1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 phys_addr_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 }; 197 198 /** l2fwd crypto lcore params */ 199 struct l2fwd_crypto_params { 200 uint8_t dev_id; 201 uint8_t qp_id; 202 203 unsigned digest_length; 204 unsigned block_size; 205 206 struct l2fwd_iv cipher_iv; 207 struct l2fwd_iv auth_iv; 208 struct l2fwd_iv aead_iv; 209 struct l2fwd_key aad; 210 struct rte_cryptodev_sym_session *session; 211 212 uint8_t do_cipher; 213 uint8_t do_hash; 214 uint8_t do_aead; 215 uint8_t hash_verify; 216 217 enum rte_crypto_cipher_algorithm cipher_algo; 218 enum rte_crypto_auth_algorithm auth_algo; 219 enum rte_crypto_aead_algorithm aead_algo; 220 }; 221 222 /** lcore configuration */ 223 struct lcore_queue_conf { 224 unsigned nb_rx_ports; 225 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 226 227 unsigned nb_crypto_devs; 228 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 229 230 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 231 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 232 } __rte_cache_aligned; 233 234 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 235 236 static const struct rte_eth_conf port_conf = { 237 .rxmode = { 238 .mq_mode = ETH_MQ_RX_NONE, 239 .max_rx_pkt_len = ETHER_MAX_LEN, 240 .split_hdr_size = 0, 241 .header_split = 0, /**< Header Split disabled */ 242 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 243 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 244 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 245 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 246 }, 247 .txmode = { 248 .mq_mode = ETH_MQ_TX_NONE, 249 }, 250 }; 251 252 struct rte_mempool *l2fwd_pktmbuf_pool; 253 struct rte_mempool *l2fwd_crypto_op_pool; 254 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 255 256 /* Per-port statistics struct */ 257 struct l2fwd_port_statistics { 258 uint64_t tx; 259 uint64_t rx; 260 261 uint64_t crypto_enqueued; 262 uint64_t crypto_dequeued; 263 264 uint64_t dropped; 265 } __rte_cache_aligned; 266 267 struct l2fwd_crypto_statistics { 268 uint64_t enqueued; 269 uint64_t dequeued; 270 271 uint64_t errors; 272 } __rte_cache_aligned; 273 274 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 275 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 276 277 /* A tsc-based timer responsible for triggering statistics printout */ 278 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 279 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 280 281 /* default period is 10 seconds */ 282 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 283 284 /* Print out statistics on packets dropped */ 285 static void 286 print_stats(void) 287 { 288 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 289 uint64_t total_packets_enqueued, total_packets_dequeued, 290 total_packets_errors; 291 unsigned portid; 292 uint64_t cdevid; 293 294 total_packets_dropped = 0; 295 total_packets_tx = 0; 296 total_packets_rx = 0; 297 total_packets_enqueued = 0; 298 total_packets_dequeued = 0; 299 total_packets_errors = 0; 300 301 const char clr[] = { 27, '[', '2', 'J', '\0' }; 302 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 303 304 /* Clear screen and move to top left */ 305 printf("%s%s", clr, topLeft); 306 307 printf("\nPort statistics ===================================="); 308 309 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 310 /* skip disabled ports */ 311 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 312 continue; 313 printf("\nStatistics for port %u ------------------------------" 314 "\nPackets sent: %32"PRIu64 315 "\nPackets received: %28"PRIu64 316 "\nPackets dropped: %29"PRIu64, 317 portid, 318 port_statistics[portid].tx, 319 port_statistics[portid].rx, 320 port_statistics[portid].dropped); 321 322 total_packets_dropped += port_statistics[portid].dropped; 323 total_packets_tx += port_statistics[portid].tx; 324 total_packets_rx += port_statistics[portid].rx; 325 } 326 printf("\nCrypto statistics =================================="); 327 328 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 329 /* skip disabled ports */ 330 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 331 continue; 332 printf("\nStatistics for cryptodev %"PRIu64 333 " -------------------------" 334 "\nPackets enqueued: %28"PRIu64 335 "\nPackets dequeued: %28"PRIu64 336 "\nPackets errors: %30"PRIu64, 337 cdevid, 338 crypto_statistics[cdevid].enqueued, 339 crypto_statistics[cdevid].dequeued, 340 crypto_statistics[cdevid].errors); 341 342 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 343 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 344 total_packets_errors += crypto_statistics[cdevid].errors; 345 } 346 printf("\nAggregate statistics ===============================" 347 "\nTotal packets received: %22"PRIu64 348 "\nTotal packets enqueued: %22"PRIu64 349 "\nTotal packets dequeued: %22"PRIu64 350 "\nTotal packets sent: %26"PRIu64 351 "\nTotal packets dropped: %23"PRIu64 352 "\nTotal packets crypto errors: %17"PRIu64, 353 total_packets_rx, 354 total_packets_enqueued, 355 total_packets_dequeued, 356 total_packets_tx, 357 total_packets_dropped, 358 total_packets_errors); 359 printf("\n====================================================\n"); 360 } 361 362 static int 363 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 364 struct l2fwd_crypto_params *cparams) 365 { 366 struct rte_crypto_op **op_buffer; 367 unsigned ret; 368 369 op_buffer = (struct rte_crypto_op **) 370 qconf->op_buf[cparams->dev_id].buffer; 371 372 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 373 cparams->qp_id, op_buffer, (uint16_t) n); 374 375 crypto_statistics[cparams->dev_id].enqueued += ret; 376 if (unlikely(ret < n)) { 377 crypto_statistics[cparams->dev_id].errors += (n - ret); 378 do { 379 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 380 rte_crypto_op_free(op_buffer[ret]); 381 } while (++ret < n); 382 } 383 384 return 0; 385 } 386 387 static int 388 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 389 struct l2fwd_crypto_params *cparams) 390 { 391 unsigned lcore_id, len; 392 struct lcore_queue_conf *qconf; 393 394 lcore_id = rte_lcore_id(); 395 396 qconf = &lcore_queue_conf[lcore_id]; 397 len = qconf->op_buf[cparams->dev_id].len; 398 qconf->op_buf[cparams->dev_id].buffer[len] = op; 399 len++; 400 401 /* enough ops to be sent */ 402 if (len == MAX_PKT_BURST) { 403 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 404 len = 0; 405 } 406 407 qconf->op_buf[cparams->dev_id].len = len; 408 return 0; 409 } 410 411 static int 412 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 413 struct rte_crypto_op *op, 414 struct l2fwd_crypto_params *cparams) 415 { 416 struct ether_hdr *eth_hdr; 417 struct ipv4_hdr *ip_hdr; 418 419 uint32_t ipdata_offset, data_len; 420 uint32_t pad_len = 0; 421 char *padding; 422 423 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 424 425 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 426 return -1; 427 428 ipdata_offset = sizeof(struct ether_hdr); 429 430 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 431 ipdata_offset); 432 433 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 434 * IPV4_IHL_MULTIPLIER; 435 436 437 /* Zero pad data to be crypto'd so it is block aligned */ 438 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 439 440 if (cparams->do_hash && cparams->hash_verify) 441 data_len -= cparams->digest_length; 442 443 if (cparams->do_cipher) { 444 /* 445 * Following algorithms are block cipher algorithms, 446 * and might need padding 447 */ 448 switch (cparams->cipher_algo) { 449 case RTE_CRYPTO_CIPHER_AES_CBC: 450 case RTE_CRYPTO_CIPHER_AES_ECB: 451 case RTE_CRYPTO_CIPHER_DES_CBC: 452 case RTE_CRYPTO_CIPHER_3DES_CBC: 453 case RTE_CRYPTO_CIPHER_3DES_ECB: 454 if (data_len % cparams->block_size) 455 pad_len = cparams->block_size - 456 (data_len % cparams->block_size); 457 break; 458 default: 459 pad_len = 0; 460 } 461 462 if (pad_len) { 463 padding = rte_pktmbuf_append(m, pad_len); 464 if (unlikely(!padding)) 465 return -1; 466 467 data_len += pad_len; 468 memset(padding, 0, pad_len); 469 } 470 } 471 472 /* Set crypto operation data parameters */ 473 rte_crypto_op_attach_sym_session(op, cparams->session); 474 475 if (cparams->do_hash) { 476 if (cparams->auth_iv.length) { 477 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 478 uint8_t *, 479 IV_OFFSET + 480 cparams->cipher_iv.length); 481 /* 482 * Copy IV at the end of the crypto operation, 483 * after the cipher IV, if added 484 */ 485 rte_memcpy(iv_ptr, cparams->auth_iv.data, 486 cparams->auth_iv.length); 487 } 488 if (!cparams->hash_verify) { 489 /* Append space for digest to end of packet */ 490 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 491 