1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 phys_addr_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 197 unsigned int mac_updating; 198 }; 199 200 /** l2fwd crypto lcore params */ 201 struct l2fwd_crypto_params { 202 uint8_t dev_id; 203 uint8_t qp_id; 204 205 unsigned digest_length; 206 unsigned block_size; 207 208 struct l2fwd_iv cipher_iv; 209 struct l2fwd_iv auth_iv; 210 struct l2fwd_iv aead_iv; 211 struct l2fwd_key aad; 212 struct rte_cryptodev_sym_session *session; 213 214 uint8_t do_cipher; 215 uint8_t do_hash; 216 uint8_t do_aead; 217 uint8_t hash_verify; 218 219 enum rte_crypto_cipher_algorithm cipher_algo; 220 enum rte_crypto_auth_algorithm auth_algo; 221 enum rte_crypto_aead_algorithm aead_algo; 222 }; 223 224 /** lcore configuration */ 225 struct lcore_queue_conf { 226 unsigned nb_rx_ports; 227 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 228 229 unsigned nb_crypto_devs; 230 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 231 232 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 233 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 234 } __rte_cache_aligned; 235 236 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 237 238 static const struct rte_eth_conf port_conf = { 239 .rxmode = { 240 .mq_mode = ETH_MQ_RX_NONE, 241 .max_rx_pkt_len = ETHER_MAX_LEN, 242 .split_hdr_size = 0, 243 .header_split = 0, /**< Header Split disabled */ 244 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 245 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 246 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 247 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 248 }, 249 .txmode = { 250 .mq_mode = ETH_MQ_TX_NONE, 251 }, 252 }; 253 254 struct rte_mempool *l2fwd_pktmbuf_pool; 255 struct rte_mempool *l2fwd_crypto_op_pool; 256 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 257 258 /* Per-port statistics struct */ 259 struct l2fwd_port_statistics { 260 uint64_t tx; 261 uint64_t rx; 262 263 uint64_t crypto_enqueued; 264 uint64_t crypto_dequeued; 265 266 uint64_t dropped; 267 } __rte_cache_aligned; 268 269 struct l2fwd_crypto_statistics { 270 uint64_t enqueued; 271 uint64_t dequeued; 272 273 uint64_t errors; 274 } __rte_cache_aligned; 275 276 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 277 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 278 279 /* A tsc-based timer responsible for triggering statistics printout */ 280 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 281 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 282 283 /* default period is 10 seconds */ 284 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 285 286 /* Print out statistics on packets dropped */ 287 static void 288 print_stats(void) 289 { 290 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 291 uint64_t total_packets_enqueued, total_packets_dequeued, 292 total_packets_errors; 293 unsigned portid; 294 uint64_t cdevid; 295 296 total_packets_dropped = 0; 297 total_packets_tx = 0; 298 total_packets_rx = 0; 299 total_packets_enqueued = 0; 300 total_packets_dequeued = 0; 301 total_packets_errors = 0; 302 303 const char clr[] = { 27, '[', '2', 'J', '\0' }; 304 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 305 306 /* Clear screen and move to top left */ 307 printf("%s%s", clr, topLeft); 308 309 printf("\nPort statistics ===================================="); 310 311 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 312 /* skip disabled ports */ 313 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 314 continue; 315 printf("\nStatistics for port %u ------------------------------" 316 "\nPackets sent: %32"PRIu64 317 "\nPackets received: %28"PRIu64 318 "\nPackets dropped: %29"PRIu64, 319 portid, 320 port_statistics[portid].tx, 321 port_statistics[portid].rx, 322 port_statistics[portid].dropped); 323 324 total_packets_dropped += port_statistics[portid].dropped; 325 total_packets_tx += port_statistics[portid].tx; 326 total_packets_rx += port_statistics[portid].rx; 327 } 328 printf("\nCrypto statistics =================================="); 329 330 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 331 /* skip disabled ports */ 332 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 333 continue; 334 printf("\nStatistics for cryptodev %"PRIu64 335 " -------------------------" 336 "\nPackets enqueued: %28"PRIu64 337 "\nPackets dequeued: %28"PRIu64 338 "\nPackets errors: %30"PRIu64, 339 cdevid, 340 crypto_statistics[cdevid].enqueued, 341 crypto_statistics[cdevid].dequeued, 342 crypto_statistics[cdevid].errors); 343 344 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 345 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 346 total_packets_errors += crypto_statistics[cdevid].errors; 347 } 348 printf("\nAggregate statistics ===============================" 349 "\nTotal packets received: %22"PRIu64 350 "\nTotal packets enqueued: %22"PRIu64 351 "\nTotal packets dequeued: %22"PRIu64 352 "\nTotal packets sent: %26"PRIu64 353 "\nTotal packets dropped: %23"PRIu64 354 "\nTotal packets crypto errors: %17"PRIu64, 355 total_packets_rx, 356 total_packets_enqueued, 357 total_packets_dequeued, 358 total_packets_tx, 359 total_packets_dropped, 360 total_packets_errors); 361 printf("\n====================================================\n"); 362 } 363 364 static int 365 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 366 struct l2fwd_crypto_params *cparams) 367 { 368 struct rte_crypto_op **op_buffer; 369 unsigned ret; 370 371 op_buffer = (struct rte_crypto_op **) 372 qconf->op_buf[cparams->dev_id].buffer; 373 374 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 375 cparams->qp_id, op_buffer, (uint16_t) n); 376 377 crypto_statistics[cparams->dev_id].enqueued += ret; 378 if (unlikely(ret < n)) { 379 crypto_statistics[cparams->dev_id].errors += (n - ret); 380 do { 381 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 382 rte_crypto_op_free(op_buffer[ret]); 383 } while (++ret < n); 384 } 385 386 return 0; 387 } 388 389 static int 390 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 391 struct l2fwd_crypto_params *cparams) 392 { 393 unsigned lcore_id, len; 394 struct lcore_queue_conf *qconf; 395 396 lcore_id = rte_lcore_id(); 397 398 qconf = &lcore_queue_conf[lcore_id]; 399 len = qconf->op_buf[cparams->dev_id].len; 400 qconf->op_buf[cparams->dev_id].buffer[len] = op; 401 len++; 402 403 /* enough ops to be sent */ 404 if (len == MAX_PKT_BURST) { 405 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 406 len = 0; 407 } 408 409 qconf->op_buf[cparams->dev_id].len = len; 410 return 0; 411 } 412 413 static int 414 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 415 struct rte_crypto_op *op, 416 struct l2fwd_crypto_params *cparams) 417 { 418 struct ether_hdr *eth_hdr; 419 struct ipv4_hdr *ip_hdr; 420 421 uint32_t ipdata_offset, data_len; 422 uint32_t pad_len = 0; 423 char *padding; 424 425 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 426 427 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 428 return -1; 429 430 ipdata_offset = sizeof(struct ether_hdr); 431 432 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 433 ipdata_offset); 434 435 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 436 * IPV4_IHL_MULTIPLIER; 437 438 439 /* Zero pad data to be crypto'd so it is block aligned */ 440 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 441 442 if (cparams->do_hash && cparams->hash_verify) 443 data_len -= cparams->digest_length; 444 445 if (cparams->do_cipher) { 446 /* 447 * Following algorithms are block cipher algorithms, 448 * and might need padding 449 */ 450 switch (cparams->cipher_algo) { 451 case RTE_CRYPTO_CIPHER_AES_CBC: 452 case RTE_CRYPTO_CIPHER_AES_ECB: 453 case RTE_CRYPTO_CIPHER_DES_CBC: 454 case RTE_CRYPTO_CIPHER_3DES_CBC: 455 case RTE_CRYPTO_CIPHER_3DES_ECB: 456 if (data_len % cparams->block_size) 457 pad_len = cparams->block_size - 458 (data_len % cparams->block_size); 459 break; 460 default: 461 pad_len = 0; 462 } 463 464 if (pad_len) { 465 padding = rte_pktmbuf_append(m, pad_len); 466 if (unlikely(!padding)) 467 return -1; 468 469 data_len += pad_len; 470 memset(padding, 0, pad_len); 471 } 472 } 473 474 /* Set crypto operation data parameters */ 475 rte_crypto_op_attach_sym_session(op, cparams->session); 476 477 if (cparams->do_hash) { 478 if (cparams->auth_iv.length) { 479 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 480 uint8_t *, 481 IV_OFFSET + 482 cparams->cipher_iv.length); 483 /* 484 * Copy IV at the end of the crypto operation, 485 * after the cipher IV, if added 486 */ 487 rte_memcpy(iv_ptr, cparams->auth_iv.data, 488 cparams->auth_iv.length); 489 } 490 if (!cparams->hash_verify) { 491 /* Append space for digest to end of packet */ 492 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 493 cparams->digest_length); 494 } else { 495 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 496 uint8_t *) + ipdata_offset + data_len; 497 } 498 499 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 