xref: /dpdk/examples/l2fwd-crypto/main.c (revision b3bbd9e5f265937164ed8c9c61d12f7543a745ea)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 #define MAX_SESSIONS 32
92 #define SESSION_POOL_CACHE_SIZE 0
93 
94 #define MAXIMUM_IV_LENGTH	16
95 #define IV_OFFSET		(sizeof(struct rte_crypto_op) + \
96 				sizeof(struct rte_crypto_sym_op))
97 
98 /*
99  * Configurable number of RX/TX ring descriptors
100  */
101 #define RTE_TEST_RX_DESC_DEFAULT 128
102 #define RTE_TEST_TX_DESC_DEFAULT 512
103 
104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
106 
107 /* ethernet addresses of ports */
108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
109 
110 /* mask of enabled ports */
111 static uint64_t l2fwd_enabled_port_mask;
112 static uint64_t l2fwd_enabled_crypto_mask;
113 
114 /* list of enabled ports */
115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
116 
117 
118 struct pkt_buffer {
119 	unsigned len;
120 	struct rte_mbuf *buffer[MAX_PKT_BURST];
121 };
122 
123 struct op_buffer {
124 	unsigned len;
125 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
126 };
127 
128 #define MAX_RX_QUEUE_PER_LCORE 16
129 #define MAX_TX_QUEUE_PER_PORT 16
130 
131 enum l2fwd_crypto_xform_chain {
132 	L2FWD_CRYPTO_CIPHER_HASH,
133 	L2FWD_CRYPTO_HASH_CIPHER,
134 	L2FWD_CRYPTO_CIPHER_ONLY,
135 	L2FWD_CRYPTO_HASH_ONLY,
136 	L2FWD_CRYPTO_AEAD
137 };
138 
139 struct l2fwd_key {
140 	uint8_t *data;
141 	uint32_t length;
142 	phys_addr_t phys_addr;
143 };
144 
145 struct l2fwd_iv {
146 	uint8_t *data;
147 	uint16_t length;
148 };
149 
150 /** l2fwd crypto application command line options */
151 struct l2fwd_crypto_options {
152 	unsigned portmask;
153 	unsigned nb_ports_per_lcore;
154 	unsigned refresh_period;
155 	unsigned single_lcore:1;
156 
157 	enum cdev_type type;
158 	unsigned sessionless:1;
159 
160 	enum l2fwd_crypto_xform_chain xform_chain;
161 
162 	struct rte_crypto_sym_xform cipher_xform;
163 	unsigned ckey_param;
164 	int ckey_random_size;
165 
166 	struct l2fwd_iv cipher_iv;
167 	unsigned int cipher_iv_param;
168 	int cipher_iv_random_size;
169 
170 	struct rte_crypto_sym_xform auth_xform;
171 	uint8_t akey_param;
172 	int akey_random_size;
173 
174 	struct l2fwd_iv auth_iv;
175 	unsigned int auth_iv_param;
176 	int auth_iv_random_size;
177 
178 	struct rte_crypto_sym_xform aead_xform;
179 	unsigned int aead_key_param;
180 	int aead_key_random_size;
181 
182 	struct l2fwd_iv aead_iv;
183 	unsigned int aead_iv_param;
184 	int aead_iv_random_size;
185 
186 	struct l2fwd_key aad;
187 	unsigned aad_param;
188 	int aad_random_size;
189 
190 	int digest_size;
191 
192 	uint16_t block_size;
193 	char string_type[MAX_STR_LEN];
194 
195 	uint64_t cryptodev_mask;
196 };
197 
198 /** l2fwd crypto lcore params */
199 struct l2fwd_crypto_params {
200 	uint8_t dev_id;
201 	uint8_t qp_id;
202 
203 	unsigned digest_length;
204 	unsigned block_size;
205 
206 	struct l2fwd_iv cipher_iv;
207 	struct l2fwd_iv auth_iv;
208 	struct l2fwd_iv aead_iv;
209 	struct l2fwd_key aad;
210 	struct rte_cryptodev_sym_session *session;
211 
212 	uint8_t do_cipher;
213 	uint8_t do_hash;
214 	uint8_t do_aead;
215 	uint8_t hash_verify;
216 
217 	enum rte_crypto_cipher_algorithm cipher_algo;
218 	enum rte_crypto_auth_algorithm auth_algo;
219 	enum rte_crypto_aead_algorithm aead_algo;
220 };
221 
222 /** lcore configuration */
223 struct lcore_queue_conf {
224 	unsigned nb_rx_ports;
225 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
226 
227 	unsigned nb_crypto_devs;
228 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
229 
230 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
231 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
232 } __rte_cache_aligned;
233 
234 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
235 
236 static const struct rte_eth_conf port_conf = {
237 	.rxmode = {
238 		.mq_mode = ETH_MQ_RX_NONE,
239 		.max_rx_pkt_len = ETHER_MAX_LEN,
240 		.split_hdr_size = 0,
241 		.header_split   = 0, /**< Header Split disabled */
242 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
243 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
244 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
245 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
246 	},
247 	.txmode = {
248 		.mq_mode = ETH_MQ_TX_NONE,
249 	},
250 };
251 
252 struct rte_mempool *l2fwd_pktmbuf_pool;
253 struct rte_mempool *l2fwd_crypto_op_pool;
254 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 };
255 
256 /* Per-port statistics struct */
257 struct l2fwd_port_statistics {
258 	uint64_t tx;
259 	uint64_t rx;
260 
261 	uint64_t crypto_enqueued;
262 	uint64_t crypto_dequeued;
263 
264 	uint64_t dropped;
265 } __rte_cache_aligned;
266 
267 struct l2fwd_crypto_statistics {
268 	uint64_t enqueued;
269 	uint64_t dequeued;
270 
271 	uint64_t errors;
272 } __rte_cache_aligned;
273 
274 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
275 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
276 
277 /* A tsc-based timer responsible for triggering statistics printout */
278 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
279 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
280 
281 /* default period is 10 seconds */
282 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
283 
284 /* Print out statistics on packets dropped */
285 static void
286 print_stats(void)
287 {
288 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
289 	uint64_t total_packets_enqueued, total_packets_dequeued,
290 		total_packets_errors;
291 	unsigned portid;
292 	uint64_t cdevid;
293 
294 	total_packets_dropped = 0;
295 	total_packets_tx = 0;
296 	total_packets_rx = 0;
297 	total_packets_enqueued = 0;
298 	total_packets_dequeued = 0;
299 	total_packets_errors = 0;
300 
301 	const char clr[] = { 27, '[', '2', 'J', '\0' };
302 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
303 
304 		/* Clear screen and move to top left */
305 	printf("%s%s", clr, topLeft);
306 
307 	printf("\nPort statistics ====================================");
308 
309 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
310 		/* skip disabled ports */
311 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
312 			continue;
313 		printf("\nStatistics for port %u ------------------------------"
314 			   "\nPackets sent: %32"PRIu64
315 			   "\nPackets received: %28"PRIu64
316 			   "\nPackets dropped: %29"PRIu64,
317 			   portid,
318 			   port_statistics[portid].tx,
319 			   port_statistics[portid].rx,
320 			   port_statistics[portid].dropped);
321 
322 		total_packets_dropped += port_statistics[portid].dropped;
323 		total_packets_tx += port_statistics[portid].tx;
324 		total_packets_rx += port_statistics[portid].rx;
325 	}
326 	printf("\nCrypto statistics ==================================");
327 
328 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
329 		/* skip disabled ports */
330 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
331 			continue;
332 		printf("\nStatistics for cryptodev %"PRIu64
333 				" -------------------------"
334 			   "\nPackets enqueued: %28"PRIu64
335 			   "\nPackets dequeued: %28"PRIu64
336 			   "\nPackets errors: %30"PRIu64,
337 			   cdevid,
338 			   crypto_statistics[cdevid].enqueued,
339 			   crypto_statistics[cdevid].dequeued,
340 			   crypto_statistics[cdevid].errors);
341 
342 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
343 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
344 		total_packets_errors += crypto_statistics[cdevid].errors;
345 	}
346 	printf("\nAggregate statistics ==============================="
347 		   "\nTotal packets received: %22"PRIu64
348 		   "\nTotal packets enqueued: %22"PRIu64
349 		   "\nTotal packets dequeued: %22"PRIu64
350 		   "\nTotal packets sent: %26"PRIu64
351 		   "\nTotal packets dropped: %23"PRIu64
352 		   "\nTotal packets crypto errors: %17"PRIu64,
353 		   total_packets_rx,
354 		   total_packets_enqueued,
355 		   total_packets_dequeued,
356 		   total_packets_tx,
357 		   total_packets_dropped,
358 		   total_packets_errors);
359 	printf("\n====================================================\n");
360 }
361 
362 static int
363 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
364 		struct l2fwd_crypto_params *cparams)
365 {
366 	struct rte_crypto_op **op_buffer;
367 	unsigned ret;
368 
369 	op_buffer = (struct rte_crypto_op **)
370 			qconf->op_buf[cparams->dev_id].buffer;
371 
372 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
373 			cparams->qp_id,	op_buffer, (uint16_t) n);
374 
375 	crypto_statistics[cparams->dev_id].enqueued += ret;
376 	if (unlikely(ret < n)) {
377 		crypto_statistics[cparams->dev_id].errors += (n - ret);
378 		do {
379 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
380 			rte_crypto_op_free(op_buffer[ret]);
381 		} while (++ret < n);
382 	}
383 
384 	return 0;
385 }
386 
387 static int
388 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
389 		struct l2fwd_crypto_params *cparams)
390 {
391 	unsigned lcore_id, len;
392 	struct lcore_queue_conf *qconf;
393 
394 	lcore_id = rte_lcore_id();
395 
396 	qconf = &lcore_queue_conf[lcore_id];
397 	len = qconf->op_buf[cparams->dev_id].len;
398 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
399 	len++;
400 
401 	/* enough ops to be sent */
402 	if (len == MAX_PKT_BURST) {
403 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
404 		len = 0;
405 	}
406 
407 	qconf->op_buf[cparams->dev_id].len = len;
408 	return 0;
409 }
410 
411 static int
412 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
413 		struct rte_crypto_op *op,
414 		struct l2fwd_crypto_params *cparams)
415 {
416 	struct ether_hdr *eth_hdr;
417 	struct ipv4_hdr *ip_hdr;
418 
419 	uint32_t ipdata_offset, data_len;
420 	uint32_t pad_len = 0;
421 	char *padding;
422 
423 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