cparams->digest_length); 492 } else { 493 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 494 uint8_t *) + ipdata_offset + data_len; 495 } 496 497 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 498 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 499 500 /* For wireless algorithms, offset/length must be in bits */ 501 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 502 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 503 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 504 op->sym->auth.data.offset = ipdata_offset << 3; 505 op->sym->auth.data.length = data_len << 3; 506 } else { 507 op->sym->auth.data.offset = ipdata_offset; 508 op->sym->auth.data.length = data_len; 509 } 510 } 511 512 if (cparams->do_cipher) { 513 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 514 IV_OFFSET); 515 /* Copy IV at the end of the crypto operation */ 516 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 517 cparams->cipher_iv.length); 518 519 /* For wireless algorithms, offset/length must be in bits */ 520 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 521 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 522 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 523 op->sym->cipher.data.offset = ipdata_offset << 3; 524 op->sym->cipher.data.length = data_len << 3; 525 } else { 526 op->sym->cipher.data.offset = ipdata_offset; 527 op->sym->cipher.data.length = data_len; 528 } 529 } 530 531 if (cparams->do_aead) { 532 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 533 IV_OFFSET); 534 /* Copy IV at the end of the crypto operation */ 535 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 536 537 op->sym->aead.data.offset = ipdata_offset; 538 op->sym->aead.data.length = data_len; 539 540 if (!cparams->hash_verify) { 541 /* Append space for digest to end of packet */ 542 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 543 cparams->digest_length); 544 } else { 545 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 546 uint8_t *) + ipdata_offset + data_len; 547 } 548 549 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 550 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 551 552 if (cparams->aad.length) { 553 op->sym->aead.aad.data = cparams->aad.data; 554 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 555 } 556 } 557 558 op->sym->m_src = m; 559 560 return l2fwd_crypto_enqueue(op, cparams); 561 } 562 563 564 /* Send the burst of packets on an output interface */ 565 static int 566 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 567 uint8_t port) 568 { 569 struct rte_mbuf **pkt_buffer; 570 unsigned ret; 571 572 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 573 574 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 575 port_statistics[port].tx += ret; 576 if (unlikely(ret < n)) { 577 port_statistics[port].dropped += (n - ret); 578 do { 579 rte_pktmbuf_free(pkt_buffer[ret]); 580 } while (++ret < n); 581 } 582 583 return 0; 584 } 585 586 /* Enqueue packets for TX and prepare them to be sent */ 587 static int 588 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 589 { 590 unsigned lcore_id, len; 591 struct lcore_queue_conf *qconf; 592 593 lcore_id = rte_lcore_id(); 594 595 qconf = &lcore_queue_conf[lcore_id]; 596 len = qconf->pkt_buf[port].len; 597 qconf->pkt_buf[port].buffer[len] = m; 598 len++; 599 600 /* enough pkts to be sent */ 601 if (unlikely(len == MAX_PKT_BURST)) { 602 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 603 len = 0; 604 } 605 606 qconf->pkt_buf[port].len = len; 607 return 0; 608 } 609 610 static void 611 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 612 { 613 struct ether_hdr *eth; 614 void *tmp; 615 unsigned dst_port; 616 617 dst_port = l2fwd_dst_ports[portid]; 618 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 619 620 /* 02:00:00:00:00:xx */ 621 tmp = ð->d_addr.addr_bytes[0]; 622 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); 623 624 /* src addr */ 625 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 626 627 l2fwd_send_packet(m, (uint8_t) dst_port); 628 } 629 630 /** Generate random key */ 631 static void 632 generate_random_key(uint8_t *key, unsigned length) 633 { 634 int fd; 635 int ret; 636 637 fd = open("/dev/urandom", O_RDONLY); 638 if (fd < 0) 639 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 640 641 ret = read(fd, key, length); 642 close(fd); 643 644 if (ret != (signed)length) 645 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 646 } 647 648 static struct rte_cryptodev_sym_session * 649 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 650 { 651 struct rte_crypto_sym_xform *first_xform; 652 struct rte_cryptodev_sym_session *session; 653 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); 654 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 655 656 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 657 first_xform = &options->aead_xform; 658 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 659 first_xform = &options->cipher_xform; 660 first_xform->next = &options->auth_xform; 661 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 662 first_xform = &options->auth_xform; 663 first_xform->next = &options->cipher_xform; 664 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 665 first_xform = &options->cipher_xform; 666 } else { 667 first_xform = &options->auth_xform; 668 } 669 670 session = rte_cryptodev_sym_session_create(sess_mp); 671 672 if (session == NULL) 673 return NULL; 674 675 if (rte_cryptodev_sym_session_init(cdev_id, session, 676 first_xform, sess_mp) < 0) 677 return NULL; 678 679 return session; 680 } 681 682 static void 683 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 684 685 /* main processing loop */ 686 static void 687 l2fwd_main_loop(struct l2fwd_crypto_options *options) 688 { 689 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 690 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 691 692 unsigned lcore_id = rte_lcore_id(); 693 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 694 unsigned i, j, portid, nb_rx, len; 695 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 696 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 697 US_PER_S * BURST_TX_DRAIN_US; 698 struct l2fwd_crypto_params *cparams; 699 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 700 struct rte_cryptodev_sym_session *session; 701 702 if (qconf->nb_rx_ports == 0) { 703 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 704 return; 705 } 706 707 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 708 709 for (i = 0; i < qconf->nb_rx_ports; i++) { 710 711 portid = qconf->rx_port_list[i]; 712 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 713 portid); 714 } 715 716 for (i = 0; i < qconf->nb_crypto_devs; i++) { 717 port_cparams[i].do_cipher = 0; 718 port_cparams[i].do_hash = 0; 719 port_cparams[i].do_aead = 0; 720 721 switch (options->xform_chain) { 722 case L2FWD_CRYPTO_AEAD: 723 port_cparams[i].do_aead = 1; 724 break; 725 case L2FWD_CRYPTO_CIPHER_HASH: 726 case L2FWD_CRYPTO_HASH_CIPHER: 727 port_cparams[i].do_cipher = 1; 728 port_cparams[i].do_hash = 1; 729 break; 730 case L2FWD_CRYPTO_HASH_ONLY: 731 port_cparams[i].do_hash = 1; 732 break; 733 case L2FWD_CRYPTO_CIPHER_ONLY: 734 port_cparams[i].do_cipher = 1; 735 break; 736 } 737 738 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 739 port_cparams[i].qp_id = 0; 740 741 port_cparams[i].block_size = options->block_size; 742 743 if (port_cparams[i].do_hash) { 744 port_cparams[i].auth_iv.data = options->auth_iv.data; 745 port_cparams[i].auth_iv.length = options->auth_iv.length; 746 if (!options->auth_iv_param) 747 generate_random_key(port_cparams[i].auth_iv.data, 748 port_cparams[i].auth_iv.length); 749 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 750 port_cparams[i].hash_verify = 1; 751 else 752 port_cparams[i].hash_verify = 0; 753 754 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 755 /* Set IV parameters */ 756 if (options->auth_iv.length) { 757 options->auth_xform.auth.iv.offset = 758 IV_OFFSET + options->cipher_iv.length; 759 options->auth_xform.auth.iv.length = 760 options->auth_iv.length; 761 } 762 } 763 764 if (port_cparams[i].do_aead) { 765 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 766 port_cparams[i].digest_length = 767 options->aead_xform.aead.digest_length; 768 if (options->aead_xform.aead.add_auth_data_length) { 769 port_cparams[i].aad.data = options->aad.data; 770 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 771 port_cparams[i].aad.length = options->aad.length; 772 if (!options->aad_param) 773 generate_random_key(port_cparams[i].aad.data, 774 port_cparams[i].aad.length); 775 776 } else 777 port_cparams[i].aad.length = 0; 778 779 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 780 port_cparams[i].hash_verify = 1; 781 else 782 port_cparams[i].hash_verify = 0; 783 784 /* Set IV parameters */ 785 options->aead_xform.aead.iv.offset = IV_OFFSET; 786 options->aead_xform.aead.iv.length = options->aead_iv.length; 787 } 788 789 if (port_cparams[i].do_cipher) { 790 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 791 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 792 if (!options->cipher_iv_param) 793 generate_random_key(port_cparams[i].cipher_iv.data, 794 port_cparams[i].cipher_iv.length); 795 796 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 797 /* Set IV parameters */ 798 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 799 options->cipher_xform.cipher.iv.length = 800 options->cipher_iv.length; 801 } 802 803 session = initialize_crypto_session(options, 804 port_cparams[i].dev_id); 805 if (session == NULL) 806 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 807 808 port_cparams[i].session = session; 809 810 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 811 port_cparams[i].dev_id); 812 } 813 814 l2fwd_crypto_options_print(options); 815 816 /* 817 * Initialize previous tsc timestamp before the loop, 818 * to avoid showing the port statistics immediately, 819 * so user can see the crypto information. 