500 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 501 502 /* For wireless algorithms, offset/length must be in bits */ 503 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 504 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 505 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 506 op->sym->auth.data.offset = ipdata_offset << 3; 507 op->sym->auth.data.length = data_len << 3; 508 } else { 509 op->sym->auth.data.offset = ipdata_offset; 510 op->sym->auth.data.length = data_len; 511 } 512 } 513 514 if (cparams->do_cipher) { 515 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 516 IV_OFFSET); 517 /* Copy IV at the end of the crypto operation */ 518 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 519 cparams->cipher_iv.length); 520 521 /* For wireless algorithms, offset/length must be in bits */ 522 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 523 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 524 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 525 op->sym->cipher.data.offset = ipdata_offset << 3; 526 op->sym->cipher.data.length = data_len << 3; 527 } else { 528 op->sym->cipher.data.offset = ipdata_offset; 529 op->sym->cipher.data.length = data_len; 530 } 531 } 532 533 if (cparams->do_aead) { 534 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 535 IV_OFFSET); 536 /* Copy IV at the end of the crypto operation */ 537 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 538 539 op->sym->aead.data.offset = ipdata_offset; 540 op->sym->aead.data.length = data_len; 541 542 if (!cparams->hash_verify) { 543 /* Append space for digest to end of packet */ 544 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 545 cparams->digest_length); 546 } else { 547 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 548 uint8_t *) + ipdata_offset + data_len; 549 } 550 551 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 552 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 553 554 if (cparams->aad.length) { 555 op->sym->aead.aad.data = cparams->aad.data; 556 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 557 } 558 } 559 560 op->sym->m_src = m; 561 562 return l2fwd_crypto_enqueue(op, cparams); 563 } 564 565 566 /* Send the burst of packets on an output interface */ 567 static int 568 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 569 uint8_t port) 570 { 571 struct rte_mbuf **pkt_buffer; 572 unsigned ret; 573 574 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 575 576 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 577 port_statistics[port].tx += ret; 578 if (unlikely(ret < n)) { 579 port_statistics[port].dropped += (n - ret); 580 do { 581 rte_pktmbuf_free(pkt_buffer[ret]); 582 } while (++ret < n); 583 } 584 585 return 0; 586 } 587 588 /* Enqueue packets for TX and prepare them to be sent */ 589 static int 590 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 591 { 592 unsigned lcore_id, len; 593 struct lcore_queue_conf *qconf; 594 595 lcore_id = rte_lcore_id(); 596 597 qconf = &lcore_queue_conf[lcore_id]; 598 len = qconf->pkt_buf[port].len; 599 qconf->pkt_buf[port].buffer[len] = m; 600 len++; 601 602 /* enough pkts to be sent */ 603 if (unlikely(len == MAX_PKT_BURST)) { 604 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 605 len = 0; 606 } 607 608 qconf->pkt_buf[port].len = len; 609 return 0; 610 } 611 612 static void 613 l2fwd_mac_updating(struct rte_mbuf *m, unsigned int dest_portid) 614 { 615 struct ether_hdr *eth; 616 void *tmp; 617 618 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 619 620 /* 02:00:00:00:00:xx */ 621 tmp = ð->d_addr.addr_bytes[0]; 622 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 623 624 /* src addr */ 625 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 626 } 627 628 static void 629 l2fwd_simple_forward(struct rte_mbuf *m, unsigned int portid, 630 struct l2fwd_crypto_options *options) 631 { 632 unsigned int dst_port; 633 634 dst_port = l2fwd_dst_ports[portid]; 635 636 if (options->mac_updating) 637 l2fwd_mac_updating(m, dst_port); 638 639 l2fwd_send_packet(m, (uint8_t) dst_port); 640 } 641 642 /** Generate random key */ 643 static void 644 generate_random_key(uint8_t *key, unsigned length) 645 { 646 int fd; 647 int ret; 648 649 fd = open("/dev/urandom", O_RDONLY); 650 if (fd < 0) 651 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 652 653 ret = read(fd, key, length); 654 close(fd); 655 656 if (ret != (signed)length) 657 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 658 } 659 660 static struct rte_cryptodev_sym_session * 661 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 662 { 663 struct rte_crypto_sym_xform *first_xform; 664 struct rte_cryptodev_sym_session *session; 665 int retval = rte_cryptodev_socket_id(cdev_id); 666 667 if (retval < 0) 668 return NULL; 669 670 uint8_t socket_id = (uint8_t) retval; 671 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 672 673 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 674 first_xform = &options->aead_xform; 675 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 676 first_xform = &options->cipher_xform; 677 first_xform->next = &options->auth_xform; 678 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 679 first_xform = &options->auth_xform; 680 first_xform->next = &options->cipher_xform; 681 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 682 first_xform = &options->cipher_xform; 683 } else { 684 first_xform = &options->auth_xform; 685 } 686 687 session = rte_cryptodev_sym_session_create(sess_mp); 688 689 if (session == NULL) 690 return NULL; 691 692 if (rte_cryptodev_sym_session_init(cdev_id, session, 693 first_xform, sess_mp) < 0) 694 return NULL; 695 696 return session; 697 } 698 699 static void 700 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 701 702 /* main processing loop */ 703 static void 704 l2fwd_main_loop(struct l2fwd_crypto_options *options) 705 { 706 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 707 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 708 709 unsigned lcore_id = rte_lcore_id(); 710 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 711 unsigned i, j, portid, nb_rx, len; 712 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 713 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 714 US_PER_S * BURST_TX_DRAIN_US; 715 struct l2fwd_crypto_params *cparams; 716 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 717 struct rte_cryptodev_sym_session *session; 718 719 if (qconf->nb_rx_ports == 0) { 720 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 721 return; 722 } 723 724 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 725 726 for (i = 0; i < qconf->nb_rx_ports; i++) { 727 728 portid = qconf->rx_port_list[i]; 729 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 730 portid); 731 } 732 733 for (i = 0; i < qconf->nb_crypto_devs; i++) { 734 port_cparams[i].do_cipher = 0; 735 port_cparams[i].do_hash = 0; 736 port_cparams[i].do_aead = 0; 737 738 switch (options->xform_chain) { 739 case L2FWD_CRYPTO_AEAD: 740 port_cparams[i].do_aead = 1; 741 break; 742 case L2FWD_CRYPTO_CIPHER_HASH: 743 case L2FWD_CRYPTO_HASH_CIPHER: 744 port_cparams[i].do_cipher = 1; 745 port_cparams[i].do_hash = 1; 746 break; 747 case L2FWD_CRYPTO_HASH_ONLY: 748 port_cparams[i].do_hash = 1; 749 break; 750 case L2FWD_CRYPTO_CIPHER_ONLY: 751 port_cparams[i].do_cipher = 1; 752 break; 753 } 754 755 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 756 port_cparams[i].qp_id = 0; 757 758 port_cparams[i].block_size = options->block_size; 759 760 if (port_cparams[i].do_hash) { 761 port_cparams[i].auth_iv.data = options->auth_iv.data; 762 port_cparams[i].auth_iv.length = options->auth_iv.length; 763 if (!options->auth_iv_param) 764 generate_random_key(port_cparams[i].auth_iv.data, 765 port_cparams[i].auth_iv.length); 766 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 767 port_cparams[i].hash_verify = 1; 768 else 769 port_cparams[i].hash_verify = 0; 770 771 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 772 port_cparams[i].digest_length = 773 options->auth_xform.auth.digest_length; 774 /* Set IV parameters */ 775 if (options->auth_iv.length) { 776 options->auth_xform.auth.iv.offset = 777 IV_OFFSET + options->cipher_iv.length; 778 options->auth_xform.auth.iv.length = 779 options->auth_iv.length; 780 } 781 } 782 783 if (port_cparams[i].do_aead) { 784 port_cparams[i].aead_iv.data = options->aead_iv.data; 785 port_cparams[i].aead_iv.length = options->aead_iv.length; 786 if (!options->aead_iv_param) 787 generate_random_key(port_cparams[i].aead_iv.data, 788 port_cparams[i].aead_iv.length); 789 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 790 port_cparams[i].digest_length = 791 options->aead_xform.aead.digest_length; 792 if (options->aead_xform.aead.aad_length) { 793 port_cparams[i].aad.data = options->aad.data; 794 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 795 port_cparams[i].aad.length = options->aad.length; 