424 
425 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
426 		return -1;
427 
428 	ipdata_offset = sizeof(struct ether_hdr);
429 
430 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
431 			ipdata_offset);
432 
433 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
434 			* IPV4_IHL_MULTIPLIER;
435 
436 
437 	/* Zero pad data to be crypto'd so it is block aligned */
438 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
439 
440 	if (cparams->do_hash && cparams->hash_verify)
441 		data_len -= cparams->digest_length;
442 
443 	if (cparams->do_cipher) {
444 		/*
445 		 * Following algorithms are block cipher algorithms,
446 		 * and might need padding
447 		 */
448 		switch (cparams->cipher_algo) {
449 		case RTE_CRYPTO_CIPHER_AES_CBC:
450 		case RTE_CRYPTO_CIPHER_AES_ECB:
451 		case RTE_CRYPTO_CIPHER_DES_CBC:
452 		case RTE_CRYPTO_CIPHER_3DES_CBC:
453 		case RTE_CRYPTO_CIPHER_3DES_ECB:
454 			if (data_len % cparams->block_size)
455 				pad_len = cparams->block_size -
456 					(data_len % cparams->block_size);
457 			break;
458 		default:
459 			pad_len = 0;
460 		}
461 
462 		if (pad_len) {
463 			padding = rte_pktmbuf_append(m, pad_len);
464 			if (unlikely(!padding))
465 				return -1;
466 
467 			data_len += pad_len;
468 			memset(padding, 0, pad_len);
469 		}
470 	}
471 
472 	/* Set crypto operation data parameters */
473 	rte_crypto_op_attach_sym_session(op, cparams->session);
474 
475 	if (cparams->do_hash) {
476 		if (cparams->auth_iv.length) {
477 			uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op,
478 						uint8_t *,
479 						IV_OFFSET +
480 						cparams->cipher_iv.length);
481 			/*
482 			 * Copy IV at the end of the crypto operation,
483 			 * after the cipher IV, if added
484 			 */
485 			rte_memcpy(iv_ptr, cparams->auth_iv.data,
486 					cparams->auth_iv.length);
487 		}
488 		if (!cparams->hash_verify) {
489 			/* Append space for digest to end of packet */
490 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
491 				cparams->digest_length);
492 		} else {
493 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
494 				uint8_t *) + ipdata_offset + data_len;
495 		}
496 
497 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
498 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
499 
500 		/* For wireless algorithms, offset/length must be in bits */
501 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
502 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
503 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
504 			op->sym->auth.data.offset = ipdata_offset << 3;
505 			op->sym->auth.data.length = data_len << 3;
506 		} else {
507 			op->sym->auth.data.offset = ipdata_offset;
508 			op->sym->auth.data.length = data_len;
509 		}
510 	}
511 
512 	if (cparams->do_cipher) {
513 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
514 							IV_OFFSET);
515 		/* Copy IV at the end of the crypto operation */
516 		rte_memcpy(iv_ptr, cparams->cipher_iv.data,
517 				cparams->cipher_iv.length);
518 
519 		/* For wireless algorithms, offset/length must be in bits */
520 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
521 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
522 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
523 			op->sym->cipher.data.offset = ipdata_offset << 3;
524 			op->sym->cipher.data.length = data_len << 3;
525 		} else {
526 			op->sym->cipher.data.offset = ipdata_offset;
527 			op->sym->cipher.data.length = data_len;
528 		}
529 	}
530 
531 	if (cparams->do_aead) {
532 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
533 							IV_OFFSET);
534 		/* Copy IV at the end of the crypto operation */
535 		rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length);
536 
537 		op->sym->aead.data.offset = ipdata_offset;
538 		op->sym->aead.data.length = data_len;
539 
540 		if (!cparams->hash_verify) {
541 			/* Append space for digest to end of packet */
542 			op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m,
543 				cparams->digest_length);
544 		} else {
545 			op->sym->aead.digest.data = rte_pktmbuf_mtod(m,
546 				uint8_t *) + ipdata_offset + data_len;
547 		}
548 
549 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
550 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
551 
552 		if (cparams->aad.length) {
553 			op->sym->aead.aad.data = cparams->aad.data;
554 			op->sym->aead.aad.phys_addr = cparams->aad.phys_addr;
555 		}
556 	}
557 
558 	op->sym->m_src = m;
559 
560 	return l2fwd_crypto_enqueue(op, cparams);
561 }
562 
563 
564 /* Send the burst of packets on an output interface */
565 static int
566 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
567 		uint8_t port)
568 {
569 	struct rte_mbuf **pkt_buffer;
570 	unsigned ret;
571 
572 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
573 
574 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
575 	port_statistics[port].tx += ret;
576 	if (unlikely(ret < n)) {
577 		port_statistics[port].dropped += (n - ret);
578 		do {
579 			rte_pktmbuf_free(pkt_buffer[ret]);
580 		} while (++ret < n);
581 	}
582 
583 	return 0;
584 }
585 
586 /* Enqueue packets for TX and prepare them to be sent */
587 static int
588 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
589 {
590 	unsigned lcore_id, len;
591 	struct lcore_queue_conf *qconf;
592 
593 	lcore_id = rte_lcore_id();
594 
595 	qconf = &lcore_queue_conf[lcore_id];
596 	len = qconf->pkt_buf[port].len;
597 	qconf->pkt_buf[port].buffer[len] = m;
598 	len++;
599 
600 	/* enough pkts to be sent */
601 	if (unlikely(len == MAX_PKT_BURST)) {
602 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
603 		len = 0;
604 	}
605 
606 	qconf->pkt_buf[port].len = len;
607 	return 0;
608 }
609 
610 static void
611 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
612 {
613 	struct ether_hdr *eth;
614 	void *tmp;
615 	unsigned dst_port;
616 
617 	dst_port = l2fwd_dst_ports[portid];
618 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
619 
620 	/* 02:00:00:00:00:xx */
621 	tmp = &eth->d_addr.addr_bytes[0];
622 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
623 
624 	/* src addr */
625 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
626 
627 	l2fwd_send_packet(m, (uint8_t) dst_port);
628 }
629 
630 /** Generate random key */
631 static void
632 generate_random_key(uint8_t *key, unsigned length)
633 {
634 	int fd;
635 	int ret;
636 
637 	fd = open("/dev/urandom", O_RDONLY);
638 	if (fd < 0)
639 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
640 
641 	ret = read(fd, key, length);
642 	close(fd);
643 
644 	if (ret != (signed)length)
645 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
646 }
647 
648 static struct rte_cryptodev_sym_session *
649 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
650 {
651 	struct rte_crypto_sym_xform *first_xform;
652 	struct rte_cryptodev_sym_session *session;
653 	uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
654 	struct rte_mempool *sess_mp = session_pool_socket[socket_id];
655 
656 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
657 		first_xform = &options->aead_xform;
658 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
659 		first_xform = &options->cipher_xform;
660 		first_xform->next = &options->auth_xform;
661 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
662 		first_xform = &options->auth_xform;
663 		first_xform->next = &options->cipher_xform;
664 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
665 		first_xform = &options->cipher_xform;
666 	} else {
667 		first_xform = &options->auth_xform;
668 	}
669 
670 	session = rte_cryptodev_sym_session_create(sess_mp);
671 
672 	if (session == NULL)
673 		return NULL;
674 
675 	if (rte_cryptodev_sym_session_init(cdev_id, session,
676 				first_xform, sess_mp) < 0)
677 		return NULL;
678 
679 	return session;
680 }
681 
682 static void
683 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
684 
685 /* main processing loop */
686 static void
687 l2fwd_main_loop(struct l2fwd_crypto_options *options)
688 {
689 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
690 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
691 
692 	unsigned lcore_id = rte_lcore_id();
693 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
694 	unsigned i, j, portid, nb_rx, len;
695 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
696 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
697 			US_PER_S * BURST_TX_DRAIN_US;
698 	struct l2fwd_crypto_params *cparams;
699 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
700 	struct rte_cryptodev_sym_session *session;
701 
702 	if (qconf->nb_rx_ports == 0) {
703 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
704 		return;
705 	}
706 
707 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
708 
709 	for (i = 0; i < qconf->nb_rx_ports; i++) {
710 
711 		portid = qconf->rx_port_list[i];
712 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
713 			portid);
714 	}
715 
716 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
717 		port_cparams[i].do_cipher = 0;
718 		port_cparams[i].do_hash = 0;
719 		port_cparams[i].do_aead = 0;
720 
721 		switch (options->xform_chain) {
722 		case L2FWD_CRYPTO_AEAD:
723 			port_cparams[i].do_aead = 1;
724 			break;
725 		case L2FWD_CRYPTO_CIPHER_HASH:
726 		case L2FWD_CRYPTO_HASH_CIPHER:
727 			port_cparams[i].do_cipher = 1;
728 			port_cparams[i].do_hash = 1;
729 			break;
730 		case L2FWD_CRYPTO_HASH_ONLY:
731 			port_cparams[i].do_hash = 1;
732 			break;
733 		case L2FWD_CRYPTO_CIPHER_ONLY:
734 			port_cparams[i].do_cipher = 1;
735 			break;
736 		}
737 
738 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
739 		port_cparams[i].qp_id = 0;
740 
741 		port_cparams[i].block_size = options->block_size;
742 
743 		if (port_cparams[i].do_hash) {
744 			port_cparams[i].auth_iv.data = options->auth_iv.data;