820 */ 821 prev_tsc = rte_rdtsc(); 822 while (1) { 823 824 cur_tsc = rte_rdtsc(); 825 826 /* 827 * Crypto device/TX burst queue drain 828 */ 829 diff_tsc = cur_tsc - prev_tsc; 830 if (unlikely(diff_tsc > drain_tsc)) { 831 /* Enqueue all crypto ops remaining in buffers */ 832 for (i = 0; i < qconf->nb_crypto_devs; i++) { 833 cparams = &port_cparams[i]; 834 len = qconf->op_buf[cparams->dev_id].len; 835 l2fwd_crypto_send_burst(qconf, len, cparams); 836 qconf->op_buf[cparams->dev_id].len = 0; 837 } 838 /* Transmit all packets remaining in buffers */ 839 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 840 if (qconf->pkt_buf[portid].len == 0) 841 continue; 842 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 843 qconf->pkt_buf[portid].len, 844 (uint8_t) portid); 845 qconf->pkt_buf[portid].len = 0; 846 } 847 848 /* if timer is enabled */ 849 if (timer_period > 0) { 850 851 /* advance the timer */ 852 timer_tsc += diff_tsc; 853 854 /* if timer has reached its timeout */ 855 if (unlikely(timer_tsc >= 856 (uint64_t)timer_period)) { 857 858 /* do this only on master core */ 859 if (lcore_id == rte_get_master_lcore() 860 && options->refresh_period) { 861 print_stats(); 862 timer_tsc = 0; 863 } 864 } 865 } 866 867 prev_tsc = cur_tsc; 868 } 869 870 /* 871 * Read packet from RX queues 872 */ 873 for (i = 0; i < qconf->nb_rx_ports; i++) { 874 portid = qconf->rx_port_list[i]; 875 876 cparams = &port_cparams[i]; 877 878 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 879 pkts_burst, MAX_PKT_BURST); 880 881 port_statistics[portid].rx += nb_rx; 882 883 if (nb_rx) { 884 /* 885 * If we can't allocate a crypto_ops, then drop 886 * the rest of the burst and dequeue and 887 * process the packets to free offload structs 888 */ 889 if (rte_crypto_op_bulk_alloc( 890 l2fwd_crypto_op_pool, 891 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 892 ops_burst, nb_rx) != 893 nb_rx) { 894 for (j = 0; j < nb_rx; j++) 895 rte_pktmbuf_free(pkts_burst[j]); 896 897 nb_rx = 0; 898 } 899 900 /* Enqueue packets from Crypto device*/ 901 for (j = 0; j < nb_rx; j++) { 902 m = pkts_burst[j]; 903 904 l2fwd_simple_crypto_enqueue(m, 905 ops_burst[j], cparams); 906 } 907 } 908 909 /* Dequeue packets from Crypto device */ 910 do { 911 nb_rx = rte_cryptodev_dequeue_burst( 912 cparams->dev_id, cparams->qp_id, 913 ops_burst, MAX_PKT_BURST); 914 915 crypto_statistics[cparams->dev_id].dequeued += 916 nb_rx; 917 918 /* Forward crypto'd packets */ 919 for (j = 0; j < nb_rx; j++) { 920 m = ops_burst[j]->sym->m_src; 921 922 rte_crypto_op_free(ops_burst[j]); 923 l2fwd_simple_forward(m, portid); 924 } 925 } while (nb_rx == MAX_PKT_BURST); 926 } 927 } 928 } 929 930 static int 931 l2fwd_launch_one_lcore(void *arg) 932 { 933 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 934 return 0; 935 } 936 937 /* Display command line arguments usage */ 938 static void 939 l2fwd_crypto_usage(const char *prgname) 940 { 941 printf("%s [EAL options] --\n" 942 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 943 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 944 " -s manage all ports from single lcore\n" 945 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 946 " (0 to disable, 10 default, 86400 maximum)\n" 947 948 " --cdev_type HW / SW / ANY\n" 949 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 950 " HASH_ONLY / AEAD\n" 951 952 " --cipher_algo ALGO\n" 953 " --cipher_op ENCRYPT / DECRYPT\n" 954 " --cipher_key KEY (bytes separated with \":\")\n" 955 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 956 " --cipher_iv IV (bytes separated with \":\")\n" 957 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 958 959 " --auth_algo ALGO\n" 960 " --auth_op GENERATE / VERIFY\n" 961 " --auth_key KEY (bytes separated with \":\")\n" 962 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 963 " --auth_iv IV (bytes separated with \":\")\n" 964 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 965 966 " --aead_algo ALGO\n" 967 " --aead_op ENCRYPT / DECRYPT\n" 968 " --aead_key KEY (bytes separated with \":\")\n" 969 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 970 " --aead_iv IV (bytes separated with \":\")\n" 971 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 972 " --aad AAD (bytes separated with \":\")\n" 973 " --aad_random_size SIZE: size of AAD when generated randomly\n" 974 975 " --digest_size SIZE: size of digest to be generated/verified\n" 976 977 " --sessionless\n" 978 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n", 979 prgname); 980 } 981 982 /** Parse crypto device type command line argument */ 983 static int 984 parse_cryptodev_type(enum cdev_type *type, char *optarg) 985 { 986 if (strcmp("HW", optarg) == 0) { 987 *type = CDEV_TYPE_HW; 988 return 0; 989 } else if (strcmp("SW", optarg) == 0) { 990 *type = CDEV_TYPE_SW; 991 return 0; 992 } else if (strcmp("ANY", optarg) == 0) { 993 *type = CDEV_TYPE_ANY; 994 return 0; 995 } 996 997 return -1; 998 } 999 1000 /** Parse crypto chain xform command line argument */ 1001 static int 1002 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1003 { 1004 if (strcmp("CIPHER_HASH", optarg) == 0) { 1005 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1006 return 0; 1007 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1008 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1009 return 0; 1010 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1011 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1012 return 0; 1013 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1014 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1015 return 0; 1016 } else if (strcmp("AEAD", optarg) == 0) { 1017 options->xform_chain = L2FWD_CRYPTO_AEAD; 1018 return 0; 1019 } 1020 1021 return -1; 1022 } 1023 1024 /** Parse crypto cipher algo option command line argument */ 1025 static int 1026 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1027 { 1028 1029 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1030 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1031 "not supported!\n"); 1032 return -1; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /** Parse crypto cipher operation command line argument */ 1039 static int 1040 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1041 { 1042 if (strcmp("ENCRYPT", optarg) == 0) { 1043 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1044 return 0; 1045 } else if (strcmp("DECRYPT", optarg) == 0) { 1046 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1047 return 0; 1048 } 1049 1050 printf("Cipher operation not supported!\n"); 1051 return -1; 1052 } 1053 1054 /** Parse crypto key command line argument */ 1055 static int 1056 parse_key(uint8_t *data, char *input_arg) 1057 { 1058 unsigned byte_count; 1059 char *token; 1060 1061 for (byte_count = 0, token = strtok(input_arg, ":"); 1062 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1063 token = strtok(NULL, ":")) { 1064 1065 int number = (int)strtol(token, NULL, 16); 1066 1067 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1068 return -1; 1069 1070 data[byte_count++] = (uint8_t)number; 1071 } 1072 1073 return byte_count; 1074 } 1075 1076 /** Parse size param*/ 1077 static int 1078 parse_size(int *size, const char *q_arg) 1079 { 1080 char *end = NULL; 1081 unsigned long n; 1082 1083 /* parse hexadecimal string */ 1084 n = strtoul(q_arg, &end, 10); 1085 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1086 n = 0; 1087 1088 if (n == 0) { 1089 printf("invalid size\n"); 1090 return -1; 1091 } 1092 1093 *size = n; 1094 return 0; 1095 } 1096 1097 /** Parse crypto cipher operation command line argument */ 1098 static int 1099 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1100 { 1101 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1102 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1103 "not supported!