1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 phys_addr_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 197 unsigned int mac_updating; 198 }; 199 200 /** l2fwd crypto lcore params */ 201 struct l2fwd_crypto_params { 202 uint8_t dev_id; 203 uint8_t qp_id; 204 205 unsigned digest_length; 206 unsigned block_size; 207 208 struct l2fwd_iv cipher_iv; 209 struct l2fwd_iv auth_iv; 210 struct l2fwd_iv aead_iv; 211 struct l2fwd_key aad; 212 struct rte_cryptodev_sym_session *session; 213 214 uint8_t do_cipher; 215 uint8_t do_hash; 216 uint8_t do_aead; 217 uint8_t hash_verify; 218 219 enum rte_crypto_cipher_algorithm cipher_algo; 220 enum rte_crypto_auth_algorithm auth_algo; 221 enum rte_crypto_aead_algorithm aead_algo; 222 }; 223 224 /** lcore configuration */ 225 struct lcore_queue_conf { 226 unsigned nb_rx_ports; 227 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 228 229 unsigned nb_crypto_devs; 230 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 231 232 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 233 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 234 } __rte_cache_aligned; 235 236 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 237 238 static const struct rte_eth_conf port_conf = { 239 .rxmode = { 240 .mq_mode = ETH_MQ_RX_NONE, 241 .max_rx_pkt_len = ETHER_MAX_LEN, 242 .split_hdr_size = 0, 243 .header_split = 0, /**< Header Split disabled */ 244 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 245 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 246 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 247 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 248 }, 249 .txmode = { 250 .mq_mode = ETH_MQ_TX_NONE, 251 }, 252 }; 253 254 struct rte_mempool *l2fwd_pktmbuf_pool; 255 struct rte_mempool *l2fwd_crypto_op_pool; 256 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 257 258 /* Per-port statistics struct */ 259 struct l2fwd_port_statistics { 260 uint64_t tx; 261 uint64_t rx; 262 263 uint64_t crypto_enqueued; 264 uint64_t crypto_dequeued; 265 266 uint64_t dropped; 267 } __rte_cache_aligned; 268 269 struct l2fwd_crypto_statistics { 270 uint64_t enqueued; 271 uint64_t dequeued; 272 273 uint64_t errors; 274 } __rte_cache_aligned; 275 276 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 277 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 278 279 /* A tsc-based timer responsible for triggering statistics printout */ 280 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 281 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 282 283 /* default period is 10 seconds */ 284 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 285 286 /* Print out statistics on packets dropped */ 287 static void 288 print_stats(void) 289 { 290 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 291 uint64_t total_packets_enqueued, total_packets_dequeued, 292 total_packets_errors; 293 unsigned portid; 294 uint64_t cdevid; 295 296 total_packets_dropped = 0; 297 total_packets_tx = 0; 298 total_packets_rx = 0; 299 total_packets_enqueued = 0; 300 total_packets_dequeued = 0; 301 total_packets_errors = 0; 302 303 const char clr[] = { 27, '[', '2', 'J', '\0' }; 304 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 305 306 /* Clear screen and move to top left */ 307 printf("%s%s", clr, topLeft); 308 309 printf("\nPort statistics ===================================="); 310 311 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 312 /* skip disabled ports */ 313 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 314 continue; 315 printf("\nStatistics for port %u ------------------------------" 316 "\nPackets sent: %32"PRIu64 317 "\nPackets received: %28"PRIu64 318 "\nPackets dropped: %29"PRIu64, 319 portid, 320 port_statistics[portid].tx, 321 port_statistics[portid].rx, 322 port_statistics[portid].dropped); 323 324 total_packets_dropped += port_statistics[portid].dropped; 325 total_packets_tx += port_statistics[portid].tx; 326 total_packets_rx += port_statistics[portid].rx; 327 } 328 printf("\nCrypto statistics =================================="); 329 330 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 331 /* skip disabled ports */ 332 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 333 continue; 334 printf("\nStatistics for cryptodev %"PRIu64 335 " -------------------------" 336 "\nPackets enqueued: %28"PRIu64 337 "\nPackets dequeued: %28"PRIu64 338 "\nPackets errors: %30"PRIu64, 339 cdevid, 340 crypto_statistics[cdevid].enqueued, 341 crypto_statistics[cdevid].dequeued, 342 crypto_statistics[cdevid].errors); 343 344 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 345 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 346 total_packets_errors += crypto_statistics[cdevid].errors; 347 } 348 printf("\nAggregate statistics ===============================" 349 "\nTotal packets received: %22"PRIu64 350 "\nTotal packets enqueued: %22"PRIu64 351 "\nTotal packets dequeued: %22"PRIu64 352 "\nTotal packets sent: %26"PRIu64 353 "\nTotal packets dropped: %23"PRIu64 354 "\nTotal packets crypto errors: %17"PRIu64, 355 total_packets_rx, 356 total_packets_enqueued, 357 total_packets_dequeued, 358 total_packets_tx, 359 total_packets_dropped, 360 total_packets_errors); 361 printf("\n====================================================\n"); 362 } 363 364 static int 365 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 366 struct l2fwd_crypto_params *cparams) 367 { 368 struct rte_crypto_op **op_buffer; 369 unsigned ret; 370 371 op_buffer = (struct rte_crypto_op **) 372 qconf->op_buf[cparams->dev_id].buffer; 373 374 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 375 cparams->qp_id, op_buffer, (uint16_t) n); 376 377 crypto_statistics[cparams->dev_id].enqueued += ret; 378 if (unlikely(ret < n)) { 379 crypto_statistics[cparams->dev_id].errors += (n - ret); 380 do { 381 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 382 rte_crypto_op_free(op_buffer[ret]); 383 } while (++ret < n); 384 } 385 386 return 0; 387 } 388 389 static int 390 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 391 struct l2fwd_crypto_params *cparams) 392 { 393 unsigned lcore_id, len; 394 struct lcore_queue_conf *qconf; 395 396 lcore_id = rte_lcore_id(); 397 398 qconf = &lcore_queue_conf[lcore_id]; 399 len = qconf->op_buf[cparams->dev_id].len; 400 qconf->op_buf[cparams->dev_id].buffer[len] = op; 401 len++; 402 403 /* enough ops to be sent */ 404 if (len == MAX_PKT_BURST) { 405 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 406 len = 0; 407 } 408 409 qconf->op_buf[cparams->dev_id].len = len; 410 return 0; 411 } 412 413 static int 414 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 415 struct rte_crypto_op *op, 416 struct l2fwd_crypto_params *cparams) 417 { 418 struct ether_hdr *eth_hdr; 419 struct ipv4_hdr *ip_hdr; 420 421 uint32_t ipdata_offset, data_len; 422 uint32_t pad_len = 0; 423 char *padding; 424 425 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 426 427 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 428 return -1; 429 430 ipdata_offset = sizeof(struct ether_hdr); 431 432 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 433 ipdata_offset); 434 435 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 436 * IPV4_IHL_MULTIPLIER; 437 438 439 /* Zero pad data to be crypto'd so it is block aligned */ 440 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 441 442 if (cparams->do_hash && cparams->hash_verify) 443 data_len -= cparams->digest_length; 444 445 if (cparams->do_cipher) { 446 /* 447 * Following algorithms are block cipher algorithms, 448 * and might need padding 449 */ 450 switch (cparams->cipher_algo) { 451 case RTE_CRYPTO_CIPHER_AES_CBC: 452 case RTE_CRYPTO_CIPHER_AES_ECB: 453 case RTE_CRYPTO_CIPHER_DES_CBC: 454 case RTE_CRYPTO_CIPHER_3DES_CBC: 455 case RTE_CRYPTO_CIPHER_3DES_ECB: 456 if (data_len % cparams->block_size) 457 pad_len = cparams->block_size - 458 (data_len % cparams->block_size); 459 break; 460 default: 461 pad_len = 0; 462 } 463 464 if (pad_len) { 465 padding = rte_pktmbuf_append(m, pad_len); 466 if (unlikely(!padding)) 467 return -1; 468 469 data_len += pad_len; 470 memset(padding, 0, pad_len); 471 } 472 } 473 474 /* Set crypto operation data parameters */ 475 rte_crypto_op_attach_sym_session(op, cparams->session); 476 477 if (cparams->do_hash) { 478 if (cparams->auth_iv.length) { 479 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 480 uint8_t *, 481 IV_OFFSET + 482 cparams->cipher_iv.length); 483 /* 484 * Copy IV at the end of the crypto operation, 485 * after the cipher IV, if added 486 */ 487 rte_memcpy(iv_ptr, cparams->auth_iv.data, 488 cparams->auth_iv.length); 489 } 490 if (!cparams->hash_verify) { 491 /* Append space for digest to end of packet */ 492 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 493 cparams->digest_length); 494 } else { 495 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 496 uint8_t *) + ipdata_offset + data_len; 497 } 498 499 