796 if (!options->aad_param) 797 generate_random_key(port_cparams[i].aad.data, 798 port_cparams[i].aad.length); 799 800 } else 801 port_cparams[i].aad.length = 0; 802 803 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 804 port_cparams[i].hash_verify = 1; 805 else 806 port_cparams[i].hash_verify = 0; 807 808 /* Set IV parameters */ 809 options->aead_xform.aead.iv.offset = IV_OFFSET; 810 options->aead_xform.aead.iv.length = options->aead_iv.length; 811 } 812 813 if (port_cparams[i].do_cipher) { 814 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 815 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 816 if (!options->cipher_iv_param) 817 generate_random_key(port_cparams[i].cipher_iv.data, 818 port_cparams[i].cipher_iv.length); 819 820 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 821 /* Set IV parameters */ 822 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 823 options->cipher_xform.cipher.iv.length = 824 options->cipher_iv.length; 825 } 826 827 session = initialize_crypto_session(options, 828 port_cparams[i].dev_id); 829 if (session == NULL) 830 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 831 832 port_cparams[i].session = session; 833 834 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 835 port_cparams[i].dev_id); 836 } 837 838 l2fwd_crypto_options_print(options); 839 840 /* 841 * Initialize previous tsc timestamp before the loop, 842 * to avoid showing the port statistics immediately, 843 * so user can see the crypto information. 844 */ 845 prev_tsc = rte_rdtsc(); 846 while (1) { 847 848 cur_tsc = rte_rdtsc(); 849 850 /* 851 * Crypto device/TX burst queue drain 852 */ 853 diff_tsc = cur_tsc - prev_tsc; 854 if (unlikely(diff_tsc > drain_tsc)) { 855 /* Enqueue all crypto ops remaining in buffers */ 856 for (i = 0; i < qconf->nb_crypto_devs; i++) { 857 cparams = &port_cparams[i]; 858 len = qconf->op_buf[cparams->dev_id].len; 859 l2fwd_crypto_send_burst(qconf, len, cparams); 860 qconf->op_buf[cparams->dev_id].len = 0; 861 } 862 /* Transmit all packets remaining in buffers */ 863 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 864 if (qconf->pkt_buf[portid].len == 0) 865 continue; 866 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 867 qconf->pkt_buf[portid].len, 868 (uint8_t) portid); 869 qconf->pkt_buf[portid].len = 0; 870 } 871 872 /* if timer is enabled */ 873 if (timer_period > 0) { 874 875 /* advance the timer */ 876 timer_tsc += diff_tsc; 877 878 /* if timer has reached its timeout */ 879 if (unlikely(timer_tsc >= 880 (uint64_t)timer_period)) { 881 882 /* do this only on master core */ 883 if (lcore_id == rte_get_master_lcore() 884 && options->refresh_period) { 885 print_stats(); 886 timer_tsc = 0; 887 } 888 } 889 } 890 891 prev_tsc = cur_tsc; 892 } 893 894 /* 895 * Read packet from RX queues 896 */ 897 for (i = 0; i < qconf->nb_rx_ports; i++) { 898 portid = qconf->rx_port_list[i]; 899 900 cparams = &port_cparams[i]; 901 902 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 903 pkts_burst, MAX_PKT_BURST); 904 905 port_statistics[portid].rx += nb_rx; 906 907 if (nb_rx) { 908 /* 909 * If we can't allocate a crypto_ops, then drop 910 * the rest of the burst and dequeue and 911 * process the packets to free offload structs 912 */ 913 if (rte_crypto_op_bulk_alloc( 914 l2fwd_crypto_op_pool, 915 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 916 ops_burst, nb_rx) != 917 nb_rx) { 918 for (j = 0; j < nb_rx; j++) 919 rte_pktmbuf_free(pkts_burst[j]); 920 921 nb_rx = 0; 922 } 923 924 /* Enqueue packets from Crypto device*/ 925 for (j = 0; j < nb_rx; j++) { 926 m = pkts_burst[j]; 927 928 l2fwd_simple_crypto_enqueue(m, 929 ops_burst[j], cparams); 930 } 931 } 932 933 /* Dequeue packets from Crypto device */ 934 do { 935 nb_rx = rte_cryptodev_dequeue_burst( 936 cparams->dev_id, cparams->qp_id, 937 ops_burst, MAX_PKT_BURST); 938 939 crypto_statistics[cparams->dev_id].dequeued += 940 nb_rx; 941 942 /* Forward crypto'd packets */ 943 for (j = 0; j < nb_rx; j++) { 944 m = ops_burst[j]->sym->m_src; 945 946 rte_crypto_op_free(ops_burst[j]); 947 l2fwd_simple_forward(m, portid, 948 options); 949 } 950 } while (nb_rx == MAX_PKT_BURST); 951 } 952 } 953 } 954 955 static int 956 l2fwd_launch_one_lcore(void *arg) 957 { 958 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 959 return 0; 960 } 961 962 /* Display command line arguments usage */ 963 static void 964 l2fwd_crypto_usage(const char *prgname) 965 { 966 printf("%s [EAL options] --\n" 967 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 968 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 969 " -s manage all ports from single lcore\n" 970 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 971 " (0 to disable, 10 default, 86400 maximum)\n" 972 973 " --cdev_type HW / SW / ANY\n" 974 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 975 " HASH_ONLY / AEAD\n" 976 977 " --cipher_algo ALGO\n" 978 " --cipher_op ENCRYPT / DECRYPT\n" 979 " --cipher_key KEY (bytes separated with \":\")\n" 980 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 981 " --cipher_iv IV (bytes separated with \":\")\n" 982 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 983 984 " --auth_algo ALGO\n" 985 " --auth_op GENERATE / VERIFY\n" 986 " --auth_key KEY (bytes separated with \":\")\n" 987 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 988 " --auth_iv IV (bytes separated with \":\")\n" 989 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 990 991 " --aead_algo ALGO\n" 992 " --aead_op ENCRYPT / DECRYPT\n" 993 " --aead_key KEY (bytes separated with \":\")\n" 994 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 995 " --aead_iv IV (bytes separated with \":\")\n" 996 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 997 " --aad AAD (bytes separated with \":\")\n" 998 " --aad_random_size SIZE: size of AAD when generated randomly\n" 999 1000 " --digest_size SIZE: size of digest to be generated/verified\n" 1001 1002 " --sessionless\n" 1003 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 1004 1005 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1006 " When enabled:\n" 1007 " - The source MAC address is replaced by the TX port MAC address\n" 1008 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1009 prgname); 1010 } 1011 1012 /** Parse crypto device type command line argument */ 1013 static int 1014 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1015 { 1016 if (strcmp("HW", optarg) == 0) { 1017 *type = CDEV_TYPE_HW; 1018 return 0; 1019 } else if (strcmp("SW", optarg) == 0) { 1020 *type = CDEV_TYPE_SW; 1021 return 0; 1022 } else if (strcmp("ANY", optarg) == 0) { 1023 *type = CDEV_TYPE_ANY; 1024 return 0; 1025 } 1026 1027 return -1; 1028 } 1029 1030 /** Parse crypto chain xform command line argument */ 1031 static int 1032 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1033 { 1034 if (strcmp("CIPHER_HASH", optarg) == 0) { 1035 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1036 return 0; 1037 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1038 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1039 return 0; 1040 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1041 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1042 return 0; 1043 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1044 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1045 return 0; 1046 } else if (strcmp("AEAD", optarg) == 0) { 1047 options->xform_chain = L2FWD_CRYPTO_AEAD; 1048 return 0; 1049 } 1050 1051 return -1; 1052 } 1053 1054 /** Parse crypto cipher algo option command line argument */ 1055 static int 1056 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1057 { 1058 1059 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1060 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1061 "not supported!\n"); 1062 return -1; 1063 } 1064 1065 return 0; 1066 } 1067 1068 /** Parse crypto cipher operation command line argument */ 1069 static int 1070 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1071 { 1072 if (strcmp("ENCRYPT", optarg) == 0) { 1073 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1074 return 0; 1075 } else if (strcmp("DECRYPT", optarg) == 0) { 1076 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1077 return 0; 1078 } 1079 1080 printf("Cipher operation not supported!\n"); 1081 return -1; 1082 } 1083 1084 /** Parse crypto key command line argument */ 1085 static int 1086 parse_key(uint8_t *data, char *input_arg) 1087 { 1088 unsigned byte_count; 1089 char *token; 1090 1091 for (byte_count = 0, token = strtok(input_arg, ":"); 1092 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1093 token = strtok(NULL, ":")) { 1094 1095 int number = (int)strtol(token, NULL, 16); 1096 1097 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1098 return -1; 1099 1100 data[byte_count++] = (uint8_t)number; 1101 } 1102 1103 return byte_count; 1104 } 1105 1106 /** Parse size param*/ 1107 static int 1108 parse_size(int *size, const char *q_arg) 1109 { 1110 char *end = NULL; 1111 unsigned long n; 1112 1113 /* parse hexadecimal string */ 1114 n = strtoul(q_arg, &end, 10); 1115 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1116 n = 0; 1117 1118 if (n == 0) { 1119 printf("invalid size\n"); 1120 return -1; 1121 } 1122 1123 *size = n; 1124 return 0; 1125 } 1126 1127 /** Parse crypto cipher operation command line argument */ 1128 static int 1129 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1130 { 1131 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1132 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1133 "not supported!