\n"); 1104 return -1; 1105 } 1106 1107 return 0; 1108 } 1109 1110 static int 1111 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1112 { 1113 if (strcmp("VERIFY", optarg) == 0) { 1114 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1115 return 0; 1116 } else if (strcmp("GENERATE", optarg) == 0) { 1117 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1118 return 0; 1119 } 1120 1121 printf("Authentication operation specified not supported!\n"); 1122 return -1; 1123 } 1124 1125 static int 1126 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1127 { 1128 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1129 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1130 "not supported!\n"); 1131 return -1; 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int 1138 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1139 { 1140 if (strcmp("ENCRYPT", optarg) == 0) { 1141 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1142 return 0; 1143 } else if (strcmp("DECRYPT", optarg) == 0) { 1144 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1145 return 0; 1146 } 1147 1148 printf("AEAD operation specified not supported!\n"); 1149 return -1; 1150 } 1151 static int 1152 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1153 const char *q_arg) 1154 { 1155 char *end = NULL; 1156 uint64_t pm; 1157 1158 /* parse hexadecimal string */ 1159 pm = strtoul(q_arg, &end, 16); 1160 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1161 pm = 0; 1162 1163 options->cryptodev_mask = pm; 1164 if (options->cryptodev_mask == 0) { 1165 printf("invalid cryptodev_mask specified\n"); 1166 return -1; 1167 } 1168 1169 return 0; 1170 } 1171 1172 /** Parse long options */ 1173 static int 1174 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1175 struct option *lgopts, int option_index) 1176 { 1177 int retval; 1178 1179 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1180 retval = parse_cryptodev_type(&options->type, optarg); 1181 if (retval == 0) 1182 snprintf(options->string_type, MAX_STR_LEN, 1183 "%s", optarg); 1184 return retval; 1185 } 1186 1187 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1188 return parse_crypto_opt_chain(options, optarg); 1189 1190 /* Cipher options */ 1191 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1192 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1193 optarg); 1194 1195 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1196 return parse_cipher_op(&options->cipher_xform.cipher.op, 1197 optarg); 1198 1199 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1200 options->ckey_param = 1; 1201 options->cipher_xform.cipher.key.length = 1202 parse_key(options->cipher_xform.cipher.key.data, optarg); 1203 if (options->cipher_xform.cipher.key.length > 0) 1204 return 0; 1205 else 1206 return -1; 1207 } 1208 1209 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1210 return parse_size(&options->ckey_random_size, optarg); 1211 1212 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1213 options->cipher_iv_param = 1; 1214 options->cipher_iv.length = 1215 parse_key(options->cipher_iv.data, optarg); 1216 if (options->cipher_iv.length > 0) 1217 return 0; 1218 else 1219 return -1; 1220 } 1221 1222 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1223 return parse_size(&options->cipher_iv_random_size, optarg); 1224 1225 /* Authentication options */ 1226 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1227 return parse_auth_algo(&options->auth_xform.auth.algo, 1228 optarg); 1229 } 1230 1231 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1232 return parse_auth_op(&options->auth_xform.auth.op, 1233 optarg); 1234 1235 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1236 options->akey_param = 1; 1237 options->auth_xform.auth.key.length = 1238 parse_key(options->auth_xform.auth.key.data, optarg); 1239 if (options->auth_xform.auth.key.length > 0) 1240 return 0; 1241 else 1242 return -1; 1243 } 1244 1245 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1246 return parse_size(&options->akey_random_size, optarg); 1247 } 1248 1249 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1250 options->auth_iv_param = 1; 1251 options->auth_iv.length = 1252 parse_key(options->auth_iv.data, optarg); 1253 if (options->auth_iv.length > 0) 1254 return 0; 1255 else 1256 return -1; 1257 } 1258 1259 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1260 return parse_size(&options->auth_iv_random_size, optarg); 1261 1262 /* AEAD options */ 1263 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1264 return parse_aead_algo(&options->aead_xform.aead.algo, 1265 optarg); 1266 } 1267 1268 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1269 return parse_aead_op(&options->aead_xform.aead.op, 1270 optarg); 1271 1272 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1273 options->aead_key_param = 1; 1274 options->aead_xform.aead.key.length = 1275 parse_key(options->aead_xform.aead.key.data, optarg); 1276 if (options->aead_xform.aead.key.length > 0) 1277 return 0; 1278 else 1279 return -1; 1280 } 1281 1282 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1283 return parse_size(&options->aead_key_random_size, optarg); 1284 1285 1286 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1287 options->aead_iv_param = 1; 1288 options->aead_iv.length = 1289 parse_key(options->aead_iv.data, optarg); 1290 if (options->aead_iv.length > 0) 1291 return 0; 1292 else 1293 return -1; 1294 } 1295 1296 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1297 return parse_size(&options->aead_iv_random_size, optarg); 1298 1299 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1300 options->aad_param = 1; 1301 options->aad.length = 1302 parse_key(options->aad.data, optarg); 1303 if (options->aad.length > 0) 1304 return 0; 1305 else 1306 return -1; 1307 } 1308 1309 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1310 return parse_size(&options->aad_random_size, optarg); 1311 } 1312 1313 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1314 return parse_size(&options->digest_size, optarg); 1315 } 1316 1317 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1318 options->sessionless = 1; 1319 return 0; 1320 } 1321 1322 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1323 return parse_cryptodev_mask(options, optarg); 1324 1325 return -1; 1326 } 1327 1328 /** Parse port mask */ 1329 static int 1330 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1331 const char *q_arg) 1332 { 1333 char *end = NULL; 1334 unsigned long pm; 1335 1336 /* parse hexadecimal string */ 1337 pm = strtoul(q_arg, &end, 16); 1338 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1339 pm = 0; 1340 1341 options->portmask = pm; 1342 if (options->portmask == 0) { 1343 printf("invalid portmask specified\n"); 1344 return -1; 1345 } 1346 1347 return pm; 1348 } 1349 1350 /** Parse number of queues */ 1351 static int 1352 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1353 const char *q_arg) 1354 { 1355 char *end = NULL; 1356 unsigned long n; 1357 1358 /* parse hexadecimal string */ 1359 n = strtoul(q_arg, &end, 10); 1360 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1361 n = 0; 1362 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1363 n = 0; 1364 1365 options->nb_ports_per_lcore = n; 1366 if (options->nb_ports_per_lcore == 0) { 1367 printf("invalid number of ports selected\n"); 1368 return -1; 1369 } 1370 1371 return 0; 1372 } 1373 1374 /** Parse timer period */ 1375 static int 1376 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1377 const char *q_arg) 1378 { 1379 char *end = NULL; 1380 unsigned long n; 1381 1382 /* parse number string */ 1383 n = (unsigned)strtol(q_arg, &end, 10); 1384 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1385 n = 0; 1386 1387 if (n >= MAX_TIMER_PERIOD) { 1388 printf("Warning refresh period specified %lu is greater than " 1389 "max value %lu! using max value", 1390 n, MAX_TIMER_PERIOD); 1391 n = MAX_TIMER_PERIOD; 1392 } 1393 1394 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1395 1396 return 0; 1397 } 1398 1399 /** Generate default options for application */ 1400 static void 1401 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1402 { 1403 options->portmask = 0xffffffff; 1404 options->nb_ports_per_lcore = 1; 1405 options->refresh_period = 10000; 1406 options->single_lcore = 0; 1407 options->sessionless = 0; 1408 1409 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1410 