xref: /dpdk/examples/l2fwd-crypto/main.c (revision 6dad6e692bd74ea8ade42dd3c8a27264027c659c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_ring.h>
76 #include <rte_hexdump.h>
77 
78 enum cdev_type {
79 	CDEV_TYPE_ANY,
80 	CDEV_TYPE_HW,
81 	CDEV_TYPE_SW
82 };
83 
84 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
85 
86 #define NB_MBUF   8192
87 
88 #define MAX_STR_LEN 32
89 #define MAX_KEY_SIZE 128
90 #define MAX_PKT_BURST 32
91 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
92 
93 /*
94  * Configurable number of RX/TX ring descriptors
95  */
96 #define RTE_TEST_RX_DESC_DEFAULT 128
97 #define RTE_TEST_TX_DESC_DEFAULT 512
98 
99 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
100 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
101 
102 /* ethernet addresses of ports */
103 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
104 
105 /* mask of enabled ports */
106 static uint64_t l2fwd_enabled_port_mask;
107 static uint64_t l2fwd_enabled_crypto_mask;
108 
109 /* list of enabled ports */
110 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
111 
112 
113 struct pkt_buffer {
114 	unsigned len;
115 	struct rte_mbuf *buffer[MAX_PKT_BURST];
116 };
117 
118 struct op_buffer {
119 	unsigned len;
120 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
121 };
122 
123 #define MAX_RX_QUEUE_PER_LCORE 16
124 #define MAX_TX_QUEUE_PER_PORT 16
125 
126 enum l2fwd_crypto_xform_chain {
127 	L2FWD_CRYPTO_CIPHER_HASH,
128 	L2FWD_CRYPTO_HASH_CIPHER,
129 	L2FWD_CRYPTO_CIPHER_ONLY,
130 	L2FWD_CRYPTO_HASH_ONLY
131 };
132 
133 struct l2fwd_key {
134 	uint8_t *data;
135 	uint32_t length;
136 	phys_addr_t phys_addr;
137 };
138 
139 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
140 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
141 
142 /** l2fwd crypto application command line options */
143 struct l2fwd_crypto_options {
144 	unsigned portmask;
145 	unsigned nb_ports_per_lcore;
146 	unsigned refresh_period;
147 	unsigned single_lcore:1;
148 
149 	enum cdev_type type;
150 	unsigned sessionless:1;
151 
152 	enum l2fwd_crypto_xform_chain xform_chain;
153 
154 	struct rte_crypto_sym_xform cipher_xform;
155 	unsigned ckey_param;
156 	int ckey_random_size;
157 
158 	struct l2fwd_key iv;
159 	unsigned iv_param;
160 	int iv_random_size;
161 
162 	struct rte_crypto_sym_xform auth_xform;
163 	uint8_t akey_param;
164 	int akey_random_size;
165 
166 	struct l2fwd_key aad;
167 	unsigned aad_param;
168 	int aad_random_size;
169 
170 	int digest_size;
171 
172 	uint16_t block_size;
173 	char string_type[MAX_STR_LEN];
174 };
175 
176 /** l2fwd crypto lcore params */
177 struct l2fwd_crypto_params {
178 	uint8_t dev_id;
179 	uint8_t qp_id;
180 
181 	unsigned digest_length;
182 	unsigned block_size;
183 
184 	struct l2fwd_key iv;
185 	struct l2fwd_key aad;
186 	struct rte_cryptodev_sym_session *session;
187 
188 	uint8_t do_cipher;
189 	uint8_t do_hash;
190 	uint8_t hash_verify;
191 
192 	enum rte_crypto_cipher_algorithm cipher_algo;
193 	enum rte_crypto_auth_algorithm auth_algo;
194 };
195 
196 /** lcore configuration */
197 struct lcore_queue_conf {
198 	unsigned nb_rx_ports;
199 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
200 
201 	unsigned nb_crypto_devs;
202 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
203 
204 	struct op_buffer op_buf[RTE_MAX_ETHPORTS];
205 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
206 } __rte_cache_aligned;
207 
208 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
209 
210 static const struct rte_eth_conf port_conf = {
211 	.rxmode = {
212 		.mq_mode = ETH_MQ_RX_NONE,
213 		.max_rx_pkt_len = ETHER_MAX_LEN,
214 		.split_hdr_size = 0,
215 		.header_split   = 0, /**< Header Split disabled */
216 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
217 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
218 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
219 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
220 	},
221 	.txmode = {
222 		.mq_mode = ETH_MQ_TX_NONE,
223 	},
224 };
225 
226 struct rte_mempool *l2fwd_pktmbuf_pool;
227 struct rte_mempool *l2fwd_crypto_op_pool;
228 
229 /* Per-port statistics struct */
230 struct l2fwd_port_statistics {
231 	uint64_t tx;
232 	uint64_t rx;
233 
234 	uint64_t crypto_enqueued;
235 	uint64_t crypto_dequeued;
236 
237 	uint64_t dropped;
238 } __rte_cache_aligned;
239 
240 struct l2fwd_crypto_statistics {
241 	uint64_t enqueued;
242 	uint64_t dequeued;
243 
244 	uint64_t errors;
245 } __rte_cache_aligned;
246 
247 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
248 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
249 
250 /* A tsc-based timer responsible for triggering statistics printout */
251 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
252 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
253 
254 /* default period is 10 seconds */
255 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
256 
257 /* Print out statistics on packets dropped */
258 static void
259 print_stats(void)
260 {
261 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
262 	uint64_t total_packets_enqueued, total_packets_dequeued,
263 		total_packets_errors;
264 	unsigned portid;
265 	uint64_t cdevid;
266 
267 	total_packets_dropped = 0;
268 	total_packets_tx = 0;
269 	total_packets_rx = 0;
270 	total_packets_enqueued = 0;
271 	total_packets_dequeued = 0;
272 	total_packets_errors = 0;
273 
274 	const char clr[] = { 27, '[', '2', 'J', '\0' };
275 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
276 
277 		/* Clear screen and move to top left */
278 	printf("%s%s", clr, topLeft);
279 
280 	printf("\nPort statistics ====================================");
281 
282 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
283 		/* skip disabled ports */
284 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
285 			continue;
286 		printf("\nStatistics for port %u ------------------------------"
287 			   "\nPackets sent: %32"PRIu64
288 			   "\nPackets received: %28"PRIu64
289 			   "\nPackets dropped: %29"PRIu64,
290 			   portid,
291 			   port_statistics[portid].tx,
292 			   port_statistics[portid].rx,
293 			   port_statistics[portid].dropped);
294 
295 		total_packets_dropped += port_statistics[portid].dropped;
296 		total_packets_tx += port_statistics[portid].tx;
297 		total_packets_rx += port_statistics[portid].rx;
298 	}
299 	printf("\nCrypto statistics ==================================");
300 
301 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
302 		/* skip disabled ports */
303 		if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
304 			continue;
305 		printf("\nStatistics for cryptodev %"PRIu64
306 				" -------------------------"
307 			   "\nPackets enqueued: %28"PRIu64
308 			   "\nPackets dequeued: %28"PRIu64
309 			   "\nPackets errors: %30"PRIu64,
310 			   cdevid,
311 			   crypto_statistics[cdevid].enqueued,
312 			   crypto_statistics[cdevid].dequeued,
313 			   crypto_statistics[cdevid].errors);
314 
315 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
316 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
317 		total_packets_errors += crypto_statistics[cdevid].errors;
318 	}
319 	printf("\nAggregate statistics ==============================="
320 		   "\nTotal packets received: %22"PRIu64
321 		   "\nTotal packets enqueued: %22"PRIu64
322 		   "\nTotal packets dequeued: %22"PRIu64
323 		   "\nTotal packets sent: %26"PRIu64
324 		   "\nTotal packets dropped: %23"PRIu64
325 		   "\nTotal packets crypto errors: %17"PRIu64,
326 		   total_packets_rx,
327 		   total_packets_enqueued,
328 		   total_packets_dequeued,
329 		   total_packets_tx,
330 		   total_packets_dropped,
331 		   total_packets_errors);
332 	printf("\n====================================================\n");
333 }
334 
335 static void
336 fill_supported_algorithm_tables(void)