\n"); 1134 return -1; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int 1141 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1142 { 1143 if (strcmp("VERIFY", optarg) == 0) { 1144 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1145 return 0; 1146 } else if (strcmp("GENERATE", optarg) == 0) { 1147 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1148 return 0; 1149 } 1150 1151 printf("Authentication operation specified not supported!\n"); 1152 return -1; 1153 } 1154 1155 static int 1156 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1157 { 1158 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1159 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1160 "not supported!\n"); 1161 return -1; 1162 } 1163 1164 return 0; 1165 } 1166 1167 static int 1168 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1169 { 1170 if (strcmp("ENCRYPT", optarg) == 0) { 1171 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1172 return 0; 1173 } else if (strcmp("DECRYPT", optarg) == 0) { 1174 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1175 return 0; 1176 } 1177 1178 printf("AEAD operation specified not supported!\n"); 1179 return -1; 1180 } 1181 static int 1182 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1183 const char *q_arg) 1184 { 1185 char *end = NULL; 1186 uint64_t pm; 1187 1188 /* parse hexadecimal string */ 1189 pm = strtoul(q_arg, &end, 16); 1190 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1191 pm = 0; 1192 1193 options->cryptodev_mask = pm; 1194 if (options->cryptodev_mask == 0) { 1195 printf("invalid cryptodev_mask specified\n"); 1196 return -1; 1197 } 1198 1199 return 0; 1200 } 1201 1202 /** Parse long options */ 1203 static int 1204 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1205 struct option *lgopts, int option_index) 1206 { 1207 int retval; 1208 1209 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1210 retval = parse_cryptodev_type(&options->type, optarg); 1211 if (retval == 0) 1212 snprintf(options->string_type, MAX_STR_LEN, 1213 "%s", optarg); 1214 return retval; 1215 } 1216 1217 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1218 return parse_crypto_opt_chain(options, optarg); 1219 1220 /* Cipher options */ 1221 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1222 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1223 optarg); 1224 1225 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1226 return parse_cipher_op(&options->cipher_xform.cipher.op, 1227 optarg); 1228 1229 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1230 options->ckey_param = 1; 1231 options->cipher_xform.cipher.key.length = 1232 parse_key(options->cipher_xform.cipher.key.data, optarg); 1233 if (options->cipher_xform.cipher.key.length > 0) 1234 return 0; 1235 else 1236 return -1; 1237 } 1238 1239 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1240 return parse_size(&options->ckey_random_size, optarg); 1241 1242 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1243 options->cipher_iv_param = 1; 1244 options->cipher_iv.length = 1245 parse_key(options->cipher_iv.data, optarg); 1246 if (options->cipher_iv.length > 0) 1247 return 0; 1248 else 1249 return -1; 1250 } 1251 1252 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1253 return parse_size(&options->cipher_iv_random_size, optarg); 1254 1255 /* Authentication options */ 1256 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1257 return parse_auth_algo(&options->auth_xform.auth.algo, 1258 optarg); 1259 } 1260 1261 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1262 return parse_auth_op(&options->auth_xform.auth.op, 1263 optarg); 1264 1265 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1266 options->akey_param = 1; 1267 options->auth_xform.auth.key.length = 1268 parse_key(options->auth_xform.auth.key.data, optarg); 1269 if (options->auth_xform.auth.key.length > 0) 1270 return 0; 1271 else 1272 return -1; 1273 } 1274 1275 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1276 return parse_size(&options->akey_random_size, optarg); 1277 } 1278 1279 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1280 options->auth_iv_param = 1; 1281 options->auth_iv.length = 1282 parse_key(options->auth_iv.data, optarg); 1283 if (options->auth_iv.length > 0) 1284 return 0; 1285 else 1286 return -1; 1287 } 1288 1289 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1290 return parse_size(&options->auth_iv_random_size, optarg); 1291 1292 /* AEAD options */ 1293 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1294 return parse_aead_algo(&options->aead_xform.aead.algo, 1295 optarg); 1296 } 1297 1298 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1299 return parse_aead_op(&options->aead_xform.aead.op, 1300 optarg); 1301 1302 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1303 options->aead_key_param = 1; 1304 options->aead_xform.aead.key.length = 1305 parse_key(options->aead_xform.aead.key.data, optarg); 1306 if (options->aead_xform.aead.key.length > 0) 1307 return 0; 1308 else 1309 return -1; 1310 } 1311 1312 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1313 return parse_size(&options->aead_key_random_size, optarg); 1314 1315 1316 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1317 options->aead_iv_param = 1; 1318 options->aead_iv.length = 1319 parse_key(options->aead_iv.data, optarg); 1320 if (options->aead_iv.length > 0) 1321 return 0; 1322 else 1323 return -1; 1324 } 1325 1326 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1327 return parse_size(&options->aead_iv_random_size, optarg); 1328 1329 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1330 options->aad_param = 1; 1331 options->aad.length = 1332 parse_key(options->aad.data, optarg); 1333 if (options->aad.length > 0) 1334 return 0; 1335 else 1336 return -1; 1337 } 1338 1339 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1340 return parse_size(&options->aad_random_size, optarg); 1341 } 1342 1343 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1344 return parse_size(&options->digest_size, optarg); 1345 } 1346 1347 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1348 options->sessionless = 1; 1349 return 0; 1350 } 1351 1352 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1353 return parse_cryptodev_mask(options, optarg); 1354 1355 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1356 options->mac_updating = 1; 1357 return 0; 1358 } 1359 1360 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1361 options->mac_updating = 0; 1362 return 0; 1363 } 1364 1365 return -1; 1366 } 1367 1368 /** Parse port mask */ 1369 static int 1370 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1371 const char *q_arg) 1372 { 1373 char *end = NULL; 1374 unsigned long pm; 1375 1376 /* parse hexadecimal string */ 1377 pm = strtoul(q_arg, &end, 16); 1378 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1379 pm = 0; 1380 1381 options->portmask = pm; 1382 if (options->portmask == 0) { 1383 printf("invalid portmask specified\n"); 1384 return -1; 1385 } 1386 1387 return pm; 1388 } 1389 1390 /** Parse number of queues */ 1391 static int 1392 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1393 const char *q_arg) 1394 { 1395 char *end = NULL; 1396 unsigned long n; 1397 1398 /* parse hexadecimal string */ 1399 n = strtoul(q_arg, &end, 10); 1400 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1401 n = 0; 1402 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1403 n = 0; 1404 1405 options->nb_ports_per_lcore = n; 1406 if (options->nb_ports_per_lcore == 0) { 1407 printf("invalid number of ports selected\n"); 1408 return -1; 1409 } 1410 1411 return 0; 1412 } 1413 1414 /** Parse timer period */ 1415 static int 1416 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1417 const char *q_arg) 1418 { 1419 char *end = NULL; 1420 unsigned long n; 1421 1422 /* parse number string */ 1423 n = (unsigned)strtol(q_arg, &end, 10); 1424 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1425 n = 0; 1426 1427 if (n >= MAX_TIMER_PERIOD) { 1428 printf("Warning refresh period specified %lu is greater than " 1429 "max value %lu! using max value", 1430 n, MAX_TIMER_PERIOD); 1431 n = MAX_TIMER_PERIOD; 1432 } 1433 1434 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1435 1436 return 0; 1437 } 1438 1439 /** Generate default options for application */ 1440 static void 1441 