1411 /* Cipher Data */ 1412 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1413 options->cipher_xform.next = NULL; 1414 options->ckey_param = 0; 1415 options->ckey_random_size = -1; 1416 options->cipher_xform.cipher.key.length = 0; 1417 options->cipher_iv_param = 0; 1418 options->cipher_iv_random_size = -1; 1419 options->cipher_iv.length = 0; 1420 1421 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1422 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1423 1424 /* Authentication Data */ 1425 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1426 options->auth_xform.next = NULL; 1427 options->akey_param = 0; 1428 options->akey_random_size = -1; 1429 options->auth_xform.auth.key.length = 0; 1430 options->auth_iv_param = 0; 1431 options->auth_iv_random_size = -1; 1432 options->auth_iv.length = 0; 1433 1434 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1435 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1436 1437 /* AEAD Data */ 1438 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1439 options->aead_xform.next = NULL; 1440 options->aead_key_param = 0; 1441 options->aead_key_random_size = -1; 1442 options->aead_xform.aead.key.length = 0; 1443 options->aead_iv_param = 0; 1444 options->aead_iv_random_size = -1; 1445 options->aead_iv.length = 0; 1446 1447 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1448 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1449 1450 options->aad_param = 0; 1451 options->aad_random_size = -1; 1452 options->aad.length = 0; 1453 1454 options->digest_size = -1; 1455 1456 options->type = CDEV_TYPE_ANY; 1457 options->cryptodev_mask = UINT64_MAX; 1458 } 1459 1460 static void 1461 display_cipher_info(struct l2fwd_crypto_options *options) 1462 { 1463 printf("\n---- Cipher information ---\n"); 1464 printf("Algorithm: %s\n", 1465 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1466 rte_hexdump(stdout, "Cipher key:", 1467 options->cipher_xform.cipher.key.data, 1468 options->cipher_xform.cipher.key.length); 1469 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1470 } 1471 1472 static void 1473 display_auth_info(struct l2fwd_crypto_options *options) 1474 { 1475 printf("\n---- Authentication information ---\n"); 1476 printf("Algorithm: %s\n", 1477 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1478 rte_hexdump(stdout, "Auth key:", 1479 options->auth_xform.auth.key.data, 1480 options->auth_xform.auth.key.length); 1481 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1482 } 1483 1484 static void 1485 display_aead_info(struct l2fwd_crypto_options *options) 1486 { 1487 printf("\n---- AEAD information ---\n"); 1488 printf("Algorithm: %s\n", 1489 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1490 rte_hexdump(stdout, "AEAD key:", 1491 options->aead_xform.aead.key.data, 1492 options->aead_xform.aead.key.length); 1493 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1494 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1495 } 1496 1497 static void 1498 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1499 { 1500 char string_cipher_op[MAX_STR_LEN]; 1501 char string_auth_op[MAX_STR_LEN]; 1502 char string_aead_op[MAX_STR_LEN]; 1503 1504 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1505 strcpy(string_cipher_op, "Encrypt"); 1506 else 1507 strcpy(string_cipher_op, "Decrypt"); 1508 1509 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1510 strcpy(string_auth_op, "Auth generate"); 1511 else 1512 strcpy(string_auth_op, "Auth verify"); 1513 1514 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1515 strcpy(string_aead_op, "Authenticated encryption"); 1516 else 1517 strcpy(string_aead_op, "Authenticated decryption"); 1518 1519 1520 printf("Options:-\nn"); 1521 printf("portmask: %x\n", options->portmask); 1522 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1523 printf("refresh period : %u\n", options->refresh_period); 1524 printf("single lcore mode: %s\n", 1525 options->single_lcore ? "enabled" : "disabled"); 1526 printf("stats_printing: %s\n", 1527 options->refresh_period == 0 ? "disabled" : "enabled"); 1528 1529 printf("sessionless crypto: %s\n", 1530 options->sessionless ? "enabled" : "disabled"); 1531 1532 if (options->ckey_param && (options->ckey_random_size != -1)) 1533 printf("Cipher key already parsed, ignoring size of random key\n"); 1534 1535 if (options->akey_param && (options->akey_random_size != -1)) 1536 printf("Auth key already parsed, ignoring size of random key\n"); 1537 1538 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1539 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1540 1541 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1542 printf("Auth IV already parsed, ignoring size of random IV\n"); 1543 1544 if (options->aad_param && (options->aad_random_size != -1)) 1545 printf("AAD already parsed, ignoring size of random AAD\n"); 1546 1547 printf("\nCrypto chain: "); 1548 switch (options->xform_chain) { 1549 case L2FWD_CRYPTO_AEAD: 1550 printf("Input --> %s --> Output\n", string_aead_op); 1551 display_aead_info(options); 1552 break; 1553 case L2FWD_CRYPTO_CIPHER_HASH: 1554 printf("Input --> %s --> %s --> Output\n", 1555 string_cipher_op, string_auth_op); 1556 display_cipher_info(options); 1557 display_auth_info(options); 1558 break; 1559 case L2FWD_CRYPTO_HASH_CIPHER: 1560 printf("Input --> %s --> %s --> Output\n", 1561 string_auth_op, string_cipher_op); 1562 display_cipher_info(options); 1563 display_auth_info(options); 1564 break; 1565 case L2FWD_CRYPTO_HASH_ONLY: 1566 printf("Input --> %s --> Output\n", string_auth_op); 1567 display_auth_info(options); 1568 break; 1569 case L2FWD_CRYPTO_CIPHER_ONLY: 1570 printf("Input --> %s --> Output\n", string_cipher_op); 1571 display_cipher_info(options); 1572 break; 1573 } 1574 } 1575 1576 /* Parse the argument given in the command line of the application */ 1577 static int 1578 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1579 int argc, char **argv) 1580 { 1581 int opt, retval, option_index; 1582 char **argvopt = argv, *prgname = argv[0]; 1583 1584 static struct option lgopts[] = { 1585 { "sessionless", no_argument, 0, 0 }, 1586 1587 { "cdev_type", required_argument, 0, 0 }, 1588 { "chain", required_argument, 0, 0 }, 1589 1590 { "cipher_algo", required_argument, 0, 0 }, 1591 { "cipher_op", required_argument, 0, 0 }, 1592 { "cipher_key", required_argument, 0, 0 }, 1593 { "cipher_key_random_size", required_argument, 0, 0 }, 1594 { "cipher_iv", required_argument, 0, 0 }, 1595 { "cipher_iv_random_size", required_argument, 0, 0 }, 1596 1597 { "auth_algo", required_argument, 0, 0 }, 1598 { "auth_op", required_argument, 0, 0 }, 1599 { "auth_key", required_argument, 0, 0 }, 1600 { "auth_key_random_size", required_argument, 0, 0 }, 1601 { "auth_iv", required_argument, 0, 0 }, 1602 { "auth_iv_random_size", required_argument, 0, 0 }, 1603 1604 { "aead_algo", required_argument, 0, 0 }, 1605 { "aead_op", required_argument, 0, 0 }, 1606 { "aead_key", required_argument, 0, 0 }, 1607 { "aead_key_random_size", required_argument, 0, 0 }, 1608 { "aead_iv", required_argument, 0, 0 }, 1609 { "aead_iv_random_size", required_argument, 0, 0 }, 1610 1611 { "aad", required_argument, 0, 0 }, 1612 { "aad_random_size", required_argument, 0, 0 }, 1613 1614 { "digest_size", required_argument, 0, 0 }, 1615 1616 { "sessionless", no_argument, 0, 0 }, 1617 { "cryptodev_mask", required_argument, 0, 0}, 1618 1619 { NULL, 0, 0, 0 } 1620 }; 1621 1622 l2fwd_crypto_default_options(options); 1623 1624 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1625 &option_index)) != EOF) { 1626 switch (opt) { 1627 /* long options */ 1628 case 0: 1629 retval = l2fwd_crypto_parse_args_long_options(options, 1630 lgopts, option_index); 1631 if (retval < 0) { 1632 l2fwd_crypto_usage(prgname); 1633 return -1; 1634 } 1635 break; 1636 1637 /* portmask */ 1638 case 'p': 1639 retval = l2fwd_crypto_parse_portmask(options, optarg); 1640 if (retval < 0) { 1641 l2fwd_crypto_usage(prgname); 1642 return -1; 1643 } 1644 break; 1645 1646 /* nqueue */ 1647 case 'q': 1648 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1649 if (retval < 0) { 1650 l2fwd_crypto_usage(prgname); 1651 return -1; 1652 } 1653 break; 1654 1655 /* single */ 1656 case 's': 1657 options->single_lcore = 1; 1658 1659 break; 1660 1661 /* timer period */ 1662 case 'T': 1663 retval = l2fwd_crypto_parse_timer_period(options, 1664 optarg); 1665 if (retval < 0) { 1666 l2fwd_crypto_usage(prgname); 1667 return -1; 1668 } 1669 break; 1670 1671 default: 1672 l2fwd_crypto_usage(prgname); 1673 return -1; 1674 } 1675 } 1676 1677 1678 if (optind >= 0) 1679 argv[optind-1] = prgname; 1680 1681 retval = optind-1; 1682 optind = 1; /* reset getopt lib */ 1683 1684 return retval; 1685 } 1686 1687 /* Check the