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 500 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 501 502 /* For wireless algorithms, offset/length must be in bits */ 503 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 504 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 505 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 506 op->sym->auth.data.offset = ipdata_offset << 3; 507 op->sym->auth.data.length = data_len << 3; 508 } else { 509 op->sym->auth.data.offset = ipdata_offset; 510 op->sym->auth.data.length = data_len; 511 } 512 } 513 514 if (cparams->do_cipher) { 515 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 516 IV_OFFSET); 517 /* Copy IV at the end of the crypto operation */ 518 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 519 cparams->cipher_iv.length); 520 521 /* For wireless algorithms, offset/length must be in bits */ 522 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 523 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 524 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 525 op->sym->cipher.data.offset = ipdata_offset << 3; 526 op->sym->cipher.data.length = data_len << 3; 527 } else { 528 op->sym->cipher.data.offset = ipdata_offset; 529 op->sym->cipher.data.length = data_len; 530 } 531 } 532 533 if (cparams->do_aead) { 534 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 535 IV_OFFSET); 536 /* Copy IV at the end of the crypto operation */ 537 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 538 539 op->sym->aead.data.offset = ipdata_offset; 540 op->sym->aead.data.length = data_len; 541 542 if (!cparams->hash_verify) { 543 /* Append space for digest to end of packet */ 544 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 545 cparams->digest_length); 546 } else { 547 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 548 uint8_t *) + ipdata_offset + data_len; 549 } 550 551 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 552 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 553 554 if (cparams->aad.length) { 555 op->sym->aead.aad.data = cparams->aad.data; 556 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 557 } 558 } 559 560 op->sym->m_src = m; 561 562 return l2fwd_crypto_enqueue(op, cparams); 563 } 564 565 566 /* Send the burst of packets on an output interface */ 567 static int 568 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 569 uint8_t port) 570 { 571 struct rte_mbuf **pkt_buffer; 572 unsigned ret; 573 574 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 575 576 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 577 port_statistics[port].tx += ret; 578 if (unlikely(ret < n)) { 579 port_statistics[port].dropped += (n - ret); 580 do { 581 rte_pktmbuf_free(pkt_buffer[ret]); 582 } while (++ret < n); 583 } 584 585 return 0; 586 } 587 588 /* Enqueue packets for TX and prepare them to be sent */ 589 static int 590 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 591 { 592 unsigned lcore_id, len; 593 struct lcore_queue_conf *qconf; 594 595 lcore_id = rte_lcore_id(); 596 597 qconf = &lcore_queue_conf[lcore_id]; 598 len = qconf->pkt_buf[port].len; 599 qconf->pkt_buf[port].buffer[len] = m; 600 len++; 601 602 /* enough pkts to be sent */ 603 if (unlikely(len == MAX_PKT_BURST)) { 604 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 605 len = 0; 606 } 607 608 qconf->pkt_buf[port].len = len; 609 return 0; 610 } 611 612 static void 613 l2fwd_mac_updating(struct rte_mbuf *m, unsigned int dest_portid) 614 { 615 struct ether_hdr *eth; 616 void *tmp; 617 618 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 619 620 /* 02:00:00:00:00:xx */ 621 tmp = ð->d_addr.addr_bytes[0]; 622 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 623 624 /* src addr */ 625 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 626 } 627 628 static void 629 l2fwd_simple_forward(struct rte_mbuf *m, unsigned int portid, 630 struct l2fwd_crypto_options *options) 631 { 632 unsigned int dst_port; 633 634 dst_port = l2fwd_dst_ports[portid]; 635 636 if (options->mac_updating) 637 l2fwd_mac_updating(m, dst_port); 638 639 l2fwd_send_packet(m, (uint8_t) dst_port); 640 } 641 642 /** Generate random key */ 643 static void 644 generate_random_key(uint8_t *key, unsigned length) 645 { 646 int fd; 647 int ret; 648 649 fd = open("/dev/urandom", O_RDONLY); 650 if (fd < 0) 651 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 652 653 ret = read(fd, key, length); 654 close(fd); 655 656 if (ret != (signed)length) 657 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 658 } 659 660 static struct rte_cryptodev_sym_session * 661 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 662 { 663 struct rte_crypto_sym_xform *first_xform; 664 struct rte_cryptodev_sym_session *session; 665 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); 666 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 667 668 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 669 first_xform = &options->aead_xform; 670 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 671 first_xform = &options->cipher_xform; 672 first_xform->next = &options->auth_xform; 673 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 674 first_xform = &options->auth_xform; 675 first_xform->next = &options->cipher_xform; 676 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 677 first_xform = &options->cipher_xform; 678 } else { 679 first_xform = &options->auth_xform; 680 } 681 682 session = rte_cryptodev_sym_session_create(sess_mp); 683 684 if (session == NULL) 685 return NULL; 686 687 if (rte_cryptodev_sym_session_init(cdev_id, session, 688 first_xform, sess_mp) < 0) 689 return NULL; 690 691 return session; 692 } 693 694 static void 695 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 696 697 /* main processing loop */ 698 static void 699 l2fwd_main_loop(struct l2fwd_crypto_options *options) 700 { 701 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 702 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 703 704 unsigned lcore_id = rte_lcore_id(); 705 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 706 unsigned i, j, portid, nb_rx, len; 707 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 708 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 709 US_PER_S * BURST_TX_DRAIN_US; 710 struct l2fwd_crypto_params *cparams; 711 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 712 struct rte_cryptodev_sym_session *session; 713 714 if (qconf->nb_rx_ports == 0) { 715 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 716 return; 717 } 718 719 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 720 721 for (i = 0; i < qconf->nb_rx_ports; i++) { 722 723 portid = qconf->rx_port_list[i]; 724 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 725 portid); 726 } 727 728 for (i = 0; i < qconf->nb_crypto_devs; i++) { 729 port_cparams[i].do_cipher = 0; 730 port_cparams[i].do_hash = 0; 731 port_cparams[i].do_aead = 0; 732 733 switch (options->xform_chain) { 734 case L2FWD_CRYPTO_AEAD: 735 port_cparams[i].do_aead = 1; 736 break; 737 case L2FWD_CRYPTO_CIPHER_HASH: 738 case L2FWD_CRYPTO_HASH_CIPHER: 739 port_cparams[i].do_cipher = 1; 740 port_cparams[i].do_hash = 1; 741 break; 742 case L2FWD_CRYPTO_HASH_ONLY: 743 port_cparams[i].do_hash = 1; 744 break; 745 case L2FWD_CRYPTO_CIPHER_ONLY: 746 port_cparams[i].do_cipher = 1; 747 break; 748 } 749 750 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 751 port_cparams[i].qp_id = 0; 752 753 port_cparams[i].block_size = options->block_size; 754 755 if (port_cparams[i].do_hash) { 756 port_cparams[i].auth_iv.data = options->auth_iv.data; 757 port_cparams[i].auth_iv.length = options->auth_iv.length; 758 if (!options->auth_iv_param) 759 generate_random_key(port_cparams[i].auth_iv.data, 760 port_cparams[i].auth_iv.length); 761 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 762 port_cparams[i].hash_verify = 1; 763 else 764 port_cparams[i].hash_verify = 0; 765 766 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 767 port_cparams[i].digest_length = 768 options->auth_xform.auth.digest_length; 769 /* Set IV parameters */ 770 if (options->auth_iv.length) { 771 options->auth_xform.auth.iv.offset = 772 IV_OFFSET + options->cipher_iv.length; 773 options->auth_xform.auth.iv.length = 774 options->auth_iv.length; 775 } 776 } 777 778 if (port_cparams[i].do_aead) { 779 port_cparams[i].aead_iv.data = options->aead_iv.data; 780 port_cparams[i].aead_iv.length = options->aead_iv.length; 781 if (!options->aead_iv_param) 782 generate_random_key(port_cparams[i].aead_iv.data, 783 port_cparams[i].aead_iv.length); 784 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 785 port_cparams[i].digest_length = 786 options->aead_xform.aead.digest_length; 787 if (options->aead_xform.aead.aad_length) { 788 port_cparams[i].aad.data = options->aad.data; 789 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 790 port_cparams[i].aad.length = options->aad.length; 791 if (!options->aad_param) 