337 {
338 	unsigned i;
339 
340 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
341 		strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
342 
343 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
344 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
345 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
346 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
347 		"AES_XCBC_MAC");
348 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
349 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
350 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
351 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
352 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
353 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
354 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
355 
356 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
357 		strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
358 
359 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
360 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
361 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
362 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
363 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
364 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
365 }
366 
367 
368 static int
369 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
370 		struct l2fwd_crypto_params *cparams)
371 {
372 	struct rte_crypto_op **op_buffer;
373 	unsigned ret;
374 
375 	op_buffer = (struct rte_crypto_op **)
376 			qconf->op_buf[cparams->dev_id].buffer;
377 
378 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
379 			cparams->qp_id,	op_buffer, (uint16_t) n);
380 
381 	crypto_statistics[cparams->dev_id].enqueued += ret;
382 	if (unlikely(ret < n)) {
383 		crypto_statistics[cparams->dev_id].errors += (n - ret);
384 		do {
385 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
386 			rte_crypto_op_free(op_buffer[ret]);
387 		} while (++ret < n);
388 	}
389 
390 	return 0;
391 }
392 
393 static int
394 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
395 		struct l2fwd_crypto_params *cparams)
396 {
397 	unsigned lcore_id, len;
398 	struct lcore_queue_conf *qconf;
399 
400 	lcore_id = rte_lcore_id();
401 
402 	qconf = &lcore_queue_conf[lcore_id];
403 	len = qconf->op_buf[cparams->dev_id].len;
404 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
405 	len++;
406 
407 	/* enough ops to be sent */
408 	if (len == MAX_PKT_BURST) {
409 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
410 		len = 0;
411 	}
412 
413 	qconf->op_buf[cparams->dev_id].len = len;
414 	return 0;
415 }
416 
417 static int
418 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
419 		struct rte_crypto_op *op,
420 		struct l2fwd_crypto_params *cparams)
421 {
422 	struct ether_hdr *eth_hdr;
423 	struct ipv4_hdr *ip_hdr;
424 
425 	unsigned ipdata_offset, pad_len, data_len;
426 	char *padding;
427 
428 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
429 
430 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
431 		return -1;
432 
433 	ipdata_offset = sizeof(struct ether_hdr);
434 
435 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
436 			ipdata_offset);
437 
438 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
439 			* IPV4_IHL_MULTIPLIER;
440 
441 
442 	/* Zero pad data to be crypto'd so it is block aligned */
443 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
444 	pad_len = data_len % cparams->block_size ? cparams->block_size -
445 			(data_len % cparams->block_size) : 0;
446 
447 	if (pad_len) {
448 		padding = rte_pktmbuf_append(m, pad_len);
449 		if (unlikely(!padding))
450 			return -1;
451 
452 		data_len += pad_len;
453 		memset(padding, 0, pad_len);
454 	}
455 
456 	/* Set crypto operation data parameters */
457 	rte_crypto_op_attach_sym_session(op, cparams->session);
458 
459 	if (cparams->do_hash) {
460 		if (!cparams->hash_verify) {
461 			/* Append space for digest to end of packet */
462 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
463 				cparams->digest_length);
464 		} else {
465 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
466 				cparams->digest_length);
467 		}
468 
469 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
470 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
471 		op->sym->auth.digest.length = cparams->digest_length;
472 
473 		/* For SNOW3G/KASUMI algorithms, offset/length must be in bits */
474 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
475 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
476 			op->sym->auth.data.offset = ipdata_offset << 3;
477 			op->sym->auth.data.length = data_len << 3;
478 		} else {
479 			op->sym->auth.data.offset = ipdata_offset;
480 			op->sym->auth.data.length = data_len;
481 		}
482 
483 		if (cparams->aad.length) {
484 			op->sym->auth.aad.data = cparams->aad.data;
485 			op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
486 			op->sym->auth.aad.length = cparams->aad.length;
487 		}
488 	}
489 
490 	if (cparams->do_cipher) {
491 		op->sym->cipher.iv.data = cparams->iv.data;
492 		op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
493 		op->sym->cipher.iv.length = cparams->iv.length;
494 
495 		/* For SNOW3G algorithms, offset/length must be in bits */
496 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
497 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8) {
498 			op->sym->cipher.data.offset = ipdata_offset << 3;
499 			if (cparams->do_hash && cparams->hash_verify)
500 				/* Do not cipher the hash tag */
501 				op->sym->cipher.data.length = (data_len -
502 					cparams->digest_length) << 3;
503 			else
504 				op->sym->cipher.data.length = data_len << 3;
505 
506 		} else {
507 			op->sym->cipher.data.offset = ipdata_offset;
508 			if (cparams->do_hash && cparams->hash_verify)
509 				/* Do not cipher the hash tag */
510 				op->sym->cipher.data.length = data_len -
511 					cparams->digest_length;
512 			else
513 				op->sym->cipher.data.length = data_len;
514 		}
515 	}
516 
517 	op->sym->m_src = m;
518 
519 	return l2fwd_crypto_enqueue(op, cparams);
520 }
521 
522 
523 /* Send the burst of packets on an output interface */
524 static int
525 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
526 		uint8_t port)
527 {
528 	struct rte_mbuf **pkt_buffer;
529 	unsigned ret;
530 
531 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
532 
533 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
534 	port_statistics[port].tx += ret;
535 	if (unlikely(ret < n)) {
536 		port_statistics[port].dropped += (n - ret);
537 		do {
538 			rte_pktmbuf_free(pkt_buffer[ret]);
539 		} while (++ret < n);
540 	}
541 
542 	return 0;
543 }
544 
545 /* Enqueue packets for TX and prepare them to be sent */
546 static int
547 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
548 {
549 	unsigned lcore_id, len;
550 	struct lcore_queue_conf *qconf;
551 
552 	lcore_id = rte_lcore_id();
553 
554 	qconf = &lcore_queue_conf[lcore_id];
555 	len = qconf->pkt_buf[port].len;
556 	qconf->pkt_buf[port].buffer[len] = m;
557 	len++;
558 
559 	/* enough pkts to be sent */
560 	if (unlikely(len == MAX_PKT_BURST)) {
561 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
562 		len = 0;
563 	}
564 
565 	qconf->pkt_buf[port].len = len;
566 	return 0;
567 }
568 
569 static void
570 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
571 {
572 	struct ether_hdr *eth;
573 	void *tmp;
574 	unsigned dst_port;
575 
576 	dst_port = l2fwd_dst_ports[portid];
577 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
578 
579 	/* 02:00:00:00:00:xx */
580 	tmp = &eth->d_addr.addr_bytes[0];
581 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
582 
583 	/* src addr */
584 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
585 
586 	l2fwd_send_packet(m, (uint8_t) dst_port);
587 }