link status of all ports in up to 9s, and print them finally */ 1688 static void 1689 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1690 { 1691 #define CHECK_INTERVAL 100 /* 100ms */ 1692 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1693 uint8_t portid, count, all_ports_up, print_flag = 0; 1694 struct rte_eth_link link; 1695 1696 printf("\nChecking link status"); 1697 fflush(stdout); 1698 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1699 all_ports_up = 1; 1700 for (portid = 0; portid < port_num; portid++) { 1701 if ((port_mask & (1 << portid)) == 0) 1702 continue; 1703 memset(&link, 0, sizeof(link)); 1704 rte_eth_link_get_nowait(portid, &link); 1705 /* print link status if flag set */ 1706 if (print_flag == 1) { 1707 if (link.link_status) 1708 printf("Port %d Link Up - speed %u " 1709 "Mbps - %s\n", (uint8_t)portid, 1710 (unsigned)link.link_speed, 1711 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1712 ("full-duplex") : ("half-duplex\n")); 1713 else 1714 printf("Port %d Link Down\n", 1715 (uint8_t)portid); 1716 continue; 1717 } 1718 /* clear all_ports_up flag if any link down */ 1719 if (link.link_status == ETH_LINK_DOWN) { 1720 all_ports_up = 0; 1721 break; 1722 } 1723 } 1724 /* after finally printing all link status, get out */ 1725 if (print_flag == 1) 1726 break; 1727 1728 if (all_ports_up == 0) { 1729 printf("."); 1730 fflush(stdout); 1731 rte_delay_ms(CHECK_INTERVAL); 1732 } 1733 1734 /* set the print_flag if all ports up or timeout */ 1735 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1736 print_flag = 1; 1737 printf("done\n"); 1738 } 1739 } 1740 } 1741 1742 /* Check if device has to be HW/SW or any */ 1743 static int 1744 check_type(const struct l2fwd_crypto_options *options, 1745 const struct rte_cryptodev_info *dev_info) 1746 { 1747 if (options->type == CDEV_TYPE_HW && 1748 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1749 return 0; 1750 if (options->type == CDEV_TYPE_SW && 1751 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1752 return 0; 1753 if (options->type == CDEV_TYPE_ANY) 1754 return 0; 1755 1756 return -1; 1757 } 1758 1759 static const struct rte_cryptodev_capabilities * 1760 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1761 const struct rte_cryptodev_info *dev_info, 1762 uint8_t cdev_id) 1763 { 1764 unsigned int i = 0; 1765 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1766 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1767 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1768 options->cipher_xform.cipher.algo; 1769 1770 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1771 cap_cipher_algo = cap->sym.cipher.algo; 1772 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1773 if (cap_cipher_algo == opt_cipher_algo) { 1774 if (check_type(options, dev_info) == 0) 1775 break; 1776 } 1777 } 1778 cap = &dev_info->capabilities[++i]; 1779 } 1780 1781 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1782 printf("Algorithm %s not supported by cryptodev %u" 1783 " or device not of preferred type (%s)\n", 1784 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1785 cdev_id, 1786 options->string_type); 1787 return NULL; 1788 } 1789 1790 return cap; 1791 } 1792 1793 static const struct rte_cryptodev_capabilities * 1794 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1795 const struct rte_cryptodev_info *dev_info, 1796 uint8_t cdev_id) 1797 { 1798 unsigned int i = 0; 1799 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1800 enum rte_crypto_auth_algorithm cap_auth_algo; 1801 enum rte_crypto_auth_algorithm opt_auth_algo = 1802 options->auth_xform.auth.algo; 1803 1804 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1805 cap_auth_algo = cap->sym.auth.algo; 1806 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1807 if (cap_auth_algo == opt_auth_algo) { 1808 if (check_type(options, dev_info) == 0) 1809 break; 1810 } 1811 } 1812 cap = &dev_info->capabilities[++i]; 1813 } 1814 1815 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1816 printf("Algorithm %s not supported by cryptodev %u" 1817 " or device not of preferred type (%s)\n", 1818 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1819 cdev_id, 1820 options->string_type); 1821 return NULL; 1822 } 1823 1824 return cap; 1825 } 1826 1827 static const struct rte_cryptodev_capabilities * 1828 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1829 const struct rte_cryptodev_info *dev_info, 1830 uint8_t cdev_id) 1831 { 1832 unsigned int i = 0; 1833 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1834 enum rte_crypto_aead_algorithm cap_aead_algo; 1835 enum rte_crypto_aead_algorithm opt_aead_algo = 1836 options->aead_xform.aead.algo; 1837 1838 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1839 cap_aead_algo = cap->sym.aead.algo; 1840 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1841 if (cap_aead_algo == opt_aead_algo) { 1842 if (check_type(options, dev_info) == 0) 1843 break; 1844 } 1845 } 1846 cap = &dev_info->capabilities[++i]; 1847 } 1848 1849 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1850 printf("Algorithm %s not supported by cryptodev %u" 1851 " or device not of preferred type (%s)\n", 1852 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1853 cdev_id, 1854 options->string_type); 1855 return NULL; 1856 } 1857 1858 return cap; 1859 } 1860 1861 /* Check if the device is enabled by cryptodev_mask */ 1862 static int 1863 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1864 uint8_t cdev_id) 1865 { 1866 if (options->cryptodev_mask & (1 << cdev_id)) 1867 return 0; 1868 1869 return -1; 1870 } 1871 1872 static inline int 1873 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1874 uint16_t increment) 1875 { 1876 uint16_t supp_size; 1877 1878 /* Single value */ 1879 if (increment == 0) { 1880 if (length == min) 1881 return 0; 1882 else 1883 return -1; 1884 } 1885 1886 /* Range of values */ 1887 for (supp_size = min; supp_size <= max; supp_size += increment) { 1888 if (length == supp_size) 1889 return 0; 1890 } 1891 1892 return -1; 1893 } 1894 1895 static int 1896 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1897 unsigned int iv_param, int iv_random_size, 1898 uint16_t *iv_length) 1899 { 1900 /* 1901 * Check if length of provided IV is supported 1902 * by the algorithm chosen. 1903 */ 1904 if (iv_param) { 1905 if (check_supported_size(*iv_length, 1906 iv_range_size->min, 1907 iv_range_size->max, 1908 iv_range_size->increment) 1909 != 0) { 1910 printf("Unsupported IV length\n"); 1911 return -1; 1912 } 1913 /* 1914 * Check if length of IV to be randomly generated 1915 * is supported by the algorithm chosen. 1916 */ 1917 } else if (iv_random_size != -1) { 1918 if (check_supported_size(iv_random_size, 1919 iv_range_size->min, 1920 iv_range_size->max, 1921 iv_range_size->increment) 1922 != 0) { 1923 printf("Unsupported IV length\n"); 1924 return -1; 1925 } 1926 *iv_length = iv_random_size; 1927 /* No size provided, use minimum size. */ 1928 } else 1929 *iv_length = iv_range_size->min; 1930 1931 return 0; 1932 } 1933 1934 static int 1935 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1936 uint8_t *enabled_cdevs) 1937 { 1938 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1939 const struct rte_cryptodev_capabilities *cap; 1940 unsigned int sess_sz, max_sess_sz = 0; 1941 int retval; 1942 1943 cdev_count = rte_cryptodev_count(); 1944 if (cdev_count == 0) { 1945 printf("No crypto devices available\n"); 1946 return -1; 1947 } 1948 1949 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1950 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 1951 if (sess_sz > max_sess_sz) 1952 max_sess_sz = sess_sz; 1953 } 1954 1955 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1956 cdev_id++) { 1957 struct rte_cryptodev_qp_conf qp_conf; 1958 struct rte_cryptodev_info dev_info; 1959 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); 1960 1961 struct rte_cryptodev_config conf = { 1962 .nb_queue_pairs = 1, 1963 .socket_id = socket_id, 1964 }; 1965 1966 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 1967 continue; 1968 1969 rte_cryptodev_info_get(cdev_id, &dev_info); 1970 1971 if (session_pool_socket[socket_id] == NULL) { 1972 char mp_name[RTE_MEMPOOL_NAMESIZE]; 1973 struct rte_mempool *sess_mp; 1974 1975 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 1976 "sess_mp_%u", socket_id); 1977 1978 /* 1979 * Create enough objects for session headers and 1980 * device private data 1981 */ 1982 sess_mp = rte_mempool_create(mp_name, 1983 MAX_SESSIONS * 2, 1984 max_sess_sz, 1985 SESSION_POOL_CACHE_SIZE, 1986 0, NULL, NULL, NULL, 1987 NULL, socket_id, 1988 0); 1989 1990 if (sess_mp == NULL) { 1991 printf("Cannot create session pool on socket %d\n", 1992 socket_id); 1993 return -ENOMEM; 1994 } 1995 1996 printf("Allocated session pool on socket %d\n", socket_id); 1997 session_pool_socket[socket_id] = sess_mp; 1998 } 1999 2000 /* Set AEAD parameters */ 2001 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2002 /* Check if device supports AEAD algo */ 2003 cap = check_device_support_aead_algo(options, &dev_info, 2004 cdev_id); 2005 if (cap == NULL) 2006 continue; 2007 2008 options->block_size = cap->sym.aead.block_size; 2009 2010 check_iv_param(&cap->sym.aead.iv_size, 2011 options->aead_iv_param, 2012 options->aead_iv_random_size, 2013 &options->aead_iv.length); 2014 2015 /* 2016 * Check if length of provided AEAD key is supported 2017 * by the algorithm chosen. 