792 generate_random_key(port_cparams[i].aad.data, 793 port_cparams[i].aad.length); 794 795 } else 796 port_cparams[i].aad.length = 0; 797 798 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 799 port_cparams[i].hash_verify = 1; 800 else 801 port_cparams[i].hash_verify = 0; 802 803 /* Set IV parameters */ 804 options->aead_xform.aead.iv.offset = IV_OFFSET; 805 options->aead_xform.aead.iv.length = options->aead_iv.length; 806 } 807 808 if (port_cparams[i].do_cipher) { 809 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 810 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 811 if (!options->cipher_iv_param) 812 generate_random_key(port_cparams[i].cipher_iv.data, 813 port_cparams[i].cipher_iv.length); 814 815 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 816 /* Set IV parameters */ 817 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 818 options->cipher_xform.cipher.iv.length = 819 options->cipher_iv.length; 820 } 821 822 session = initialize_crypto_session(options, 823 port_cparams[i].dev_id); 824 if (session == NULL) 825 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 826 827 port_cparams[i].session = session; 828 829 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 830 port_cparams[i].dev_id); 831 } 832 833 l2fwd_crypto_options_print(options); 834 835 /* 836 * Initialize previous tsc timestamp before the loop, 837 * to avoid showing the port statistics immediately, 838 * so user can see the crypto information. 839 */ 840 prev_tsc = rte_rdtsc(); 841 while (1) { 842 843 cur_tsc = rte_rdtsc(); 844 845 /* 846 * Crypto device/TX burst queue drain 847 */ 848 diff_tsc = cur_tsc - prev_tsc; 849 if (unlikely(diff_tsc > drain_tsc)) { 850 /* Enqueue all crypto ops remaining in buffers */ 851 for (i = 0; i < qconf->nb_crypto_devs; i++) { 852 cparams = &port_cparams[i]; 853 len = qconf->op_buf[cparams->dev_id].len; 854 l2fwd_crypto_send_burst(qconf, len, cparams); 855 qconf->op_buf[cparams->dev_id].len = 0; 856 } 857 /* Transmit all packets remaining in buffers */ 858 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 859 if (qconf->pkt_buf[portid].len == 0) 860 continue; 861 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 862 qconf->pkt_buf[portid].len, 863 (uint8_t) portid); 864 qconf->pkt_buf[portid].len = 0; 865 } 866 867 /* if timer is enabled */ 868 if (timer_period > 0) { 869 870 /* advance the timer */ 871 timer_tsc += diff_tsc; 872 873 /* if timer has reached its timeout */ 874 if (unlikely(timer_tsc >= 875 (uint64_t)timer_period)) { 876 877 /* do this only on master core */ 878 if (lcore_id == rte_get_master_lcore() 879 && options->refresh_period) { 880 print_stats(); 881 timer_tsc = 0; 882 } 883 } 884 } 885 886 prev_tsc = cur_tsc; 887 } 888 889 /* 890 * Read packet from RX queues 891 */ 892 for (i = 0; i < qconf->nb_rx_ports; i++) { 893 portid = qconf->rx_port_list[i]; 894 895 cparams = &port_cparams[i]; 896 897 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 898 pkts_burst, MAX_PKT_BURST); 899 900 port_statistics[portid].rx += nb_rx; 901 902 if (nb_rx) { 903 /* 904 * If we can't allocate a crypto_ops, then drop 905 * the rest of the burst and dequeue and 906 * process the packets to free offload structs 907 */ 908 if (rte_crypto_op_bulk_alloc( 909 l2fwd_crypto_op_pool, 910 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 911 ops_burst, nb_rx) != 912 nb_rx) { 913 for (j = 0; j < nb_rx; j++) 914 rte_pktmbuf_free(pkts_burst[j]); 915 916 nb_rx = 0; 917 } 918 919 /* Enqueue packets from Crypto device*/ 920 for (j = 0; j < nb_rx; j++) { 921 m = pkts_burst[j]; 922 923 l2fwd_simple_crypto_enqueue(m, 924 ops_burst[j], cparams); 925 } 926 } 927 928 /* Dequeue packets from Crypto device */ 929 do { 930 nb_rx = rte_cryptodev_dequeue_burst( 931 cparams->dev_id, cparams->qp_id, 932 ops_burst, MAX_PKT_BURST); 933 934 crypto_statistics[cparams->dev_id].dequeued += 935 nb_rx; 936 937 /* Forward crypto'd packets */ 938 for (j = 0; j < nb_rx; j++) { 939 m = ops_burst[j]->sym->m_src; 940 941 rte_crypto_op_free(ops_burst[j]); 942 l2fwd_simple_forward(m, portid, 943 options); 944 } 945 } while (nb_rx == MAX_PKT_BURST); 946 } 947 } 948 } 949 950 static int 951 l2fwd_launch_one_lcore(void *arg) 952 { 953 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 954 return 0; 955 } 956 957 /* Display command line arguments usage */ 958 static void 959 l2fwd_crypto_usage(const char *prgname) 960 { 961 printf("%s [EAL options] --\n" 962 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 963 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 964 " -s manage all ports from single lcore\n" 965 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 966 " (0 to disable, 10 default, 86400 maximum)\n" 967 968 " --cdev_type HW / SW / ANY\n" 969 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 970 " HASH_ONLY / AEAD\n" 971 972 " --cipher_algo ALGO\n" 973 " --cipher_op ENCRYPT / DECRYPT\n" 974 " --cipher_key KEY (bytes separated with \":\")\n" 975 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 976 " --cipher_iv IV (bytes separated with \":\")\n" 977 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 978 979 " --auth_algo ALGO\n" 980 " --auth_op GENERATE / VERIFY\n" 981 " --auth_key KEY (bytes separated with \":\")\n" 982 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 983 " --auth_iv IV (bytes separated with \":\")\n" 984 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 985 986 " --aead_algo ALGO\n" 987 " --aead_op ENCRYPT / DECRYPT\n" 988 " --aead_key KEY (bytes separated with \":\")\n" 989 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 990 " --aead_iv IV (bytes separated with \":\")\n" 991 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 992 " --aad AAD (bytes separated with \":\")\n" 993 " --aad_random_size SIZE: size of AAD when generated randomly\n" 994 995 " --digest_size SIZE: size of digest to be generated/verified\n" 996 997 " --sessionless\n" 998 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 999 1000 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1001 " When enabled:\n" 1002 " - The source MAC address is replaced by the TX port MAC address\n" 1003 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1004 prgname); 1005 } 1006 1007 /** Parse crypto device type command line argument */ 1008 static int 1009 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1010 { 1011 if (strcmp("HW", optarg) == 0) { 1012 *type = CDEV_TYPE_HW; 1013 return 0; 1014 } else if (strcmp("SW", optarg) == 0) { 1015 *type = CDEV_TYPE_SW; 1016 return 0; 1017 } else if (strcmp("ANY", optarg) == 0) { 1018 *type = CDEV_TYPE_ANY; 1019 return 0; 1020 } 1021 1022 return -1; 1023 } 1024 1025 /** Parse crypto chain xform command line argument */ 1026 static int 1027 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1028 { 1029 if (strcmp("CIPHER_HASH", optarg) == 0) { 1030 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1031 return 0; 1032 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1033 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1034 return 0; 1035 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1036 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1037 return 0; 1038 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1039 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1040 return 0; 1041 } else if (strcmp("AEAD", optarg) == 0) { 1042 options->xform_chain = L2FWD_CRYPTO_AEAD; 1043 return 0; 1044 } 1045 1046 return -1; 1047 } 1048 1049 /** Parse crypto cipher algo option command line argument */ 1050 static int 1051 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1052 { 1053 1054 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1055 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1056 "not supported!\n"); 1057 return -1; 1058 } 1059 1060 return 0; 1061 } 1062 1063 /** Parse crypto cipher operation command line argument */ 1064 static int 1065 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1066 { 1067 if (strcmp("ENCRYPT", optarg) == 0) { 1068 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1069 return 0; 1070 } else if (strcmp("DECRYPT", optarg) == 0) { 1071 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1072 return 0; 1073 } 1074 1075 printf("Cipher operation not supported!\n"); 1076 return -1; 1077 } 1078 1079 /** Parse crypto key command line argument */ 1080 static int 1081 parse_key(uint8_t *data, char *input_arg) 1082 { 1083 unsigned byte_count; 1084 char *token; 1085 1086 for (byte_count = 0, token = strtok(input_arg, ":"); 1087 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1088 token = strtok(NULL, ":")) { 1089 1090 int number = (int)strtol(token, NULL, 16); 1091 1092 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1093 return -1; 1094 1095 data[byte_count++] = (uint8_t)number; 1096 } 1097 1098 return byte_count; 1099 } 1100 1101 /** Parse size param*/ 1102 static int 1103 parse_size(int *size, const char *q_arg) 1104 { 1105 char *end = NULL; 1106 unsigned long n; 1107 1108 /* parse hexadecimal string */ 1109 n = strtoul(q_arg, &end, 10); 1110 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1111 n = 0; 1112 1113 if (n == 0) { 1114 printf("invalid size\n"); 1115 return -1; 1116 } 1117 1118 *size = n; 1119 return 0; 1120 } 1121 1122 /** Parse crypto cipher operation command line argument */ 1123 static int 1124 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1125 { 1126 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1127 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1128 "not supported!