1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2017 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 92 #define MAXIMUM_IV_LENGTH 16 93 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 94 sizeof(struct rte_crypto_sym_op)) 95 96 /* 97 * Configurable number of RX/TX ring descriptors 98 */ 99 #define RTE_TEST_RX_DESC_DEFAULT 128 100 #define RTE_TEST_TX_DESC_DEFAULT 512 101 102 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 103 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 104 105 /* ethernet addresses of ports */ 106 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 107 108 /* mask of enabled ports */ 109 static uint64_t l2fwd_enabled_port_mask; 110 static uint64_t l2fwd_enabled_crypto_mask; 111 112 /* list of enabled ports */ 113 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 114 115 116 struct pkt_buffer { 117 unsigned len; 118 struct rte_mbuf *buffer[MAX_PKT_BURST]; 119 }; 120 121 struct op_buffer { 122 unsigned len; 123 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 124 }; 125 126 #define MAX_RX_QUEUE_PER_LCORE 16 127 #define MAX_TX_QUEUE_PER_PORT 16 128 129 enum l2fwd_crypto_xform_chain { 130 L2FWD_CRYPTO_CIPHER_HASH, 131 L2FWD_CRYPTO_HASH_CIPHER, 132 L2FWD_CRYPTO_CIPHER_ONLY, 133 L2FWD_CRYPTO_HASH_ONLY, 134 L2FWD_CRYPTO_AEAD 135 }; 136 137 struct l2fwd_key { 138 uint8_t *data; 139 uint32_t length; 140 phys_addr_t phys_addr; 141 }; 142 143 struct l2fwd_iv { 144 uint8_t *data; 145 uint16_t length; 146 }; 147 148 /** l2fwd crypto application command line options */ 149 struct l2fwd_crypto_options { 150 unsigned portmask; 151 unsigned nb_ports_per_lcore; 152 unsigned refresh_period; 153 unsigned single_lcore:1; 154 155 enum cdev_type type; 156 unsigned sessionless:1; 157 158 enum l2fwd_crypto_xform_chain xform_chain; 159 160 struct rte_crypto_sym_xform cipher_xform; 161 unsigned ckey_param; 162 int ckey_random_size; 163 164 struct l2fwd_iv cipher_iv; 165 unsigned int cipher_iv_param; 166 int cipher_iv_random_size; 167 168 struct rte_crypto_sym_xform auth_xform; 169 uint8_t akey_param; 170 int akey_random_size; 171 172 struct l2fwd_iv auth_iv; 173 unsigned int auth_iv_param; 174 int auth_iv_random_size; 175 176 struct rte_crypto_sym_xform aead_xform; 177 unsigned int aead_key_param; 178 int aead_key_random_size; 179 180 struct l2fwd_iv aead_iv; 181 unsigned int aead_iv_param; 182 int aead_iv_random_size; 183 184 struct l2fwd_key aad; 185 unsigned aad_param; 186 int aad_random_size; 187 188 int digest_size; 189 190 uint16_t block_size; 191 char string_type[MAX_STR_LEN]; 192 193 uint64_t cryptodev_mask; 194 }; 195 196 /** l2fwd crypto lcore params */ 197 struct l2fwd_crypto_params { 198 uint8_t dev_id; 199 uint8_t qp_id; 200 201 unsigned digest_length; 202 unsigned block_size; 203 204 struct l2fwd_iv cipher_iv; 205 struct l2fwd_iv auth_iv; 206 struct l2fwd_iv aead_iv; 207 struct l2fwd_key aad; 208 struct rte_cryptodev_sym_session *session; 209 210 uint8_t do_cipher; 211 uint8_t do_hash; 212 uint8_t do_aead; 213 uint8_t hash_verify; 214 215 enum rte_crypto_cipher_algorithm cipher_algo; 216 enum rte_crypto_auth_algorithm auth_algo; 217 enum rte_crypto_aead_algorithm aead_algo; 218 }; 219 220 /** lcore configuration */ 221 struct lcore_queue_conf { 222 unsigned nb_rx_ports; 223 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 224 225 unsigned nb_crypto_devs; 226 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 227 228 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 229 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 230 } __rte_cache_aligned; 231 232 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 233 234 static const struct rte_eth_conf port_conf = { 235 .rxmode = { 236 .mq_mode = ETH_MQ_RX_NONE, 237 .max_rx_pkt_len = ETHER_MAX_LEN, 238 .split_hdr_size = 0, 239 .header_split = 0, /**< Header Split disabled */ 240 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 241 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 242 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 243 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 244 }, 245 .txmode = { 246 .mq_mode = ETH_MQ_TX_NONE, 247 }, 248 }; 249 250 struct rte_mempool *l2fwd_pktmbuf_pool; 251 struct rte_mempool *l2fwd_crypto_op_pool; 252 253 /* Per-port statistics struct */ 254 struct l2fwd_port_statistics { 255 uint64_t tx; 256 uint64_t rx; 257 258 uint64_t crypto_enqueued; 259 uint64_t crypto_dequeued; 260 261 uint64_t dropped; 262 } __rte_cache_aligned; 263 264 struct l2fwd_crypto_statistics { 265 uint64_t enqueued; 266 uint64_t dequeued; 267 268 uint64_t errors; 269 } __rte_cache_aligned; 270 271 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 272 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 273 274 /* A tsc-based timer responsible for triggering statistics printout */ 275 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 276 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 277 278 /* default period is 10 seconds */ 279 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 280 281 /* Print out statistics on packets dropped */ 282 static void 283 print_stats(void) 284 { 285 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 286 uint64_t total_packets_enqueued, total_packets_dequeued, 287 total_packets_errors; 288 unsigned portid; 289 uint64_t cdevid; 290 291 total_packets_dropped = 0; 292 total_packets_tx = 0; 293 total_packets_rx = 0; 294 total_packets_enqueued = 0; 295 total_packets_dequeued = 0; 296 total_packets_errors = 0; 297 298 const char clr[] = { 27, '[', '2', 'J', '\0' }; 299 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 300 301 /* Clear screen and move to top left */ 302 printf("%s%s", clr, topLeft); 303 304 printf("\nPort statistics ===================================="); 305 306 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 307 /* skip disabled ports */ 308 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 309 continue; 310 printf("\nStatistics for port %u ------------------------------" 311 "\nPackets sent: %32"PRIu64 312 "\nPackets received: %28"PRIu64 313 "\nPackets dropped: %29"PRIu64, 314 portid, 315 port_statistics[portid].tx, 316 port_statistics[portid].rx, 317 port_statistics[portid].dropped); 318 319 total_packets_dropped += port_statistics[portid].dropped; 320 total_packets_tx += port_statistics[portid].tx; 321 total_packets_rx += port_statistics[portid].rx; 322 } 323 printf("\nCrypto statistics =================================="); 324 325 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 326 /* skip disabled ports */ 327 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 328 continue; 329 printf("\nStatistics for cryptodev %"PRIu64 330 " -------------------------" 331 "\nPackets enqueued: %28"PRIu64 332 "\nPackets dequeued: %28"PRIu64 333 "\nPackets errors: %30"PRIu64, 334 cdevid, 335 crypto_statistics[cdevid].enqueued, 336 crypto_statistics[cdevid].dequeued, 337 crypto_statistics[cdevid].errors); 338 339 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 340 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 341 total_packets_errors += crypto_statistics[cdevid].errors; 342 } 343 printf("\nAggregate statistics ===============================" 344 "\nTotal packets received: %22"PRIu64 345 "\nTotal packets enqueued: %22"PRIu64 346 "\nTotal packets dequeued: %22"PRIu64 347 "\nTotal packets sent: %26"PRIu64 348 "\nTotal packets dropped: %23"PRIu64 349 "\nTotal packets crypto errors: %17"PRIu64, 350 total_packets_rx, 351 total_packets_enqueued, 352 total_packets_dequeued, 353 total_packets_tx, 354 total_packets_dropped, 355 total_packets_errors); 356 printf("\n====================================================\n"); 357 } 358 359 static int 360 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 361 struct l2fwd_crypto_params *cparams) 362 { 363 struct rte_crypto_op **op_buffer; 364 unsigned ret; 365 366 op_buffer = (struct rte_crypto_op **) 367 qconf->op_buf[cparams->dev_id].buffer; 368 369 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 370 cparams->qp_id, op_buffer, (uint16_t) n); 371 372 crypto_statistics[cparams->dev_id].enqueued += ret; 373 if (unlikely(ret < n)) { 374 crypto_statistics[cparams->dev_id].errors += (n - ret); 375 do { 376 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 377 rte_crypto_op_free(op_buffer[ret]); 378 } while (++ret < n); 379 } 380 381 return 0; 382 } 383 384 static int 385 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 386 struct l2fwd_crypto_params *cparams) 387 { 388 unsigned lcore_id, len; 389 struct lcore_queue_conf *qconf; 390 391 lcore_id = rte_lcore_id(); 392 393 qconf = &lcore_queue_conf[lcore_id]; 394 len = qconf->op_buf[cparams->dev_id].len; 395 qconf->op_buf[cparams->dev_id].buffer[len] = op; 396 len++; 397 398 /* enough ops to be sent */ 399 if (len == MAX_PKT_BURST) { 400 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 401 