2018 */ 2019 if (options->aead_key_param) { 2020 if (check_supported_size( 2021 options->aead_xform.aead.key.length, 2022 cap->sym.aead.key_size.min, 2023 cap->sym.aead.key_size.max, 2024 cap->sym.aead.key_size.increment) 2025 != 0) { 2026 printf("Unsupported aead key length\n"); 2027 return -1; 2028 } 2029 /* 2030 * Check if length of the aead key to be randomly generated 2031 * is supported by the algorithm chosen. 2032 */ 2033 } else if (options->aead_key_random_size != -1) { 2034 if (check_supported_size(options->ckey_random_size, 2035 cap->sym.aead.key_size.min, 2036 cap->sym.aead.key_size.max, 2037 cap->sym.aead.key_size.increment) 2038 != 0) { 2039 printf("Unsupported aead key length\n"); 2040 return -1; 2041 } 2042 options->aead_xform.aead.key.length = 2043 options->ckey_random_size; 2044 /* No size provided, use minimum size. */ 2045 } else 2046 options->aead_xform.aead.key.length = 2047 cap->sym.aead.key_size.min; 2048 2049 if (!options->aead_key_param) 2050 generate_random_key( 2051 options->aead_xform.aead.key.data, 2052 options->aead_xform.aead.key.length); 2053 2054 /* 2055 * Check if length of provided AAD is supported 2056 * by the algorithm chosen. 2057 */ 2058 if (options->aad_param) { 2059 if (check_supported_size(options->aad.length, 2060 cap->sym.aead.aad_size.min, 2061 cap->sym.aead.aad_size.max, 2062 cap->sym.aead.aad_size.increment) 2063 != 0) { 2064 printf("Unsupported AAD length\n"); 2065 return -1; 2066 } 2067 /* 2068 * Check if length of AAD to be randomly generated 2069 * is supported by the algorithm chosen. 2070 */ 2071 } else if (options->aad_random_size != -1) { 2072 if (check_supported_size(options->aad_random_size, 2073 cap->sym.aead.aad_size.min, 2074 cap->sym.aead.aad_size.max, 2075 cap->sym.aead.aad_size.increment) 2076 != 0) { 2077 printf("Unsupported AAD length\n"); 2078 return -1; 2079 } 2080 options->aad.length = options->aad_random_size; 2081 /* No size provided, use minimum size. */ 2082 } else 2083 options->aad.length = cap->sym.auth.aad_size.min; 2084 2085 options->aead_xform.aead.add_auth_data_length = 2086 options->aad.length; 2087 2088 /* Check if digest size is supported by the algorithm. */ 2089 if (options->digest_size != -1) { 2090 if (check_supported_size(options->digest_size, 2091 cap->sym.aead.digest_size.min, 2092 cap->sym.aead.digest_size.max, 2093 cap->sym.aead.digest_size.increment) 2094 != 0) { 2095 printf("Unsupported digest length\n"); 2096 return -1; 2097 } 2098 options->aead_xform.aead.digest_length = 2099 options->digest_size; 2100 /* No size provided, use minimum size. */ 2101 } else 2102 options->aead_xform.aead.digest_length = 2103 cap->sym.aead.digest_size.min; 2104 } 2105 2106 /* Set cipher parameters */ 2107 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2108 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2109 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2110 /* Check if device supports cipher algo */ 2111 cap = check_device_support_cipher_algo(options, &dev_info, 2112 cdev_id); 2113 if (cap == NULL) 2114 continue; 2115 2116 options->block_size = cap->sym.cipher.block_size; 2117 2118 check_iv_param(&cap->sym.cipher.iv_size, 2119 options->cipher_iv_param, 2120 options->cipher_iv_random_size, 2121 &options->cipher_iv.length); 2122 2123 /* 2124 * Check if length of provided cipher key is supported 2125 * by the algorithm chosen. 2126 */ 2127 if (options->ckey_param) { 2128 if (check_supported_size( 2129 options->cipher_xform.cipher.key.length, 2130 cap->sym.cipher.key_size.min, 2131 cap->sym.cipher.key_size.max, 2132 cap->sym.cipher.key_size.increment) 2133 != 0) { 2134 printf("Unsupported cipher key length\n"); 2135 return -1; 2136 } 2137 /* 2138 * Check if length of the cipher key to be randomly generated 2139 * is supported by the algorithm chosen. 2140 */ 2141 } else if (options->ckey_random_size != -1) { 2142 if (check_supported_size(options->ckey_random_size, 2143 cap->sym.cipher.key_size.min, 2144 cap->sym.cipher.key_size.max, 2145 cap->sym.cipher.key_size.increment) 2146 != 0) { 2147 printf("Unsupported cipher key length\n"); 2148 return -1; 2149 } 2150 options->cipher_xform.cipher.key.length = 2151 options->ckey_random_size; 2152 /* No size provided, use minimum size. */ 2153 } else 2154 options->cipher_xform.cipher.key.length = 2155 cap->sym.cipher.key_size.min; 2156 2157 if (!options->ckey_param) 2158 generate_random_key( 2159 options->cipher_xform.cipher.key.data, 2160 options->cipher_xform.cipher.key.length); 2161 2162 } 2163 2164 /* Set auth parameters */ 2165 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2166 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2167 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2168 /* Check if device supports auth algo */ 2169 cap = check_device_support_auth_algo(options, &dev_info, 2170 cdev_id); 2171 if (cap == NULL) 2172 continue; 2173 2174 check_iv_param(&cap->sym.auth.iv_size, 2175 options->auth_iv_param, 2176 options->auth_iv_random_size, 2177 &options->auth_iv.length); 2178 /* 2179 * Check if length of provided auth key is supported 2180 * by the algorithm chosen. 2181 */ 2182 if (options->akey_param) { 2183 if (check_supported_size( 2184 options->auth_xform.auth.key.length, 2185 cap->sym.auth.key_size.min, 2186 cap->sym.auth.key_size.max, 2187 cap->sym.auth.key_size.increment) 2188 != 0) { 2189 printf("Unsupported auth key length\n"); 2190 return -1; 2191 } 2192 /* 2193 * Check if length of the auth key to be randomly generated 2194 * is supported by the algorithm chosen. 2195 */ 2196 } else if (options->akey_random_size != -1) { 2197 if (check_supported_size(options->akey_random_size, 2198 cap->sym.auth.key_size.min, 2199 cap->sym.auth.key_size.max, 2200 cap->sym.auth.key_size.increment) 2201 != 0) { 2202 printf("Unsupported auth key length\n"); 2203 return -1; 2204 } 2205 options->auth_xform.auth.key.length = 2206 options->akey_random_size; 2207 /* No size provided, use minimum size. */ 2208 } else 2209 options->auth_xform.auth.key.length = 2210 cap->sym.auth.key_size.min; 2211 2212 if (!options->akey_param) 2213 generate_random_key( 2214 options->auth_xform.auth.key.data, 2215 options->auth_xform.auth.key.length); 2216 2217 /* Check if digest size is supported by the algorithm. */ 2218 if (options->digest_size != -1) { 2219 if (check_supported_size(options->digest_size, 2220 cap->sym.auth.digest_size.min, 2221 cap->sym.auth.digest_size.max, 2222 cap->sym.auth.digest_size.increment) 2223 != 0) { 2224 printf("Unsupported digest length\n"); 2225 return -1; 2226 } 2227 options->auth_xform.auth.digest_length = 2228 options->digest_size; 2229 /* No size provided, use minimum size. */ 2230 } else 2231 options->auth_xform.auth.digest_length = 2232 cap->sym.auth.digest_size.min; 2233 } 2234 2235 retval = rte_cryptodev_configure(cdev_id, &conf, 2236 session_pool_socket[socket_id]); 2237 if (retval < 0) { 2238 printf("Failed to configure cryptodev %u", cdev_id); 2239 return -1; 2240 } 2241 2242 qp_conf.nb_descriptors = 2048; 2243 2244 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2245 socket_id); 2246 if (retval < 0) { 2247 printf("Failed to setup queue pair %u on cryptodev %u", 2248 0, cdev_id); 2249 return -1; 2250 } 2251 2252 retval = rte_cryptodev_start(cdev_id); 2253 if (retval < 0) { 2254 printf("Failed to start device %u: error %d\n", 2255 cdev_id, retval); 2256 return -1; 2257 } 2258 2259 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2260 2261 enabled_cdevs[cdev_id] = 1; 2262 enabled_cdev_count++; 2263 } 2264 2265 return enabled_cdev_count; 2266 } 2267 2268 static int 2269 initialize_ports(struct l2fwd_crypto_options *options) 2270 { 2271 uint8_t last_portid, portid; 2272 unsigned enabled_portcount = 0; 2273 unsigned nb_ports = rte_eth_dev_count(); 2274 2275 if (nb_ports == 0) { 2276 printf("No Ethernet ports - bye\n"); 2277 return -1; 2278 } 2279 2280 /* Reset l2fwd_dst_ports */ 2281 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2282 l2fwd_dst_ports[portid] = 0; 2283 2284 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2285 