588 
589 /** Generate random key */
590 static void
591 generate_random_key(uint8_t *key, unsigned length)
592 {
593 	int fd;
594 	int ret;
595 
596 	fd = open("/dev/urandom", O_RDONLY);
597 	if (fd < 0)
598 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
599 
600 	ret = read(fd, key, length);
601 	close(fd);
602 
603 	if (ret != (signed)length)
604 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
605 }
606 
607 static struct rte_cryptodev_sym_session *
608 initialize_crypto_session(struct l2fwd_crypto_options *options,
609 		uint8_t cdev_id)
610 {
611 	struct rte_crypto_sym_xform *first_xform;
612 
613 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
614 		first_xform = &options->cipher_xform;
615 		first_xform->next = &options->auth_xform;
616 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
617 		first_xform = &options->auth_xform;
618 		first_xform->next = &options->cipher_xform;
619 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
620 		first_xform = &options->cipher_xform;
621 	} else {
622 		first_xform = &options->auth_xform;
623 	}
624 
625 	/* Setup Cipher Parameters */
626 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
627 }
628 
629 static void
630 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
631 
632 /* main processing loop */
633 static void
634 l2fwd_main_loop(struct l2fwd_crypto_options *options)
635 {
636 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
637 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
638 
639 	unsigned lcore_id = rte_lcore_id();
640 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
641 	unsigned i, j, portid, nb_rx, len;
642 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
643 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
644 			US_PER_S * BURST_TX_DRAIN_US;
645 	struct l2fwd_crypto_params *cparams;
646 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
647 
648 	if (qconf->nb_rx_ports == 0) {
649 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
650 		return;
651 	}
652 
653 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
654 
655 	for (i = 0; i < qconf->nb_rx_ports; i++) {
656 
657 		portid = qconf->rx_port_list[i];
658 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
659 			portid);
660 	}
661 
662 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
663 		port_cparams[i].do_cipher = 0;
664 		port_cparams[i].do_hash = 0;
665 
666 		switch (options->xform_chain) {
667 		case L2FWD_CRYPTO_CIPHER_HASH:
668 		case L2FWD_CRYPTO_HASH_CIPHER:
669 			port_cparams[i].do_cipher = 1;
670 			port_cparams[i].do_hash = 1;
671 			break;
672 		case L2FWD_CRYPTO_HASH_ONLY:
673 			port_cparams[i].do_hash = 1;
674 			break;
675 		case L2FWD_CRYPTO_CIPHER_ONLY:
676 			port_cparams[i].do_cipher = 1;
677 			break;
678 		}
679 
680 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
681 		port_cparams[i].qp_id = 0;
682 
683 		port_cparams[i].block_size = options->block_size;
684 
685 		if (port_cparams[i].do_hash) {
686 			port_cparams[i].digest_length =
687 					options->auth_xform.auth.digest_length;
688 			if (options->auth_xform.auth.add_auth_data_length) {
689 				port_cparams[i].aad.data = options->aad.data;
690 				port_cparams[i].aad.length =
691 					options->auth_xform.auth.add_auth_data_length;
692 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
693 				if (!options->aad_param)
694 					generate_random_key(port_cparams[i].aad.data,
695 						port_cparams[i].aad.length);
696 
697 			}
698 
699 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
700 				port_cparams[i].hash_verify = 1;
701 			else
702 				port_cparams[i].hash_verify = 0;
703 
704 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
705 		}
706 
707 		if (port_cparams[i].do_cipher) {
708 			port_cparams[i].iv.data = options->iv.data;
709 			port_cparams[i].iv.length = options->iv.length;
710 			port_cparams[i].iv.phys_addr = options->iv.phys_addr;
711 			if (!options->iv_param)
712 				generate_random_key(port_cparams[i].iv.data,
713 						port_cparams[i].iv.length);
714 
715 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
716 		}
717 
718 		port_cparams[i].session = initialize_crypto_session(options,
719 				port_cparams[i].dev_id);
720 
721 		if (port_cparams[i].session == NULL)
722 			return;
723 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
724 				port_cparams[i].dev_id);
725 	}
726 
727 	l2fwd_crypto_options_print(options);
728 
729 	/*
730 	 * Initialize previous tsc timestamp before the loop,
731 	 * to avoid showing the port statistics immediately,
732 	 * so user can see the crypto information.
733 	 */
734 	prev_tsc = rte_rdtsc();
735 	while (1) {
736 
737 		cur_tsc = rte_rdtsc();
738 
739 		/*
740 		 * Crypto device/TX burst queue drain
741 		 */
742 		diff_tsc = cur_tsc - prev_tsc;
743 		if (unlikely(diff_tsc > drain_tsc)) {
744 			/* Enqueue all crypto ops remaining in buffers */
745 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
746 				cparams = &port_cparams[i];
747 				len = qconf->op_buf[cparams->dev_id].len;
748 				l2fwd_crypto_send_burst(qconf, len, cparams);
749 				qconf->op_buf[cparams->dev_id].len = 0;
750 			}
751 			/* Transmit all packets remaining in buffers */
752 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
753 				if (qconf->pkt_buf[portid].len == 0)
754 					continue;
755 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
756 						 qconf->pkt_buf[portid].len,
757 						 (uint8_t) portid);
758 				qconf->pkt_buf[portid].len = 0;
759 			}
760 
761 			/* if timer is enabled */
762 			if (timer_period > 0) {
763 
764 				/* advance the timer */
765 				timer_tsc += diff_tsc;
766 
767 				/* if timer has reached its timeout */
768 				if (unlikely(timer_tsc >=
769 						(uint64_t)timer_period)) {
770 
771 					/* do this only on master core */
772 					if (lcore_id == rte_get_master_lcore()
773 						&& options->refresh_period) {
774 						print_stats();
775 						timer_tsc = 0;
776 					}
777 				}
778 			}
779 
780 			prev_tsc = cur_tsc;
781 		}
782 
783 		/*
784 		 * Read packet from RX queues
785 		 */
786 		for (i = 0; i < qconf->nb_rx_ports; i++) {
787 			portid = qconf->rx_port_list[i];
788 
789 			cparams = &port_cparams[i];
790 
791 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
792 						 pkts_burst, MAX_PKT_BURST);
793 
794 			port_statistics[portid].rx += nb_rx;
795 
796 			if (nb_rx) {
797 				/*
798 				 * If we can't allocate a crypto_ops, then drop
799 				 * the rest of the burst and dequeue and
800 				 * process the packets to free offload structs
801 				 */
802 				if (rte_crypto_op_bulk_alloc(
803 						l2fwd_crypto_op_pool,
804 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
805 						ops_burst, nb_rx) !=
806 								nb_rx) {
807 					for (j = 0; j < nb_rx; j++)
808 						rte_pktmbuf_free(pkts_burst[i]);
809 
810 					nb_rx = 0;
811 				}
812 
813 				/* Enqueue packets from Crypto device*/
814 				for (j = 0; j < nb_rx; j++) {
815 					m = pkts_burst[j];
816 
817 					l2fwd_simple_crypto_enqueue(m,
818 							ops_burst[j], cparams);
819 				}
820 			}
821 
822 			/* Dequeue packets from Crypto device */
823 			do {
824 				nb_rx = rte_cryptodev_dequeue_burst(
825 						cparams->dev_id, cparams->qp_id,
826 						ops_burst, MAX_PKT_BURST);
827 
828 				crypto_statistics[cparams->dev_id].dequeued +=
829 						nb_rx;
830 
831 				/* Forward crypto'd packets */
832 				for (j = 0; j < nb_rx; j++) {
833 					m = ops_burst[j]->sym->m_src;
834 
835 					rte_crypto_op_free(ops_burst[j]);
836 					l2fwd_simple_forward(m, portid);
837 				}
838 			} while (nb_rx == MAX_PKT_BURST);
839 		}
840 	}
841 }
842 
843 static int
844 l2fwd_launch_one_lcore(void *arg)
845 {
846 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
847 	return 0;
848 }
849 
850 /* Display command line arguments usage */
851 static void