len = 0; 402 } 403 404 qconf->op_buf[cparams->dev_id].len = len; 405 return 0; 406 } 407 408 static int 409 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 410 struct rte_crypto_op *op, 411 struct l2fwd_crypto_params *cparams) 412 { 413 struct ether_hdr *eth_hdr; 414 struct ipv4_hdr *ip_hdr; 415 416 uint32_t ipdata_offset, data_len; 417 uint32_t pad_len = 0; 418 char *padding; 419 420 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 421 422 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 423 return -1; 424 425 ipdata_offset = sizeof(struct ether_hdr); 426 427 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 428 ipdata_offset); 429 430 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 431 * IPV4_IHL_MULTIPLIER; 432 433 434 /* Zero pad data to be crypto'd so it is block aligned */ 435 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 436 437 if (cparams->do_hash && cparams->hash_verify) 438 data_len -= cparams->digest_length; 439 440 if (cparams->do_cipher) { 441 /* 442 * Following algorithms are block cipher algorithms, 443 * and might need padding 444 */ 445 switch (cparams->cipher_algo) { 446 case RTE_CRYPTO_CIPHER_AES_CBC: 447 case RTE_CRYPTO_CIPHER_AES_ECB: 448 case RTE_CRYPTO_CIPHER_DES_CBC: 449 case RTE_CRYPTO_CIPHER_3DES_CBC: 450 case RTE_CRYPTO_CIPHER_3DES_ECB: 451 if (data_len % cparams->block_size) 452 pad_len = cparams->block_size - 453 (data_len % cparams->block_size); 454 break; 455 default: 456 pad_len = 0; 457 } 458 459 if (pad_len) { 460 padding = rte_pktmbuf_append(m, pad_len); 461 if (unlikely(!padding)) 462 return -1; 463 464 data_len += pad_len; 465 memset(padding, 0, pad_len); 466 } 467 } 468 469 /* Set crypto operation data parameters */ 470 rte_crypto_op_attach_sym_session(op, cparams->session); 471 472 if (cparams->do_hash) { 473 if (cparams->auth_iv.length) { 474 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 475 uint8_t *, 476 IV_OFFSET + 477 cparams->cipher_iv.length); 478 /* 479 * Copy IV at the end of the crypto operation, 480 * after the cipher IV, if added 481 */ 482 rte_memcpy(iv_ptr, cparams->auth_iv.data, 483 cparams->auth_iv.length); 484 } 485 if (!cparams->hash_verify) { 486 /* Append space for digest to end of packet */ 487 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 488 cparams->digest_length); 489 } else { 490 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 491 uint8_t *) + ipdata_offset + data_len; 492 } 493 494 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 495 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 496 497 /* For wireless algorithms, offset/length must be in bits */ 498 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 499 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 500 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 501 op->sym->auth.data.offset = ipdata_offset << 3; 502 op->sym->auth.data.length = data_len << 3; 503 } else { 504 op->sym->auth.data.offset = ipdata_offset; 505 op->sym->auth.data.length = data_len; 506 } 507 } 508 509 if (cparams->do_cipher) { 510 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 511 IV_OFFSET); 512 /* Copy IV at the end of the crypto operation */ 513 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 514 cparams->cipher_iv.length); 515 516 /* For wireless algorithms, offset/length must be in bits */ 517 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 518 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 519 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 520 op->sym->cipher.data.offset = ipdata_offset << 3; 521 op->sym->cipher.data.length = data_len << 3; 522 } else { 523 op->sym->cipher.data.offset = ipdata_offset; 524 op->sym->cipher.data.length = data_len; 525 } 526 } 527 528 if (cparams->do_aead) { 529 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 530 IV_OFFSET); 531 /* Copy IV at the end of the crypto operation */ 532 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 533 534 op->sym->aead.data.offset = ipdata_offset; 535 op->sym->aead.data.length = data_len; 536 537 if (!cparams->hash_verify) { 538 /* Append space for digest to end of packet */ 539 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 540 cparams->digest_length); 541 } else { 542 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 543 uint8_t *) + ipdata_offset + data_len; 544 } 545 546 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 547 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 548 549 if (cparams->aad.length) { 550 op->sym->aead.aad.data = cparams->aad.data; 551 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 552 } 553 } 554 555 op->sym->m_src = m; 556 557 return l2fwd_crypto_enqueue(op, cparams); 558 } 559 560 561 /* Send the burst of packets on an output interface */ 562 static int 563 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 564 uint8_t port) 565 { 566 struct rte_mbuf **pkt_buffer; 567 unsigned ret; 568 569 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 570 571 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 572 port_statistics[port].tx += ret; 573 if (unlikely(ret < n)) { 574 port_statistics[port].dropped += (n - ret); 575 do { 576 rte_pktmbuf_free(pkt_buffer[ret]); 577 } while (++ret < n); 578 } 579 580 return 0; 581 } 582 583 /* Enqueue packets for TX and prepare them to be sent */ 584 static int 585 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 586 { 587 unsigned lcore_id, len; 588 struct lcore_queue_conf *qconf; 589 590 lcore_id = rte_lcore_id(); 591 592 qconf = &lcore_queue_conf[lcore_id]; 593 len = qconf->pkt_buf[port].len; 594 qconf->pkt_buf[port].buffer[len] = m; 595 len++; 596 597 /* enough pkts to be sent */ 598 if (unlikely(len == MAX_PKT_BURST)) { 599 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 600 len = 0; 601 } 602 603 qconf->pkt_buf[port].len = len; 604 return 0; 605 } 606 607 static void 608 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 609 { 610 struct ether_hdr *eth; 611 void *tmp; 612 unsigned dst_port; 613 614 dst_port = l2fwd_dst_ports[portid]; 615 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 616 617 /* 02:00:00:00:00:xx */ 618 tmp = ð->d_addr.addr_bytes[0]; 619 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); 620 621 /* src addr */ 622 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 623 624 l2fwd_send_packet(m, (uint8_t) dst_port); 625 } 626 627 /** Generate random key */ 628 static void 629 generate_random_key(uint8_t *key, unsigned length) 630 { 631 int fd; 632 int ret; 633 634 fd = open("/dev/urandom", O_RDONLY); 635 if (fd < 0) 636 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 637 638 ret = read(fd, key, length); 639 close(fd); 640 641 if (ret != (signed)length) 642 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 643 } 644 645 static struct rte_cryptodev_sym_session * 646 initialize_crypto_session(struct l2fwd_crypto_options *options, 647 uint8_t cdev_id) 648 { 649 struct rte_crypto_sym_xform *first_xform; 650 651 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 652 first_xform = &options->aead_xform; 653 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 654 first_xform = &options->cipher_xform; 655 first_xform->next = &options->auth_xform; 656 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 657 first_xform = &options->auth_xform; 658 first_xform->next = &options->cipher_xform; 659 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 660 first_xform = &options->cipher_xform; 661 } else { 662 first_xform = &options->auth_xform; 663 } 664 665 /* Setup Cipher Parameters */ 666 return rte_cryptodev_sym_session_create(cdev_id, first_xform); 667 } 668 669 static void 670 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 671 672 /* main processing loop */ 673 static void 674 l2fwd_main_loop(struct l2fwd_crypto_options *options) 675 { 676 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 677 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 678 679 unsigned lcore_id = rte_lcore_id(); 680 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 681 unsigned i, j, portid, nb_rx, len; 682 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 683 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 684 US_PER_S * BURST_TX_DRAIN_US; 685 struct l2fwd_crypto_params *cparams; 686 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 687 688 if (qconf->nb_rx_ports == 0) { 689 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 690 return; 691 } 692 693 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 694 695 for (i = 0; i < qconf->nb_rx_ports; i++) { 696 697 portid = qconf->rx_port_list[i]; 698 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 699 portid); 700 } 701 702 for (i = 0; i < qconf->nb_crypto_devs; i++) { 703 port_cparams[i].do_cipher = 0; 704 port_cparams[i].do_hash = 0; 705 port_cparams[i].do_aead = 0; 706 707 switch (options->xform_chain) { 708 case L2FWD_CRYPTO_AEAD: 