int retval; 2286 2287 /* Skip ports that are not enabled */ 2288 if ((options->portmask & (1 << portid)) == 0) 2289 continue; 2290 2291 /* init port */ 2292 printf("Initializing port %u... ", (unsigned) portid); 2293 fflush(stdout); 2294 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2295 if (retval < 0) { 2296 printf("Cannot configure device: err=%d, port=%u\n", 2297 retval, (unsigned) portid); 2298 return -1; 2299 } 2300 2301 /* init one RX queue */ 2302 fflush(stdout); 2303 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2304 rte_eth_dev_socket_id(portid), 2305 NULL, l2fwd_pktmbuf_pool); 2306 if (retval < 0) { 2307 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2308 retval, (unsigned) portid); 2309 return -1; 2310 } 2311 2312 /* init one TX queue on each port */ 2313 fflush(stdout); 2314 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2315 rte_eth_dev_socket_id(portid), 2316 NULL); 2317 if (retval < 0) { 2318 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2319 retval, (unsigned) portid); 2320 2321 return -1; 2322 } 2323 2324 /* Start device */ 2325 retval = rte_eth_dev_start(portid); 2326 if (retval < 0) { 2327 printf("rte_eth_dev_start:err=%d, port=%u\n", 2328 retval, (unsigned) portid); 2329 return -1; 2330 } 2331 2332 rte_eth_promiscuous_enable(portid); 2333 2334 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2335 2336 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2337 (unsigned) portid, 2338 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2339 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2340 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2341 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2342 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2343 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2344 2345 /* initialize port stats */ 2346 memset(&port_statistics, 0, sizeof(port_statistics)); 2347 2348 /* Setup port forwarding table */ 2349 if (enabled_portcount % 2) { 2350 l2fwd_dst_ports[portid] = last_portid; 2351 l2fwd_dst_ports[last_portid] = portid; 2352 } else { 2353 last_portid = portid; 2354 } 2355 2356 l2fwd_enabled_port_mask |= (1 << portid); 2357 enabled_portcount++; 2358 } 2359 2360 if (enabled_portcount == 1) { 2361 l2fwd_dst_ports[last_portid] = last_portid; 2362 } else if (enabled_portcount % 2) { 2363 printf("odd number of ports in portmask- bye\n"); 2364 return -1; 2365 } 2366 2367 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2368 2369 return enabled_portcount; 2370 } 2371 2372 static void 2373 reserve_key_memory(struct l2fwd_crypto_options *options) 2374 { 2375 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2376 MAX_KEY_SIZE, 0); 2377 if (options->cipher_xform.cipher.key.data == NULL) 2378 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2379 2380 options->auth_xform.auth.key.data = rte_malloc("auth key", 2381 MAX_KEY_SIZE, 0); 2382 if (options->auth_xform.auth.key.data == NULL) 2383 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2384 2385 options->aead_xform.aead.key.data = rte_malloc("aead key", 2386 MAX_KEY_SIZE, 0); 2387 if (options->aead_xform.aead.key.data == NULL) 2388 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2389 2390 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2391 if (options->cipher_iv.data == NULL) 2392 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2393 2394 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2395 if (options->auth_iv.data == NULL) 2396 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2397 2398 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2399 if (options->aead_iv.data == NULL) 2400 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2401 2402 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2403 if (options->aad.data == NULL) 2404 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2405 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2406 } 2407 2408 int 2409 main(int argc, char **argv) 2410 { 2411 struct lcore_queue_conf *qconf; 2412 struct l2fwd_crypto_options options; 2413 2414 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2415 unsigned lcore_id, rx_lcore_id; 2416 int ret, enabled_cdevcount, enabled_portcount; 2417 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2418 2419 /* init EAL */ 2420 ret = rte_eal_init(argc, argv); 2421 if (ret < 0) 2422 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2423 argc -= ret; 2424 argv += ret; 2425 2426 /* reserve memory for Cipher/Auth key and IV */ 2427 reserve_key_memory(&options); 2428 2429 /* parse application arguments (after the EAL ones) */ 2430 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2431 if (ret < 0) 2432 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2433 2434 /* create the mbuf pool */ 2435 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2436 sizeof(struct rte_crypto_op), 2437 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2438 if (l2fwd_pktmbuf_pool == NULL) 2439 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2440 2441 /* create crypto op pool */ 2442 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2443 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2444 rte_socket_id()); 2445 if (l2fwd_crypto_op_pool == NULL) 2446 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2447 2448 /* Enable Ethernet ports */ 2449 enabled_portcount = initialize_ports(&options); 2450 if (enabled_portcount < 1) 2451 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2452 2453 nb_ports = rte_eth_dev_count(); 2454 /* Initialize the port/queue configuration of each logical core */ 2455 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2456 portid < nb_ports; portid++) { 2457 2458 /* skip ports that are not enabled */ 2459 if ((options.portmask & (1 << portid)) == 0) 2460 continue; 2461 2462 if (options.single_lcore && qconf == NULL) { 2463 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2464 rx_lcore_id++; 2465 if (rx_lcore_id >= RTE_MAX_LCORE) 2466 rte_exit(EXIT_FAILURE, 2467 "Not enough cores\n"); 2468 } 2469 } else if (!options.single_lcore) { 2470 /* get the lcore_id for this port */ 2471 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2472 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2473 options.nb_ports_per_lcore) { 2474 rx_lcore_id++; 2475 if (rx_lcore_id >= RTE_MAX_LCORE) 2476 rte_exit(EXIT_FAILURE, 2477 "Not enough cores\n"); 2478 } 2479 } 2480 2481 /* Assigned a new logical core in the loop above. */ 2482 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2483 qconf = &lcore_queue_conf[rx_lcore_id]; 2484 2485 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2486 qconf->nb_rx_ports++; 2487 2488 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2489 } 2490 2491 /* Enable Crypto devices */ 2492 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2493 enabled_cdevs); 2494 if (enabled_cdevcount < 0) 2495 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2496 2497 if (enabled_cdevcount < enabled_portcount) 2498 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2499 "has to be more or equal to number of ports (%d)\n", 2500 enabled_cdevcount, enabled_portcount); 2501 2502 nb_cryptodevs = rte_cryptodev_count(); 2503 2504 /* Initialize the port/cryptodev configuration of each logical core */ 2505 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2506 cdev_id < nb_cryptodevs && enabled_cdevcount; 2507 cdev_id++) { 2508 /* Crypto op not supported by crypto device */ 2509 if (!enabled_cdevs[cdev_id]) 2510 continue; 2511 2512 if (options.single_lcore && qconf == NULL) { 2513 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2514 rx_lcore_id++; 2515 if (rx_lcore_id >= RTE_MAX_LCORE) 2516 rte_exit(EXIT_FAILURE, 2517 "Not enough cores\n"); 2518 } 2519 } else if (!options.single_lcore) { 2520 /* get the lcore_id for this port */ 2521 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2522 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2523 options.nb_ports_per_lcore) { 2524 rx_lcore_id++; 2525 if (rx_lcore_id >= RTE_MAX_LCORE) 2526 rte_exit(EXIT_FAILURE, 2527 "Not enough cores\n"); 2528 } 2529 } 2530 2531 /* Assigned a new logical core in the loop above. */ 2532 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2533 qconf = &lcore_queue_conf[rx_lcore_id]; 2534 2535 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2536 qconf->nb_crypto_devs++; 2537 2538 enabled_cdevcount--; 2539 2540 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2541 (unsigned)cdev_id); 2542 } 2543 2544 /* launch per-lcore init on every lcore */ 2545 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2546 CALL_MASTER); 2547 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2548 if (rte_eal_wait_lcore(lcore_id) < 0) 2549 return -1; 2550 } 2551 2552 return 0; 2553 } 2554