745 			port_cparams[i].auth_iv.length = options->auth_iv.length;
746 			if (!options->auth_iv_param)
747 				generate_random_key(port_cparams[i].auth_iv.data,
748 						port_cparams[i].auth_iv.length);
749 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
750 				port_cparams[i].hash_verify = 1;
751 			else
752 				port_cparams[i].hash_verify = 0;
753 
754 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
755 			/* Set IV parameters */
756 			if (options->auth_iv.length) {
757 				options->auth_xform.auth.iv.offset =
758 					IV_OFFSET + options->cipher_iv.length;
759 				options->auth_xform.auth.iv.length =
760 					options->auth_iv.length;
761 			}
762 		}
763 
764 		if (port_cparams[i].do_aead) {
765 			port_cparams[i].aead_algo = options->aead_xform.aead.algo;
766 			port_cparams[i].digest_length =
767 					options->aead_xform.aead.digest_length;
768 			if (options->aead_xform.aead.add_auth_data_length) {
769 				port_cparams[i].aad.data = options->aad.data;
770 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
771 				port_cparams[i].aad.length = options->aad.length;
772 				if (!options->aad_param)
773 					generate_random_key(port_cparams[i].aad.data,
774 						port_cparams[i].aad.length);
775 
776 			} else
777 				port_cparams[i].aad.length = 0;
778 
779 			if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT)
780 				port_cparams[i].hash_verify = 1;
781 			else
782 				port_cparams[i].hash_verify = 0;
783 
784 			/* Set IV parameters */
785 			options->aead_xform.aead.iv.offset = IV_OFFSET;
786 			options->aead_xform.aead.iv.length = options->aead_iv.length;
787 		}
788 
789 		if (port_cparams[i].do_cipher) {
790 			port_cparams[i].cipher_iv.data = options->cipher_iv.data;
791 			port_cparams[i].cipher_iv.length = options->cipher_iv.length;
792 			if (!options->cipher_iv_param)
793 				generate_random_key(port_cparams[i].cipher_iv.data,
794 						port_cparams[i].cipher_iv.length);
795 
796 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
797 			/* Set IV parameters */
798 			options->cipher_xform.cipher.iv.offset = IV_OFFSET;
799 			options->cipher_xform.cipher.iv.length =
800 						options->cipher_iv.length;
801 		}
802 
803 		session = initialize_crypto_session(options,
804 				port_cparams[i].dev_id);
805 		if (session == NULL)
806 			rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n");
807 
808 		port_cparams[i].session = session;
809 
810 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
811 				port_cparams[i].dev_id);
812 	}
813 
814 	l2fwd_crypto_options_print(options);
815 
816 	/*
817 	 * Initialize previous tsc timestamp before the loop,
818 	 * to avoid showing the port statistics immediately,
819 	 * so user can see the crypto information.
820 	 */
821 	prev_tsc = rte_rdtsc();
822 	while (1) {
823 
824 		cur_tsc = rte_rdtsc();
825 
826 		/*
827 		 * Crypto device/TX burst queue drain
828 		 */
829 		diff_tsc = cur_tsc - prev_tsc;
830 		if (unlikely(diff_tsc > drain_tsc)) {
831 			/* Enqueue all crypto ops remaining in buffers */
832 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
833 				cparams = &port_cparams[i];
834 				len = qconf->op_buf[cparams->dev_id].len;
835 				l2fwd_crypto_send_burst(qconf, len, cparams);
836 				qconf->op_buf[cparams->dev_id].len = 0;
837 			}
838 			/* Transmit all packets remaining in buffers */
839 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
840 				if (qconf->pkt_buf[portid].len == 0)
841 					continue;
842 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
843 						 qconf->pkt_buf[portid].len,
844 						 (uint8_t) portid);
845 				qconf->pkt_buf[portid].len = 0;
846 			}
847 
848 			/* if timer is enabled */
849 			if (timer_period > 0) {
850 
851 				/* advance the timer */
852 				timer_tsc += diff_tsc;
853 
854 				/* if timer has reached its timeout */
855 				if (unlikely(timer_tsc >=
856 						(uint64_t)timer_period)) {
857 
858 					/* do this only on master core */
859 					if (lcore_id == rte_get_master_lcore()
860 						&& options->refresh_period) {
861 						print_stats();
862 						timer_tsc = 0;
863 					}
864 				}
865 			}
866 
867 			prev_tsc = cur_tsc;
868 		}
869 
870 		/*
871 		 * Read packet from RX queues
872 		 */
873 		for (i = 0; i < qconf->nb_rx_ports; i++) {
874 			portid = qconf->rx_port_list[i];
875 
876 			cparams = &port_cparams[i];
877 
878 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
879 						 pkts_burst, MAX_PKT_BURST);
880 
881 			port_statistics[portid].rx += nb_rx;
882 
883 			if (nb_rx) {
884 				/*
885 				 * If we can't allocate a crypto_ops, then drop
886 				 * the rest of the burst and dequeue and
887 				 * process the packets to free offload structs
888 				 */
889 				if (rte_crypto_op_bulk_alloc(
890 						l2fwd_crypto_op_pool,
891 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
892 						ops_burst, nb_rx) !=
893 								nb_rx) {
894 					for (j = 0; j < nb_rx; j++)
895 						rte_pktmbuf_free(pkts_burst[j]);
896 
897 					nb_rx = 0;
898 				}
899 
900 				/* Enqueue packets from Crypto device*/
901 				for (j = 0; j < nb_rx; j++) {
902 					m = pkts_burst[j];
903 
904 					l2fwd_simple_crypto_enqueue(m,
905 							ops_burst[j], cparams);
906 				}
907 			}
908 
909 			/* Dequeue packets from Crypto device */
910 			do {
911 				nb_rx = rte_cryptodev_dequeue_burst(
912 						cparams->dev_id, cparams->qp_id,
913 						ops_burst, MAX_PKT_BURST);
914 
915 				crypto_statistics[cparams->dev_id].dequeued +=
916 						nb_rx;
917 
918 				/* Forward crypto'd packets */
919 				for (j = 0; j < nb_rx; j++) {
920 					m = ops_burst[j]->sym->m_src;
921 
922 					rte_crypto_op_free(ops_burst[j]);
923 					l2fwd_simple_forward(m, portid);
924 				}
925 			} while (nb_rx == MAX_PKT_BURST);
926 		}
927 	}
928 }
929 
930 static int
931 l2fwd_launch_one_lcore(void *arg)
932 {
933 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
934 	return 0;
935 }
936 
937 /* Display command line arguments usage */
938 static void
939 l2fwd_crypto_usage(const char *prgname)
940 {
941 	printf("%s [EAL options] --\n"
942 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
943 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
944 		"  -s manage all ports from single lcore\n"
945 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
946 		" (0 to disable, 10 default, 86400 maximum)\n"
947 
948 		"  --cdev_type HW / SW / ANY\n"
949 		"  --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
950 		" HASH_ONLY / AEAD\n"
951 
952 		"  --cipher_algo ALGO\n"
953 		"  --cipher_op ENCRYPT / DECRYPT\n"
954 		"  --cipher_key KEY (bytes separated with \":\")\n"
955 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
956 		"  --cipher_iv IV (bytes separated with \":\")\n"
957 		"  --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
958 
959 		"  --auth_algo ALGO\n"
960 		"  --auth_op GENERATE / VERIFY\n"
961 		"  --auth_key KEY (bytes separated with \":\")\n"
962 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
963 		"  --auth_iv IV (bytes separated with \":\")\n"
964 		"  --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
965 
966 		"  --aead_algo ALGO\n"
967 		"  --aead_op ENCRYPT / DECRYPT\n"
968 		"  --aead_key KEY (bytes separated with \":\")\n"
969 		"  --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
970 		"  --aead_iv IV (bytes separated with \":\")\n"
971 		"  --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
972 		"  --aad AAD (bytes separated with \":\")\n"
973 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
974 
975 		"  --digest_size SIZE: size of digest to be generated/verified\n"
976 
977 		"  --sessionless\n"
978 		"  --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n",
979 	       prgname);
980 }
981 
982 /** Parse crypto device type command line argument */
983 static int
984 parse_cryptodev_type(enum cdev_type *type, char *optarg)
985 {
986 	if (strcmp("HW", optarg) == 0) {
987 		*type = CDEV_TYPE_HW;
988 		return 0;
989 	} else if (strcmp("SW", optarg) == 0) {
990 		*type = CDEV_TYPE_SW;
991 		return 0;
992 	} else if (strcmp("ANY", optarg) == 0) {
993 		*type = CDEV_TYPE_ANY;
994 		return 0;
995 	}
996 
997 	return -1;
998 }
999 
1000 /** Parse crypto chain xform command line argument */
1001 static int
1002 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
1003 {
1004 	if (strcmp("CIPHER_HASH", optarg) == 0) {
1005 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1006 		return 0;
1007 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
1008 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
1009 		return 0;
1010 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
1011 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
1012 		return 0;
1013 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
1014 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
1015 		return 0;
1016 	} else if (strcmp("AEAD", optarg) == 0) {
1017 		options->xform_chain = L2FWD_CRYPTO_AEAD;
1018 		return 0;
1019 	}
1020 
1021 	return -1;
1022 }
1023 
1024 /** Parse crypto cipher algo option command line argument */
1025 static int
1026 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
1027 {
1028 
1029 	if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) {
1030 		RTE_LOG(ERR, USER1, "Cipher algorithm specified "
1031 				"not supported!\n");
1032 		return -1;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 /** Parse crypto cipher operation command line argument */
1039 static int
1040 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
1041 {
1042 	if (strcmp("ENCRYPT", optarg) == 0) {
1043 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1044 		return 0;
1045 	} else if (strcmp("DECRYPT", optarg) == 0) {
1046 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1047 		return 0;
1048 	}
1049 
1050 	printf("Cipher operation not supported!\n");