852 l2fwd_crypto_usage(const char *prgname)
853 {
854 	printf("%s [EAL options] --\n"
855 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
856 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
857 		"  -s manage all ports from single lcore\n"
858 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
859 		" (0 to disable, 10 default, 86400 maximum)\n"
860 
861 		"  --cdev_type HW / SW / ANY\n"
862 		"  --chain HASH_CIPHER / CIPHER_HASH\n"
863 
864 		"  --cipher_algo ALGO\n"
865 		"  --cipher_op ENCRYPT / DECRYPT\n"
866 		"  --cipher_key KEY (bytes separated with \":\")\n"
867 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
868 		"  --iv IV (bytes separated with \":\")\n"
869 		"  --iv_random_size SIZE: size of IV when generated randomly\n"
870 
871 		"  --auth_algo ALGO\n"
872 		"  --auth_op GENERATE / VERIFY\n"
873 		"  --auth_key KEY (bytes separated with \":\")\n"
874 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
875 		"  --aad AAD (bytes separated with \":\")\n"
876 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
877 		"  --digest_size SIZE: size of digest to be generated/verified\n"
878 
879 		"  --sessionless\n",
880 	       prgname);
881 }
882 
883 /** Parse crypto device type command line argument */
884 static int
885 parse_cryptodev_type(enum cdev_type *type, char *optarg)
886 {
887 	if (strcmp("HW", optarg) == 0) {
888 		*type = CDEV_TYPE_HW;
889 		return 0;
890 	} else if (strcmp("SW", optarg) == 0) {
891 		*type = CDEV_TYPE_SW;
892 		return 0;
893 	} else if (strcmp("ANY", optarg) == 0) {
894 		*type = CDEV_TYPE_ANY;
895 		return 0;
896 	}
897 
898 	return -1;
899 }
900 
901 /** Parse crypto chain xform command line argument */
902 static int
903 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
904 {
905 	if (strcmp("CIPHER_HASH", optarg) == 0) {
906 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
907 		return 0;
908 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
909 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
910 		return 0;
911 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
912 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
913 		return 0;
914 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
915 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
916 		return 0;
917 	}
918 
919 	return -1;
920 }
921 
922 /** Parse crypto cipher algo option command line argument */
923 static int
924 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
925 {
926 	unsigned i;
927 
928 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
929 		if (!strcmp(supported_cipher_algo[i], optarg)) {
930 			*algo = (enum rte_crypto_cipher_algorithm)i;
931 			return 0;
932 		}
933 	}
934 
935 	printf("Cipher algorithm  not supported!\n");
936 	return -1;
937 }
938 
939 /** Parse crypto cipher operation command line argument */
940 static int
941 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
942 {
943 	if (strcmp("ENCRYPT", optarg) == 0) {
944 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
945 		return 0;
946 	} else if (strcmp("DECRYPT", optarg) == 0) {
947 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
948 		return 0;
949 	}
950 
951 	printf("Cipher operation not supported!\n");
952 	return -1;
953 }
954 
955 /** Parse crypto key command line argument */
956 static int
957 parse_key(uint8_t *data, char *input_arg)
958 {
959 	unsigned byte_count;
960 	char *token;
961 
962 	for (byte_count = 0, token = strtok(input_arg, ":");
963 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
964 			token = strtok(NULL, ":")) {
965 
966 		int number = (int)strtol(token, NULL, 16);
967 
968 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
969 			return -1;
970 
971 		data[byte_count++] = (uint8_t)number;
972 	}
973 
974 	return byte_count;
975 }
976 
977 /** Parse size param*/
978 static int
979 parse_size(int *size, const char *q_arg)
980 {
981 	char *end = NULL;
982 	unsigned long n;
983 
984 	/* parse hexadecimal string */
985 	n = strtoul(q_arg, &end, 10);
986 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
987 		n = 0;
988 
989 	if (n == 0) {
990 		printf("invalid size\n");
991 		return -1;
992 	}
993 
994 	*size = n;
995 	return 0;
996 }
997 
998 /** Parse crypto cipher operation command line argument */
999 static int
1000 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1001 {
1002 	unsigned i;
1003 
1004 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
1005 		if (!strcmp(supported_auth_algo[i], optarg)) {
1006 			*algo = (enum rte_crypto_auth_algorithm)i;
1007 			return 0;
1008 		}
1009 	}
1010 
1011 	printf("Authentication algorithm specified not supported!\n");
1012 	return -1;
1013 }
1014 
1015 static int
1016 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1017 {
1018 	if (strcmp("VERIFY", optarg) == 0) {
1019 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1020 		return 0;
1021 	} else if (strcmp("GENERATE", optarg) == 0) {
1022 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1023 		return 0;
1024 	}
1025 
1026 	printf("Authentication operation specified not supported!\n");
1027 	return -1;
1028 }
1029 
1030 /** Parse long options */
1031 static int
1032 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1033 		struct option *lgopts, int option_index)
1034 {
1035 	int retval;
1036 
1037 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1038 		retval = parse_cryptodev_type(&options->type, optarg);
1039 		if (retval == 0)
1040 			snprintf(options->string_type, MAX_STR_LEN,
1041 				"%s", optarg);
1042 		return retval;
1043 	}
1044 
1045 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1046 		return parse_crypto_opt_chain(options, optarg);
1047 
1048 	/* Cipher options */
1049 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1050 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1051 				optarg);
1052 
1053 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1054 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1055 				optarg);
1056 
1057 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1058 		options->ckey_param = 1;
1059 		options->cipher_xform.cipher.key.length =
1060 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1061 		if (options->cipher_xform.cipher.key.length > 0)
1062 			return 0;
1063 		else
1064 			return -1;
1065 	}
1066 
1067 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1068 		return parse_size(&options->ckey_random_size, optarg);
1069 
1070 	else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1071 		options->iv_param = 1;
1072 		options->iv.length =
1073 			parse_key(options->iv.data, optarg);
1074 		if (options->iv.length > 0)
1075 			return 0;
1076 		else
1077 			return -1;
1078 	}
1079 
1080 	else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1081 		return parse_size(&options->iv_random_size, optarg);
1082 
1083 	/* Authentication options */
1084 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1085 		return parse_auth_algo(&options->auth_xform.auth.algo,
1086 				optarg);
1087 	}
1088 
1089 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1090 		return parse_auth_op(&options->auth_xform.auth.op,
1091 				optarg);
1092 
1093 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1094 		options->akey_param = 1;
1095 		options->auth_xform.auth.key.length =
1096 			parse_key(options->auth_xform.auth.key.data, optarg);
1097 		if (options->auth_xform.auth.key.length > 0)
1098 			return 0;
1099 		else
1100 			return -1;
1101 	}
1102 
1103 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1104 		return parse_size(&options->akey_random_size, optarg);
1105 	}
1106 
1107 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1108 		options->aad_param = 1;
1109 		options->aad.length =
1110 			parse_key(options->aad.data, optarg);
1111 		if (options->aad.length > 0)
1112 			return 0;
1113 		else
1114 			return -1;
1115 	}