709 port_cparams[i].do_aead = 1; 710 break; 711 case L2FWD_CRYPTO_CIPHER_HASH: 712 case L2FWD_CRYPTO_HASH_CIPHER: 713 port_cparams[i].do_cipher = 1; 714 port_cparams[i].do_hash = 1; 715 break; 716 case L2FWD_CRYPTO_HASH_ONLY: 717 port_cparams[i].do_hash = 1; 718 break; 719 case L2FWD_CRYPTO_CIPHER_ONLY: 720 port_cparams[i].do_cipher = 1; 721 break; 722 } 723 724 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 725 port_cparams[i].qp_id = 0; 726 727 port_cparams[i].block_size = options->block_size; 728 729 if (port_cparams[i].do_hash) { 730 port_cparams[i].auth_iv.data = options->auth_iv.data; 731 port_cparams[i].auth_iv.length = options->auth_iv.length; 732 if (!options->auth_iv_param) 733 generate_random_key(port_cparams[i].auth_iv.data, 734 port_cparams[i].auth_iv.length); 735 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 736 port_cparams[i].hash_verify = 1; 737 else 738 port_cparams[i].hash_verify = 0; 739 740 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 741 /* Set IV parameters */ 742 if (options->auth_iv.length) { 743 options->auth_xform.auth.iv.offset = 744 IV_OFFSET + options->cipher_iv.length; 745 options->auth_xform.auth.iv.length = 746 options->auth_iv.length; 747 } 748 } 749 750 if (port_cparams[i].do_aead) { 751 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 752 port_cparams[i].digest_length = 753 options->aead_xform.aead.digest_length; 754 if (options->aead_xform.aead.add_auth_data_length) { 755 port_cparams[i].aad.data = options->aad.data; 756 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 757 port_cparams[i].aad.length = options->aad.length; 758 if (!options->aad_param) 759 generate_random_key(port_cparams[i].aad.data, 760 port_cparams[i].aad.length); 761 762 } else 763 port_cparams[i].aad.length = 0; 764 765 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 766 port_cparams[i].hash_verify = 1; 767 else 768 port_cparams[i].hash_verify = 0; 769 770 /* Set IV parameters */ 771 options->aead_xform.aead.iv.offset = IV_OFFSET; 772 options->aead_xform.aead.iv.length = options->aead_iv.length; 773 } 774 775 if (port_cparams[i].do_cipher) { 776 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 777 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 778 if (!options->cipher_iv_param) 779 generate_random_key(port_cparams[i].cipher_iv.data, 780 port_cparams[i].cipher_iv.length); 781 782 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 783 /* Set IV parameters */ 784 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 785 options->cipher_xform.cipher.iv.length = 786 options->cipher_iv.length; 787 } 788 789 port_cparams[i].session = initialize_crypto_session(options, 790 port_cparams[i].dev_id); 791 792 if (port_cparams[i].session == NULL) 793 return; 794 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 795 port_cparams[i].dev_id); 796 } 797 798 l2fwd_crypto_options_print(options); 799 800 /* 801 * Initialize previous tsc timestamp before the loop, 802 * to avoid showing the port statistics immediately, 803 * so user can see the crypto information. 804 */ 805 prev_tsc = rte_rdtsc(); 806 while (1) { 807 808 cur_tsc = rte_rdtsc(); 809 810 /* 811 * Crypto device/TX burst queue drain 812 */ 813 diff_tsc = cur_tsc - prev_tsc; 814 if (unlikely(diff_tsc > drain_tsc)) { 815 /* Enqueue all crypto ops remaining in buffers */ 816 for (i = 0; i < qconf->nb_crypto_devs; i++) { 817 cparams = &port_cparams[i]; 818 len = qconf->op_buf[cparams->dev_id].len; 819 l2fwd_crypto_send_burst(qconf, len, cparams); 820 qconf->op_buf[cparams->dev_id].len = 0; 821 } 822 /* Transmit all packets remaining in buffers */ 823 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 824 if (qconf->pkt_buf[portid].len == 0) 825 continue; 826 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 827 qconf->pkt_buf[portid].len, 828 (uint8_t) portid); 829 qconf->pkt_buf[portid].len = 0; 830 } 831 832 /* if timer is enabled */ 833 if (timer_period > 0) { 834 835 /* advance the timer */ 836 timer_tsc += diff_tsc; 837 838 /* if timer has reached its timeout */ 839 if (unlikely(timer_tsc >= 840 (uint64_t)timer_period)) { 841 842 /* do this only on master core */ 843 if (lcore_id == rte_get_master_lcore() 844 && options->refresh_period) { 845 print_stats(); 846 timer_tsc = 0; 847 } 848 } 849 } 850 851 prev_tsc = cur_tsc; 852 } 853 854 /* 855 * Read packet from RX queues 856 */ 857 for (i = 0; i < qconf->nb_rx_ports; i++) { 858 portid = qconf->rx_port_list[i]; 859 860 cparams = &port_cparams[i]; 861 862 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 863 pkts_burst, MAX_PKT_BURST); 864 865 port_statistics[portid].rx += nb_rx; 866 867 if (nb_rx) { 868 /* 869 * If we can't allocate a crypto_ops, then drop 870 * the rest of the burst and dequeue and 871 * process the packets to free offload structs 872 */ 873 if (rte_crypto_op_bulk_alloc( 874 l2fwd_crypto_op_pool, 875 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 876 ops_burst, nb_rx) != 877 nb_rx) { 878 for (j = 0; j < nb_rx; j++) 879 rte_pktmbuf_free(pkts_burst[j]); 880 881 nb_rx = 0; 882 } 883 884 /* Enqueue packets from Crypto device*/ 885 for (j = 0; j < nb_rx; j++) { 886 m = pkts_burst[j]; 887 888 l2fwd_simple_crypto_enqueue(m, 889 ops_burst[j], cparams); 890 } 891 } 892 893 /* Dequeue packets from Crypto device */ 894 do { 895 nb_rx = rte_cryptodev_dequeue_burst( 896 cparams->dev_id, cparams->qp_id, 897 ops_burst, MAX_PKT_BURST); 898 899 crypto_statistics[cparams->dev_id].dequeued += 900 nb_rx; 901 902 /* Forward crypto'd packets */ 903 for (j = 0; j < nb_rx; j++) { 904 m = ops_burst[j]->sym->m_src; 905 906 rte_crypto_op_free(ops_burst[j]); 907 l2fwd_simple_forward(m, portid); 908 } 909 } while (nb_rx == MAX_PKT_BURST); 910 } 911 } 912 } 913 914 static int 915 l2fwd_launch_one_lcore(void *arg) 916 { 917 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 918 return 0; 919 } 920 921 /* Display command line arguments usage */ 922 static void 923 l2fwd_crypto_usage(const char *prgname) 924 { 925 printf("%s [EAL options] --\n" 926 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 927 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 928 " -s manage all ports from single lcore\n" 929 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 930 " (0 to disable, 10 default, 86400 maximum)\n" 931 932 " --cdev_type HW / SW / ANY\n" 933 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 934 " HASH_ONLY / AEAD\n" 935 936 " --cipher_algo ALGO\n" 937 " --cipher_op ENCRYPT / DECRYPT\n" 938 " --cipher_key KEY (bytes separated with \":\")\n" 939 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 940 " --cipher_iv IV (bytes separated with \":\")\n" 941 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 942 943 " --auth_algo ALGO\n" 944 " --auth_op GENERATE / VERIFY\n" 945 " --auth_key KEY (bytes separated with \":\")\n" 946 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 947 " --auth_iv IV (bytes separated with \":\")\n" 948 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 949 950 " --aead_algo ALGO\n" 951 " --aead_op ENCRYPT / DECRYPT\n" 952 " --aead_key KEY (bytes separated with \":\")\n" 953 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 954 " --aead_iv IV (bytes separated with \":\")\n" 955 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 956 " --aad AAD (bytes separated with \":\")\n" 957 " --aad_random_size SIZE: size of AAD when generated randomly\n" 958 959 " --digest_size SIZE: size of digest to be generated/verified\n" 960 961 " --sessionless\n" 962 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n", 963 prgname); 964 } 965 966 /** Parse crypto device type command line argument */ 967 static int 968 parse_cryptodev_type(enum cdev_type *type, char *optarg) 969 { 970 if (strcmp("HW", optarg) == 0) { 971 *type = CDEV_TYPE_HW; 972 return 0; 973 } else if (strcmp("SW", optarg) == 0) { 974 *type = CDEV_TYPE_SW; 975 return 0; 976 } else if (strcmp("ANY", optarg) == 0) { 977 *type = CDEV_TYPE_ANY; 978 return 0; 979 } 980 981 return -1; 982 } 983 984 /** Parse crypto chain xform command line argument */ 985 static int 986 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 987 { 988 if (strcmp("CIPHER_HASH", optarg) == 0) { 989 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 990 return 0; 991 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 992 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 993 return 0; 994 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 995 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 996 return 0; 997 } else if (strcmp("HASH_ONLY", optarg) == 0) { 998 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 999 return 0; 1000 } else if (strcmp("AEAD", optarg) == 0) { 1001 options->xform_chain = L2FWD_CRYPTO_AEAD; 1002 return 0; 1003 } 1004 1005 return -1; 1006 } 1007 1008 /** Parse crypto cipher algo option command line argument */ 1009 static int 1010 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1011 { 1012 1013 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1014 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1015 "not supported!