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1442 { 1443 options->portmask = 0xffffffff; 1444 options->nb_ports_per_lcore = 1; 1445 options->refresh_period = 10000; 1446 options->single_lcore = 0; 1447 options->sessionless = 0; 1448 1449 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1450 1451 /* Cipher Data */ 1452 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1453 options->cipher_xform.next = NULL; 1454 options->ckey_param = 0; 1455 options->ckey_random_size = -1; 1456 options->cipher_xform.cipher.key.length = 0; 1457 options->cipher_iv_param = 0; 1458 options->cipher_iv_random_size = -1; 1459 options->cipher_iv.length = 0; 1460 1461 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1462 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1463 1464 /* Authentication Data */ 1465 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1466 options->auth_xform.next = NULL; 1467 options->akey_param = 0; 1468 options->akey_random_size = -1; 1469 options->auth_xform.auth.key.length = 0; 1470 options->auth_iv_param = 0; 1471 options->auth_iv_random_size = -1; 1472 options->auth_iv.length = 0; 1473 1474 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1475 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1476 1477 /* AEAD Data */ 1478 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1479 options->aead_xform.next = NULL; 1480 options->aead_key_param = 0; 1481 options->aead_key_random_size = -1; 1482 options->aead_xform.aead.key.length = 0; 1483 options->aead_iv_param = 0; 1484 options->aead_iv_random_size = -1; 1485 options->aead_iv.length = 0; 1486 1487 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1488 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1489 1490 options->aad_param = 0; 1491 options->aad_random_size = -1; 1492 options->aad.length = 0; 1493 1494 options->digest_size = -1; 1495 1496 options->type = CDEV_TYPE_ANY; 1497 options->cryptodev_mask = UINT64_MAX; 1498 1499 options->mac_updating = 1; 1500 } 1501 1502 static void 1503 display_cipher_info(struct l2fwd_crypto_options *options) 1504 { 1505 printf("\n---- Cipher information ---\n"); 1506 printf("Algorithm: %s\n", 1507 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1508 rte_hexdump(stdout, "Cipher key:", 1509 options->cipher_xform.cipher.key.data, 1510 options->cipher_xform.cipher.key.length); 1511 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1512 } 1513 1514 static void 1515 display_auth_info(struct l2fwd_crypto_options *options) 1516 { 1517 printf("\n---- Authentication information ---\n"); 1518 printf("Algorithm: %s\n", 1519 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1520 rte_hexdump(stdout, "Auth key:", 1521 options->auth_xform.auth.key.data, 1522 options->auth_xform.auth.key.length); 1523 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1524 } 1525 1526 static void 1527 display_aead_info(struct l2fwd_crypto_options *options) 1528 { 1529 printf("\n---- AEAD information ---\n"); 1530 printf("Algorithm: %s\n", 1531 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1532 rte_hexdump(stdout, "AEAD key:", 1533 options->aead_xform.aead.key.data, 1534 options->aead_xform.aead.key.length); 1535 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1536 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1537 } 1538 1539 static void 1540 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1541 { 1542 char string_cipher_op[MAX_STR_LEN]; 1543 char string_auth_op[MAX_STR_LEN]; 1544 char string_aead_op[MAX_STR_LEN]; 1545 1546 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1547 strcpy(string_cipher_op, "Encrypt"); 1548 else 1549 strcpy(string_cipher_op, "Decrypt"); 1550 1551 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1552 strcpy(string_auth_op, "Auth generate"); 1553 else 1554 strcpy(string_auth_op, "Auth verify"); 1555 1556 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1557 strcpy(string_aead_op, "Authenticated encryption"); 1558 else 1559 strcpy(string_aead_op, "Authenticated decryption"); 1560 1561 1562 printf("Options:-\nn"); 1563 printf("portmask: %x\n", options->portmask); 1564 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1565 printf("refresh period : %u\n", options->refresh_period); 1566 printf("single lcore mode: %s\n", 1567 options->single_lcore ? "enabled" : "disabled"); 1568 printf("stats_printing: %s\n", 1569 options->refresh_period == 0 ? "disabled" : "enabled"); 1570 1571 printf("sessionless crypto: %s\n", 1572 options->sessionless ? "enabled" : "disabled"); 1573 1574 if (options->ckey_param && (options->ckey_random_size != -1)) 1575 printf("Cipher key already parsed, ignoring size of random key\n"); 1576 1577 if (options->akey_param && (options->akey_random_size != -1)) 1578 printf("Auth key already parsed, ignoring size of random key\n"); 1579 1580 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1581 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1582 1583 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1584 printf("Auth IV already parsed, ignoring size of random IV\n"); 1585 1586 if (options->aad_param && (options->aad_random_size != -1)) 1587 printf("AAD already parsed, ignoring size of random AAD\n"); 1588 1589 printf("\nCrypto chain: "); 1590 switch (options->xform_chain) { 1591 case L2FWD_CRYPTO_AEAD: 1592 printf("Input --> %s --> Output\n", string_aead_op); 1593 display_aead_info(options); 1594 break; 1595 case L2FWD_CRYPTO_CIPHER_HASH: 1596 printf("Input --> %s --> %s --> Output\n", 1597 string_cipher_op, string_auth_op); 1598 display_cipher_info(options); 1599 display_auth_info(options); 1600 break; 1601 case L2FWD_CRYPTO_HASH_CIPHER: 1602 printf("Input --> %s --> %s --> Output\n", 1603 string_auth_op, string_cipher_op); 1604 display_cipher_info(options); 1605 display_auth_info(options); 1606 break; 1607 case L2FWD_CRYPTO_HASH_ONLY: 1608 printf("Input --> %s --> Output\n", string_auth_op); 1609 display_auth_info(options); 1610 break; 1611 case L2FWD_CRYPTO_CIPHER_ONLY: 1612 printf("Input --> %s --> Output\n", string_cipher_op); 1613 display_cipher_info(options); 1614 break; 1615 } 1616 } 1617 1618 /* Parse the argument given in the command line of the application */ 1619 static int 1620 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1621 int argc, char **argv) 1622 { 1623 int opt, retval, option_index; 1624 char **argvopt = argv, *prgname = argv[0]; 1625 1626 static struct option lgopts[] = { 1627 { "sessionless", no_argument, 0, 0 }, 1628 1629 { "cdev_type", required_argument, 0, 0 }, 1630 { "chain", required_argument, 0, 0 }, 1631 1632 { "cipher_algo", required_argument, 0, 0 }, 1633 { "cipher_op", required_argument, 0, 0 }, 1634 { "cipher_key", required_argument, 0, 0 }, 1635 { "cipher_key_random_size", required_argument, 0, 0 }, 1636 { "cipher_iv", required_argument, 0, 0 }, 1637 { "cipher_iv_random_size", required_argument, 0, 0 }, 1638 1639 { "auth_algo", required_argument, 0, 0 }, 1640 { "auth_op", required_argument, 0, 0 }, 1641 { "auth_key", required_argument, 0, 0 }, 1642 { "auth_key_random_size", required_argument, 0, 0 }, 1643 { "auth_iv", required_argument, 0, 0 }, 1644 { "auth_iv_random_size", required_argument, 0, 0 }, 1645 1646 { "aead_algo", required_argument, 0, 0 }, 1647 { "aead_op", required_argument, 0, 0 }, 1648 { "aead_key", required_argument, 0, 0 }, 1649 { "aead_key_random_size", required_argument, 0, 0 }, 1650 { "aead_iv", required_argument, 0, 0 }, 1651 { "aead_iv_random_size", required_argument, 0, 0 }, 1652 1653 { "aad", required_argument, 0, 0 }, 1654 { "aad_random_size", required_argument, 0, 0 }, 1655 1656 { "digest_size", required_argument, 0, 0 }, 1657 1658 { "sessionless", no_argument, 0, 0 }, 1659 { "cryptodev_mask", required_argument, 0, 0}, 1660 1661 { "mac-updating", no_argument, 0, 0}, 1662 { "no-mac-updating", no_argument, 0, 0}, 1663 1664 { NULL, 0, 0, 0 } 1665 }; 1666 1667 l2fwd_crypto_default_options(options); 1668 1669 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1670 &option_index)) != EOF) { 1671 switch (opt) { 1672 /* long options */ 1673 case 0: 1674 retval = l2fwd_crypto_parse_args_long_options(options, 1675 lgopts, option_index); 1676 if (retval < 0) { 1677 l2fwd_crypto_usage(prgname); 1678 return -1; 1679 } 1680 break; 1681 1682 /* portmask */ 1683 case 'p': 1684 retval = l2fwd_crypto_parse_portmask(options, optarg); 1685 if (retval < 0) { 1686 l2fwd_crypto_usage(prgname); 1687 return -1; 1688 } 1689 break; 1690 1691 /* nqueue */ 1692 case 'q': 1693 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1694 if (retval < 0) { 1695 l2fwd_crypto_usage(prgname); 1696 return -1; 1697 } 1698 break; 1699 1700 /* single */ 1701 case 's': 1702 options->single_lcore = 1; 1703 1704 break; 1705 1706 /* timer period */ 1707 case 'T': 1708 retval = l2fwd_crypto_parse_timer_period(options, 1709 optarg); 1710 if (retval < 0) { 1711 l2fwd_crypto_usage(prgname); 1712 return -1; 1713 } 1714 break; 1715 1716 default: 1717 l2fwd_crypto_usage(prgname); 1718 return -1; 1719 } 