\n"); 1129 return -1; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int 1136 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1137 { 1138 if (strcmp("VERIFY", optarg) == 0) { 1139 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1140 return 0; 1141 } else if (strcmp("GENERATE", optarg) == 0) { 1142 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1143 return 0; 1144 } 1145 1146 printf("Authentication operation specified not supported!\n"); 1147 return -1; 1148 } 1149 1150 static int 1151 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1152 { 1153 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1154 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1155 "not supported!\n"); 1156 return -1; 1157 } 1158 1159 return 0; 1160 } 1161 1162 static int 1163 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1164 { 1165 if (strcmp("ENCRYPT", optarg) == 0) { 1166 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1167 return 0; 1168 } else if (strcmp("DECRYPT", optarg) == 0) { 1169 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1170 return 0; 1171 } 1172 1173 printf("AEAD operation specified not supported!\n"); 1174 return -1; 1175 } 1176 static int 1177 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1178 const char *q_arg) 1179 { 1180 char *end = NULL; 1181 uint64_t pm; 1182 1183 /* parse hexadecimal string */ 1184 pm = strtoul(q_arg, &end, 16); 1185 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1186 pm = 0; 1187 1188 options->cryptodev_mask = pm; 1189 if (options->cryptodev_mask == 0) { 1190 printf("invalid cryptodev_mask specified\n"); 1191 return -1; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /** Parse long options */ 1198 static int 1199 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1200 struct option *lgopts, int option_index) 1201 { 1202 int retval; 1203 1204 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1205 retval = parse_cryptodev_type(&options->type, optarg); 1206 if (retval == 0) 1207 snprintf(options->string_type, MAX_STR_LEN, 1208 "%s", optarg); 1209 return retval; 1210 } 1211 1212 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1213 return parse_crypto_opt_chain(options, optarg); 1214 1215 /* Cipher options */ 1216 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1217 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1218 optarg); 1219 1220 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1221 return parse_cipher_op(&options->cipher_xform.cipher.op, 1222 optarg); 1223 1224 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1225 options->ckey_param = 1; 1226 options->cipher_xform.cipher.key.length = 1227 parse_key(options->cipher_xform.cipher.key.data, optarg); 1228 if (options->cipher_xform.cipher.key.length > 0) 1229 return 0; 1230 else 1231 return -1; 1232 } 1233 1234 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1235 return parse_size(&options->ckey_random_size, optarg); 1236 1237 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1238 options->cipher_iv_param = 1; 1239 options->cipher_iv.length = 1240 parse_key(options->cipher_iv.data, optarg); 1241 if (options->cipher_iv.length > 0) 1242 return 0; 1243 else 1244 return -1; 1245 } 1246 1247 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1248 return parse_size(&options->cipher_iv_random_size, optarg); 1249 1250 /* Authentication options */ 1251 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1252 return parse_auth_algo(&options->auth_xform.auth.algo, 1253 optarg); 1254 } 1255 1256 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1257 return parse_auth_op(&options->auth_xform.auth.op, 1258 optarg); 1259 1260 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1261 options->akey_param = 1; 1262 options->auth_xform.auth.key.length = 1263 parse_key(options->auth_xform.auth.key.data, optarg); 1264 if (options->auth_xform.auth.key.length > 0) 1265 return 0; 1266 else 1267 return -1; 1268 } 1269 1270 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1271 return parse_size(&options->akey_random_size, optarg); 1272 } 1273 1274 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1275 options->auth_iv_param = 1; 1276 options->auth_iv.length = 1277 parse_key(options->auth_iv.data, optarg); 1278 if (options->auth_iv.length > 0) 1279 return 0; 1280 else 1281 return -1; 1282 } 1283 1284 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1285 return parse_size(&options->auth_iv_random_size, optarg); 1286 1287 /* AEAD options */ 1288 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1289 return parse_aead_algo(&options->aead_xform.aead.algo, 1290 optarg); 1291 } 1292 1293 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1294 return parse_aead_op(&options->aead_xform.aead.op, 1295 optarg); 1296 1297 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1298 options->aead_key_param = 1; 1299 options->aead_xform.aead.key.length = 1300 parse_key(options->aead_xform.aead.key.data, optarg); 1301 if (options->aead_xform.aead.key.length > 0) 1302 return 0; 1303 else 1304 return -1; 1305 } 1306 1307 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1308 return parse_size(&options->aead_key_random_size, optarg); 1309 1310 1311 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1312 options->aead_iv_param = 1; 1313 options->aead_iv.length = 1314 parse_key(options->aead_iv.data, optarg); 1315 if (options->aead_iv.length > 0) 1316 return 0; 1317 else 1318 return -1; 1319 } 1320 1321 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1322 return parse_size(&options->aead_iv_random_size, optarg); 1323 1324 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1325 options->aad_param = 1; 1326 options->aad.length = 1327 parse_key(options->aad.data, optarg); 1328 if (options->aad.length > 0) 1329 return 0; 1330 else 1331 return -1; 1332 } 1333 1334 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1335 return parse_size(&options->aad_random_size, optarg); 1336 } 1337 1338 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1339 return parse_size(&options->digest_size, optarg); 1340 } 1341 1342 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1343 options->sessionless = 1; 1344 return 0; 1345 } 1346 1347 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1348 return parse_cryptodev_mask(options, optarg); 1349 1350 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1351 options->mac_updating = 1; 1352 return 0; 1353 } 1354 1355 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1356 options->mac_updating = 0; 1357 return 0; 1358 } 1359 1360 return -1; 1361 } 1362 1363 /** Parse port mask */ 1364 static int 1365 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1366 const char *q_arg) 1367 { 1368 char *end = NULL; 1369 unsigned long pm; 1370 1371 /* parse hexadecimal string */ 1372 pm = strtoul(q_arg, &end, 16); 1373 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1374 pm = 0; 1375 1376 options->portmask = pm; 1377 if (options->portmask == 0) { 1378 printf("invalid portmask specified\n"); 1379 return -1; 1380 } 1381 1382 return pm; 1383 } 1384 1385 /** Parse number of queues */ 1386 static int 1387 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1388 const char *q_arg) 1389 { 1390 char *end = NULL; 1391 unsigned long n; 1392 1393 /* parse hexadecimal string */ 1394 n = strtoul(q_arg, &end, 10); 1395 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1396 n = 0; 1397 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1398 n = 0; 1399 1400 options->nb_ports_per_lcore = n; 1401 if (options->nb_ports_per_lcore == 0) { 1402 printf("invalid number of ports selected\n"); 1403 return -1; 1404 } 1405 1406 return 0; 1407 } 1408 1409 /** Parse timer period */ 1410 static int 1411 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1412 const char *q_arg) 1413 { 1414 char *end = NULL; 1415 unsigned long n; 1416 1417 /* parse number string */ 1418 n = (unsigned)strtol(q_arg, &end, 10); 1419 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1420 n = 0; 1421 1422 if (n >= MAX_TIMER_PERIOD) { 1423 printf("Warning refresh period specified %lu is greater than " 1424 "max value %lu! using max value", 1425 n, MAX_TIMER_PERIOD); 1426 n = MAX_TIMER_PERIOD; 1427 } 1428 1429 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1430 1431 return 0; 1432 } 1433 1434 /** Generate default options for application */ 1435 static