\n"); 1016 return -1; 1017 } 1018 1019 return 0; 1020 } 1021 1022 /** Parse crypto cipher operation command line argument */ 1023 static int 1024 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1025 { 1026 if (strcmp("ENCRYPT", optarg) == 0) { 1027 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1028 return 0; 1029 } else if (strcmp("DECRYPT", optarg) == 0) { 1030 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1031 return 0; 1032 } 1033 1034 printf("Cipher operation not supported!\n"); 1035 return -1; 1036 } 1037 1038 /** Parse crypto key command line argument */ 1039 static int 1040 parse_key(uint8_t *data, char *input_arg) 1041 { 1042 unsigned byte_count; 1043 char *token; 1044 1045 for (byte_count = 0, token = strtok(input_arg, ":"); 1046 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1047 token = strtok(NULL, ":")) { 1048 1049 int number = (int)strtol(token, NULL, 16); 1050 1051 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1052 return -1; 1053 1054 data[byte_count++] = (uint8_t)number; 1055 } 1056 1057 return byte_count; 1058 } 1059 1060 /** Parse size param*/ 1061 static int 1062 parse_size(int *size, const char *q_arg) 1063 { 1064 char *end = NULL; 1065 unsigned long n; 1066 1067 /* parse hexadecimal string */ 1068 n = strtoul(q_arg, &end, 10); 1069 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1070 n = 0; 1071 1072 if (n == 0) { 1073 printf("invalid size\n"); 1074 return -1; 1075 } 1076 1077 *size = n; 1078 return 0; 1079 } 1080 1081 /** Parse crypto cipher operation command line argument */ 1082 static int 1083 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1084 { 1085 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1086 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1087 "not supported!\n"); 1088 return -1; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int 1095 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1096 { 1097 if (strcmp("VERIFY", optarg) == 0) { 1098 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1099 return 0; 1100 } else if (strcmp("GENERATE", optarg) == 0) { 1101 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1102 return 0; 1103 } 1104 1105 printf("Authentication operation specified not supported!\n"); 1106 return -1; 1107 } 1108 1109 static int 1110 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1111 { 1112 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1113 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1114 "not supported!\n"); 1115 return -1; 1116 } 1117 1118 return 0; 1119 } 1120 1121 static int 1122 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1123 { 1124 if (strcmp("ENCRYPT", optarg) == 0) { 1125 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1126 return 0; 1127 } else if (strcmp("DECRYPT", optarg) == 0) { 1128 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1129 return 0; 1130 } 1131 1132 printf("AEAD operation specified not supported!\n"); 1133 return -1; 1134 } 1135 static int 1136 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1137 const char *q_arg) 1138 { 1139 char *end = NULL; 1140 uint64_t pm; 1141 1142 /* parse hexadecimal string */ 1143 pm = strtoul(q_arg, &end, 16); 1144 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1145 pm = 0; 1146 1147 options->cryptodev_mask = pm; 1148 if (options->cryptodev_mask == 0) { 1149 printf("invalid cryptodev_mask specified\n"); 1150 return -1; 1151 } 1152 1153 return 0; 1154 } 1155 1156 /** Parse long options */ 1157 static int 1158 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1159 struct option *lgopts, int option_index) 1160 { 1161 int retval; 1162 1163 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1164 retval = parse_cryptodev_type(&options->type, optarg); 1165 if (retval == 0) 1166 snprintf(options->string_type, MAX_STR_LEN, 1167 "%s", optarg); 1168 return retval; 1169 } 1170 1171 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1172 return parse_crypto_opt_chain(options, optarg); 1173 1174 /* Cipher options */ 1175 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1176 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1177 optarg); 1178 1179 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1180 return parse_cipher_op(&options->cipher_xform.cipher.op, 1181 optarg); 1182 1183 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1184 options->ckey_param = 1; 1185 options->cipher_xform.cipher.key.length = 1186 parse_key(options->cipher_xform.cipher.key.data, optarg); 1187 if (options->cipher_xform.cipher.key.length > 0) 1188 return 0; 1189 else 1190 return -1; 1191 } 1192 1193 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1194 return parse_size(&options->ckey_random_size, optarg); 1195 1196 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1197 options->cipher_iv_param = 1; 1198 options->cipher_iv.length = 1199 parse_key(options->cipher_iv.data, optarg); 1200 if (options->cipher_iv.length > 0) 1201 return 0; 1202 else 1203 return -1; 1204 } 1205 1206 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1207 return parse_size(&options->cipher_iv_random_size, optarg); 1208 1209 /* Authentication options */ 1210 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1211 return parse_auth_algo(&options->auth_xform.auth.algo, 1212 optarg); 1213 } 1214 1215 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1216 return parse_auth_op(&options->auth_xform.auth.op, 1217 optarg); 1218 1219 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1220 options->akey_param = 1; 1221 options->auth_xform.auth.key.length = 1222 parse_key(options->auth_xform.auth.key.data, optarg); 1223 if (options->auth_xform.auth.key.length > 0) 1224 return 0; 1225 else 1226 return -1; 1227 } 1228 1229 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1230 return parse_size(&options->akey_random_size, optarg); 1231 } 1232 1233 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1234 options->auth_iv_param = 1; 1235 options->auth_iv.length = 1236 parse_key(options->auth_iv.data, optarg); 1237 if (options->auth_iv.length > 0) 1238 return 0; 1239 else 1240 return -1; 1241 } 1242 1243 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1244 return parse_size(&options->auth_iv_random_size, optarg); 1245 1246 /* AEAD options */ 1247 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1248 return parse_aead_algo(&options->aead_xform.aead.algo, 1249 optarg); 1250 } 1251 1252 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1253 return parse_aead_op(&options->aead_xform.aead.op, 1254 optarg); 1255 1256 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1257 options->aead_key_param = 1; 1258 options->aead_xform.aead.key.length = 1259 parse_key(options->aead_xform.aead.key.data, optarg); 1260 if (options->aead_xform.aead.key.length > 0) 1261 return 0; 1262 else 1263 return -1; 1264 } 1265 1266 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1267 return parse_size(&options->aead_key_random_size, optarg); 1268 1269 1270 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1271 options->aead_iv_param = 1; 1272 options->aead_iv.length = 1273 parse_key(options->aead_iv.data, optarg); 1274 if (options->aead_iv.length > 0) 1275 return 0; 1276 else 1277 return -1; 1278 } 1279 1280 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1281 return parse_size(&options->aead_iv_random_size, optarg); 1282 1283 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1284 options->aad_param = 1; 1285 options->aad.length = 1286 parse_key(options->aad.data, optarg); 1287 if (options->aad.length > 0) 1288 return 0; 1289 else 1290 return -1; 1291 } 1292 1293 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1294 return parse_size(&options->aad_random_size, optarg); 1295 } 1296 1297 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1298 return parse_size(&options->digest_size, optarg); 1299 } 1300 1301 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1302 options->sessionless = 1; 1303 return 0; 1304 } 1305 1306 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1307 return parse_cryptodev_mask(options, optarg); 1308 1309 return -1; 1310 } 1311 1312 /** Parse port mask */ 1313 static int 1314 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1315 const char *q_arg) 1316 { 1317 char *end = NULL; 1318 unsigned long pm; 1319 1320 /* parse hexadecimal string */ 1321 pm = strtoul(q_arg, &end, 16); 1322 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1323 pm = 0; 1324 1325 options->portmask = pm; 1326 if (options->portmask == 0) { 1327 printf("invalid portmask specified\n"); 1328 return -1; 1329 } 1330 1331 return pm; 1332 } 1333 1334 /** Parse number of queues */ 1335 static int 1336 