1116 
1117 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1118 		return parse_size(&options->aad_random_size, optarg);
1119 	}
1120 
1121 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1122 		return parse_size(&options->digest_size, optarg);
1123 	}
1124 
1125 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1126 		options->sessionless = 1;
1127 		return 0;
1128 	}
1129 
1130 	return -1;
1131 }
1132 
1133 /** Parse port mask */
1134 static int
1135 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1136 		const char *q_arg)
1137 {
1138 	char *end = NULL;
1139 	unsigned long pm;
1140 
1141 	/* parse hexadecimal string */
1142 	pm = strtoul(q_arg, &end, 16);
1143 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1144 		pm = 0;
1145 
1146 	options->portmask = pm;
1147 	if (options->portmask == 0) {
1148 		printf("invalid portmask specified\n");
1149 		return -1;
1150 	}
1151 
1152 	return pm;
1153 }
1154 
1155 /** Parse number of queues */
1156 static int
1157 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1158 		const char *q_arg)
1159 {
1160 	char *end = NULL;
1161 	unsigned long n;
1162 
1163 	/* parse hexadecimal string */
1164 	n = strtoul(q_arg, &end, 10);
1165 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1166 		n = 0;
1167 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1168 		n = 0;
1169 
1170 	options->nb_ports_per_lcore = n;
1171 	if (options->nb_ports_per_lcore == 0) {
1172 		printf("invalid number of ports selected\n");
1173 		return -1;
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 /** Parse timer period */
1180 static int
1181 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1182 		const char *q_arg)
1183 {
1184 	char *end = NULL;
1185 	unsigned long n;
1186 
1187 	/* parse number string */
1188 	n = (unsigned)strtol(q_arg, &end, 10);
1189 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1190 		n = 0;
1191 
1192 	if (n >= MAX_TIMER_PERIOD) {
1193 		printf("Warning refresh period specified %lu is greater than "
1194 				"max value %lu! using max value",
1195 				n, MAX_TIMER_PERIOD);
1196 		n = MAX_TIMER_PERIOD;
1197 	}
1198 
1199 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1200 
1201 	return 0;
1202 }
1203 
1204 /** Generate default options for application */
1205 static void
1206 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1207 {
1208 	options->portmask = 0xffffffff;
1209 	options->nb_ports_per_lcore = 1;
1210 	options->refresh_period = 10000;
1211 	options->single_lcore = 0;
1212 	options->sessionless = 0;
1213 
1214 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1215 
1216 	/* Cipher Data */
1217 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1218 	options->cipher_xform.next = NULL;
1219 	options->ckey_param = 0;
1220 	options->ckey_random_size = -1;
1221 	options->cipher_xform.cipher.key.length = 0;
1222 	options->iv_param = 0;
1223 	options->iv_random_size = -1;
1224 	options->iv.length = 0;
1225 
1226 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1227 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1228 
1229 	/* Authentication Data */
1230 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1231 	options->auth_xform.next = NULL;
1232 	options->akey_param = 0;
1233 	options->akey_random_size = -1;
1234 	options->auth_xform.auth.key.length = 0;
1235 	options->aad_param = 0;
1236 	options->aad_random_size = -1;
1237 	options->aad.length = 0;
1238 	options->digest_size = -1;
1239 
1240 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1241 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1242 
1243 	options->type = CDEV_TYPE_ANY;
1244 }
1245 
1246 static void
1247 display_cipher_info(struct l2fwd_crypto_options *options)
1248 {
1249 	printf("\n---- Cipher information ---\n");
1250 	printf("Algorithm: %s\n",
1251 		supported_cipher_algo[options->cipher_xform.cipher.algo]);
1252 	rte_hexdump(stdout, "Cipher key:",
1253 			options->cipher_xform.cipher.key.data,
1254 			options->cipher_xform.cipher.key.length);
1255 	rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1256 }
1257 
1258 static void
1259 display_auth_info(struct l2fwd_crypto_options *options)
1260 {
1261 	printf("\n---- Authentication information ---\n");
1262 	printf("Algorithm: %s\n",
1263 		supported_auth_algo[options->auth_xform.auth.algo]);
1264 	rte_hexdump(stdout, "Auth key:",
1265 			options->auth_xform.auth.key.data,
1266 			options->auth_xform.auth.key.length);
1267 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1268 }
1269 
1270 static void
1271 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1272 {
1273 	char string_cipher_op[MAX_STR_LEN];
1274 	char string_auth_op[MAX_STR_LEN];
1275 
1276 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1277 		strcpy(string_cipher_op, "Encrypt");
1278 	else
1279 		strcpy(string_cipher_op, "Decrypt");
1280 
1281 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1282 		strcpy(string_auth_op, "Auth generate");
1283 	else
1284 		strcpy(string_auth_op, "Auth verify");
1285 
1286 	printf("Options:-\nn");
1287 	printf("portmask: %x\n", options->portmask);
1288 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1289 	printf("refresh period : %u\n", options->refresh_period);
1290 	printf("single lcore mode: %s\n",
1291 			options->single_lcore ? "enabled" : "disabled");
1292 	printf("stats_printing: %s\n",
1293 			options->refresh_period == 0 ? "disabled" : "enabled");
1294 
1295 	printf("sessionless crypto: %s\n",
1296 			options->sessionless ? "enabled" : "disabled");
1297 
1298 	if (options->ckey_param && (options->ckey_random_size != -1))
1299 		printf("Cipher key already parsed, ignoring size of random key\n");
1300 
1301 	if (options->akey_param && (options->akey_random_size != -1))
1302 		printf("Auth key already parsed, ignoring size of random key\n");
1303 
1304 	if (options->iv_param && (options->iv_random_size != -1))
1305 		printf("IV already parsed, ignoring size of random IV\n");
1306 
1307 	if (options->aad_param && (options->aad_random_size != -1))
1308 		printf("AAD already parsed, ignoring size of random AAD\n");
1309 
1310 	printf("\nCrypto chain: ");
1311 	switch (options->xform_chain) {
1312 	case L2FWD_CRYPTO_CIPHER_HASH:
1313 		printf("Input --> %s --> %s --> Output\n",
1314 			string_cipher_op, string_auth_op);
1315 		display_cipher_info(options);
1316 		display_auth_info(options);
1317 		break;
1318 	case L2FWD_CRYPTO_HASH_CIPHER:
1319 		printf("Input --> %s --> %s --> Output\n",
1320 			string_auth_op, string_cipher_op);
1321 		display_cipher_info(options);
1322 		display_auth_info(options);
1323 		break;
1324 	case L2FWD_CRYPTO_HASH_ONLY:
1325 		printf("Input --> %s --> Output\n", string_auth_op);
1326 		display_auth_info(options);
1327 		break;
1328 	case L2FWD_CRYPTO_CIPHER_ONLY:
1329 		printf("Input --> %s --> Output\n", string_cipher_op);
1330 		display_cipher_info(options);
1331 		break;
1332 	}
1333 }
1334 
1335 /* Parse the argument given in the command line of the application */
1336 static int
1337 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1338 		int argc, char **argv)
1339 {
1340 	int opt, retval, option_index;
1341 	char **argvopt = argv, *prgname = argv[0];
1342 
1343 	static struct option lgopts[] = {
1344 			{ "sessionless", no_argument, 0, 0 },
1345 
1346 			{ "cdev_type", required_argument, 0, 0 },
1347 			{ "chain", required_argument, 0, 0 },
1348 
1349 			{ "cipher_algo", required_argument, 0, 0 },
1350 			{ "cipher_op", required_argument, 0, 0 },
1351 			{ "cipher_key", required_argument, 0, 0 },
1352 			{ "cipher_key_random_size", required_argument, 0, 0 },
1353 
1354 			{ "auth_algo", required_argument, 0, 0 },
1355 			{ "auth_op", required_argument, 0, 0 },
1356 			{ "auth_key", required_argument, 0, 0 },
1357 			{ "auth_key_random_size", required_argument, 0, 0 },
1358 
1359 			{ "iv", required_argument, 0, 0 },