void 1436 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1437 { 1438 options->portmask = 0xffffffff; 1439 options->nb_ports_per_lcore = 1; 1440 options->refresh_period = 10000; 1441 options->single_lcore = 0; 1442 options->sessionless = 0; 1443 1444 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1445 1446 /* Cipher Data */ 1447 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1448 options->cipher_xform.next = NULL; 1449 options->ckey_param = 0; 1450 options->ckey_random_size = -1; 1451 options->cipher_xform.cipher.key.length = 0; 1452 options->cipher_iv_param = 0; 1453 options->cipher_iv_random_size = -1; 1454 options->cipher_iv.length = 0; 1455 1456 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1457 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1458 1459 /* Authentication Data */ 1460 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1461 options->auth_xform.next = NULL; 1462 options->akey_param = 0; 1463 options->akey_random_size = -1; 1464 options->auth_xform.auth.key.length = 0; 1465 options->auth_iv_param = 0; 1466 options->auth_iv_random_size = -1; 1467 options->auth_iv.length = 0; 1468 1469 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1470 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1471 1472 /* AEAD Data */ 1473 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1474 options->aead_xform.next = NULL; 1475 options->aead_key_param = 0; 1476 options->aead_key_random_size = -1; 1477 options->aead_xform.aead.key.length = 0; 1478 options->aead_iv_param = 0; 1479 options->aead_iv_random_size = -1; 1480 options->aead_iv.length = 0; 1481 1482 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1483 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1484 1485 options->aad_param = 0; 1486 options->aad_random_size = -1; 1487 options->aad.length = 0; 1488 1489 options->digest_size = -1; 1490 1491 options->type = CDEV_TYPE_ANY; 1492 options->cryptodev_mask = UINT64_MAX; 1493 1494 options->mac_updating = 1; 1495 } 1496 1497 static void 1498 display_cipher_info(struct l2fwd_crypto_options *options) 1499 { 1500 printf("\n---- Cipher information ---\n"); 1501 printf("Algorithm: %s\n", 1502 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1503 rte_hexdump(stdout, "Cipher key:", 1504 options->cipher_xform.cipher.key.data, 1505 options->cipher_xform.cipher.key.length); 1506 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1507 } 1508 1509 static void 1510 display_auth_info(struct l2fwd_crypto_options *options) 1511 { 1512 printf("\n---- Authentication information ---\n"); 1513 printf("Algorithm: %s\n", 1514 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1515 rte_hexdump(stdout, "Auth key:", 1516 options->auth_xform.auth.key.data, 1517 options->auth_xform.auth.key.length); 1518 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1519 } 1520 1521 static void 1522 display_aead_info(struct l2fwd_crypto_options *options) 1523 { 1524 printf("\n---- AEAD information ---\n"); 1525 printf("Algorithm: %s\n", 1526 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1527 rte_hexdump(stdout, "AEAD key:", 1528 options->aead_xform.aead.key.data, 1529 options->aead_xform.aead.key.length); 1530 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1531 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1532 } 1533 1534 static void 1535 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1536 { 1537 char string_cipher_op[MAX_STR_LEN]; 1538 char string_auth_op[MAX_STR_LEN]; 1539 char string_aead_op[MAX_STR_LEN]; 1540 1541 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1542 strcpy(string_cipher_op, "Encrypt"); 1543 else 1544 strcpy(string_cipher_op, "Decrypt"); 1545 1546 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1547 strcpy(string_auth_op, "Auth generate"); 1548 else 1549 strcpy(string_auth_op, "Auth verify"); 1550 1551 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1552 strcpy(string_aead_op, "Authenticated encryption"); 1553 else 1554 strcpy(string_aead_op, "Authenticated decryption"); 1555 1556 1557 printf("Options:-\nn"); 1558 printf("portmask: %x\n", options->portmask); 1559 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1560 printf("refresh period : %u\n", options->refresh_period); 1561 printf("single lcore mode: %s\n", 1562 options->single_lcore ? "enabled" : "disabled"); 1563 printf("stats_printing: %s\n", 1564 options->refresh_period == 0 ? "disabled" : "enabled"); 1565 1566 printf("sessionless crypto: %s\n", 1567 options->sessionless ? "enabled" : "disabled"); 1568 1569 if (options->ckey_param && (options->ckey_random_size != -1)) 1570 printf("Cipher key already parsed, ignoring size of random key\n"); 1571 1572 if (options->akey_param && (options->akey_random_size != -1)) 1573 printf("Auth key already parsed, ignoring size of random key\n"); 1574 1575 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1576 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1577 1578 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1579 printf("Auth IV already parsed, ignoring size of random IV\n"); 1580 1581 if (options->aad_param && (options->aad_random_size != -1)) 1582 printf("AAD already parsed, ignoring size of random AAD\n"); 1583 1584 printf("\nCrypto chain: "); 1585 switch (options->xform_chain) { 1586 case L2FWD_CRYPTO_AEAD: 1587 printf("Input --> %s --> Output\n", string_aead_op); 1588 display_aead_info(options); 1589 break; 1590 case L2FWD_CRYPTO_CIPHER_HASH: 1591 printf("Input --> %s --> %s --> Output\n", 1592 string_cipher_op, string_auth_op); 1593 display_cipher_info(options); 1594 display_auth_info(options); 1595 break; 1596 case L2FWD_CRYPTO_HASH_CIPHER: 1597 printf("Input --> %s --> %s --> Output\n", 1598 string_auth_op, string_cipher_op); 1599 display_cipher_info(options); 1600 display_auth_info(options); 1601 break; 1602 case L2FWD_CRYPTO_HASH_ONLY: 1603 printf("Input --> %s --> Output\n", string_auth_op); 1604 display_auth_info(options); 1605 break; 1606 case L2FWD_CRYPTO_CIPHER_ONLY: 1607 printf("Input --> %s --> Output\n", string_cipher_op); 1608 display_cipher_info(options); 1609 break; 1610 } 1611 } 1612 1613 /* Parse the argument given in the command line of the application */ 1614 static int 1615 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1616 int argc, char **argv) 1617 { 1618 int opt, retval, option_index; 1619 char **argvopt = argv, *prgname = argv[0]; 1620 1621 static struct option lgopts[] = { 1622 { "sessionless", no_argument, 0, 0 }, 1623 1624 { "cdev_type", required_argument, 0, 0 }, 1625 { "chain", required_argument, 0, 0 }, 1626 1627 { "cipher_algo", required_argument, 0, 0 }, 1628 { "cipher_op", required_argument, 0, 0 }, 1629 { "cipher_key", required_argument, 0, 0 }, 1630 { "cipher_key_random_size", required_argument, 0, 0 }, 1631 { "cipher_iv", required_argument, 0, 0 }, 1632 { "cipher_iv_random_size", required_argument, 0, 0 }, 1633 1634 { "auth_algo", required_argument, 0, 0 }, 1635 { "auth_op", required_argument, 0, 0 }, 1636 { "auth_key", required_argument, 0, 0 }, 1637 { "auth_key_random_size", required_argument, 0, 0 }, 1638 { "auth_iv", required_argument, 0, 0 }, 1639 { "auth_iv_random_size", required_argument, 0, 0 }, 1640 1641 { "aead_algo", required_argument, 0, 0 }, 1642 { "aead_op", required_argument, 0, 0 }, 1643 { "aead_key", required_argument, 0, 0 }, 1644 { "aead_key_random_size", required_argument, 0, 0 }, 1645 { "aead_iv", required_argument, 0, 0 }, 1646 { "aead_iv_random_size", required_argument, 0, 0 }, 1647 1648 { "aad", required_argument, 0, 0 }, 1649 { "aad_random_size", required_argument, 0, 0 }, 1650 1651 { "digest_size", required_argument, 0, 0 }, 1652 1653 { "sessionless", no_argument, 0, 0 }, 1654 { "cryptodev_mask", required_argument, 0, 0}, 1655 1656 { "mac-updating", no_argument, 0, 0}, 1657 { "no-mac-updating", no_argument, 0, 0}, 1658 1659 { NULL, 0, 0, 0 } 1660 }; 1661 1662 l2fwd_crypto_default_options(options); 1663 1664 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1665 &option_index)) != EOF) { 1666 switch (opt) { 1667 /* long options */ 1668 case 0: 1669 retval = l2fwd_crypto_parse_args_long_options(options, 1670 lgopts, option_index); 1671 if (retval < 0) { 1672 l2fwd_crypto_usage(prgname); 1673 return -1; 1674 } 1675 break; 1676 1677 /* portmask */ 1678 case 'p': 1679 retval = l2fwd_crypto_parse_portmask(options, optarg); 1680 if (retval < 0) { 1681 l2fwd_crypto_usage(prgname); 1682 return -1; 1683 } 1684 break; 1685 1686 /* nqueue */ 1687 case 'q': 1688 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1689 if (retval < 0) { 1690 l2fwd_crypto_usage(prgname); 1691 return -1; 1692 } 1693 break; 1694 1695 /* single */ 1696 case 's': 1697 options->single_lcore = 1; 1698 1699 break; 1700 1701 /* timer period */ 1702 case 'T': 1703 retval = l2fwd_crypto_parse_timer_period(options, 1704 optarg); 1705 if (retval < 0) { 1706 l2fwd_crypto_usage(prgname); 1707 return -1; 1708 } 1709 break; 1710 1711 default: 