1051 	return -1;
1052 }
1053 
1054 /** Parse crypto key command line argument */
1055 static int
1056 parse_key(uint8_t *data, char *input_arg)
1057 {
1058 	unsigned byte_count;
1059 	char *token;
1060 
1061 	for (byte_count = 0, token = strtok(input_arg, ":");
1062 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
1063 			token = strtok(NULL, ":")) {
1064 
1065 		int number = (int)strtol(token, NULL, 16);
1066 
1067 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
1068 			return -1;
1069 
1070 		data[byte_count++] = (uint8_t)number;
1071 	}
1072 
1073 	return byte_count;
1074 }
1075 
1076 /** Parse size param*/
1077 static int
1078 parse_size(int *size, const char *q_arg)
1079 {
1080 	char *end = NULL;
1081 	unsigned long n;
1082 
1083 	/* parse hexadecimal string */
1084 	n = strtoul(q_arg, &end, 10);
1085 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1086 		n = 0;
1087 
1088 	if (n == 0) {
1089 		printf("invalid size\n");
1090 		return -1;
1091 	}
1092 
1093 	*size = n;
1094 	return 0;
1095 }
1096 
1097 /** Parse crypto cipher operation command line argument */
1098 static int
1099 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1100 {
1101 	if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) {
1102 		RTE_LOG(ERR, USER1, "Authentication algorithm specified "
1103 				"not supported!\n");
1104 		return -1;
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static int
1111 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1112 {
1113 	if (strcmp("VERIFY", optarg) == 0) {
1114 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1115 		return 0;
1116 	} else if (strcmp("GENERATE", optarg) == 0) {
1117 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1118 		return 0;
1119 	}
1120 
1121 	printf("Authentication operation specified not supported!\n");
1122 	return -1;
1123 }
1124 
1125 static int
1126 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg)
1127 {
1128 	if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) {
1129 		RTE_LOG(ERR, USER1, "AEAD algorithm specified "
1130 				"not supported!\n");
1131 		return -1;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg)
1139 {
1140 	if (strcmp("ENCRYPT", optarg) == 0) {
1141 		*op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1142 		return 0;
1143 	} else if (strcmp("DECRYPT", optarg) == 0) {
1144 		*op = RTE_CRYPTO_AEAD_OP_DECRYPT;
1145 		return 0;
1146 	}
1147 
1148 	printf("AEAD operation specified not supported!\n");
1149 	return -1;
1150 }
1151 static int
1152 parse_cryptodev_mask(struct l2fwd_crypto_options *options,
1153 		const char *q_arg)
1154 {
1155 	char *end = NULL;
1156 	uint64_t pm;
1157 
1158 	/* parse hexadecimal string */
1159 	pm = strtoul(q_arg, &end, 16);
1160 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1161 		pm = 0;
1162 
1163 	options->cryptodev_mask = pm;
1164 	if (options->cryptodev_mask == 0) {
1165 		printf("invalid cryptodev_mask specified\n");
1166 		return -1;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /** Parse long options */
1173 static int
1174 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1175 		struct option *lgopts, int option_index)
1176 {
1177 	int retval;
1178 
1179 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1180 		retval = parse_cryptodev_type(&options->type, optarg);
1181 		if (retval == 0)
1182 			snprintf(options->string_type, MAX_STR_LEN,
1183 				"%s", optarg);
1184 		return retval;
1185 	}
1186 
1187 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1188 		return parse_crypto_opt_chain(options, optarg);
1189 
1190 	/* Cipher options */
1191 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1192 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1193 				optarg);
1194 
1195 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1196 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1197 				optarg);
1198 
1199 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1200 		options->ckey_param = 1;
1201 		options->cipher_xform.cipher.key.length =
1202 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1203 		if (options->cipher_xform.cipher.key.length > 0)
1204 			return 0;
1205 		else
1206 			return -1;
1207 	}
1208 
1209 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1210 		return parse_size(&options->ckey_random_size, optarg);
1211 
1212 	else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
1213 		options->cipher_iv_param = 1;
1214 		options->cipher_iv.length =
1215 			parse_key(options->cipher_iv.data, optarg);
1216 		if (options->cipher_iv.length > 0)
1217 			return 0;
1218 		else
1219 			return -1;
1220 	}
1221 
1222 	else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
1223 		return parse_size(&options->cipher_iv_random_size, optarg);
1224 
1225 	/* Authentication options */
1226 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1227 		return parse_auth_algo(&options->auth_xform.auth.algo,
1228 				optarg);
1229 	}
1230 
1231 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1232 		return parse_auth_op(&options->auth_xform.auth.op,
1233 				optarg);
1234 
1235 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1236 		options->akey_param = 1;
1237 		options->auth_xform.auth.key.length =
1238 			parse_key(options->auth_xform.auth.key.data, optarg);
1239 		if (options->auth_xform.auth.key.length > 0)
1240 			return 0;
1241 		else
1242 			return -1;
1243 	}
1244 
1245 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1246 		return parse_size(&options->akey_random_size, optarg);
1247 	}
1248 
1249 	else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
1250 		options->auth_iv_param = 1;
1251 		options->auth_iv.length =
1252 			parse_key(options->auth_iv.data, optarg);
1253 		if (options->auth_iv.length > 0)
1254 			return 0;
1255 		else
1256 			return -1;
1257 	}
1258 
1259 	else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
1260 		return parse_size(&options->auth_iv_random_size, optarg);
1261 
1262 	/* AEAD options */
1263 	else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
1264 		return parse_aead_algo(&options->aead_xform.aead.algo,
1265 				optarg);
1266 	}
1267 
1268 	else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
1269 		return parse_aead_op(&options->aead_xform.aead.op,
1270 				optarg);
1271 
1272 	else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
1273 		options->aead_key_param = 1;
1274 		options->aead_xform.aead.key.length =
1275 			parse_key(options->aead_xform.aead.key.data, optarg);
1276 		if (options->aead_xform.aead.key.length > 0)
1277 			return 0;
1278 		else
1279 			return -1;
1280 	}
1281 
1282 	else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
1283 		return parse_size(&options->aead_key_random_size, optarg);
1284 
1285 
1286 	else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
1287 		options->aead_iv_param = 1;
1288 		options->aead_iv.length =
1289 			parse_key(options->aead_iv.data, optarg);
1290 		if (options->aead_iv.length > 0)
1291 			return 0;
1292 		else
1293 			return -1;
1294 	}
1295 
1296 	else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
1297 		return parse_size(&options->aead_iv_random_size, optarg);
1298 
1299 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1300 		options->aad_param = 1;
1301 		options->aad.length =
1302 			parse_key(options->aad.data, optarg);
1303 		if (options->aad.length > 0)
1304 			return 0;
1305 		else
1306 			return -1;
1307 	}
1308 
1309 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1310 		return parse_size(&options->aad_random_size, optarg);
1311 	}
1312 
1313 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1314 		return parse_size(&options->digest_size, optarg);
1315 	}
1316 
1317 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1318 		options->sessionless = 1;
1319 		return 0;
1320 	}
1321 
1322 	else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
1323 		return parse_cryptodev_mask(options, optarg);
1324 
1325 	return -1;
1326 }
1327 
1328 /** Parse port mask */
1329 static int
1330 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1331 		const char *q_arg)
1332 {
1333 	char *end = NULL;
1334 	unsigned long pm;
1335 
1336 	/* parse hexadecimal string */
1337 	pm = strtoul(q_arg, &end, 16);
1338 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1339 		pm = 0;
1340 
1341 	options->portmask = pm;
1342 	if (options->portmask == 0) {
1343 		printf("invalid portmask specified\n");
1344 		return -1;
1345 	}
1346 
1347 	return pm;
1348 }
1349 
1350 /** Parse number of queues */
1351 static int
1352 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1353 		const char *q_arg)
1354 {
1355 	char *end = NULL;
1356 	unsigned long n;
1357 
1358 	/* parse hexadecimal string */
1359 	n = strtoul(q_arg, &end, 10);
1360 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1361 		n = 0;
1362 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1363 		n = 0;
1364 
1365 	options->nb_ports_per_lcore = n;
1366 	if (options->nb_ports_per_lcore == 0) {
1367 		printf("invalid number of ports selected\n");
1368 		return -1;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 /** Parse timer period */
1375 static int
1376 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1377 		const char *q_arg)
1378 {
1379 	char *end = NULL;
1380 	unsigned long n;
1381 
1382 	/* parse number string */
1383 	n = (unsigned)strtol(q_arg, &end, 10);
1384 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1385 		n = 0;
1386 
1387 	if (n >= MAX_TIMER_PERIOD) {
1388 		printf("Warning refresh period specified %lu is greater than "
1389 				"max value %lu! using max value",
1390 				n, MAX_TIMER_PERIOD);
1391 		n = MAX_TIMER_PERIOD;
1392 	}
1393 
1394 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1395 
1396 	return 0;
1397 }
1398 
1399 /** Generate default options for application */
1400 static void