1360 			{ "iv_random_size", required_argument, 0, 0 },
1361 			{ "aad", required_argument, 0, 0 },
1362 			{ "aad_random_size", required_argument, 0, 0 },
1363 			{ "digest_size", required_argument, 0, 0 },
1364 
1365 			{ "sessionless", no_argument, 0, 0 },
1366 
1367 			{ NULL, 0, 0, 0 }
1368 	};
1369 
1370 	l2fwd_crypto_default_options(options);
1371 
1372 	while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1373 			&option_index)) != EOF) {
1374 		switch (opt) {
1375 		/* long options */
1376 		case 0:
1377 			retval = l2fwd_crypto_parse_args_long_options(options,
1378 					lgopts, option_index);
1379 			if (retval < 0) {
1380 				l2fwd_crypto_usage(prgname);
1381 				return -1;
1382 			}
1383 			break;
1384 
1385 		/* portmask */
1386 		case 'p':
1387 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1388 			if (retval < 0) {
1389 				l2fwd_crypto_usage(prgname);
1390 				return -1;
1391 			}
1392 			break;
1393 
1394 		/* nqueue */
1395 		case 'q':
1396 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1397 			if (retval < 0) {
1398 				l2fwd_crypto_usage(prgname);
1399 				return -1;
1400 			}
1401 			break;
1402 
1403 		/* single  */
1404 		case 's':
1405 			options->single_lcore = 1;
1406 
1407 			break;
1408 
1409 		/* timer period */
1410 		case 'T':
1411 			retval = l2fwd_crypto_parse_timer_period(options,
1412 					optarg);
1413 			if (retval < 0) {
1414 				l2fwd_crypto_usage(prgname);
1415 				return -1;
1416 			}
1417 			break;
1418 
1419 		default:
1420 			l2fwd_crypto_usage(prgname);
1421 			return -1;
1422 		}
1423 	}
1424 
1425 
1426 	if (optind >= 0)
1427 		argv[optind-1] = prgname;
1428 
1429 	retval = optind-1;
1430 	optind = 0; /* reset getopt lib */
1431 
1432 	return retval;
1433 }
1434 
1435 /* Check the link status of all ports in up to 9s, and print them finally */
1436 static void
1437 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1438 {
1439 #define CHECK_INTERVAL 100 /* 100ms */
1440 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1441 	uint8_t portid, count, all_ports_up, print_flag = 0;
1442 	struct rte_eth_link link;
1443 
1444 	printf("\nChecking link status");
1445 	fflush(stdout);
1446 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1447 		all_ports_up = 1;
1448 		for (portid = 0; portid < port_num; portid++) {
1449 			if ((port_mask & (1 << portid)) == 0)
1450 				continue;
1451 			memset(&link, 0, sizeof(link));
1452 			rte_eth_link_get_nowait(portid, &link);
1453 			/* print link status if flag set */
1454 			if (print_flag == 1) {
1455 				if (link.link_status)
1456 					printf("Port %d Link Up - speed %u "
1457 						"Mbps - %s\n", (uint8_t)portid,
1458 						(unsigned)link.link_speed,
1459 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1460 					("full-duplex") : ("half-duplex\n"));
1461 				else
1462 					printf("Port %d Link Down\n",
1463 						(uint8_t)portid);
1464 				continue;
1465 			}
1466 			/* clear all_ports_up flag if any link down */
1467 			if (link.link_status == ETH_LINK_DOWN) {
1468 				all_ports_up = 0;
1469 				break;
1470 			}
1471 		}
1472 		/* after finally printing all link status, get out */
1473 		if (print_flag == 1)
1474 			break;
1475 
1476 		if (all_ports_up == 0) {
1477 			printf(".");
1478 			fflush(stdout);
1479 			rte_delay_ms(CHECK_INTERVAL);
1480 		}
1481 
1482 		/* set the print_flag if all ports up or timeout */
1483 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1484 			print_flag = 1;
1485 			printf("done\n");
1486 		}
1487 	}
1488 }
1489 
1490 /* Check if device has to be HW/SW or any */
1491 static int
1492 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1493 {
1494 	if (options->type == CDEV_TYPE_HW &&
1495 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1496 		return 0;
1497 	if (options->type == CDEV_TYPE_SW &&
1498 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1499 		return 0;
1500 	if (options->type == CDEV_TYPE_ANY)
1501 		return 0;
1502 
1503 	return -1;
1504 }
1505 
1506 static inline int
1507 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1508 		uint16_t increment)
1509 {
1510 	uint16_t supp_size;
1511 
1512 	/* Single value */
1513 	if (increment == 0) {
1514 		if (length == min)
1515 			return 0;
1516 		else
1517 			return -1;
1518 	}
1519 
1520 	/* Range of values */
1521 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1522 		if (length == supp_size)
1523 			return 0;
1524 	}
1525 
1526 	return -1;
1527 }
1528 static int
1529 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1530 		uint8_t *enabled_cdevs)
1531 {
1532 	unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1533 	const struct rte_cryptodev_capabilities *cap;
1534 	enum rte_crypto_auth_algorithm cap_auth_algo;
1535 	enum rte_crypto_auth_algorithm opt_auth_algo;
1536 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1537 	enum rte_crypto_cipher_algorithm opt_cipher_algo;
1538 	int retval;
1539 
1540 	cdev_count = rte_cryptodev_count();
1541 	if (cdev_count == 0) {
1542 		printf("No crypto devices available\n");
1543 		return -1;
1544 	}
1545 
1546 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1547 			cdev_id++) {
1548 		struct rte_cryptodev_qp_conf qp_conf;
1549 		struct rte_cryptodev_info dev_info;
1550 
1551 		struct rte_cryptodev_config conf = {
1552 			.nb_queue_pairs = 1,
1553 			.socket_id = SOCKET_ID_ANY,
1554 			.session_mp = {
1555 				.nb_objs = 2048,
1556 				.cache_size = 64
1557 			}
1558 		};
1559 
1560 		rte_cryptodev_info_get(cdev_id, &dev_info);
1561 
1562 		/* Set cipher parameters */
1563 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1564 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1565 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1566 			/* Check if device supports cipher algo */
1567 			i = 0;
1568 			opt_cipher_algo = options->cipher_xform.cipher.algo;
1569 			cap = &dev_info.capabilities[i];
1570 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1571 				cap_cipher_algo = cap->sym.cipher.algo;
1572 				if (cap->sym.xform_type ==
1573 						RTE_CRYPTO_SYM_XFORM_CIPHER) {
1574 					if (cap_cipher_algo == opt_cipher_algo) {
1575 						if (check_type(options, &dev_info) == 0)
1576 							break;
1577 					}
1578 				}
1579 				cap = &dev_info.capabilities[++i];
1580 			}
1581 
1582 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1583 				printf("Algorithm %s not supported by cryptodev %u"
1584 					" or device not of preferred type (%s)\n",
1585 					supported_cipher_algo[opt_cipher_algo],
1586 					cdev_id,
1587 					options->string_type);
1588 				continue;
1589 			}
1590 
1591 			options->block_size = cap->sym.cipher.block_size;
1592 			/*
1593 			 * Check if length of provided IV is supported
1594 			 * by the algorithm chosen.
1595 			 */
1596 			if (options->iv_param) {
1597 				if (check_supported_size(options->iv.length,
1598 						cap->sym.cipher.iv_size.min,
1599 						cap->sym.cipher.iv_size.max,
1600 						cap->sym.cipher.iv_size.increment)
1601 							!= 0) {
1602 					printf("Unsupported IV length\n");
1603 					return -1;
1604 				}
1605 			/*
1606 			 * Check if length of IV to be randomly generated
1607 			 * is supported by the algorithm chosen.
1608 			 */
1609 			} else if (options->iv_random_size != -1) {
1610 				if (check_supported_size(options->iv_random_size,
1611 						cap->sym.cipher.iv_size.min,
1612 						cap->sym.cipher.iv_size.max,
1613 						cap->sym.cipher.iv_size.increment)
1614 							!= 0) {
1615 					printf("Unsupported IV length\n");
1616 					return -1;
1617 				}
1618 				options->iv.length = options->iv_random_size;
1619 			/* No size provided, use minimum size. */
1620 			} else
1621 				options->iv.length = cap->sym.cipher.iv_size.min;
1622 
1623 			/*
1624 			 * Check if length of provided cipher key is supported
1625 			 * by the algorithm chosen.