1712 l2fwd_crypto_usage(prgname); 1713 return -1; 1714 } 1715 } 1716 1717 1718 if (optind >= 0) 1719 argv[optind-1] = prgname; 1720 1721 retval = optind-1; 1722 optind = 1; /* reset getopt lib */ 1723 1724 return retval; 1725 } 1726 1727 /* Check the link status of all ports in up to 9s, and print them finally */ 1728 static void 1729 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1730 { 1731 #define CHECK_INTERVAL 100 /* 100ms */ 1732 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1733 uint8_t portid, count, all_ports_up, print_flag = 0; 1734 struct rte_eth_link link; 1735 1736 printf("\nChecking link status"); 1737 fflush(stdout); 1738 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1739 all_ports_up = 1; 1740 for (portid = 0; portid < port_num; portid++) { 1741 if ((port_mask & (1 << portid)) == 0) 1742 continue; 1743 memset(&link, 0, sizeof(link)); 1744 rte_eth_link_get_nowait(portid, &link); 1745 /* print link status if flag set */ 1746 if (print_flag == 1) { 1747 if (link.link_status) 1748 printf("Port %d Link Up - speed %u " 1749 "Mbps - %s\n", (uint8_t)portid, 1750 (unsigned)link.link_speed, 1751 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1752 ("full-duplex") : ("half-duplex\n")); 1753 else 1754 printf("Port %d Link Down\n", 1755 (uint8_t)portid); 1756 continue; 1757 } 1758 /* clear all_ports_up flag if any link down */ 1759 if (link.link_status == ETH_LINK_DOWN) { 1760 all_ports_up = 0; 1761 break; 1762 } 1763 } 1764 /* after finally printing all link status, get out */ 1765 if (print_flag == 1) 1766 break; 1767 1768 if (all_ports_up == 0) { 1769 printf("."); 1770 fflush(stdout); 1771 rte_delay_ms(CHECK_INTERVAL); 1772 } 1773 1774 /* set the print_flag if all ports up or timeout */ 1775 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1776 print_flag = 1; 1777 printf("done\n"); 1778 } 1779 } 1780 } 1781 1782 /* Check if device has to be HW/SW or any */ 1783 static int 1784 check_type(const struct l2fwd_crypto_options *options, 1785 const struct rte_cryptodev_info *dev_info) 1786 { 1787 if (options->type == CDEV_TYPE_HW && 1788 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1789 return 0; 1790 if (options->type == CDEV_TYPE_SW && 1791 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1792 return 0; 1793 if (options->type == CDEV_TYPE_ANY) 1794 return 0; 1795 1796 return -1; 1797 } 1798 1799 static const struct rte_cryptodev_capabilities * 1800 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1801 const struct rte_cryptodev_info *dev_info, 1802 uint8_t cdev_id) 1803 { 1804 unsigned int i = 0; 1805 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1806 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1807 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1808 options->cipher_xform.cipher.algo; 1809 1810 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1811 cap_cipher_algo = cap->sym.cipher.algo; 1812 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1813 if (cap_cipher_algo == opt_cipher_algo) { 1814 if (check_type(options, dev_info) == 0) 1815 break; 1816 } 1817 } 1818 cap = &dev_info->capabilities[++i]; 1819 } 1820 1821 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1822 printf("Algorithm %s not supported by cryptodev %u" 1823 " or device not of preferred type (%s)\n", 1824 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1825 cdev_id, 1826 options->string_type); 1827 return NULL; 1828 } 1829 1830 return cap; 1831 } 1832 1833 static const struct rte_cryptodev_capabilities * 1834 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1835 const struct rte_cryptodev_info *dev_info, 1836 uint8_t cdev_id) 1837 { 1838 unsigned int i = 0; 1839 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1840 enum rte_crypto_auth_algorithm cap_auth_algo; 1841 enum rte_crypto_auth_algorithm opt_auth_algo = 1842 options->auth_xform.auth.algo; 1843 1844 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1845 cap_auth_algo = cap->sym.auth.algo; 1846 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1847 if (cap_auth_algo == opt_auth_algo) { 1848 if (check_type(options, dev_info) == 0) 1849 break; 1850 } 1851 } 1852 cap = &dev_info->capabilities[++i]; 1853 } 1854 1855 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1856 printf("Algorithm %s not supported by cryptodev %u" 1857 " or device not of preferred type (%s)\n", 1858 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1859 cdev_id, 1860 options->string_type); 1861 return NULL; 1862 } 1863 1864 return cap; 1865 } 1866 1867 static const struct rte_cryptodev_capabilities * 1868 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1869 const struct rte_cryptodev_info *dev_info, 1870 uint8_t cdev_id) 1871 { 1872 unsigned int i = 0; 1873 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1874 enum rte_crypto_aead_algorithm cap_aead_algo; 1875 enum rte_crypto_aead_algorithm opt_aead_algo = 1876 options->aead_xform.aead.algo; 1877 1878 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1879 cap_aead_algo = cap->sym.aead.algo; 1880 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1881 if (cap_aead_algo == opt_aead_algo) { 1882 if (check_type(options, dev_info) == 0) 1883 break; 1884 } 1885 } 1886 cap = &dev_info->capabilities[++i]; 1887 } 1888 1889 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1890 printf("Algorithm %s not supported by cryptodev %u" 1891 " or device not of preferred type (%s)\n", 1892 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1893 cdev_id, 1894 options->string_type); 1895 return NULL; 1896 } 1897 1898 return cap; 1899 } 1900 1901 /* Check if the device is enabled by cryptodev_mask */ 1902 static int 1903 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1904 uint8_t cdev_id) 1905 { 1906 if (options->cryptodev_mask & (1 << cdev_id)) 1907 return 0; 1908 1909 return -1; 1910 } 1911 1912 static inline int 1913 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1914 uint16_t increment) 1915 { 1916 uint16_t supp_size; 1917 1918 /* Single value */ 1919 if (increment == 0) { 1920 if (length == min) 1921 return 0; 1922 else 1923 return -1; 1924 } 1925 1926 /* Range of values */ 1927 for (supp_size = min; supp_size <= max; supp_size += increment) { 1928 if (length == supp_size) 1929 return 0; 1930 } 1931 1932 return -1; 1933 } 1934 1935 static int 1936 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1937 unsigned int iv_param, int iv_random_size, 1938 uint16_t *iv_length) 1939 { 1940 /* 1941 * Check if length of provided IV is supported 1942 * by the algorithm chosen. 1943 */ 1944 if (iv_param) { 1945 if (check_supported_size(*iv_length, 1946 iv_range_size->min, 1947 iv_range_size->max, 1948 iv_range_size->increment) 1949 != 0) { 1950 printf("Unsupported IV length\n"); 1951 return -1; 1952 } 1953 /* 1954 * Check if length of IV to be randomly generated 1955 * is supported by the algorithm chosen. 1956 */ 1957 } else if (iv_random_size != -1) { 1958 if (check_supported_size(iv_random_size, 1959 iv_range_size->min, 1960 iv_range_size->max, 1961 iv_range_size->increment) 1962 != 0) { 1963 printf("Unsupported IV length\n"); 1964 return -1; 1965 } 1966 *iv_length = iv_random_size; 1967 /* No size provided, use minimum size. */ 1968 } else 1969 *iv_length = iv_range_size->min; 1970 1971 return 0; 1972 } 1973 1974 static int 1975 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1976 uint8_t *enabled_cdevs) 1977 { 1978 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1979 const struct rte_cryptodev_capabilities *cap; 1980 unsigned int sess_sz, max_sess_sz = 0; 1981 int retval; 1982 1983 cdev_count = rte_cryptodev_count(); 1984 if (cdev_count == 0) { 1985 printf("No crypto devices available\n"); 1986 return -1; 1987 } 1988 1989 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1990 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 1991 if (sess_sz > max_sess_sz) 1992 max_sess_sz = sess_sz; 1993 } 1994 1995 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1996 cdev_id++) { 1997 struct rte_cryptodev_qp_conf qp_conf; 1998 struct rte_cryptodev_info dev_info; 1999 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); 2000 2001 struct rte_cryptodev_config conf = { 2002 .nb_queue_pairs = 1, 2003 .socket_id = socket_id, 2004 }; 2005 2006 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2007 continue; 2008 2009 rte_cryptodev_info_get(cdev_id, &dev_info); 2010 2011 if (session_pool_socket[socket_id] == NULL) { 2012 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2013 struct rte_mempool *sess_mp; 2014 2015 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2016 "sess_mp_%u", socket_id); 2017 2018 /* 2019 * Create enough objects for session headers and 2020 * device private data 2021 */ 2022 sess_mp = rte_mempool_create(mp_name, 2023 MAX_SESSIONS * 2, 2024 max_sess_sz, 2025 SESSION_POOL_CACHE_SIZE, 2026 0, NULL, NULL, NULL, 2027 NULL, socket_id, 2028 0); 2029 2030 if (sess_mp == NULL) { 2031 printf("Cannot create session pool on socket %d\n", 2032 socket_id); 2033 return -ENOMEM; 2034 } 2035 2036 printf("Allocated session pool on socket %d\n", socket_id); 2037 session_pool_socket[socket_id] = sess_mp; 2038 } 2039 2040 /* Set AEAD parameters */ 2041 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2042 /* Check if device supports AEAD algo */ 2043 cap = check_device_support_aead_algo(options, &dev_info, 2044 cdev_id); 2045 if (cap == NULL) 2046 continue; 2047 2048 options->block_size = cap->sym.aead.block_size; 2049 2050 check_iv_param(&cap->sym.aead.iv_size, 2051 options->aead_iv_param, 2052 options->aead_iv_random_size, 2053 &options->aead_iv.length); 2054 2055 /* 2056 * Check if length of provided AEAD key is supported 2057 * by the algorithm chosen. 