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1337 const char *q_arg) 1338 { 1339 char *end = NULL; 1340 unsigned long n; 1341 1342 /* parse hexadecimal string */ 1343 n = strtoul(q_arg, &end, 10); 1344 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1345 n = 0; 1346 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1347 n = 0; 1348 1349 options->nb_ports_per_lcore = n; 1350 if (options->nb_ports_per_lcore == 0) { 1351 printf("invalid number of ports selected\n"); 1352 return -1; 1353 } 1354 1355 return 0; 1356 } 1357 1358 /** Parse timer period */ 1359 static int 1360 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1361 const char *q_arg) 1362 { 1363 char *end = NULL; 1364 unsigned long n; 1365 1366 /* parse number string */ 1367 n = (unsigned)strtol(q_arg, &end, 10); 1368 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1369 n = 0; 1370 1371 if (n >= MAX_TIMER_PERIOD) { 1372 printf("Warning refresh period specified %lu is greater than " 1373 "max value %lu! using max value", 1374 n, MAX_TIMER_PERIOD); 1375 n = MAX_TIMER_PERIOD; 1376 } 1377 1378 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1379 1380 return 0; 1381 } 1382 1383 /** Generate default options for application */ 1384 static void 1385 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1386 { 1387 options->portmask = 0xffffffff; 1388 options->nb_ports_per_lcore = 1; 1389 options->refresh_period = 10000; 1390 options->single_lcore = 0; 1391 options->sessionless = 0; 1392 1393 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1394 1395 /* Cipher Data */ 1396 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1397 options->cipher_xform.next = NULL; 1398 options->ckey_param = 0; 1399 options->ckey_random_size = -1; 1400 options->cipher_xform.cipher.key.length = 0; 1401 options->cipher_iv_param = 0; 1402 options->cipher_iv_random_size = -1; 1403 options->cipher_iv.length = 0; 1404 1405 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1406 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1407 1408 /* Authentication Data */ 1409 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1410 options->auth_xform.next = NULL; 1411 options->akey_param = 0; 1412 options->akey_random_size = -1; 1413 options->auth_xform.auth.key.length = 0; 1414 options->auth_iv_param = 0; 1415 options->auth_iv_random_size = -1; 1416 options->auth_iv.length = 0; 1417 1418 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1419 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1420 1421 /* AEAD Data */ 1422 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1423 options->aead_xform.next = NULL; 1424 options->aead_key_param = 0; 1425 options->aead_key_random_size = -1; 1426 options->aead_xform.aead.key.length = 0; 1427 options->aead_iv_param = 0; 1428 options->aead_iv_random_size = -1; 1429 options->aead_iv.length = 0; 1430 1431 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1432 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1433 1434 options->aad_param = 0; 1435 options->aad_random_size = -1; 1436 options->aad.length = 0; 1437 1438 options->digest_size = -1; 1439 1440 options->type = CDEV_TYPE_ANY; 1441 options->cryptodev_mask = UINT64_MAX; 1442 } 1443 1444 static void 1445 display_cipher_info(struct l2fwd_crypto_options *options) 1446 { 1447 printf("\n---- Cipher information ---\n"); 1448 printf("Algorithm: %s\n", 1449 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1450 rte_hexdump(stdout, "Cipher key:", 1451 options->cipher_xform.cipher.key.data, 1452 options->cipher_xform.cipher.key.length); 1453 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1454 } 1455 1456 static void 1457 display_auth_info(struct l2fwd_crypto_options *options) 1458 { 1459 printf("\n---- Authentication information ---\n"); 1460 printf("Algorithm: %s\n", 1461 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1462 rte_hexdump(stdout, "Auth key:", 1463 options->auth_xform.auth.key.data, 1464 options->auth_xform.auth.key.length); 1465 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1466 } 1467 1468 static void 1469 display_aead_info(struct l2fwd_crypto_options *options) 1470 { 1471 printf("\n---- AEAD information ---\n"); 1472 printf("Algorithm: %s\n", 1473 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1474 rte_hexdump(stdout, "AEAD key:", 1475 options->aead_xform.aead.key.data, 1476 options->aead_xform.aead.key.length); 1477 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1478 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1479 } 1480 1481 static void 1482 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1483 { 1484 char string_cipher_op[MAX_STR_LEN]; 1485 char string_auth_op[MAX_STR_LEN]; 1486 char string_aead_op[MAX_STR_LEN]; 1487 1488 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1489 strcpy(string_cipher_op, "Encrypt"); 1490 else 1491 strcpy(string_cipher_op, "Decrypt"); 1492 1493 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1494 strcpy(string_auth_op, "Auth generate"); 1495 else 1496 strcpy(string_auth_op, "Auth verify"); 1497 1498 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1499 strcpy(string_aead_op, "Authenticated encryption"); 1500 else 1501 strcpy(string_aead_op, "Authenticated decryption"); 1502 1503 1504 printf("Options:-\nn"); 1505 printf("portmask: %x\n", options->portmask); 1506 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1507 printf("refresh period : %u\n", options->refresh_period); 1508 printf("single lcore mode: %s\n", 1509 options->single_lcore ? "enabled" : "disabled"); 1510 printf("stats_printing: %s\n", 1511 options->refresh_period == 0 ? "disabled" : "enabled"); 1512 1513 printf("sessionless crypto: %s\n", 1514 options->sessionless ? "enabled" : "disabled"); 1515 1516 if (options->ckey_param && (options->ckey_random_size != -1)) 1517 printf("Cipher key already parsed, ignoring size of random key\n"); 1518 1519 if (options->akey_param && (options->akey_random_size != -1)) 1520 printf("Auth key already parsed, ignoring size of random key\n"); 1521 1522 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1523 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1524 1525 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1526 printf("Auth IV already parsed, ignoring size of random IV\n"); 1527 1528 if (options->aad_param && (options->aad_random_size != -1)) 1529 printf("AAD already parsed, ignoring size of random AAD\n"); 1530 1531 printf("\nCrypto chain: "); 1532 switch (options->xform_chain) { 1533 case L2FWD_CRYPTO_AEAD: 1534 printf("Input --> %s --> Output\n", string_aead_op); 1535 display_aead_info(options); 1536 break; 1537 case L2FWD_CRYPTO_CIPHER_HASH: 1538 printf("Input --> %s --> %s --> Output\n", 1539 string_cipher_op, string_auth_op); 1540 display_cipher_info(options); 1541 display_auth_info(options); 1542 break; 1543 case L2FWD_CRYPTO_HASH_CIPHER: 1544 printf("Input --> %s --> %s --> Output\n", 1545 string_auth_op, string_cipher_op); 1546 display_cipher_info(options); 1547 display_auth_info(options); 1548 break; 1549 case L2FWD_CRYPTO_HASH_ONLY: 1550 printf("Input --> %s --> Output\n", string_auth_op); 1551 display_auth_info(options); 1552 break; 1553 case L2FWD_CRYPTO_CIPHER_ONLY: 1554 printf("Input --> %s --> Output\n", string_cipher_op); 1555 display_cipher_info(options); 1556 break; 1557 } 1558 } 1559 1560 /* Parse the argument given in the command line of the application */ 1561 static int 1562 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1563 int argc, char **argv) 1564 { 1565 int opt, retval, option_index; 1566 char **argvopt = argv, *prgname = argv[0]; 1567 1568 static struct option lgopts[] = { 1569 { "sessionless", no_argument, 0, 0 }, 1570 1571 { "cdev_type", required_argument, 0, 0 }, 1572 { "chain", required_argument, 0, 0 }, 1573 1574 { "cipher_algo", required_argument, 0, 0 }, 1575 { "cipher_op", required_argument, 0, 0 }, 1576 { "cipher_key", required_argument, 0, 0 }, 1577 { "cipher_key_random_size", required_argument, 0, 0 }, 1578 { "cipher_iv", required_argument, 0, 0 }, 1579 { "cipher_iv_random_size", required_argument, 0, 0 }, 1580 1581 { "auth_algo", required_argument, 0, 0 }, 1582 { "auth_op", required_argument, 0, 0 }, 1583 { "auth_key", required_argument, 0, 0 }, 1584 { "auth_key_random_size", required_argument, 0, 0 }, 1585 { "auth_iv", required_argument, 0, 0 }, 1586 { "auth_iv_random_size", required_argument, 0, 0 }, 1587 1588 { "aead_algo", required_argument, 0, 0 }, 1589 { "aead_op", required_argument, 0, 0 }, 1590 { "aead_key", required_argument, 0, 0 }, 1591 { "aead_key_random_size", required_argument, 0, 0 }, 1592 { "aead_iv", required_argument, 0, 0 }, 1593 { "aead_iv_random_size", required_argument, 0, 0 }, 1594 1595 { "aad", required_argument, 0, 0 }, 1596 { "aad_random_size", required_argument, 0, 0 }, 1597 1598 { "digest_size", required_argument, 0, 0 }, 1599 1600 { "sessionless", no_argument, 0, 0 }, 1601 { "cryptodev_mask", required_argument, 0, 0}, 1602 1603 { NULL, 0, 0, 0 } 1604 }; 1605 1606 l2fwd_crypto_default_options(options); 1607 1608 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1609 &option_index)) != EOF) { 1610 switch (opt) { 1611 /* long options */ 1612 case 0: 1613 retval = l2fwd_crypto_parse_args_long_options(options, 1614 lgopts, option_index); 1615 if (retval < 0) { 1616 l2fwd_crypto_usage(prgname); 1617 return -1; 1618 } 1619 break; 1620 1621 /* portmask */ 1622 case 'p': 1623 retval = l2fwd_crypto_parse_portmask(options, optarg); 1624 if (retval < 0) { 1625 l2fwd_crypto_usage(prgname); 1626 return -1; 1627 } 1628 break; 1629 1630 /* nqueue */ 1631 case 'q': 1632 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1633 if (retval < 0) { 1634 l2fwd_crypto_usage(prgname); 1635 return -1; 1636 } 1637 break; 1638 1639 /* single */ 1640 case 's': 1641 options->single_lcore = 1; 1642 1643 break; 1644 1645 /* timer period */ 1646 case 'T': 1647 retval = l2fwd_crypto_parse_timer_period(options, 1648 optarg); 1649 if (retval < 0) { 1650 l2fwd_crypto_usage(prgname); 1651 return -1; 1652 } 1653 break; 1654 1655 default: 1656 l2fwd_crypto_usage(prgname); 1657 return -1; 1658 } 1659 } 1660 1661 1662 if (optind >= 0) 1663 argv[optind-1] = prgname; 1664 1665 retval = optind-1; 1666 optind = 1; /* reset getopt lib */ 1667 1668 return retval; 1669 } 1670 1671 /* Check the link status of all ports in up to 9s, and print them finally */ 1672 static void 1673 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1674 { 1675 #define CHECK_INTERVAL 100 /* 100ms */ 1676 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1677 uint8_t portid, count, all_ports_up, print_flag = 0; 1678 struct rte_eth_link link; 1679 1680 printf("\nChecking link status"); 1681 fflush(stdout); 1682 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1683 all_ports_up = 1; 1684 for (portid = 0; portid < port_num; portid++) { 1685 if ((port_mask & (1 << portid)) == 0) 1686 continue; 1687 memset(&link, 0, sizeof(link)); 1688 rte_eth_link_get_nowait(portid, &link); 1689 /* print link status if flag set */ 1690 if (print_flag == 1) { 1691 if (link.link_status) 1692 printf("Port %d Link Up - speed %u " 1693 "Mbps - %s\n", (uint8_t)portid, 1694 (unsigned)link.link_speed, 1695 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1696 ("full-duplex") : ("half-duplex\n")); 1697 else 1698 printf("Port %d Link Down\n", 1699 (uint8_t)portid); 1700 continue; 1701 } 1702 /* clear all_ports_up flag if any link down */ 1703 if (link.link_status == ETH_LINK_DOWN) { 1704 all_ports_up = 0; 1705 break; 1706 } 1707 } 1708 /* after finally printing all link status, get out */ 1709 if (print_flag == 1) 1710 break; 1711 1712 if (all_ports_up == 0) { 1713 printf("."); 1714 fflush(stdout); 1715 rte_delay_ms(CHECK_INTERVAL); 1716 } 1717 1718 /* set the print_flag if all ports up or timeout */ 1719 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1720 print_flag = 1; 1721 printf("done\n"); 1722 } 1723 } 1724 } 1725 1726 /* Check if device has to be HW/SW or any */ 1727 static int 1728 check_type(const struct l2fwd_crypto_options *options, 1729 const struct rte_cryptodev_info *dev_info) 1730 { 1731 if (options->type == CDEV_TYPE_HW && 1732 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1733 return 0; 1734 if (options->type == CDEV_TYPE_SW && 1735 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1736 return 0; 1737 if (options->type == CDEV_TYPE_ANY) 1738 return 0; 1739 1740 return -1; 1741 } 1742 1743 static const struct rte_cryptodev_capabilities * 1744 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1745 const struct rte_cryptodev_info *dev_info, 1746 uint8_t cdev_id) 1747 { 1748 unsigned int i = 0; 1749 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1750 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1751 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1752 options->cipher_xform.cipher.algo; 1753 1754 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1755 cap_cipher_algo = cap->sym.cipher.algo; 1756 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1757 if (cap_cipher_algo == opt_cipher_algo) { 1758 if (check_type(options, dev_info) == 0) 1759 break; 1760 } 1761 } 1762 cap = &dev_info->capabilities[++i]; 1763 } 1764 1765 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1766 printf("Algorithm %s not supported by cryptodev %u" 1767 " or device not of preferred type (%s)\n", 1768 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1769 cdev_id, 1770 options->string_type); 1771 return NULL; 1772 } 1773 1774 return cap; 1775 } 1776 1777 static const struct rte_cryptodev_capabilities * 1778 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1779 const struct rte_cryptodev_info *dev_info, 1780 uint8_t cdev_id) 1781 { 1782 unsigned int i = 0; 1783 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1784 enum rte_crypto_auth_algorithm cap_auth_algo; 1785 enum rte_crypto_auth_algorithm opt_auth_algo = 1786 options->auth_xform.auth.algo; 1787 1788 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1789 cap_auth_algo = cap->sym.auth.algo; 1790 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1791 if (cap_auth_algo == opt_auth_algo) { 1792 if (check_type(options, dev_info) == 0) 1793 break; 1794 } 1795 } 1796 cap = &dev_info->capabilities[++i]; 1797 } 1798 1799 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1800 printf("Algorithm %s not supported by cryptodev %u" 1801 " or device not of preferred type (%s)\n", 1802 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1803 cdev_id, 1804 options->string_type); 1805 return NULL; 1806 } 1807 1808 return cap; 1809 } 1810 1811 static const struct rte_cryptodev_capabilities * 1812 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1813 const struct rte_cryptodev_info *dev_info, 1814 uint8_t cdev_id) 1815 { 1816 unsigned int i = 0; 1817 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1818 enum rte_crypto_aead_algorithm cap_aead_algo; 1819 enum rte_crypto_aead_algorithm opt_aead_algo = 1820 options->aead_xform.aead.algo; 1821 1822 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1823 cap_aead_algo = cap->sym.aead.algo; 1824 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1825 if (cap_aead_algo == opt_aead_algo) { 1826 if (check_type(options, dev_info) == 0) 1827 break; 1828 } 1829 } 1830 cap = &dev_info->capabilities[++i]; 1831 } 1832 1833 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1834 printf("Algorithm %s not supported by cryptodev %u" 1835 " or device not of preferred type (%s)\n", 1836 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1837 cdev_id, 1838 options->string_type); 1839 return NULL; 1840 } 1841 1842 return cap; 1843 } 1844 1845 /* Check if the device is enabled by cryptodev_mask */ 1846 static int 1847 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1848 uint8_t cdev_id) 1849 { 1850 if (options->cryptodev_mask & (1 << cdev_id)) 1851 return 0; 1852 1853 return -1; 1854 } 1855 1856 static inline int 1857 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1858 uint16_t increment) 1859 { 1860 uint16_t supp_size; 1861 1862 /* Single value */ 1863 if (increment == 0) { 1864 if (length == min) 1865 return 0; 1866 else 1867 return -1; 1868 } 1869 1870 /* Range of values */ 1871 for (supp_size = min; supp_size <= max; supp_size += increment) { 1872 if (length == supp_size) 1873 return 0; 1874 } 1875 1876 return -1; 1877 } 1878 1879 static int 1880 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1881 unsigned int iv_param, int iv_random_size, 1882 uint16_t *iv_length) 1883 { 1884 /* 1885 * Check if length of provided IV is supported 1886 * by the algorithm chosen. 1887 */ 1888 if (iv_param) { 1889 if (check_supported_size(*iv_length, 1890 iv_range_size->min, 1891 iv_range_size->max, 1892 iv_range_size->increment) 1893 != 0) { 1894 printf("Unsupported IV length\n"); 1895 return -1; 1896 } 1897 /* 1898 * Check if length of IV to be randomly generated 1899 * is supported by the algorithm chosen. 