1626 			 */
1627 			if (options->ckey_param) {
1628 				if (check_supported_size(
1629 						options->cipher_xform.cipher.key.length,
1630 						cap->sym.cipher.key_size.min,
1631 						cap->sym.cipher.key_size.max,
1632 						cap->sym.cipher.key_size.increment)
1633 							!= 0) {
1634 					printf("Unsupported cipher key length\n");
1635 					return -1;
1636 				}
1637 			/*
1638 			 * Check if length of the cipher key to be randomly generated
1639 			 * is supported by the algorithm chosen.
1640 			 */
1641 			} else if (options->ckey_random_size != -1) {
1642 				if (check_supported_size(options->ckey_random_size,
1643 						cap->sym.cipher.key_size.min,
1644 						cap->sym.cipher.key_size.max,
1645 						cap->sym.cipher.key_size.increment)
1646 							!= 0) {
1647 					printf("Unsupported cipher key length\n");
1648 					return -1;
1649 				}
1650 				options->cipher_xform.cipher.key.length =
1651 							options->ckey_random_size;
1652 			/* No size provided, use minimum size. */
1653 			} else
1654 				options->cipher_xform.cipher.key.length =
1655 						cap->sym.cipher.key_size.min;
1656 
1657 			if (!options->ckey_param)
1658 				generate_random_key(
1659 					options->cipher_xform.cipher.key.data,
1660 					options->cipher_xform.cipher.key.length);
1661 
1662 		}
1663 
1664 		/* Set auth parameters */
1665 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1666 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1667 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1668 			/* Check if device supports auth algo */
1669 			i = 0;
1670 			opt_auth_algo = options->auth_xform.auth.algo;
1671 			cap = &dev_info.capabilities[i];
1672 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1673 				cap_auth_algo = cap->sym.auth.algo;
1674 				if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1675 						(cap_auth_algo == opt_auth_algo) &&
1676 						(check_type(options, &dev_info) == 0)) {
1677 					break;
1678 				}
1679 				cap = &dev_info.capabilities[++i];
1680 			}
1681 
1682 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1683 				printf("Algorithm %s not supported by cryptodev %u"
1684 					" or device not of preferred type (%s)\n",
1685 					supported_auth_algo[opt_auth_algo],
1686 					cdev_id,
1687 					options->string_type);
1688 				continue;
1689 			}
1690 
1691 			options->block_size = cap->sym.auth.block_size;
1692 			/*
1693 			 * Check if length of provided AAD is supported
1694 			 * by the algorithm chosen.
1695 			 */
1696 			if (options->aad_param) {
1697 				if (check_supported_size(options->aad.length,
1698 						cap->sym.auth.aad_size.min,
1699 						cap->sym.auth.aad_size.max,
1700 						cap->sym.auth.aad_size.increment)
1701 							!= 0) {
1702 					printf("Unsupported AAD length\n");
1703 					return -1;
1704 				}
1705 			/*
1706 			 * Check if length of AAD to be randomly generated
1707 			 * is supported by the algorithm chosen.
1708 			 */
1709 			} else if (options->aad_random_size != -1) {
1710 				if (check_supported_size(options->aad_random_size,
1711 						cap->sym.auth.aad_size.min,
1712 						cap->sym.auth.aad_size.max,
1713 						cap->sym.auth.aad_size.increment)
1714 							!= 0) {
1715 					printf("Unsupported AAD length\n");
1716 					return -1;
1717 				}
1718 				options->aad.length = options->aad_random_size;
1719 			/* No size provided, use minimum size. */
1720 			} else
1721 				options->aad.length = cap->sym.auth.aad_size.min;
1722 
1723 			options->auth_xform.auth.add_auth_data_length =
1724 						options->aad.length;
1725 
1726 			/*
1727 			 * Check if length of provided auth key is supported
1728 			 * by the algorithm chosen.
1729 			 */
1730 			if (options->akey_param) {
1731 				if (check_supported_size(
1732 						options->auth_xform.auth.key.length,
1733 						cap->sym.auth.key_size.min,
1734 						cap->sym.auth.key_size.max,
1735 						cap->sym.auth.key_size.increment)
1736 							!= 0) {
1737 					printf("Unsupported auth key length\n");
1738 					return -1;
1739 				}
1740 			/*
1741 			 * Check if length of the auth key to be randomly generated
1742 			 * is supported by the algorithm chosen.
1743 			 */
1744 			} else if (options->akey_random_size != -1) {
1745 				if (check_supported_size(options->akey_random_size,
1746 						cap->sym.auth.key_size.min,
1747 						cap->sym.auth.key_size.max,
1748 						cap->sym.auth.key_size.increment)
1749 							!= 0) {
1750 					printf("Unsupported auth key length\n");
1751 					return -1;
1752 				}
1753 				options->auth_xform.auth.key.length =
1754 							options->akey_random_size;
1755 			/* No size provided, use minimum size. */
1756 			} else
1757 				options->auth_xform.auth.key.length =
1758 						cap->sym.auth.key_size.min;
1759 
1760 			if (!options->akey_param)
1761 				generate_random_key(
1762 					options->auth_xform.auth.key.data,
1763 					options->auth_xform.auth.key.length);
1764 
1765 			/* Check if digest size is supported by the algorithm. */
1766 			if (options->digest_size != -1) {
1767 				if (check_supported_size(options->digest_size,
1768 						cap->sym.auth.digest_size.min,
1769 						cap->sym.auth.digest_size.max,
1770 						cap->sym.auth.digest_size.increment)
1771 							!= 0) {
1772 					printf("Unsupported digest length\n");
1773 					return -1;
1774 				}
1775 				options->auth_xform.auth.digest_length =
1776 							options->digest_size;
1777 			/* No size provided, use minimum size. */
1778 			} else
1779 				options->auth_xform.auth.digest_length =
1780 						cap->sym.auth.digest_size.min;
1781 		}
1782 
1783 		retval = rte_cryptodev_configure(cdev_id, &conf);
1784 		if (retval < 0) {
1785 			printf("Failed to configure cryptodev %u", cdev_id);
1786 			return -1;
1787 		}
1788 
1789 		qp_conf.nb_descriptors = 2048;
1790 
1791 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1792 				SOCKET_ID_ANY);
1793 		if (retval < 0) {
1794 			printf("Failed to setup queue pair %u on cryptodev %u",
1795 					0, cdev_id);
1796 			return -1;
1797 		}
1798 
1799 		l2fwd_enabled_crypto_mask |= (1 << cdev_id);
1800 
1801 		enabled_cdevs[cdev_id] = 1;
1802 		enabled_cdev_count++;
1803 	}
1804 
1805 	return enabled_cdev_count;
1806 }
1807 
1808 static int
1809 initialize_ports(struct l2fwd_crypto_options *options)
1810 {
1811 	uint8_t last_portid, portid;
1812 	unsigned enabled_portcount = 0;
1813 	unsigned nb_ports = rte_eth_dev_count();
1814 
1815 	if (nb_ports == 0) {
1816 		printf("No Ethernet ports - bye\n");
1817 		return -1;
1818 	}
1819 
1820 	/* Reset l2fwd_dst_ports */
1821 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1822 		l2fwd_dst_ports[portid] = 0;
1823 
1824 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1825 		int retval;
1826 
1827 		/* Skip ports that are not enabled */
1828 		if ((options->portmask & (1 << portid)) == 0)
1829 			continue;
1830 
1831 		/* init port */
1832 		printf("Initializing port %u... ", (unsigned) portid);
1833 		fflush(stdout);
1834 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1835 		if (retval < 0) {
1836 			printf("Cannot configure device: err=%d, port=%u\n",
1837 				  retval, (unsigned) portid);
1838 			return -1;
1839 		}
1840 
1841 		/* init one RX queue */
1842 		fflush(stdout);
1843 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1844 					     rte_eth_dev_socket_id(portid),
1845 					     NULL, l2fwd_pktmbuf_pool);
1846 		if (retval < 0) {
1847 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1848 					retval, (unsigned) portid);
1849 			return -1;
1850 		}
1851 
1852 		/* init one TX queue on each port */
1853 		fflush(stdout);
1854 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1855 				rte_eth_dev_socket_id(portid),
1856 				NULL);
1857 		if (retval < 0) {
1858 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1859 				retval, (unsigned) portid);