2058 */ 2059 if (options->aead_key_param) { 2060 if (check_supported_size( 2061 options->aead_xform.aead.key.length, 2062 cap->sym.aead.key_size.min, 2063 cap->sym.aead.key_size.max, 2064 cap->sym.aead.key_size.increment) 2065 != 0) { 2066 printf("Unsupported aead key length\n"); 2067 return -1; 2068 } 2069 /* 2070 * Check if length of the aead key to be randomly generated 2071 * is supported by the algorithm chosen. 2072 */ 2073 } else if (options->aead_key_random_size != -1) { 2074 if (check_supported_size(options->aead_key_random_size, 2075 cap->sym.aead.key_size.min, 2076 cap->sym.aead.key_size.max, 2077 cap->sym.aead.key_size.increment) 2078 != 0) { 2079 printf("Unsupported aead key length\n"); 2080 return -1; 2081 } 2082 options->aead_xform.aead.key.length = 2083 options->aead_key_random_size; 2084 /* No size provided, use minimum size. */ 2085 } else 2086 options->aead_xform.aead.key.length = 2087 cap->sym.aead.key_size.min; 2088 2089 if (!options->aead_key_param) 2090 generate_random_key( 2091 options->aead_xform.aead.key.data, 2092 options->aead_xform.aead.key.length); 2093 2094 /* 2095 * Check if length of provided AAD is supported 2096 * by the algorithm chosen. 2097 */ 2098 if (options->aad_param) { 2099 if (check_supported_size(options->aad.length, 2100 cap->sym.aead.aad_size.min, 2101 cap->sym.aead.aad_size.max, 2102 cap->sym.aead.aad_size.increment) 2103 != 0) { 2104 printf("Unsupported AAD length\n"); 2105 return -1; 2106 } 2107 /* 2108 * Check if length of AAD to be randomly generated 2109 * is supported by the algorithm chosen. 2110 */ 2111 } else if (options->aad_random_size != -1) { 2112 if (check_supported_size(options->aad_random_size, 2113 cap->sym.aead.aad_size.min, 2114 cap->sym.aead.aad_size.max, 2115 cap->sym.aead.aad_size.increment) 2116 != 0) { 2117 printf("Unsupported AAD length\n"); 2118 return -1; 2119 } 2120 options->aad.length = options->aad_random_size; 2121 /* No size provided, use minimum size. */ 2122 } else 2123 options->aad.length = cap->sym.auth.aad_size.min; 2124 2125 options->aead_xform.aead.aad_length = 2126 options->aad.length; 2127 2128 /* Check if digest size is supported by the algorithm. */ 2129 if (options->digest_size != -1) { 2130 if (check_supported_size(options->digest_size, 2131 cap->sym.aead.digest_size.min, 2132 cap->sym.aead.digest_size.max, 2133 cap->sym.aead.digest_size.increment) 2134 != 0) { 2135 printf("Unsupported digest length\n"); 2136 return -1; 2137 } 2138 options->aead_xform.aead.digest_length = 2139 options->digest_size; 2140 /* No size provided, use minimum size. */ 2141 } else 2142 options->aead_xform.aead.digest_length = 2143 cap->sym.aead.digest_size.min; 2144 } 2145 2146 /* Set cipher parameters */ 2147 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2148 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2149 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2150 /* Check if device supports cipher algo */ 2151 cap = check_device_support_cipher_algo(options, &dev_info, 2152 cdev_id); 2153 if (cap == NULL) 2154 continue; 2155 2156 options->block_size = cap->sym.cipher.block_size; 2157 2158 check_iv_param(&cap->sym.cipher.iv_size, 2159 options->cipher_iv_param, 2160 options->cipher_iv_random_size, 2161 &options->cipher_iv.length); 2162 2163 /* 2164 * Check if length of provided cipher key is supported 2165 * by the algorithm chosen. 2166 */ 2167 if (options->ckey_param) { 2168 if (check_supported_size( 2169 options->cipher_xform.cipher.key.length, 2170 cap->sym.cipher.key_size.min, 2171 cap->sym.cipher.key_size.max, 2172 cap->sym.cipher.key_size.increment) 2173 != 0) { 2174 printf("Unsupported cipher key length\n"); 2175 return -1; 2176 } 2177 /* 2178 * Check if length of the cipher key to be randomly generated 2179 * is supported by the algorithm chosen. 2180 */ 2181 } else if (options->ckey_random_size != -1) { 2182 if (check_supported_size(options->ckey_random_size, 2183 cap->sym.cipher.key_size.min, 2184 cap->sym.cipher.key_size.max, 2185 cap->sym.cipher.key_size.increment) 2186 != 0) { 2187 printf("Unsupported cipher key length\n"); 2188 return -1; 2189 } 2190 options->cipher_xform.cipher.key.length = 2191 options->ckey_random_size; 2192 /* No size provided, use minimum size. */ 2193 } else 2194 options->cipher_xform.cipher.key.length = 2195 cap->sym.cipher.key_size.min; 2196 2197 if (!options->ckey_param) 2198 generate_random_key( 2199 options->cipher_xform.cipher.key.data, 2200 options->cipher_xform.cipher.key.length); 2201 2202 } 2203 2204 /* Set auth parameters */ 2205 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2206 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2207 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2208 /* Check if device supports auth algo */ 2209 cap = check_device_support_auth_algo(options, &dev_info, 2210 cdev_id); 2211 if (cap == NULL) 2212 continue; 2213 2214 check_iv_param(&cap->sym.auth.iv_size, 2215 options->auth_iv_param, 2216 options->auth_iv_random_size, 2217 &options->auth_iv.length); 2218 /* 2219 * Check if length of provided auth key is supported 2220 * by the algorithm chosen. 2221 */ 2222 if (options->akey_param) { 2223 if (check_supported_size( 2224 options->auth_xform.auth.key.length, 2225 cap->sym.auth.key_size.min, 2226 cap->sym.auth.key_size.max, 2227 cap->sym.auth.key_size.increment) 2228 != 0) { 2229 printf("Unsupported auth key length\n"); 2230 return -1; 2231 } 2232 /* 2233 * Check if length of the auth key to be randomly generated 2234 * is supported by the algorithm chosen. 2235 */ 2236 } else if (options->akey_random_size != -1) { 2237 if (check_supported_size(options->akey_random_size, 2238 cap->sym.auth.key_size.min, 2239 cap->sym.auth.key_size.max, 2240 cap->sym.auth.key_size.increment) 2241 != 0) { 2242 printf("Unsupported auth key length\n"); 2243 return -1; 2244 } 2245 options->auth_xform.auth.key.length = 2246 options->akey_random_size; 2247 /* No size provided, use minimum size. */ 2248 } else 2249 options->auth_xform.auth.key.length = 2250 cap->sym.auth.key_size.min; 2251 2252 if (!options->akey_param) 2253 generate_random_key( 2254 options->auth_xform.auth.key.data, 2255 options->auth_xform.auth.key.length); 2256 2257 /* Check if digest size is supported by the algorithm. */ 2258 if (options->digest_size != -1) { 2259 if (check_supported_size(options->digest_size, 2260 cap->sym.auth.digest_size.min, 2261 cap->sym.auth.digest_size.max, 2262 cap->sym.auth.digest_size.increment) 2263 != 0) { 2264 printf("Unsupported digest length\n"); 2265 return -1; 2266 } 2267 options->auth_xform.auth.digest_length = 2268 options->digest_size; 2269 /* No size provided, use minimum size. */ 2270 } else 2271 options->auth_xform.auth.digest_length = 2272 cap->sym.auth.digest_size.min; 2273 } 2274 2275 retval = rte_cryptodev_configure(cdev_id, &conf); 2276 if (retval < 0) { 2277 printf("Failed to configure cryptodev %u", cdev_id); 2278 return -1; 2279 } 2280 2281 qp_conf.nb_descriptors = 2048; 2282 2283 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2284 socket_id, session_pool_socket[socket_id]); 2285 if (retval < 0) { 2286 printf("Failed to setup queue pair %u on cryptodev %u", 2287 0, cdev_id); 2288 return -1; 2289 } 2290 2291 retval = rte_cryptodev_start(cdev_id); 2292 if (retval < 0) { 2293 printf("Failed to start device %u: error %d\n", 2294 cdev_id, retval); 2295 return -1; 2296 } 2297 2298 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2299 2300 enabled_cdevs[cdev_id] = 1; 2301 enabled_cdev_count++; 2302 } 2303 2304 return enabled_cdev_count; 2305 } 2306 2307 static int 2308 initialize_ports(struct l2fwd_crypto_options *options) 2309 { 2310 uint8_t last_portid, portid; 2311 unsigned enabled_portcount = 0; 2312 unsigned nb_ports = rte_eth_dev_count(); 2313 2314 if (nb_ports == 0) { 2315 printf("No Ethernet ports - bye\n"); 2316 return -1; 2317 } 2318 2319 /* Reset l2fwd_dst_ports */ 2320 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2321 l2fwd_dst_ports[portid] = 0; 2322 2323 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2324 int retval; 2325 2326 /* Skip ports that are not enabled */ 2327 if ((options->portmask & (1 << portid)) == 0) 2328 