1720 } 1721 1722 1723 if (optind >= 0) 1724 argv[optind-1] = prgname; 1725 1726 retval = optind-1; 1727 optind = 1; /* reset getopt lib */ 1728 1729 return retval; 1730 } 1731 1732 /* Check the link status of all ports in up to 9s, and print them finally */ 1733 static void 1734 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1735 { 1736 #define CHECK_INTERVAL 100 /* 100ms */ 1737 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1738 uint8_t portid, count, all_ports_up, print_flag = 0; 1739 struct rte_eth_link link; 1740 1741 printf("\nChecking link status"); 1742 fflush(stdout); 1743 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1744 all_ports_up = 1; 1745 for (portid = 0; portid < port_num; portid++) { 1746 if ((port_mask & (1 << portid)) == 0) 1747 continue; 1748 memset(&link, 0, sizeof(link)); 1749 rte_eth_link_get_nowait(portid, &link); 1750 /* print link status if flag set */ 1751 if (print_flag == 1) { 1752 if (link.link_status) 1753 printf("Port %d Link Up - speed %u " 1754 "Mbps - %s\n", (uint8_t)portid, 1755 (unsigned)link.link_speed, 1756 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1757 ("full-duplex") : ("half-duplex\n")); 1758 else 1759 printf("Port %d Link Down\n", 1760 (uint8_t)portid); 1761 continue; 1762 } 1763 /* clear all_ports_up flag if any link down */ 1764 if (link.link_status == ETH_LINK_DOWN) { 1765 all_ports_up = 0; 1766 break; 1767 } 1768 } 1769 /* after finally printing all link status, get out */ 1770 if (print_flag == 1) 1771 break; 1772 1773 if (all_ports_up == 0) { 1774 printf("."); 1775 fflush(stdout); 1776 rte_delay_ms(CHECK_INTERVAL); 1777 } 1778 1779 /* set the print_flag if all ports up or timeout */ 1780 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1781 print_flag = 1; 1782 printf("done\n"); 1783 } 1784 } 1785 } 1786 1787 /* Check if device has to be HW/SW or any */ 1788 static int 1789 check_type(const struct l2fwd_crypto_options *options, 1790 const struct rte_cryptodev_info *dev_info) 1791 { 1792 if (options->type == CDEV_TYPE_HW && 1793 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1794 return 0; 1795 if (options->type == CDEV_TYPE_SW && 1796 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1797 return 0; 1798 if (options->type == CDEV_TYPE_ANY) 1799 return 0; 1800 1801 return -1; 1802 } 1803 1804 static const struct rte_cryptodev_capabilities * 1805 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1806 const struct rte_cryptodev_info *dev_info, 1807 uint8_t cdev_id) 1808 { 1809 unsigned int i = 0; 1810 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1811 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1812 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1813 options->cipher_xform.cipher.algo; 1814 1815 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1816 cap_cipher_algo = cap->sym.cipher.algo; 1817 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1818 if (cap_cipher_algo == opt_cipher_algo) { 1819 if (check_type(options, dev_info) == 0) 1820 break; 1821 } 1822 } 1823 cap = &dev_info->capabilities[++i]; 1824 } 1825 1826 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1827 printf("Algorithm %s not supported by cryptodev %u" 1828 " or device not of preferred type (%s)\n", 1829 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1830 cdev_id, 1831 options->string_type); 1832 return NULL; 1833 } 1834 1835 return cap; 1836 } 1837 1838 static const struct rte_cryptodev_capabilities * 1839 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1840 const struct rte_cryptodev_info *dev_info, 1841 uint8_t cdev_id) 1842 { 1843 unsigned int i = 0; 1844 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1845 enum rte_crypto_auth_algorithm cap_auth_algo; 1846 enum rte_crypto_auth_algorithm opt_auth_algo = 1847 options->auth_xform.auth.algo; 1848 1849 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1850 cap_auth_algo = cap->sym.auth.algo; 1851 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1852 if (cap_auth_algo == opt_auth_algo) { 1853 if (check_type(options, dev_info) == 0) 1854 break; 1855 } 1856 } 1857 cap = &dev_info->capabilities[++i]; 1858 } 1859 1860 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1861 printf("Algorithm %s not supported by cryptodev %u" 1862 " or device not of preferred type (%s)\n", 1863 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1864 cdev_id, 1865 options->string_type); 1866 return NULL; 1867 } 1868 1869 return cap; 1870 } 1871 1872 static const struct rte_cryptodev_capabilities * 1873 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1874 const struct rte_cryptodev_info *dev_info, 1875 uint8_t cdev_id) 1876 { 1877 unsigned int i = 0; 1878 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1879 enum rte_crypto_aead_algorithm cap_aead_algo; 1880 enum rte_crypto_aead_algorithm opt_aead_algo = 1881 options->aead_xform.aead.algo; 1882 1883 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1884 cap_aead_algo = cap->sym.aead.algo; 1885 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1886 if (cap_aead_algo == opt_aead_algo) { 1887 if (check_type(options, dev_info) == 0) 1888 break; 1889 } 1890 } 1891 cap = &dev_info->capabilities[++i]; 1892 } 1893 1894 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1895 printf("Algorithm %s not supported by cryptodev %u" 1896 " or device not of preferred type (%s)\n", 1897 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1898 cdev_id, 1899 options->string_type); 1900 return NULL; 1901 } 1902 1903 return cap; 1904 } 1905 1906 /* Check if the device is enabled by cryptodev_mask */ 1907 static int 1908 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1909 uint8_t cdev_id) 1910 { 1911 if (options->cryptodev_mask & (1 << cdev_id)) 1912 return 0; 1913 1914 return -1; 1915 } 1916 1917 static inline int 1918 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1919 uint16_t increment) 1920 { 1921 uint16_t supp_size; 1922 1923 /* Single value */ 1924 if (increment == 0) { 1925 if (length == min) 1926 return 0; 1927 else 1928 return -1; 1929 } 1930 1931 /* Range of values */ 1932 for (supp_size = min; supp_size <= max; supp_size += increment) { 1933 if (length == supp_size) 1934 return 0; 1935 } 1936 1937 return -1; 1938 } 1939 1940 static int 1941 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1942 unsigned int iv_param, int iv_random_size, 1943 uint16_t *iv_length) 1944 { 1945 /* 1946 * Check if length of provided IV is supported 1947 * by the algorithm chosen. 1948 */ 1949 if (iv_param) { 1950 if (check_supported_size(*iv_length, 1951 iv_range_size->min, 1952 iv_range_size->max, 1953 iv_range_size->increment) 1954 != 0) { 1955 printf("Unsupported IV length\n"); 1956 return -1; 1957 } 1958 /* 1959 * Check if length of IV to be randomly generated 1960 * is supported by the algorithm chosen. 1961 */ 1962 } else if (iv_random_size != -1) { 1963 if (check_supported_size(iv_random_size, 1964 iv_range_size->min, 1965 iv_range_size->max, 1966 iv_range_size->increment) 1967 != 0) { 1968 printf("Unsupported IV length\n"); 1969 return -1; 1970 } 1971 *iv_length = iv_random_size; 1972 /* No size provided, use minimum size. */ 1973 } else 1974 *iv_length = iv_range_size->min; 1975 1976 return 0; 1977 } 1978 1979 static int 1980 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1981 uint8_t *enabled_cdevs) 1982 { 1983 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1984 const struct rte_cryptodev_capabilities *cap; 1985 unsigned int sess_sz, max_sess_sz = 0; 1986 int retval; 1987 1988 cdev_count = rte_cryptodev_count(); 1989 if (cdev_count == 0) { 1990 printf("No crypto devices available\n"); 1991 return -1; 1992 } 1993 1994 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1995 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 1996 if (sess_sz > max_sess_sz) 1997 max_sess_sz = sess_sz; 1998 } 1999 2000 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 2001 cdev_id++) { 2002 struct rte_cryptodev_qp_conf qp_conf; 2003 struct rte_cryptodev_info dev_info; 2004 retval = rte_cryptodev_socket_id(cdev_id); 2005 2006 if (retval < 0) { 2007 printf("Invalid crypto device id used\n"); 2008 return -1; 2009 } 2010 2011 uint8_t socket_id = (uint8_t) retval; 2012 2013 struct rte_cryptodev_config conf = { 2014 .nb_queue_pairs = 1, 2015 .socket_id = socket_id, 2016 }; 2017 2018 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2019 continue; 2020 2021 rte_cryptodev_info_get(cdev_id, &dev_info); 2022 2023 if (session_pool_socket[socket_id] == NULL) { 2024 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2025 struct rte_mempool *sess_mp; 2026 2027 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2028 "sess_mp_%u", socket_id); 2029 2030 /* 2031 * Create enough objects for session headers and 2032 * device private data 2033 */ 2034 sess_mp = rte_mempool_create(mp_name, 2035 MAX_SESSIONS * 2, 2036 max_sess_sz, 2037 SESSION_POOL_CACHE_SIZE, 2038 0, NULL, NULL, NULL, 2039 NULL, socket_id, 2040 0); 2041 2042 if (sess_mp == NULL) { 2043 printf("Cannot create session pool on socket %d\n", 2044 socket_id); 2045 return -ENOMEM; 2046 } 2047 2048 printf("Allocated session pool on socket %d\n", socket_id); 2049 session_pool_socket[socket_id] = sess_mp; 2050 } 2051 2052 /* Set AEAD parameters */ 2053 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2054 /* Check if device supports AEAD algo */ 2055 cap = check_device_support_aead_algo(options, &dev_info, 2056 cdev_id); 2057 if (cap == NULL) 2058 continue; 2059 2060 options->block_size = cap->sym.aead.block_size; 2061 2062 check_iv_param(&cap->sym.aead.iv_size, 2063 options->aead_iv_param, 2064 options->aead_iv_random_size, 2065 &options->aead_iv.length); 2066 2067 /* 2068 * Check if length of provided AEAD key is supported 2069 * by the algorithm chosen. 