1401 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1402 {
1403 	options->portmask = 0xffffffff;
1404 	options->nb_ports_per_lcore = 1;
1405 	options->refresh_period = 10000;
1406 	options->single_lcore = 0;
1407 	options->sessionless = 0;
1408 
1409 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1410 
1411 	/* Cipher Data */
1412 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1413 	options->cipher_xform.next = NULL;
1414 	options->ckey_param = 0;
1415 	options->ckey_random_size = -1;
1416 	options->cipher_xform.cipher.key.length = 0;
1417 	options->cipher_iv_param = 0;
1418 	options->cipher_iv_random_size = -1;
1419 	options->cipher_iv.length = 0;
1420 
1421 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1422 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1423 
1424 	/* Authentication Data */
1425 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1426 	options->auth_xform.next = NULL;
1427 	options->akey_param = 0;
1428 	options->akey_random_size = -1;
1429 	options->auth_xform.auth.key.length = 0;
1430 	options->auth_iv_param = 0;
1431 	options->auth_iv_random_size = -1;
1432 	options->auth_iv.length = 0;
1433 
1434 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1435 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1436 
1437 	/* AEAD Data */
1438 	options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD;
1439 	options->aead_xform.next = NULL;
1440 	options->aead_key_param = 0;
1441 	options->aead_key_random_size = -1;
1442 	options->aead_xform.aead.key.length = 0;
1443 	options->aead_iv_param = 0;
1444 	options->aead_iv_random_size = -1;
1445 	options->aead_iv.length = 0;
1446 
1447 	options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM;
1448 	options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1449 
1450 	options->aad_param = 0;
1451 	options->aad_random_size = -1;
1452 	options->aad.length = 0;
1453 
1454 	options->digest_size = -1;
1455 
1456 	options->type = CDEV_TYPE_ANY;
1457 	options->cryptodev_mask = UINT64_MAX;
1458 }
1459 
1460 static void
1461 display_cipher_info(struct l2fwd_crypto_options *options)
1462 {
1463 	printf("\n---- Cipher information ---\n");
1464 	printf("Algorithm: %s\n",
1465 		rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]);
1466 	rte_hexdump(stdout, "Cipher key:",
1467 			options->cipher_xform.cipher.key.data,
1468 			options->cipher_xform.cipher.key.length);
1469 	rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length);
1470 }
1471 
1472 static void
1473 display_auth_info(struct l2fwd_crypto_options *options)
1474 {
1475 	printf("\n---- Authentication information ---\n");
1476 	printf("Algorithm: %s\n",
1477 		rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]);
1478 	rte_hexdump(stdout, "Auth key:",
1479 			options->auth_xform.auth.key.data,
1480 			options->auth_xform.auth.key.length);
1481 	rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length);
1482 }
1483 
1484 static void
1485 display_aead_info(struct l2fwd_crypto_options *options)
1486 {
1487 	printf("\n---- AEAD information ---\n");
1488 	printf("Algorithm: %s\n",
1489 		rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]);
1490 	rte_hexdump(stdout, "AEAD key:",
1491 			options->aead_xform.aead.key.data,
1492 			options->aead_xform.aead.key.length);
1493 	rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length);
1494 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1495 }
1496 
1497 static void
1498 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1499 {
1500 	char string_cipher_op[MAX_STR_LEN];
1501 	char string_auth_op[MAX_STR_LEN];
1502 	char string_aead_op[MAX_STR_LEN];
1503 
1504 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1505 		strcpy(string_cipher_op, "Encrypt");
1506 	else
1507 		strcpy(string_cipher_op, "Decrypt");
1508 
1509 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1510 		strcpy(string_auth_op, "Auth generate");
1511 	else
1512 		strcpy(string_auth_op, "Auth verify");
1513 
1514 	if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
1515 		strcpy(string_aead_op, "Authenticated encryption");
1516 	else
1517 		strcpy(string_aead_op, "Authenticated decryption");
1518 
1519 
1520 	printf("Options:-\nn");
1521 	printf("portmask: %x\n", options->portmask);
1522 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1523 	printf("refresh period : %u\n", options->refresh_period);
1524 	printf("single lcore mode: %s\n",
1525 			options->single_lcore ? "enabled" : "disabled");
1526 	printf("stats_printing: %s\n",
1527 			options->refresh_period == 0 ? "disabled" : "enabled");
1528 
1529 	printf("sessionless crypto: %s\n",
1530 			options->sessionless ? "enabled" : "disabled");
1531 
1532 	if (options->ckey_param && (options->ckey_random_size != -1))
1533 		printf("Cipher key already parsed, ignoring size of random key\n");
1534 
1535 	if (options->akey_param && (options->akey_random_size != -1))
1536 		printf("Auth key already parsed, ignoring size of random key\n");
1537 
1538 	if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
1539 		printf("Cipher IV already parsed, ignoring size of random IV\n");
1540 
1541 	if (options->auth_iv_param && (options->auth_iv_random_size != -1))
1542 		printf("Auth IV already parsed, ignoring size of random IV\n");
1543 
1544 	if (options->aad_param && (options->aad_random_size != -1))
1545 		printf("AAD already parsed, ignoring size of random AAD\n");
1546 
1547 	printf("\nCrypto chain: ");
1548 	switch (options->xform_chain) {
1549 	case L2FWD_CRYPTO_AEAD:
1550 		printf("Input --> %s --> Output\n", string_aead_op);
1551 		display_aead_info(options);
1552 		break;
1553 	case L2FWD_CRYPTO_CIPHER_HASH:
1554 		printf("Input --> %s --> %s --> Output\n",
1555 			string_cipher_op, string_auth_op);
1556 		display_cipher_info(options);
1557 		display_auth_info(options);
1558 		break;
1559 	case L2FWD_CRYPTO_HASH_CIPHER:
1560 		printf("Input --> %s --> %s --> Output\n",
1561 			string_auth_op, string_cipher_op);
1562 		display_cipher_info(options);
1563 		display_auth_info(options);
1564 		break;
1565 	case L2FWD_CRYPTO_HASH_ONLY:
1566 		printf("Input --> %s --> Output\n", string_auth_op);
1567 		display_auth_info(options);
1568 		break;
1569 	case L2FWD_CRYPTO_CIPHER_ONLY:
1570 		printf("Input --> %s --> Output\n", string_cipher_op);
1571 		display_cipher_info(options);
1572 		break;
1573 	}
1574 }
1575 
1576 /* Parse the argument given in the command line of the application */
1577 static int
1578 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1579 		int argc, char **argv)
1580 {
1581 	int opt, retval, option_index;
1582 	char **argvopt = argv, *prgname = argv[0];
1583 
1584 	static struct option lgopts[] = {
1585 			{ "sessionless", no_argument, 0, 0 },
1586 
1587 			{ "cdev_type", required_argument, 0, 0 },
1588 			{ "chain", required_argument, 0, 0 },
1589 
1590 			{ "cipher_algo", required_argument, 0, 0 },
1591 			{ "cipher_op", required_argument, 0, 0 },
1592 			{ "cipher_key", required_argument, 0, 0 },
1593 			{ "cipher_key_random_size", required_argument, 0, 0 },
1594 			{ "cipher_iv", required_argument, 0, 0 },
1595 			{ "cipher_iv_random_size", required_argument, 0, 0 },
1596 
1597 			{ "auth_algo", required_argument, 0, 0 },
1598 			{ "auth_op", required_argument, 0, 0 },
1599 			{ "auth_key", required_argument, 0, 0 },
1600 			{ "auth_key_random_size", required_argument, 0, 0 },
1601 			{ "auth_iv", required_argument, 0, 0 },
1602 			{ "auth_iv_random_size", required_argument, 0, 0 },
1603 
1604 			{ "aead_algo", required_argument, 0, 0 },
1605 			{ "aead_op", required_argument, 0, 0 },
1606 			{ "aead_key", required_argument, 0, 0 },
1607 			{ "aead_key_random_size", required_argument, 0, 0 },
1608 			{ "aead_iv", required_argument, 0, 0 },
1609 			{ "aead_iv_random_size", required_argument, 0, 0 },
1610 
1611 			{ "aad", required_argument, 0, 0 },
1612 			{ "aad_random_size", required_argument, 0, 0 },
1613 
1614 			{ "digest_size", required_argument, 0, 0 },
1615 
1616 			{ "sessionless", no_argument, 0, 0 },
1617 			{ "cryptodev_mask", required_argument, 0, 0},
1618 
1619 			{ NULL, 0, 0, 0 }
1620 	};
1621 
1622 	l2fwd_crypto_default_options(options);
1623 
1624 	while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
1625 			&option_index)) != EOF) {
1626 		switch (opt) {
1627 		/* long options */
1628 		case 0:
1629 			retval = l2fwd_crypto_parse_args_long_options(options,
1630 					lgopts, option_index);
1631 			if (retval < 0) {
1632 				l2fwd_crypto_usage(prgname);
1633 				return -1;
1634 			}
1635 			break;
1636 
1637 		/* portmask */
1638 		case 'p':
1639 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1640 			if (retval < 0) {
1641 				l2fwd_crypto_usage(prgname);
1642 				return -1;
1643 			}
1644 			break;
1645 
1646 		/* nqueue */
1647 		case 'q':
1648 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1649 			if (retval < 0) {
1650 				l2fwd_crypto_usage(prgname);
1651 				return -1;
1652 			}
1653 			break;
1654 
1655 		/* single  */
1656 		case 's':
1657 			options->single_lcore = 1;
1658 
1659 			break;
1660 
1661 		/* timer period */
1662 		case 'T':
1663 			retval = l2fwd_crypto_parse_timer_period(options,
1664 					optarg);
1665 			if (retval < 0) {
1666 				l2fwd_crypto_usage(prgname);
1667 				return -1;
1668 			}
1669 			break;
1670 
1671 		default:
1672 			l2fwd_crypto_usage(prgname);
1673 			return -1;
1674 		}
1675 	}
1676 
1677 
1678 	if (optind >= 0)
1679 		argv[optind-1] = prgname;
1680 
1681 	retval = optind-1;
1682 	optind = 1; /* reset getopt lib */
1683 
1684 	return retval;
1685 }
1686 
1687 /* Check the link status of all ports in up to 9s, and print them finally */
1688 static void
1689 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1690 {
1691 #define CHECK_INTERVAL 100 /* 100ms */