continue; 2329 2330 /* init port */ 2331 printf("Initializing port %u... ", (unsigned) portid); 2332 fflush(stdout); 2333 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2334 if (retval < 0) { 2335 printf("Cannot configure device: err=%d, port=%u\n", 2336 retval, (unsigned) portid); 2337 return -1; 2338 } 2339 2340 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2341 &nb_txd); 2342 if (retval < 0) { 2343 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2344 retval, (unsigned) portid); 2345 return -1; 2346 } 2347 2348 /* init one RX queue */ 2349 fflush(stdout); 2350 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2351 rte_eth_dev_socket_id(portid), 2352 NULL, l2fwd_pktmbuf_pool); 2353 if (retval < 0) { 2354 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2355 retval, (unsigned) portid); 2356 return -1; 2357 } 2358 2359 /* init one TX queue on each port */ 2360 fflush(stdout); 2361 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2362 rte_eth_dev_socket_id(portid), 2363 NULL); 2364 if (retval < 0) { 2365 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2366 retval, (unsigned) portid); 2367 2368 return -1; 2369 } 2370 2371 /* Start device */ 2372 retval = rte_eth_dev_start(portid); 2373 if (retval < 0) { 2374 printf("rte_eth_dev_start:err=%d, port=%u\n", 2375 retval, (unsigned) portid); 2376 return -1; 2377 } 2378 2379 rte_eth_promiscuous_enable(portid); 2380 2381 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2382 2383 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2384 (unsigned) portid, 2385 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2386 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2387 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2388 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2389 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2390 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2391 2392 /* initialize port stats */ 2393 memset(&port_statistics, 0, sizeof(port_statistics)); 2394 2395 /* Setup port forwarding table */ 2396 if (enabled_portcount % 2) { 2397 l2fwd_dst_ports[portid] = last_portid; 2398 l2fwd_dst_ports[last_portid] = portid; 2399 } else { 2400 last_portid = portid; 2401 } 2402 2403 l2fwd_enabled_port_mask |= (1 << portid); 2404 enabled_portcount++; 2405 } 2406 2407 if (enabled_portcount == 1) { 2408 l2fwd_dst_ports[last_portid] = last_portid; 2409 } else if (enabled_portcount % 2) { 2410 printf("odd number of ports in portmask- bye\n"); 2411 return -1; 2412 } 2413 2414 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2415 2416 return enabled_portcount; 2417 } 2418 2419 static void 2420 reserve_key_memory(struct l2fwd_crypto_options *options) 2421 { 2422 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2423 MAX_KEY_SIZE, 0); 2424 if (options->cipher_xform.cipher.key.data == NULL) 2425 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2426 2427 options->auth_xform.auth.key.data = rte_malloc("auth key", 2428 MAX_KEY_SIZE, 0); 2429 if (options->auth_xform.auth.key.data == NULL) 2430 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2431 2432 options->aead_xform.aead.key.data = rte_malloc("aead key", 2433 MAX_KEY_SIZE, 0); 2434 if (options->aead_xform.aead.key.data == NULL) 2435 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2436 2437 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2438 if (options->cipher_iv.data == NULL) 2439 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2440 2441 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2442 if (options->auth_iv.data == NULL) 2443 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2444 2445 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2446 if (options->aead_iv.data == NULL) 2447 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2448 2449 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2450 if (options->aad.data == NULL) 2451 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2452 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2453 } 2454 2455 int 2456 main(int argc, char **argv) 2457 { 2458 struct lcore_queue_conf *qconf; 2459 struct l2fwd_crypto_options options; 2460 2461 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2462 unsigned lcore_id, rx_lcore_id; 2463 int ret, enabled_cdevcount, enabled_portcount; 2464 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2465 2466 /* init EAL */ 2467 ret = rte_eal_init(argc, argv); 2468 if (ret < 0) 2469 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2470 argc -= ret; 2471 argv += ret; 2472 2473 /* reserve memory for Cipher/Auth key and IV */ 2474 reserve_key_memory(&options); 2475 2476 /* parse application arguments (after the EAL ones) */ 2477 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2478 if (ret < 0) 2479 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2480 2481 printf("MAC updating %s\n", 2482 options.mac_updating ? "enabled" : "disabled"); 2483 2484 /* create the mbuf pool */ 2485 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2486 sizeof(struct rte_crypto_op), 2487 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2488 if (l2fwd_pktmbuf_pool == NULL) 2489 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2490 2491 /* create crypto op pool */ 2492 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2493 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2494 rte_socket_id()); 2495 if (l2fwd_crypto_op_pool == NULL) 2496 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2497 2498 /* Enable Ethernet ports */ 2499 enabled_portcount = initialize_ports(&options); 2500 if (enabled_portcount < 1) 2501 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2502 2503 nb_ports = rte_eth_dev_count(); 2504 /* Initialize the port/queue configuration of each logical core */ 2505 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2506 portid < nb_ports; portid++) { 2507 2508 /* skip ports that are not enabled */ 2509 if ((options.portmask & (1 << portid)) == 0) 2510 continue; 2511 2512 if (options.single_lcore && qconf == NULL) { 2513 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2514 rx_lcore_id++; 2515 if (rx_lcore_id >= RTE_MAX_LCORE) 2516 rte_exit(EXIT_FAILURE, 2517 "Not enough cores\n"); 2518 } 2519 } else if (!options.single_lcore) { 2520 /* get the lcore_id for this port */ 2521 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2522 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2523 options.nb_ports_per_lcore) { 2524 rx_lcore_id++; 2525 if (rx_lcore_id >= RTE_MAX_LCORE) 2526 rte_exit(EXIT_FAILURE, 2527 "Not enough cores\n"); 2528 } 2529 } 2530 2531 /* Assigned a new logical core in the loop above. */ 2532 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2533 qconf = &lcore_queue_conf[rx_lcore_id]; 2534 2535 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2536 qconf->nb_rx_ports++; 2537 2538 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2539 } 2540 2541 /* Enable Crypto devices */ 2542 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2543 enabled_cdevs); 2544 if (enabled_cdevcount < 0) 2545 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2546 2547 if (enabled_cdevcount < enabled_portcount) 2548 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2549 "has to be more or equal to number of ports (%d)\n", 2550 enabled_cdevcount, enabled_portcount); 2551 2552 nb_cryptodevs = rte_cryptodev_count(); 2553 2554 /* Initialize the port/cryptodev configuration of each logical core */ 2555 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2556 cdev_id < nb_cryptodevs && enabled_cdevcount; 2557 cdev_id++) { 2558 /* Crypto op not supported by crypto device */ 2559 if (!enabled_cdevs[cdev_id]) 2560 continue; 2561 2562 if (options.single_lcore && qconf == NULL) { 2563 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2564 rx_lcore_id++; 2565 if (rx_lcore_id >= RTE_MAX_LCORE) 2566 rte_exit(EXIT_FAILURE, 2567 "Not enough cores\n"); 2568 } 2569 } else if (!options.single_lcore) { 2570 /* get the lcore_id for this port */ 2571 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2572 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2573 options.nb_ports_per_lcore) { 2574 rx_lcore_id++; 2575 if (rx_lcore_id >= RTE_MAX_LCORE) 2576 rte_exit(EXIT_FAILURE, 2577 "Not enough cores\n"); 2578 } 2579 } 2580 2581 /* Assigned a new logical core in the loop above. */ 2582 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2583 qconf = &lcore_queue_conf[rx_lcore_id]; 2584 2585 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2586 qconf->nb_crypto_devs++; 2587 2588 enabled_cdevcount--; 2589 2590 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2591 (unsigned)cdev_id); 2592 } 2593 2594 /* launch per-lcore init on every lcore */ 2595 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2596 CALL_MASTER); 2597 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2598 if (rte_eal_wait_lcore(lcore_id) < 0) 2599 return -1; 2600 } 2601 2602 return 0; 2603 } 2604