1900 */ 1901 } else if (iv_random_size != -1) { 1902 if (check_supported_size(iv_random_size, 1903 iv_range_size->min, 1904 iv_range_size->max, 1905 iv_range_size->increment) 1906 != 0) { 1907 printf("Unsupported IV length\n"); 1908 return -1; 1909 } 1910 *iv_length = iv_random_size; 1911 /* No size provided, use minimum size. */ 1912 } else 1913 *iv_length = iv_range_size->min; 1914 1915 return 0; 1916 } 1917 1918 static int 1919 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1920 uint8_t *enabled_cdevs) 1921 { 1922 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1923 const struct rte_cryptodev_capabilities *cap; 1924 int retval; 1925 1926 cdev_count = rte_cryptodev_count(); 1927 if (cdev_count == 0) { 1928 printf("No crypto devices available\n"); 1929 return -1; 1930 } 1931 1932 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1933 cdev_id++) { 1934 struct rte_cryptodev_qp_conf qp_conf; 1935 struct rte_cryptodev_info dev_info; 1936 1937 struct rte_cryptodev_config conf = { 1938 .nb_queue_pairs = 1, 1939 .socket_id = SOCKET_ID_ANY, 1940 .session_mp = { 1941 .nb_objs = 2048, 1942 .cache_size = 64 1943 } 1944 }; 1945 1946 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 1947 continue; 1948 1949 rte_cryptodev_info_get(cdev_id, &dev_info); 1950 1951 /* Set AEAD parameters */ 1952 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 1953 /* Check if device supports AEAD algo */ 1954 cap = check_device_support_aead_algo(options, &dev_info, 1955 cdev_id); 1956 if (cap == NULL) 1957 continue; 1958 1959 options->block_size = cap->sym.aead.block_size; 1960 1961 check_iv_param(&cap->sym.aead.iv_size, 1962 options->aead_iv_param, 1963 options->aead_iv_random_size, 1964 &options->aead_iv.length); 1965 1966 /* 1967 * Check if length of provided AEAD key is supported 1968 * by the algorithm chosen. 1969 */ 1970 if (options->aead_key_param) { 1971 if (check_supported_size( 1972 options->aead_xform.aead.key.length, 1973 cap->sym.aead.key_size.min, 1974 cap->sym.aead.key_size.max, 1975 cap->sym.aead.key_size.increment) 1976 != 0) { 1977 printf("Unsupported aead key length\n"); 1978 return -1; 1979 } 1980 /* 1981 * Check if length of the aead key to be randomly generated 1982 * is supported by the algorithm chosen. 1983 */ 1984 } else if (options->aead_key_random_size != -1) { 1985 if (check_supported_size(options->ckey_random_size, 1986 cap->sym.aead.key_size.min, 1987 cap->sym.aead.key_size.max, 1988 cap->sym.aead.key_size.increment) 1989 != 0) { 1990 printf("Unsupported aead key length\n"); 1991 return -1; 1992 } 1993 options->aead_xform.aead.key.length = 1994 options->ckey_random_size; 1995 /* No size provided, use minimum size. */ 1996 } else 1997 options->aead_xform.aead.key.length = 1998 cap->sym.aead.key_size.min; 1999 2000 if (!options->aead_key_param) 2001 generate_random_key( 2002 options->aead_xform.aead.key.data, 2003 options->aead_xform.aead.key.length); 2004 2005 /* 2006 * Check if length of provided AAD is supported 2007 * by the algorithm chosen. 2008 */ 2009 if (options->aad_param) { 2010 if (check_supported_size(options->aad.length, 2011 cap->sym.aead.aad_size.min, 2012 cap->sym.aead.aad_size.max, 2013 cap->sym.aead.aad_size.increment) 2014 != 0) { 2015 printf("Unsupported AAD length\n"); 2016 return -1; 2017 } 2018 /* 2019 * Check if length of AAD to be randomly generated 2020 * is supported by the algorithm chosen. 2021 */ 2022 } else if (options->aad_random_size != -1) { 2023 if (check_supported_size(options->aad_random_size, 2024 cap->sym.aead.aad_size.min, 2025 cap->sym.aead.aad_size.max, 2026 cap->sym.aead.aad_size.increment) 2027 != 0) { 2028 printf("Unsupported AAD length\n"); 2029 return -1; 2030 } 2031 options->aad.length = options->aad_random_size; 2032 /* No size provided, use minimum size. */ 2033 } else 2034 options->aad.length = cap->sym.auth.aad_size.min; 2035 2036 options->aead_xform.aead.add_auth_data_length = 2037 options->aad.length; 2038 2039 /* Check if digest size is supported by the algorithm. */ 2040 if (options->digest_size != -1) { 2041 if (check_supported_size(options->digest_size, 2042 cap->sym.aead.digest_size.min, 2043 cap->sym.aead.digest_size.max, 2044 cap->sym.aead.digest_size.increment) 2045 != 0) { 2046 printf("Unsupported digest length\n"); 2047 return -1; 2048 } 2049 options->aead_xform.aead.digest_length = 2050 options->digest_size; 2051 /* No size provided, use minimum size. */ 2052 } else 2053 options->aead_xform.aead.digest_length = 2054 cap->sym.aead.digest_size.min; 2055 } 2056 2057 /* Set cipher parameters */ 2058 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2059 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2060 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2061 /* Check if device supports cipher algo */ 2062 cap = check_device_support_cipher_algo(options, &dev_info, 2063 cdev_id); 2064 if (cap == NULL) 2065 continue; 2066 2067 options->block_size = cap->sym.cipher.block_size; 2068 2069 check_iv_param(&cap->sym.cipher.iv_size, 2070 options->cipher_iv_param, 2071 options->cipher_iv_random_size, 2072 &options->cipher_iv.length); 2073 2074 /* 2075 * Check if length of provided cipher key is supported 2076 * by the algorithm chosen. 2077 */ 2078 if (options->ckey_param) { 2079 if (check_supported_size( 2080 options->cipher_xform.cipher.key.length, 2081 cap->sym.cipher.key_size.min, 2082 cap->sym.cipher.key_size.max, 2083 cap->sym.cipher.key_size.increment) 2084 != 0) { 2085 printf("Unsupported cipher key length\n"); 2086 return -1; 2087 } 2088 /* 2089 * Check if length of the cipher key to be randomly generated 2090 * is supported by the algorithm chosen. 2091 */ 2092 } else if (options->ckey_random_size != -1) { 2093 if (check_supported_size(options->ckey_random_size, 2094 cap->sym.cipher.key_size.min, 2095 cap->sym.cipher.key_size.max, 2096 cap->sym.cipher.key_size.increment) 2097 != 0) { 2098 printf("Unsupported cipher key length\n"); 2099 return -1; 2100 } 2101 options->cipher_xform.cipher.key.length = 2102 options->ckey_random_size; 2103 /* No size provided, use minimum size. */ 2104 } else 2105 options->cipher_xform.cipher.key.length = 2106 cap->sym.cipher.key_size.min; 2107 2108 if (!options->ckey_param) 2109 generate_random_key( 2110 options->cipher_xform.cipher.key.data, 2111 options->cipher_xform.cipher.key.length); 2112 2113 } 2114 2115 /* Set auth parameters */ 2116 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2117 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2118 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2119 /* Check if device supports auth algo */ 2120 cap = check_device_support_auth_algo(options, &dev_info, 2121 cdev_id); 2122 if (cap == NULL) 2123 continue; 2124 2125 check_iv_param(&cap->sym.auth.iv_size, 2126 options->auth_iv_param, 2127 options->auth_iv_random_size, 2128 &options->auth_iv.length); 2129 /* 2130 * Check if length of provided auth key is supported 2131 * by the algorithm chosen. 2132 */ 2133 if (options->akey_param) { 2134 if (check_supported_size( 2135 options->auth_xform.auth.key.length, 2136 cap->sym.auth.key_size.min, 2137 cap->sym.auth.key_size.max, 2138 cap->sym.auth.key_size.increment) 2139 != 0) { 2140 printf("Unsupported auth key length\n"); 2141 return -1; 2142 } 2143 /* 2144 * Check if length of the auth key to be randomly generated 2145 * is supported by the algorithm chosen. 2146 */ 2147 } else if (options->akey_random_size != -1) { 2148 if (check_supported_size(options->akey_random_size, 2149 cap->sym.auth.key_size.min, 2150 cap->sym.auth.key_size.max, 2151 cap->sym.auth.key_size.increment) 2152 != 0) { 2153 printf("Unsupported auth key length\n"); 2154 return -1; 2155 } 2156 options->auth_xform.auth.key.length = 2157 options->akey_random_size; 2158 /* No size provided, use minimum size. */ 2159 } else 2160 options->auth_xform.auth.key.length = 2161 cap->sym.auth.key_size.min; 2162 2163 if (!options->akey_param) 2164 generate_random_key( 2165 options->auth_xform.auth.key.data, 2166 options->auth_xform.auth.key.length); 2167 2168 /* Check if digest size is supported by the algorithm. */ 2169 if (options->digest_size != -1) { 2170 if (check_supported_size(options->digest_size, 2171 cap->sym.auth.digest_size.min, 2172 cap->sym.auth.digest_size.max, 2173 cap->sym.auth.digest_size.increment) 2174 != 0) { 2175 printf("Unsupported digest length\n"); 2176 return -1; 2177 } 2178 options->auth_xform.auth.digest_length = 2179 options->digest_size; 2180 /* No size provided, use minimum size. */ 2181 } else 2182 options->auth_xform.auth.digest_length = 2183 cap->sym.auth.digest_size.min; 2184 } 2185 2186 retval = rte_cryptodev_configure(cdev_id, &conf); 2187 if (retval < 0) { 2188 printf("Failed to configure cryptodev %u", cdev_id); 2189 return -1; 2190 } 2191 2192 qp_conf.nb_descriptors = 2048; 2193 2194 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2195 SOCKET_ID_ANY); 2196 if (retval < 0) { 2197 printf("Failed to setup queue pair %u on cryptodev %u", 2198 0, cdev_id); 2199 return -1; 2200 } 2201 2202 retval = rte_cryptodev_start(cdev_id); 2203 if (retval < 0) { 2204 printf("Failed to start device %u: error %d\n", 2205 cdev_id, retval); 2206 return -1; 2207 } 2208 2209 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2210 2211 enabled_cdevs[cdev_id] = 1; 2212 enabled_cdev_count++; 2213 } 2214 2215 return enabled_cdev_count; 2216 } 2217 2218 static int 2219 initialize_ports(struct l2fwd_crypto_options *options) 2220 { 2221 uint8_t last_portid, portid; 2222 unsigned enabled_portcount = 0; 2223 unsigned nb_ports = rte_eth_dev_count(); 2224 2225 if (nb_ports == 0) { 2226 printf("No Ethernet ports - bye\n"); 2227 return -1; 2228 } 2229 2230 /* Reset l2fwd_dst_ports */ 2231 