1692 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1693 	uint8_t portid, count, all_ports_up, print_flag = 0;
1694 	struct rte_eth_link link;
1695 
1696 	printf("\nChecking link status");
1697 	fflush(stdout);
1698 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1699 		all_ports_up = 1;
1700 		for (portid = 0; portid < port_num; portid++) {
1701 			if ((port_mask & (1 << portid)) == 0)
1702 				continue;
1703 			memset(&link, 0, sizeof(link));
1704 			rte_eth_link_get_nowait(portid, &link);
1705 			/* print link status if flag set */
1706 			if (print_flag == 1) {
1707 				if (link.link_status)
1708 					printf("Port %d Link Up - speed %u "
1709 						"Mbps - %s\n", (uint8_t)portid,
1710 						(unsigned)link.link_speed,
1711 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1712 					("full-duplex") : ("half-duplex\n"));
1713 				else
1714 					printf("Port %d Link Down\n",
1715 						(uint8_t)portid);
1716 				continue;
1717 			}
1718 			/* clear all_ports_up flag if any link down */
1719 			if (link.link_status == ETH_LINK_DOWN) {
1720 				all_ports_up = 0;
1721 				break;
1722 			}
1723 		}
1724 		/* after finally printing all link status, get out */
1725 		if (print_flag == 1)
1726 			break;
1727 
1728 		if (all_ports_up == 0) {
1729 			printf(".");
1730 			fflush(stdout);
1731 			rte_delay_ms(CHECK_INTERVAL);
1732 		}
1733 
1734 		/* set the print_flag if all ports up or timeout */
1735 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1736 			print_flag = 1;
1737 			printf("done\n");
1738 		}
1739 	}
1740 }
1741 
1742 /* Check if device has to be HW/SW or any */
1743 static int
1744 check_type(const struct l2fwd_crypto_options *options,
1745 		const struct rte_cryptodev_info *dev_info)
1746 {
1747 	if (options->type == CDEV_TYPE_HW &&
1748 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1749 		return 0;
1750 	if (options->type == CDEV_TYPE_SW &&
1751 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1752 		return 0;
1753 	if (options->type == CDEV_TYPE_ANY)
1754 		return 0;
1755 
1756 	return -1;
1757 }
1758 
1759 static const struct rte_cryptodev_capabilities *
1760 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
1761 		const struct rte_cryptodev_info *dev_info,
1762 		uint8_t cdev_id)
1763 {
1764 	unsigned int i = 0;
1765 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1766 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1767 	enum rte_crypto_cipher_algorithm opt_cipher_algo =
1768 					options->cipher_xform.cipher.algo;
1769 
1770 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1771 		cap_cipher_algo = cap->sym.cipher.algo;
1772 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1773 			if (cap_cipher_algo == opt_cipher_algo) {
1774 				if (check_type(options, dev_info) == 0)
1775 					break;
1776 			}
1777 		}
1778 		cap = &dev_info->capabilities[++i];
1779 	}
1780 
1781 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1782 		printf("Algorithm %s not supported by cryptodev %u"
1783 			" or device not of preferred type (%s)\n",
1784 			rte_crypto_cipher_algorithm_strings[opt_cipher_algo],
1785 			cdev_id,
1786 			options->string_type);
1787 		return NULL;
1788 	}
1789 
1790 	return cap;
1791 }
1792 
1793 static const struct rte_cryptodev_capabilities *
1794 check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
1795 		const struct rte_cryptodev_info *dev_info,
1796 		uint8_t cdev_id)
1797 {
1798 	unsigned int i = 0;
1799 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1800 	enum rte_crypto_auth_algorithm cap_auth_algo;
1801 	enum rte_crypto_auth_algorithm opt_auth_algo =
1802 					options->auth_xform.auth.algo;
1803 
1804 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1805 		cap_auth_algo = cap->sym.auth.algo;
1806 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1807 			if (cap_auth_algo == opt_auth_algo) {
1808 				if (check_type(options, dev_info) == 0)
1809 					break;
1810 			}
1811 		}
1812 		cap = &dev_info->capabilities[++i];
1813 	}
1814 
1815 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1816 		printf("Algorithm %s not supported by cryptodev %u"
1817 			" or device not of preferred type (%s)\n",
1818 			rte_crypto_auth_algorithm_strings[opt_auth_algo],
1819 			cdev_id,
1820 			options->string_type);
1821 		return NULL;
1822 	}
1823 
1824 	return cap;
1825 }
1826 
1827 static const struct rte_cryptodev_capabilities *
1828 check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
1829 		const struct rte_cryptodev_info *dev_info,
1830 		uint8_t cdev_id)
1831 {
1832 	unsigned int i = 0;
1833 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1834 	enum rte_crypto_aead_algorithm cap_aead_algo;
1835 	enum rte_crypto_aead_algorithm opt_aead_algo =
1836 					options->aead_xform.aead.algo;
1837 
1838 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1839 		cap_aead_algo = cap->sym.aead.algo;
1840 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1841 			if (cap_aead_algo == opt_aead_algo) {
1842 				if (check_type(options, dev_info) == 0)
1843 					break;
1844 			}
1845 		}
1846 		cap = &dev_info->capabilities[++i];
1847 	}
1848 
1849 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1850 		printf("Algorithm %s not supported by cryptodev %u"
1851 			" or device not of preferred type (%s)\n",
1852 			rte_crypto_aead_algorithm_strings[opt_aead_algo],
1853 			cdev_id,
1854 			options->string_type);
1855 		return NULL;
1856 	}
1857 
1858 	return cap;
1859 }
1860 
1861 /* Check if the device is enabled by cryptodev_mask */
1862 static int
1863 check_cryptodev_mask(struct l2fwd_crypto_options *options,
1864 		uint8_t cdev_id)
1865 {
1866 	if (options->cryptodev_mask & (1 << cdev_id))
1867 		return 0;
1868 
1869 	return -1;
1870 }
1871 
1872 static inline int
1873 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1874 		uint16_t increment)
1875 {
1876 	uint16_t supp_size;
1877 
1878 	/* Single value */
1879 	if (increment == 0) {
1880 		if (length == min)
1881 			return 0;
1882 		else
1883 			return -1;
1884 	}
1885 
1886 	/* Range of values */
1887 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1888 		if (length == supp_size)
1889 			return 0;
1890 	}
1891 
1892 	return -1;
1893 }
1894 
1895 static int
1896 check_iv_param(const struct rte_crypto_param_range *iv_range_size,
1897 		unsigned int iv_param, int iv_random_size,
1898 		uint16_t *iv_length)
1899 {
1900 	/*
1901 	 * Check if length of provided IV is supported
1902 	 * by the algorithm chosen.
1903 	 */
1904 	if (iv_param) {
1905 		if (check_supported_size(*iv_length,
1906 				iv_range_size->min,
1907 				iv_range_size->max,
1908 				iv_range_size->increment)
1909 					!= 0) {
1910 			printf("Unsupported IV length\n");
1911 			return -1;
1912 		}
1913 	/*
1914 	 * Check if length of IV to be randomly generated
1915 	 * is supported by the algorithm chosen.
1916 	 */
1917 	} else if (iv_random_size != -1) {
1918 		if (check_supported_size(iv_random_size,
1919 				iv_range_size->min,
1920 				iv_range_size->max,
1921 				iv_range_size->increment)
1922 					!= 0) {
1923 			printf("Unsupported IV length\n");
1924 			return -1;
1925 		}
1926 		*iv_length = iv_random_size;
1927 	/* No size provided, use minimum size. */
1928 	} else
1929 		*iv_length = iv_range_size->min;
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1936 		uint8_t *enabled_cdevs)
1937 {
1938 	unsigned int cdev_id, cdev_count, enabled_cdev_count = 0;
1939 	const struct rte_cryptodev_capabilities *cap;
1940 	unsigned int sess_sz, max_sess_sz = 0;
1941 	int retval;
1942 
1943 	cdev_count = rte_cryptodev_count();
1944 	if (cdev_count == 0) {
1945 		printf("No crypto devices available\n");
1946 		return -1;
1947 	}
1948 
1949 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1950 		sess_sz = rte_cryptodev_get_private_session_size(cdev_id);
1951 		if (sess_sz > max_sess_sz)
1952 			max_sess_sz = sess_sz;
1953 	}
1954 
1955 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1956 			cdev_id++) {
1957 		struct rte_cryptodev_qp_conf qp_conf;
1958 		struct rte_cryptodev_info dev_info;
1959 		uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
1960 
1961 		struct rte_cryptodev_config conf = {
1962 			.nb_queue_pairs = 1,
1963 			.socket_id = socket_id,
1964 		};
1965 
1966 		if (check_cryptodev_mask(options, (uint8_t)cdev_id))
1967 			continue;
1968 
1969 		rte_cryptodev_info_get(cdev_id, &dev_info);
1970 
1971 		if (session_pool_socket[socket_id] == NULL) {
1972 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1973 			struct rte_mempool *sess_mp;
1974 
1975 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1976 				"sess_mp_%u", socket_id);
1977 
1978 			/*
1979 			 * Create enough objects for session headers and
1980 			 * device private data
1981 			 */
1982 			sess_mp = rte_mempool_create(mp_name,
1983 						MAX_SESSIONS * 2,
1984 						max_sess_sz,
1985 						SESSION_POOL_CACHE_SIZE,
1986 						0, NULL, NULL, NULL,
1987 						NULL, socket_id,
1988 						0);
1989 
1990 			if (sess_mp == NULL) {
1991 				printf("Cannot create session pool on socket %d\n",
1992 					socket_id);
1993 				return -ENOMEM;
1994 			}
1995 
1996 			printf("Allocated session pool on socket %d\n", socket_id);
1997 			session_pool_socket[socket_id] = sess_mp;
1998 		}
1999 
2000 		/* Set AEAD parameters */
2001 		if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
2002 			/* Check if device supports AEAD algo */
2003 			cap = check_device_support_aead_algo(options, &dev_info,
2004 							cdev_id);
2005 			if (cap == NULL)
2006 				continue;
2007 
2008 			options->block_size = cap->sym.aead.block_size;
2009 
2010 			check_iv_param(&cap->sym.aead.iv_size,
2011 					options->aead_iv_param,
2012 					options->aead_iv_random_size,
2013 					&options->aead_iv.length);
2014 
2015 			/*
2016 			 * Check if length of provided AEAD key is supported
2017 			 * by the algorithm chosen.
