macaddr_get :err=%d, port=%u\n", 2665 retval, portid); 2666 return -1; 2667 } 2668 2669 printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n", 2670 portid, 2671 RTE_ETHER_ADDR_BYTES(&l2fwd_ports_eth_addr[portid])); 2672 2673 /* initialize port stats */ 2674 memset(&port_statistics, 0, sizeof(port_statistics)); 2675 2676 /* Setup port forwarding table */ 2677 if (enabled_portcount % 2) { 2678 l2fwd_dst_ports[portid] = last_portid; 2679 l2fwd_dst_ports[last_portid] = portid; 2680 } else { 2681 last_portid = portid; 2682 } 2683 2684 l2fwd_enabled_port_mask |= (1ULL << portid); 2685 enabled_portcount++; 2686 } 2687 2688 if (enabled_portcount == 1) { 2689 l2fwd_dst_ports[last_portid] = last_portid; 2690 } else if (enabled_portcount % 2) { 2691 printf("odd number of ports in portmask- bye\n"); 2692 return -1; 2693 } 2694 2695 check_all_ports_link_status(l2fwd_enabled_port_mask); 2696 2697 return enabled_portcount; 2698 } 2699 2700 static void 2701 reserve_key_memory(struct l2fwd_crypto_options *options) 2702 { 2703 options->cipher_xform.cipher.key.data = options->cipher_key; 2704 2705 options->auth_xform.auth.key.data = options->auth_key; 2706 2707 options->aead_xform.aead.key.data = options->aead_key; 2708 2709 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2710 if (options->cipher_iv.data == NULL) 2711 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2712 2713 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2714 if (options->auth_iv.data == NULL) 2715 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2716 2717 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2718 if (options->aead_iv.data == NULL) 2719 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2720 2721 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2722 if (options->aad.data == NULL) 2723 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2724 options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data); 2725 } 2726 2727 static void 2728 raise_signal(int signum) 2729 { 2730 if (signum == SIGINT || signum == SIGTERM) 2731 signal_received = true; 2732 } 2733 2734 int 2735 main(int argc, char **argv) 2736 { 2737 struct lcore_queue_conf *qconf = NULL; 2738 struct l2fwd_crypto_options options; 2739 2740 uint8_t nb_cryptodevs, cdev_id; 2741 uint16_t portid; 2742 unsigned lcore_id, rx_lcore_id = 0; 2743 int ret, enabled_cdevcount, enabled_portcount; 2744 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2745 2746 signal(SIGINT, raise_signal); 2747 signal(SIGTERM, raise_signal); 2748 2749 /* init EAL */ 2750 ret = rte_eal_init(argc, argv); 2751 if (ret < 0) 2752 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2753 argc -= ret; 2754 argv += ret; 2755 2756 /* reserve memory for Cipher/Auth key and IV */ 2757 reserve_key_memory(&options); 2758 2759 /* parse application arguments (after the EAL ones) */ 2760 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2761 if (ret < 0) 2762 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2763 2764 printf("MAC updating %s\n", 2765 options.mac_updating ? "enabled" : "disabled"); 2766 2767 /* create the mbuf pool */ 2768 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2769 RTE_ALIGN(sizeof(struct rte_crypto_op), 2770 RTE_CACHE_LINE_SIZE), 2771 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2772 if (l2fwd_pktmbuf_pool == NULL) 2773 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2774 2775 /* create crypto op pool */ 2776 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2777 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2778 rte_socket_id()); 2779 if (l2fwd_crypto_op_pool == NULL) 2780 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2781 2782 /* Enable Ethernet ports */ 2783 enabled_portcount = initialize_ports(&options); 2784 if (enabled_portcount < 1) 2785 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2786 2787 /* Initialize the port/queue configuration of each logical core */ 2788 RTE_ETH_FOREACH_DEV(portid) { 2789 2790 /* skip ports that are not enabled */ 2791 if ((options.portmask & (1 << portid)) == 0) 2792 continue; 2793 2794 if (options.single_lcore && qconf == NULL) { 2795 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2796 rx_lcore_id++; 2797 if (rx_lcore_id >= RTE_MAX_LCORE) 2798 rte_exit(EXIT_FAILURE, 2799 "Not enough cores\n"); 2800 } 2801 } else if (!options.single_lcore) { 2802 /* get the lcore_id for this port */ 2803 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2804 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2805 options.nb_ports_per_lcore) { 2806 rx_lcore_id++; 2807 if (rx_lcore_id >= RTE_MAX_LCORE) 2808 rte_exit(EXIT_FAILURE, 2809 "Not enough cores\n"); 2810 } 2811 } 2812 2813 /* Assigned a new logical core in the loop above. */ 2814 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2815 qconf = &lcore_queue_conf[rx_lcore_id]; 2816 2817 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2818 qconf->nb_rx_ports++; 2819 2820 printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); 2821 } 2822 2823 /* Enable Crypto devices */ 2824 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2825 enabled_cdevs); 2826 if (enabled_cdevcount < 0) 2827 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2828 2829 if (enabled_cdevcount < enabled_portcount) 2830 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2831 "has to be more or equal to number of ports (%d)\n", 2832 enabled_cdevcount, enabled_portcount); 2833 2834 nb_cryptodevs = rte_cryptodev_count(); 2835 2836 /* Initialize the port/cryptodev configuration of each logical core */ 2837 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2838 cdev_id < nb_cryptodevs && enabled_cdevcount; 2839 cdev_id++) { 2840 /* Crypto op not supported by crypto device */ 2841 if (!enabled_cdevs[cdev_id]) 2842 continue; 2843 2844 if (options.single_lcore && qconf == NULL) { 2845 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2846 rx_lcore_id++; 2847 if (rx_lcore_id >= RTE_MAX_LCORE) 2848 rte_exit(EXIT_FAILURE, 2849 "Not enough cores\n"); 2850 } 2851 } else if (!options.single_lcore) { 2852 /* get the lcore_id for this port */ 2853 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2854 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2855 options.nb_ports_per_lcore) { 2856 rx_lcore_id++; 2857 if (rx_lcore_id >= RTE_MAX_LCORE) 2858 rte_exit(EXIT_FAILURE, 2859 "Not enough cores\n"); 2860 } 2861 } 2862 2863 /* Assigned a new logical core in the loop above. */ 2864 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2865 qconf = &lcore_queue_conf[rx_lcore_id]; 2866 2867 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2868 qconf->nb_crypto_devs++; 2869 2870 enabled_cdevcount--; 2871 2872 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2873 (unsigned)cdev_id); 2874 } 2875 2876 /* launch per-lcore init on every lcore */ 2877 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2878 CALL_MAIN); 2879 RTE_LCORE_FOREACH_WORKER(lcore_id) { 2880 if (rte_eal_wait_lcore(lcore_id) < 0) 2881 return -1; 2882 } 2883 2884 /* clean up the EAL */ 2885 rte_eal_cleanup(); 2886 2887 return 0; 2888 } 2889