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2232 l2fwd_dst_ports[portid] = 0; 2233 2234 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2235 int retval; 2236 2237 /* Skip ports that are not enabled */ 2238 if ((options->portmask & (1 << portid)) == 0) 2239 continue; 2240 2241 /* init port */ 2242 printf("Initializing port %u... ", (unsigned) portid); 2243 fflush(stdout); 2244 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2245 if (retval < 0) { 2246 printf("Cannot configure device: err=%d, port=%u\n", 2247 retval, (unsigned) portid); 2248 return -1; 2249 } 2250 2251 /* init one RX queue */ 2252 fflush(stdout); 2253 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2254 rte_eth_dev_socket_id(portid), 2255 NULL, l2fwd_pktmbuf_pool); 2256 if (retval < 0) { 2257 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2258 retval, (unsigned) portid); 2259 return -1; 2260 } 2261 2262 /* init one TX queue on each port */ 2263 fflush(stdout); 2264 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2265 rte_eth_dev_socket_id(portid), 2266 NULL); 2267 if (retval < 0) { 2268 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2269 retval, (unsigned) portid); 2270 2271 return -1; 2272 } 2273 2274 /* Start device */ 2275 retval = rte_eth_dev_start(portid); 2276 if (retval < 0) { 2277 printf("rte_eth_dev_start:err=%d, port=%u\n", 2278 retval, (unsigned) portid); 2279 return -1; 2280 } 2281 2282 rte_eth_promiscuous_enable(portid); 2283 2284 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2285 2286 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2287 (unsigned) portid, 2288 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2289 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2290 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2291 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2292 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2293 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2294 2295 /* initialize port stats */ 2296 memset(&port_statistics, 0, sizeof(port_statistics)); 2297 2298 /* Setup port forwarding table */ 2299 if (enabled_portcount % 2) { 2300 l2fwd_dst_ports[portid] = last_portid; 2301 l2fwd_dst_ports[last_portid] = portid; 2302 } else { 2303 last_portid = portid; 2304 } 2305 2306 l2fwd_enabled_port_mask |= (1 << portid); 2307 enabled_portcount++; 2308 } 2309 2310 if (enabled_portcount == 1) { 2311 l2fwd_dst_ports[last_portid] = last_portid; 2312 } else if (enabled_portcount % 2) { 2313 printf("odd number of ports in portmask- bye\n"); 2314 return -1; 2315 } 2316 2317 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2318 2319 return enabled_portcount; 2320 } 2321 2322 static void 2323 reserve_key_memory(struct l2fwd_crypto_options *options) 2324 { 2325 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2326 MAX_KEY_SIZE, 0); 2327 if (options->cipher_xform.cipher.key.data == NULL) 2328 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2329 2330 options->auth_xform.auth.key.data = rte_malloc("auth key", 2331 MAX_KEY_SIZE, 0); 2332 if (options->auth_xform.auth.key.data == NULL) 2333 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2334 2335 options->aead_xform.aead.key.data = rte_malloc("aead key", 2336 MAX_KEY_SIZE, 0); 2337 if (options->aead_xform.aead.key.data == NULL) 2338 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2339 2340 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2341 if (options->cipher_iv.data == NULL) 2342 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2343 2344 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2345 if (options->auth_iv.data == NULL) 2346 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2347 2348 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2349 if (options->aead_iv.data == NULL) 2350 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2351 2352 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2353 if (options->aad.data == NULL) 2354 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2355 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2356 } 2357 2358 int 2359 main(int argc, char **argv) 2360 { 2361 struct lcore_queue_conf *qconf; 2362 struct l2fwd_crypto_options options; 2363 2364 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2365 unsigned lcore_id, rx_lcore_id; 2366 int ret, enabled_cdevcount, enabled_portcount; 2367 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2368 2369 /* init EAL */ 2370 ret = rte_eal_init(argc, argv); 2371 if (ret < 0) 2372 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2373 argc -= ret; 2374 argv += ret; 2375 2376 /* reserve memory for Cipher/Auth key and IV */ 2377 reserve_key_memory(&options); 2378 2379 /* parse application arguments (after the EAL ones) */ 2380 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2381 if (ret < 0) 2382 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2383 2384 /* create the mbuf pool */ 2385 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2386 sizeof(struct rte_crypto_op), 2387 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2388 if (l2fwd_pktmbuf_pool == NULL) 2389 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2390 2391 /* create crypto op pool */ 2392 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2393 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2394 rte_socket_id()); 2395 if (l2fwd_crypto_op_pool == NULL) 2396 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2397 2398 /* Enable Ethernet ports */ 2399 enabled_portcount = initialize_ports(&options); 2400 if (enabled_portcount < 1) 2401 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2402 2403 nb_ports = rte_eth_dev_count(); 2404 /* Initialize the port/queue configuration of each logical core */ 2405 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2406 portid < nb_ports; portid++) { 2407 2408 /* skip ports that are not enabled */ 2409 if ((options.portmask & (1 << portid)) == 0) 2410 continue; 2411 2412 if (options.single_lcore && qconf == NULL) { 2413 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2414 rx_lcore_id++; 2415 if (rx_lcore_id >= RTE_MAX_LCORE) 2416 rte_exit(EXIT_FAILURE, 2417 "Not enough cores\n"); 2418 } 2419 } else if (!options.single_lcore) { 2420 /* get the lcore_id for this port */ 2421 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2422 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2423 options.nb_ports_per_lcore) { 2424 rx_lcore_id++; 2425 if (rx_lcore_id >= RTE_MAX_LCORE) 2426 rte_exit(EXIT_FAILURE, 2427 "Not enough cores\n"); 2428 } 2429 } 2430 2431 /* Assigned a new logical core in the loop above. */ 2432 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2433 qconf = &lcore_queue_conf[rx_lcore_id]; 2434 2435 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2436 qconf->nb_rx_ports++; 2437 2438 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2439 } 2440 2441 /* Enable Crypto devices */ 2442 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2443 enabled_cdevs); 2444 if (enabled_cdevcount < 0) 2445 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2446 2447 if (enabled_cdevcount < enabled_portcount) 2448 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2449 "has to be more or equal to number of ports (%d)\n", 2450 enabled_cdevcount, enabled_portcount); 2451 2452 nb_cryptodevs = rte_cryptodev_count(); 2453 2454 /* Initialize the port/cryptodev configuration of each logical core */ 2455 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2456 cdev_id < nb_cryptodevs && enabled_cdevcount; 2457 cdev_id++) { 2458 /* Crypto op not supported by crypto device */ 2459 if (!enabled_cdevs[cdev_id]) 2460 continue; 2461 2462 if (options.single_lcore && qconf == NULL) { 2463 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2464 rx_lcore_id++; 2465 if (rx_lcore_id >= RTE_MAX_LCORE) 2466 rte_exit(EXIT_FAILURE, 2467 "Not enough cores\n"); 2468 } 2469 } else if (!options.single_lcore) { 2470 /* get the lcore_id for this port */ 2471 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2472 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2473 options.nb_ports_per_lcore) { 2474 rx_lcore_id++; 2475 if (rx_lcore_id >= RTE_MAX_LCORE) 2476 rte_exit(EXIT_FAILURE, 2477 "Not enough cores\n"); 2478 } 2479 } 2480 2481 /* Assigned a new logical core in the loop above. */ 2482 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2483 qconf = &lcore_queue_conf[rx_lcore_id]; 2484 2485 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2486 qconf->nb_crypto_devs++; 2487 2488 enabled_cdevcount--; 2489 2490 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2491 (unsigned)cdev_id); 2492 } 2493 2494 /* launch per-lcore init on every lcore */ 2495 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2496 CALL_MASTER); 2497 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2498 if (rte_eal_wait_lcore(lcore_id) < 0) 2499 return -1; 2500 } 2501 2502 return 0; 2503 } 2504