2018 			 */
2019 			if (options->aead_key_param) {
2020 				if (check_supported_size(
2021 						options->aead_xform.aead.key.length,
2022 						cap->sym.aead.key_size.min,
2023 						cap->sym.aead.key_size.max,
2024 						cap->sym.aead.key_size.increment)
2025 							!= 0) {
2026 					printf("Unsupported aead key length\n");
2027 					return -1;
2028 				}
2029 			/*
2030 			 * Check if length of the aead key to be randomly generated
2031 			 * is supported by the algorithm chosen.
2032 			 */
2033 			} else if (options->aead_key_random_size != -1) {
2034 				if (check_supported_size(options->ckey_random_size,
2035 						cap->sym.aead.key_size.min,
2036 						cap->sym.aead.key_size.max,
2037 						cap->sym.aead.key_size.increment)
2038 							!= 0) {
2039 					printf("Unsupported aead key length\n");
2040 					return -1;
2041 				}
2042 				options->aead_xform.aead.key.length =
2043 							options->ckey_random_size;
2044 			/* No size provided, use minimum size. */
2045 			} else
2046 				options->aead_xform.aead.key.length =
2047 						cap->sym.aead.key_size.min;
2048 
2049 			if (!options->aead_key_param)
2050 				generate_random_key(
2051 					options->aead_xform.aead.key.data,
2052 					options->aead_xform.aead.key.length);
2053 
2054 			/*
2055 			 * Check if length of provided AAD is supported
2056 			 * by the algorithm chosen.
2057 			 */
2058 			if (options->aad_param) {
2059 				if (check_supported_size(options->aad.length,
2060 						cap->sym.aead.aad_size.min,
2061 						cap->sym.aead.aad_size.max,
2062 						cap->sym.aead.aad_size.increment)
2063 							!= 0) {
2064 					printf("Unsupported AAD length\n");
2065 					return -1;
2066 				}
2067 			/*
2068 			 * Check if length of AAD to be randomly generated
2069 			 * is supported by the algorithm chosen.
2070 			 */
2071 			} else if (options->aad_random_size != -1) {
2072 				if (check_supported_size(options->aad_random_size,
2073 						cap->sym.aead.aad_size.min,
2074 						cap->sym.aead.aad_size.max,
2075 						cap->sym.aead.aad_size.increment)
2076 							!= 0) {
2077 					printf("Unsupported AAD length\n");
2078 					return -1;
2079 				}
2080 				options->aad.length = options->aad_random_size;
2081 			/* No size provided, use minimum size. */
2082 			} else
2083 				options->aad.length = cap->sym.auth.aad_size.min;
2084 
2085 			options->aead_xform.aead.add_auth_data_length =
2086 						options->aad.length;
2087 
2088 			/* Check if digest size is supported by the algorithm. */
2089 			if (options->digest_size != -1) {
2090 				if (check_supported_size(options->digest_size,
2091 						cap->sym.aead.digest_size.min,
2092 						cap->sym.aead.digest_size.max,
2093 						cap->sym.aead.digest_size.increment)
2094 							!= 0) {
2095 					printf("Unsupported digest length\n");
2096 					return -1;
2097 				}
2098 				options->aead_xform.aead.digest_length =
2099 							options->digest_size;
2100 			/* No size provided, use minimum size. */
2101 			} else
2102 				options->aead_xform.aead.digest_length =
2103 						cap->sym.aead.digest_size.min;
2104 		}
2105 
2106 		/* Set cipher parameters */
2107 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2108 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2109 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2110 			/* Check if device supports cipher algo */
2111 			cap = check_device_support_cipher_algo(options, &dev_info,
2112 							cdev_id);
2113 			if (cap == NULL)
2114 				continue;
2115 
2116 			options->block_size = cap->sym.cipher.block_size;
2117 
2118 			check_iv_param(&cap->sym.cipher.iv_size,
2119 					options->cipher_iv_param,
2120 					options->cipher_iv_random_size,
2121 					&options->cipher_iv.length);
2122 
2123 			/*
2124 			 * Check if length of provided cipher key is supported
2125 			 * by the algorithm chosen.
2126 			 */
2127 			if (options->ckey_param) {
2128 				if (check_supported_size(
2129 						options->cipher_xform.cipher.key.length,
2130 						cap->sym.cipher.key_size.min,
2131 						cap->sym.cipher.key_size.max,
2132 						cap->sym.cipher.key_size.increment)
2133 							!= 0) {
2134 					printf("Unsupported cipher key length\n");
2135 					return -1;
2136 				}
2137 			/*
2138 			 * Check if length of the cipher key to be randomly generated
2139 			 * is supported by the algorithm chosen.
2140 			 */
2141 			} else if (options->ckey_random_size != -1) {
2142 				if (check_supported_size(options->ckey_random_size,
2143 						cap->sym.cipher.key_size.min,
2144 						cap->sym.cipher.key_size.max,
2145 						cap->sym.cipher.key_size.increment)
2146 							!= 0) {
2147 					printf("Unsupported cipher key length\n");
2148 					return -1;
2149 				}
2150 				options->cipher_xform.cipher.key.length =
2151 							options->ckey_random_size;
2152 			/* No size provided, use minimum size. */
2153 			} else
2154 				options->cipher_xform.cipher.key.length =
2155 						cap->sym.cipher.key_size.min;
2156 
2157 			if (!options->ckey_param)
2158 				generate_random_key(
2159 					options->cipher_xform.cipher.key.data,
2160 					options->cipher_xform.cipher.key.length);
2161 
2162 		}
2163 
2164 		/* Set auth parameters */
2165 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2166 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2167 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2168 			/* Check if device supports auth algo */
2169 			cap = check_device_support_auth_algo(options, &dev_info,
2170 							cdev_id);
2171 			if (cap == NULL)
2172 				continue;
2173 
2174 			check_iv_param(&cap->sym.auth.iv_size,
2175 					options->auth_iv_param,
2176 					options->auth_iv_random_size,
2177 					&options->auth_iv.length);
2178 			/*
2179 			 * Check if length of provided auth key is supported
2180 			 * by the algorithm chosen.
2181 			 */
2182 			if (options->akey_param) {
2183 				if (check_supported_size(
2184 						options->auth_xform.auth.key.length,
2185 						cap->sym.auth.key_size.min,
2186 						cap->sym.auth.key_size.max,
2187 						cap->sym.auth.key_size.increment)
2188 							!= 0) {
2189 					printf("Unsupported auth key length\n");
2190 					return -1;
2191 				}
2192 			/*
2193 			 * Check if length of the auth key to be randomly generated
2194 			 * is supported by the algorithm chosen.