1860 
1861 			return -1;
1862 		}
1863 
1864 		/* Start device */
1865 		retval = rte_eth_dev_start(portid);
1866 		if (retval < 0) {
1867 			printf("rte_eth_dev_start:err=%d, port=%u\n",
1868 					retval, (unsigned) portid);
1869 			return -1;
1870 		}
1871 
1872 		rte_eth_promiscuous_enable(portid);
1873 
1874 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1875 
1876 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1877 				(unsigned) portid,
1878 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
1879 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
1880 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
1881 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
1882 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
1883 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1884 
1885 		/* initialize port stats */
1886 		memset(&port_statistics, 0, sizeof(port_statistics));
1887 
1888 		/* Setup port forwarding table */
1889 		if (enabled_portcount % 2) {
1890 			l2fwd_dst_ports[portid] = last_portid;
1891 			l2fwd_dst_ports[last_portid] = portid;
1892 		} else {
1893 			last_portid = portid;
1894 		}
1895 
1896 		l2fwd_enabled_port_mask |= (1 << portid);
1897 		enabled_portcount++;
1898 	}
1899 
1900 	if (enabled_portcount == 1) {
1901 		l2fwd_dst_ports[last_portid] = last_portid;
1902 	} else if (enabled_portcount % 2) {
1903 		printf("odd number of ports in portmask- bye\n");
1904 		return -1;
1905 	}
1906 
1907 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1908 
1909 	return enabled_portcount;
1910 }
1911 
1912 static void
1913 reserve_key_memory(struct l2fwd_crypto_options *options)
1914 {
1915 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1916 						MAX_KEY_SIZE, 0);
1917 	if (options->cipher_xform.cipher.key.data == NULL)
1918 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1919 
1920 
1921 	options->auth_xform.auth.key.data = rte_malloc("auth key",
1922 						MAX_KEY_SIZE, 0);
1923 	if (options->auth_xform.auth.key.data == NULL)
1924 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1925 
1926 	options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1927 	if (options->iv.data == NULL)
1928 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1929 	options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1930 
1931 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1932 	if (options->aad.data == NULL)
1933 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1934 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1935 }
1936 
1937 int
1938 main(int argc, char **argv)
1939 {
1940 	struct lcore_queue_conf *qconf;
1941 	struct l2fwd_crypto_options options;
1942 
1943 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1944 	unsigned lcore_id, rx_lcore_id;
1945 	int ret, enabled_cdevcount, enabled_portcount;
1946 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1947 
1948 	/* init EAL */
1949 	ret = rte_eal_init(argc, argv);
1950 	if (ret < 0)
1951 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1952 	argc -= ret;
1953 	argv += ret;
1954 
1955 	/* reserve memory for Cipher/Auth key and IV */
1956 	reserve_key_memory(&options);
1957 
1958 	/* fill out the supported algorithm tables */
1959 	fill_supported_algorithm_tables();
1960 
1961 	/* parse application arguments (after the EAL ones) */
1962 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
1963 	if (ret < 0)
1964 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1965 
1966 	/* create the mbuf pool */
1967 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1968 			sizeof(struct rte_crypto_op),
1969 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
1970 	if (l2fwd_pktmbuf_pool == NULL)
1971 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1972 
1973 	/* create crypto op pool */
1974 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
1975 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
1976 			rte_socket_id());
1977 	if (l2fwd_crypto_op_pool == NULL)
1978 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
1979 
1980 	/* Enable Ethernet ports */
1981 	enabled_portcount = initialize_ports(&options);
1982 	if (enabled_portcount < 1)
1983 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
1984 
1985 	nb_ports = rte_eth_dev_count();
1986 	/* Initialize the port/queue configuration of each logical core */
1987 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
1988 			portid < nb_ports; portid++) {
1989 
1990 		/* skip ports that are not enabled */
1991 		if ((options.portmask & (1 << portid)) == 0)
1992 			continue;
1993 
1994 		if (options.single_lcore && qconf == NULL) {
1995 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
1996 				rx_lcore_id++;
1997 				if (rx_lcore_id >= RTE_MAX_LCORE)
1998 					rte_exit(EXIT_FAILURE,
1999 							"Not enough cores\n");
2000 			}
2001 		} else if (!options.single_lcore) {
2002 			/* get the lcore_id for this port */
2003 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2004 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2005 			       options.nb_ports_per_lcore) {
2006 				rx_lcore_id++;
2007 				if (rx_lcore_id >= RTE_MAX_LCORE)
2008 					rte_exit(EXIT_FAILURE,
2009 							"Not enough cores\n");
2010 			}
2011 		}
2012 
2013 		/* Assigned a new logical core in the loop above. */
2014 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2015 			qconf = &lcore_queue_conf[rx_lcore_id];
2016 
2017 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2018 		qconf->nb_rx_ports++;
2019 
2020 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2021 	}
2022 
2023 	/* Enable Crypto devices */
2024 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2025 			enabled_cdevs);
2026 	if (enabled_cdevcount < 0)
2027 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2028 
2029 	if (enabled_cdevcount < enabled_portcount)
2030 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2031 				"has to be more or equal to number of ports (%d)\n",
2032 				enabled_cdevcount, enabled_portcount);
2033 
2034 	nb_cryptodevs = rte_cryptodev_count();
2035 
2036 	/* Initialize the port/cryptodev configuration of each logical core */
2037 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2038 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2039 			cdev_id++) {
2040 		/* Crypto op not supported by crypto device */
2041 		if (!enabled_cdevs[cdev_id])
2042 			continue;
2043 
2044 		if (options.single_lcore && qconf == NULL) {
2045 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2046 				rx_lcore_id++;
2047 				if (rx_lcore_id >= RTE_MAX_LCORE)
2048 					rte_exit(EXIT_FAILURE,
2049 							"Not enough cores\n");
2050 			}
2051 		} else if (!options.single_lcore) {
2052 			/* get the lcore_id for this port */
2053 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2054 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2055 			       options.nb_ports_per_lcore) {
2056 				rx_lcore_id++;
2057 				if (rx_lcore_id >= RTE_MAX_LCORE)
2058 					rte_exit(EXIT_FAILURE,
2059 							"Not enough cores\n");
2060 			}
2061 		}
2062 
2063 		/* Assigned a new logical core in the loop above. */
2064 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2065 			qconf = &lcore_queue_conf[rx_lcore_id];
2066 
2067 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2068 		qconf->nb_crypto_devs++;
2069 
2070 		enabled_cdevcount--;
2071 
2072 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2073 				(unsigned)cdev_id);
2074 	}
2075 
2076 	/* launch per-lcore init on every lcore */
2077 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2078 			CALL_MASTER);
2079 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2080 		if (rte_eal_wait_lcore(lcore_id) < 0)
2081 			return -1;
2082 	}
2083 
2084 	return 0;
2085 }
2086