2070 */ 2071 if (options->aead_key_param) { 2072 if (check_supported_size( 2073 options->aead_xform.aead.key.length, 2074 cap->sym.aead.key_size.min, 2075 cap->sym.aead.key_size.max, 2076 cap->sym.aead.key_size.increment) 2077 != 0) { 2078 printf("Unsupported aead key length\n"); 2079 return -1; 2080 } 2081 /* 2082 * Check if length of the aead key to be randomly generated 2083 * is supported by the algorithm chosen. 2084 */ 2085 } else if (options->aead_key_random_size != -1) { 2086 if (check_supported_size(options->aead_key_random_size, 2087 cap->sym.aead.key_size.min, 2088 cap->sym.aead.key_size.max, 2089 cap->sym.aead.key_size.increment) 2090 != 0) { 2091 printf("Unsupported aead key length\n"); 2092 return -1; 2093 } 2094 options->aead_xform.aead.key.length = 2095 options->aead_key_random_size; 2096 /* No size provided, use minimum size. */ 2097 } else 2098 options->aead_xform.aead.key.length = 2099 cap->sym.aead.key_size.min; 2100 2101 if (!options->aead_key_param) 2102 generate_random_key( 2103 options->aead_xform.aead.key.data, 2104 options->aead_xform.aead.key.length); 2105 2106 /* 2107 * Check if length of provided AAD is supported 2108 * by the algorithm chosen. 2109 */ 2110 if (options->aad_param) { 2111 if (check_supported_size(options->aad.length, 2112 cap->sym.aead.aad_size.min, 2113 cap->sym.aead.aad_size.max, 2114 cap->sym.aead.aad_size.increment) 2115 != 0) { 2116 printf("Unsupported AAD length\n"); 2117 return -1; 2118 } 2119 /* 2120 * Check if length of AAD to be randomly generated 2121 * is supported by the algorithm chosen. 2122 */ 2123 } else if (options->aad_random_size != -1) { 2124 if (check_supported_size(options->aad_random_size, 2125 cap->sym.aead.aad_size.min, 2126 cap->sym.aead.aad_size.max, 2127 cap->sym.aead.aad_size.increment) 2128 != 0) { 2129 printf("Unsupported AAD length\n"); 2130 return -1; 2131 } 2132 options->aad.length = options->aad_random_size; 2133 /* No size provided, use minimum size. */ 2134 } else 2135 options->aad.length = cap->sym.auth.aad_size.min; 2136 2137 options->aead_xform.aead.aad_length = 2138 options->aad.length; 2139 2140 /* Check if digest size is supported by the algorithm. */ 2141 if (options->digest_size != -1) { 2142 if (check_supported_size(options->digest_size, 2143 cap->sym.aead.digest_size.min, 2144 cap->sym.aead.digest_size.max, 2145 cap->sym.aead.digest_size.increment) 2146 != 0) { 2147 printf("Unsupported digest length\n"); 2148 return -1; 2149 } 2150 options->aead_xform.aead.digest_length = 2151 options->digest_size; 2152 /* No size provided, use minimum size. */ 2153 } else 2154 options->aead_xform.aead.digest_length = 2155 cap->sym.aead.digest_size.min; 2156 } 2157 2158 /* Set cipher parameters */ 2159 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2160 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2161 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2162 /* Check if device supports cipher algo */ 2163 cap = check_device_support_cipher_algo(options, &dev_info, 2164 cdev_id); 2165 if (cap == NULL) 2166 continue; 2167 2168 options->block_size = cap->sym.cipher.block_size; 2169 2170 check_iv_param(&cap->sym.cipher.iv_size, 2171 options->cipher_iv_param, 2172 options->cipher_iv_random_size, 2173 &options->cipher_iv.length); 2174 2175 /* 2176 * Check if length of provided cipher key is supported 2177 * by the algorithm chosen. 2178 */ 2179 if (options->ckey_param) { 2180 if (check_supported_size( 2181 options->cipher_xform.cipher.key.length, 2182 cap->sym.cipher.key_size.min, 2183 cap->sym.cipher.key_size.max, 2184 cap->sym.cipher.key_size.increment) 2185 != 0) { 2186 printf("Unsupported cipher key length\n"); 2187 return -1; 2188 } 2189 /* 2190 * Check if length of the cipher key to be randomly generated 2191 * is supported by the algorithm chosen. 2192 */ 2193 } else if (options->ckey_random_size != -1) { 2194 if (check_supported_size(options->ckey_random_size, 2195 cap->sym.cipher.key_size.min, 2196 cap->sym.cipher.key_size.max, 2197 cap->sym.cipher.key_size.increment) 2198 != 0) { 2199 printf("Unsupported cipher key length\n"); 2200 return -1; 2201 } 2202 options->cipher_xform.cipher.key.length = 2203 options->ckey_random_size; 2204 /* No size provided, use minimum size. */ 2205 } else 2206 options->cipher_xform.cipher.key.length = 2207 cap->sym.cipher.key_size.min; 2208 2209 if (!options->ckey_param) 2210 generate_random_key( 2211 options->cipher_xform.cipher.key.data, 2212 options->cipher_xform.cipher.key.length); 2213 2214 } 2215 2216 /* Set auth parameters */ 2217 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2218 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2219 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2220 /* Check if device supports auth algo */ 2221 cap = check_device_support_auth_algo(options, &dev_info, 2222 cdev_id); 2223 if (cap == NULL) 2224 continue; 2225 2226 check_iv_param(&cap->sym.auth.iv_size, 2227 options->auth_iv_param, 2228 options->auth_iv_random_size, 2229 &options->auth_iv.length); 2230 /* 2231 * Check if length of provided auth key is supported 2232 * by the algorithm chosen. 2233 */ 2234 if (options->akey_param) { 2235 if (check_supported_size( 2236 options->auth_xform.auth.key.length, 2237 cap->sym.auth.key_size.min, 2238 cap->sym.auth.key_size.max, 2239 cap->sym.auth.key_size.increment) 2240 != 0) { 2241 printf("Unsupported auth key length\n"); 2242 return -1; 2243 } 2244 /* 2245 * Check if length of the auth key to be randomly generated 2246 * is supported by the algorithm chosen. 2247 */ 2248 } else if (options->akey_random_size != -1) { 2249 if (check_supported_size(options->akey_random_size, 2250 cap->sym.auth.key_size.min, 2251 cap->sym.auth.key_size.max, 2252 cap->sym.auth.key_size.increment) 2253 != 0) { 2254 printf("Unsupported auth key length\n"); 2255 return -1; 2256 } 2257 options->auth_xform.auth.key.length = 2258 options->akey_random_size; 2259 /* No size provided, use minimum size. */ 2260 } else 2261 options->auth_xform.auth.key.length = 2262 cap->sym.auth.key_size.min; 2263 2264 if (!options->akey_param) 2265 generate_random_key( 2266 options->auth_xform.auth.key.data, 2267 options->auth_xform.auth.key.length); 2268 2269 /* Check if digest size is supported by the algorithm. */ 2270 if (options->digest_size != -1) { 2271 if (check_supported_size(options->digest_size, 2272 cap->sym.auth.digest_size.min, 2273 cap->sym.auth.digest_size.max, 2274 cap->sym.auth.digest_size.increment) 2275 != 0) { 2276 printf("Unsupported digest length\n"); 2277 return -1; 2278 } 2279 options->auth_xform.auth.digest_length = 2280 options->digest_size; 2281 /* No size provided, use minimum size. */ 2282 } else 2283 options->auth_xform.auth.digest_length = 2284 cap->sym.auth.digest_size.min; 2285 } 2286 2287 retval = rte_cryptodev_configure(cdev_id, &conf); 2288 if (retval < 0) { 2289 printf("Failed to configure cryptodev %u", cdev_id); 2290 return -1; 2291 } 2292 2293 qp_conf.nb_descriptors = 2048; 2294 2295 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2296 socket_id, session_pool_socket[socket_id]); 2297 if (retval < 0) { 2298 printf("Failed to setup queue pair %u on cryptodev %u", 2299 0, cdev_id); 2300 return -1; 2301 } 2302 2303 retval = rte_cryptodev_start(cdev_id); 2304 if (retval < 0) { 2305 printf("Failed to start device %u: error %d\n", 2306 cdev_id, retval); 2307 return -1; 2308 } 2309 2310 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2311 2312 enabled_cdevs[cdev_id] = 1; 2313 enabled_cdev_count++; 2314 } 2315 2316 return enabled_cdev_count; 2317 } 2318 2319 static int 2320 initialize_ports(struct l2fwd_crypto_options *options) 2321 { 2322 uint8_t last_portid, portid; 2323 unsigned enabled_portcount = 0; 2324 unsigned nb_ports = rte_eth_dev_count(); 2325 2326 if (nb_ports == 0) { 2327 printf("No Ethernet ports - bye\n"); 2328 return -1; 2329 } 2330 2331 /* Reset l2fwd_dst_ports */ 2332 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2333 l2fwd_dst_ports[portid] = 0; 2334 2335 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2336 int retval; 2337 2338 /* Skip ports that are not enabled */ 2339 if ((options->portmask & (1 << portid)) == 0) 2340 continue; 2341 2342 /* init port */ 2343 printf("Initializing port %u... ", (unsigned) portid); 2344 fflush(stdout); 2345 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2346 if (retval < 0) { 2347 printf("Cannot configure device: err=%d, port=%u\n", 2348 retval, (unsigned) portid); 2349 return -1; 2350 } 2351 2352 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2353 &nb_txd); 2354 if (retval < 0) { 2355 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2356 retval, (unsigned) portid); 2357 return -1; 2358 } 2359 2360 /* init one RX queue */ 2361 fflush(stdout); 2362 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2363 rte_eth_dev_socket_id(portid), 2364 NULL, l2fwd_pktmbuf_pool); 2365 if (retval < 0) { 2366 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2367 retval, (unsigned) portid); 2368 return -1; 2369 } 2370 2371 /* init one TX queue on each port */ 2372 fflush(stdout); 2373 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2374 rte_eth_dev_socket_id(portid), 2375 NULL); 2376 if (retval < 0) { 2377 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2378 retval, (unsigned) portid); 2379 2380 return -1; 2381 } 2382 2383 /* Start device */ 2384 retval = rte_eth_dev_start(portid); 2385 if (retval < 0) { 2386 printf("rte_eth_dev_start:err=%d, port=%u\n", 2387 retval, (unsigned) portid); 2388 return -1; 2389 } 2390 2391 rte_eth_promiscuous_enable(portid); 2392 2393 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2394 2395 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2396 (unsigned) portid, 2397 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2398 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2399 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2400 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2401 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2402 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2403 2404 /* initialize port stats */ 2405 memset(&port_statistics, 0, sizeof(port_statistics)); 2406 2407 /* Setup port forwarding table */ 2408 if (enabled_portcount % 2) { 2409 l2fwd_dst_ports[portid] = last_portid; 2410 l2fwd_dst_ports[last_portid] = portid; 2411 } else { 2412 last_portid = portid; 2413 } 2414 2415 l2fwd_enabled_port_mask |= (1 << portid); 2416 enabled_portcount++; 2417 } 2418 2419 if (enabled_portcount == 1) { 2420 l2fwd_dst_ports[last_portid] = last_portid; 2421 } else if (enabled_portcount % 2) { 2422 printf("odd number of ports in portmask- bye\n"); 2423 return -1; 2424 } 2425 2426 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2427 2428 return enabled_portcount; 2429 } 2430 2431 static void 2432 reserve_key_memory(struct l2fwd_crypto_options *options) 2433 { 2434 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2435 MAX_KEY_SIZE, 0); 2436 if (options->cipher_xform.cipher.key.data == NULL) 2437 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2438 2439 options->auth_xform.auth.key.data = rte_malloc("auth key", 2440 MAX_KEY_SIZE, 0); 2441 if (options->auth_xform.auth.key.data == NULL) 2442 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2443 2444 options->aead_xform.aead.key.data = rte_malloc("aead key", 2445 MAX_KEY_SIZE, 0); 2446 if (options->aead_xform.aead.key.data == NULL) 2447 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2448 2449 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2450 if (options->cipher_iv.data == NULL) 2451 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2452 2453 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2454 if (options->auth_iv.data == NULL) 2455 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2456 2457 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2458 if (options->aead_iv.data == NULL) 2459 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2460 2461 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2462 if (options->aad.data == NULL) 2463 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2464 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2465 } 2466 2467 int 2468 main(int argc, char **argv) 2469 { 2470 struct lcore_queue_conf *qconf; 2471 struct l2fwd_crypto_options options; 2472 2473 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2474 unsigned lcore_id, rx_lcore_id; 2475 int ret, enabled_cdevcount, enabled_portcount; 2476 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2477 2478 /* init EAL */ 2479 ret = rte_eal_init(argc, argv); 2480 if (ret < 0) 2481 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2482 argc -= ret; 2483 argv += ret; 2484 2485 /* reserve memory for Cipher/Auth key and IV */ 2486 reserve_key_memory(&options); 2487 2488 /* parse application arguments (after the EAL ones) */ 2489 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2490 if (ret < 0) 2491 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2492 2493 printf("MAC updating %s\n", 2494 options.mac_updating ? "enabled" : "disabled"); 2495 2496 /* create the mbuf pool */ 2497 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2498 sizeof(struct rte_crypto_op), 2499 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2500 if (l2fwd_pktmbuf_pool == NULL) 2501 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2502 2503 /* create crypto op pool */ 2504 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2505 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2506 rte_socket_id()); 2507 if (l2fwd_crypto_op_pool == NULL) 2508 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2509 2510 /* Enable Ethernet ports */ 2511 enabled_portcount = initialize_ports(&options); 2512 if (enabled_portcount < 1) 2513 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2514 2515 nb_ports = rte_eth_dev_count(); 2516 /* Initialize the port/queue configuration of each logical core */ 2517 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2518 portid < nb_ports; portid++) { 2519 2520 /* skip ports that are not enabled */ 2521 if ((options.portmask & (1 << portid)) == 0) 2522 continue; 2523 2524 if (options.single_lcore && qconf == NULL) { 2525 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2526 rx_lcore_id++; 2527 if (rx_lcore_id >= RTE_MAX_LCORE) 2528 rte_exit(EXIT_FAILURE, 2529 "Not enough cores\n"); 2530 } 2531 } else if (!options.single_lcore) { 2532 /* get the lcore_id for this port */ 2533 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2534 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2535 options.nb_ports_per_lcore) { 2536 rx_lcore_id++; 2537 if (rx_lcore_id >= RTE_MAX_LCORE) 2538 rte_exit(EXIT_FAILURE, 2539 "Not enough cores\n"); 2540 } 2541 } 2542 2543 /* Assigned a new logical core in the loop above. */ 2544 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2545 qconf = &lcore_queue_conf[rx_lcore_id]; 2546 2547 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2548 qconf->nb_rx_ports++; 2549 2550 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2551 } 2552 2553 /* Enable Crypto devices */ 2554 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2555 enabled_cdevs); 2556 if (enabled_cdevcount < 0) 2557 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2558 2559 if (enabled_cdevcount < enabled_portcount) 2560 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2561 "has to be more or equal to number of ports (%d)\n", 2562 enabled_cdevcount, enabled_portcount); 2563 2564 nb_cryptodevs = rte_cryptodev_count(); 2565 2566 /* Initialize the port/cryptodev configuration of each logical core */ 2567 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2568 cdev_id < nb_cryptodevs && enabled_cdevcount; 2569 cdev_id++) { 2570 /* Crypto op not supported by crypto device */ 2571 if (!enabled_cdevs[cdev_id]) 2572 continue; 2573 2574 if (options.single_lcore && qconf == NULL) { 2575 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2576 rx_lcore_id++; 2577 if (rx_lcore_id >= RTE_MAX_LCORE) 2578 rte_exit(EXIT_FAILURE, 2579 "Not enough cores\n"); 2580 } 2581 } else if (!options.single_lcore) { 2582 /* get the lcore_id for this port */ 2583 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2584 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2585 options.nb_ports_per_lcore) { 2586 rx_lcore_id++; 2587 if (rx_lcore_id >= RTE_MAX_LCORE) 2588 rte_exit(EXIT_FAILURE, 2589 "Not enough cores\n"); 2590 } 2591 } 2592 2593 /* Assigned a new logical core in the loop above. */ 2594 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2595 qconf = &lcore_queue_conf[rx_lcore_id]; 2596 2597 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2598 qconf->nb_crypto_devs++; 2599 2600 enabled_cdevcount--; 2601 2602 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2603 (unsigned)cdev_id); 2604 } 2605 2606 /* launch per-lcore init on every lcore */ 2607 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2608 CALL_MASTER); 2609 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2610 if (rte_eal_wait_lcore(lcore_id) < 0) 2611 return -1; 2612 } 2613 2614 return 0; 2615 } 2616