2195 			 */
2196 			} else if (options->akey_random_size != -1) {
2197 				if (check_supported_size(options->akey_random_size,
2198 						cap->sym.auth.key_size.min,
2199 						cap->sym.auth.key_size.max,
2200 						cap->sym.auth.key_size.increment)
2201 							!= 0) {
2202 					printf("Unsupported auth key length\n");
2203 					return -1;
2204 				}
2205 				options->auth_xform.auth.key.length =
2206 							options->akey_random_size;
2207 			/* No size provided, use minimum size. */
2208 			} else
2209 				options->auth_xform.auth.key.length =
2210 						cap->sym.auth.key_size.min;
2211 
2212 			if (!options->akey_param)
2213 				generate_random_key(
2214 					options->auth_xform.auth.key.data,
2215 					options->auth_xform.auth.key.length);
2216 
2217 			/* Check if digest size is supported by the algorithm. */
2218 			if (options->digest_size != -1) {
2219 				if (check_supported_size(options->digest_size,
2220 						cap->sym.auth.digest_size.min,
2221 						cap->sym.auth.digest_size.max,
2222 						cap->sym.auth.digest_size.increment)
2223 							!= 0) {
2224 					printf("Unsupported digest length\n");
2225 					return -1;
2226 				}
2227 				options->auth_xform.auth.digest_length =
2228 							options->digest_size;
2229 			/* No size provided, use minimum size. */
2230 			} else
2231 				options->auth_xform.auth.digest_length =
2232 						cap->sym.auth.digest_size.min;
2233 		}
2234 
2235 		retval = rte_cryptodev_configure(cdev_id, &conf,
2236 				session_pool_socket[socket_id]);
2237 		if (retval < 0) {
2238 			printf("Failed to configure cryptodev %u", cdev_id);
2239 			return -1;
2240 		}
2241 
2242 		qp_conf.nb_descriptors = 2048;
2243 
2244 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
2245 				socket_id);
2246 		if (retval < 0) {
2247 			printf("Failed to setup queue pair %u on cryptodev %u",
2248 					0, cdev_id);
2249 			return -1;
2250 		}
2251 
2252 		retval = rte_cryptodev_start(cdev_id);
2253 		if (retval < 0) {
2254 			printf("Failed to start device %u: error %d\n",
2255 					cdev_id, retval);
2256 			return -1;
2257 		}
2258 
2259 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
2260 
2261 		enabled_cdevs[cdev_id] = 1;
2262 		enabled_cdev_count++;
2263 	}
2264 
2265 	return enabled_cdev_count;
2266 }
2267 
2268 static int
2269 initialize_ports(struct l2fwd_crypto_options *options)
2270 {
2271 	uint8_t last_portid, portid;
2272 	unsigned enabled_portcount = 0;
2273 	unsigned nb_ports = rte_eth_dev_count();
2274 
2275 	if (nb_ports == 0) {
2276 		printf("No Ethernet ports - bye\n");
2277 		return -1;
2278 	}
2279 
2280 	/* Reset l2fwd_dst_ports */
2281 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
2282 		l2fwd_dst_ports[portid] = 0;
2283 
2284 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
2285 		int retval;
2286 
2287 		/* Skip ports that are not enabled */
2288 		if ((options->portmask & (1 << portid)) == 0)
2289 			continue;
2290 
2291 		/* init port */
2292 		printf("Initializing port %u... ", (unsigned) portid);
2293 		fflush(stdout);
2294 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
2295 		if (retval < 0) {
2296 			printf("Cannot configure device: err=%d, port=%u\n",
2297 				  retval, (unsigned) portid);
2298 			return -1;
2299 		}
2300 
2301 		/* init one RX queue */
2302 		fflush(stdout);
2303 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
2304 					     rte_eth_dev_socket_id(portid),
2305 					     NULL, l2fwd_pktmbuf_pool);
2306 		if (retval < 0) {
2307 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
2308 					retval, (unsigned) portid);
2309 			return -1;
2310 		}
2311 
2312 		/* init one TX queue on each port */
2313 		fflush(stdout);
2314 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
2315 				rte_eth_dev_socket_id(portid),
2316 				NULL);
2317 		if (retval < 0) {
2318 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
2319 				retval, (unsigned) portid);
2320 
2321 			return -1;
2322 		}
2323 
2324 		/* Start device */
2325 		retval = rte_eth_dev_start(portid);
2326 		if (retval < 0) {
2327 			printf("rte_eth_dev_start:err=%d, port=%u\n",
2328 					retval, (unsigned) portid);
2329 			return -1;
2330 		}
2331 
2332 		rte_eth_promiscuous_enable(portid);
2333 
2334 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
2335 
2336 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
2337 				(unsigned) portid,
2338 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
2339 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
2340 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
2341 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
2342 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
2343 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
2344 
2345 		/* initialize port stats */
2346 		memset(&port_statistics, 0, sizeof(port_statistics));
2347 
2348 		/* Setup port forwarding table */
2349 		if (enabled_portcount % 2) {
2350 			l2fwd_dst_ports[portid] = last_portid;
2351 			l2fwd_dst_ports[last_portid] = portid;
2352 		} else {
2353 			last_portid = portid;
2354 		}
2355 
2356 		l2fwd_enabled_port_mask |= (1 << portid);
2357 		enabled_portcount++;
2358 	}
2359 
2360 	if (enabled_portcount == 1) {
2361 		l2fwd_dst_ports[last_portid] = last_portid;
2362 	} else if (enabled_portcount % 2) {
2363 		printf("odd number of ports in portmask- bye\n");
2364 		return -1;
2365 	}
2366 
2367 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
2368 
2369 	return enabled_portcount;
2370 }
2371 
2372 static void
2373 reserve_key_memory(struct l2fwd_crypto_options *options)
2374 {
2375 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
2376 						MAX_KEY_SIZE, 0);
2377 	if (options->cipher_xform.cipher.key.data == NULL)
2378 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
2379 
2380 	options->auth_xform.auth.key.data = rte_malloc("auth key",
2381 						MAX_KEY_SIZE, 0);
2382 	if (options->auth_xform.auth.key.data == NULL)
2383 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
2384 
2385 	options->aead_xform.aead.key.data = rte_malloc("aead key",
2386 						MAX_KEY_SIZE, 0);
2387 	if (options->aead_xform.aead.key.data == NULL)
2388 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key");
2389 
2390 	options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0);
2391 	if (options->cipher_iv.data == NULL)
2392 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV");
2393 
2394 	options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0);
2395 	if (options->auth_iv.data == NULL)
2396 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV");
2397 
2398 	options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0);
2399 	if (options->aead_iv.data == NULL)
2400 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv");
2401 
2402 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
2403 	if (options->aad.data == NULL)
2404 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
2405 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
2406 }
2407 
2408 int
2409 main(int argc, char **argv)
2410 {
2411 	struct lcore_queue_conf *qconf;
2412 	struct l2fwd_crypto_options options;
2413 
2414 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
2415 	unsigned lcore_id, rx_lcore_id;
2416 	int ret, enabled_cdevcount, enabled_portcount;
2417 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
2418 
2419 	/* init EAL */
2420 	ret = rte_eal_init(argc, argv);
2421 	if (ret < 0)
2422 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
2423 	argc -= ret;
2424 	argv += ret;
2425 
2426 	/* reserve memory for Cipher/Auth key and IV */
2427 	reserve_key_memory(&options);
2428 
2429 	/* parse application arguments (after the EAL ones) */
2430 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
2431 	if (ret < 0)
2432 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
2433 
2434 	/* create the mbuf pool */
2435 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
2436 			sizeof(struct rte_crypto_op),
2437 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2438 	if (l2fwd_pktmbuf_pool == NULL)
2439 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2440 
2441 	/* create crypto op pool */
2442 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2443 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH,
2444 			rte_socket_id());
2445 	if (l2fwd_crypto_op_pool == NULL)
2446 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2447 
2448 	/* Enable Ethernet ports */
2449 	enabled_portcount = initialize_ports(&options);
2450 	if (enabled_portcount < 1)
2451 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2452 
2453 	nb_ports = rte_eth_dev_count();
2454 	/* Initialize the port/queue configuration of each logical core */
2455 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
2456 			portid < nb_ports; portid++) {
2457 
2458 		/* skip ports that are not enabled */
2459 		if ((options.portmask & (1 << portid)) == 0)
2460 			continue;
2461 
2462 		if (options.single_lcore && qconf == NULL) {
2463 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2464 				rx_lcore_id++;
2465 				if (rx_lcore_id >= RTE_MAX_LCORE)
2466 					rte_exit(EXIT_FAILURE,
2467 							"Not enough cores\n");
2468 			}
2469 		} else if (!options.single_lcore) {
2470 			/* get the lcore_id for this port */
2471 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2472 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2473 			       options.nb_ports_per_lcore) {
2474 				rx_lcore_id++;
2475 				if (rx_lcore_id >= RTE_MAX_LCORE)
2476 					rte_exit(EXIT_FAILURE,
2477 							"Not enough cores\n");
2478 			}
2479 		}
2480 
2481 		/* Assigned a new logical core in the loop above. */
2482 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2483 			qconf = &lcore_queue_conf[rx_lcore_id];
2484 
2485 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2486 		qconf->nb_rx_ports++;
2487 
2488 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2489 	}
2490 
2491 	/* Enable Crypto devices */
2492 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2493 			enabled_cdevs);
2494 	if (enabled_cdevcount < 0)
2495 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2496 
2497 	if (enabled_cdevcount < enabled_portcount)
2498 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2499 				"has to be more or equal to number of ports (%d)\n",
2500 				enabled_cdevcount, enabled_portcount);
2501 
2502 	nb_cryptodevs = rte_cryptodev_count();
2503 
2504 	/* Initialize the port/cryptodev configuration of each logical core */
2505 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2506 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2507 			cdev_id++) {
2508 		/* Crypto op not supported by crypto device */
2509 		if (!enabled_cdevs[cdev_id])
2510 			continue;
2511 
2512 		if (options.single_lcore && qconf == NULL) {
2513 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2514 				rx_lcore_id++;
2515 				if (rx_lcore_id >= RTE_MAX_LCORE)
2516 					rte_exit(EXIT_FAILURE,
2517 							"Not enough cores\n");
2518 			}
2519 		} else if (!options.single_lcore) {
2520 			/* get the lcore_id for this port */
2521 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2522 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2523 			       options.nb_ports_per_lcore) {
2524 				rx_lcore_id++;
2525 				if (rx_lcore_id >= RTE_MAX_LCORE)
2526 					rte_exit(EXIT_FAILURE,
2527 							"Not enough cores\n");
2528 			}
2529 		}
2530 
2531 		/* Assigned a new logical core in the loop above. */
2532 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2533 			qconf = &lcore_queue_conf[rx_lcore_id];
2534 
2535 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2536 		qconf->nb_crypto_devs++;
2537 
2538 		enabled_cdevcount--;
2539 
2540 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2541 				(unsigned)cdev_id);
2542 	}
2543 
2544 	/* launch per-lcore init on every lcore */
2545 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2546 			CALL_MASTER);
2547 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2548 		if (rte_eal_wait_lcore(lcore_id) < 0)
2549 			return -1;
2550 	}
2551 
2552 	return 0;
2553 }
2554