1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_ring.h> 76 #include <rte_hexdump.h> 77 78 enum cdev_type { 79 CDEV_TYPE_ANY, 80 CDEV_TYPE_HW, 81 CDEV_TYPE_SW 82 }; 83 84 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 85 86 #define NB_MBUF 8192 87 88 #define MAX_STR_LEN 32 89 #define MAX_KEY_SIZE 128 90 #define MAX_PKT_BURST 32 91 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 92 93 /* 94 * Configurable number of RX/TX ring descriptors 95 */ 96 #define RTE_TEST_RX_DESC_DEFAULT 128 97 #define RTE_TEST_TX_DESC_DEFAULT 512 98 99 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 100 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 101 102 /* ethernet addresses of ports */ 103 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 104 105 /* mask of enabled ports */ 106 static uint64_t l2fwd_enabled_port_mask; 107 static uint64_t l2fwd_enabled_crypto_mask; 108 109 /* list of enabled ports */ 110 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 111 112 113 struct pkt_buffer { 114 unsigned len; 115 struct rte_mbuf *buffer[MAX_PKT_BURST]; 116 }; 117 118 struct op_buffer { 119 unsigned len; 120 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 121 }; 122 123 #define MAX_RX_QUEUE_PER_LCORE 16 124 #define MAX_TX_QUEUE_PER_PORT 16 125 126 enum l2fwd_crypto_xform_chain { 127 L2FWD_CRYPTO_CIPHER_HASH, 128 L2FWD_CRYPTO_HASH_CIPHER, 129 L2FWD_CRYPTO_CIPHER_ONLY, 130 L2FWD_CRYPTO_HASH_ONLY 131 }; 132 133 struct l2fwd_key { 134 uint8_t *data; 135 uint32_t length; 136 phys_addr_t phys_addr; 137 }; 138 139 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN]; 140 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN]; 141 142 /** l2fwd crypto application command line options */ 143 struct l2fwd_crypto_options { 144 unsigned portmask; 145 unsigned nb_ports_per_lcore; 146 unsigned refresh_period; 147 unsigned single_lcore:1; 148 149 enum cdev_type type; 150 unsigned sessionless:1; 151 152 enum l2fwd_crypto_xform_chain xform_chain; 153 154 struct rte_crypto_sym_xform cipher_xform; 155 unsigned ckey_param; 156 int ckey_random_size; 157 158 struct l2fwd_key iv; 159 unsigned iv_param; 160 int iv_random_size; 161 162 struct rte_crypto_sym_xform auth_xform; 163 uint8_t akey_param; 164 int akey_random_size; 165 166 struct l2fwd_key aad; 167 unsigned aad_param; 168 int aad_random_size; 169 170 int digest_size; 171 172 uint16_t block_size; 173 char string_type[MAX_STR_LEN]; 174 }; 175 176 /** l2fwd crypto lcore params */ 177 struct l2fwd_crypto_params { 178 uint8_t dev_id; 179 uint8_t qp_id; 180 181 unsigned digest_length; 182 unsigned block_size; 183 184 struct l2fwd_key iv; 185 struct l2fwd_key aad; 186 struct rte_cryptodev_sym_session *session; 187 188 uint8_t do_cipher; 189 uint8_t do_hash; 190 uint8_t hash_verify; 191 192 enum rte_crypto_cipher_algorithm cipher_algo; 193 enum rte_crypto_auth_algorithm auth_algo; 194 }; 195 196 /** lcore configuration */ 197 struct lcore_queue_conf { 198 unsigned nb_rx_ports; 199 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 200 201 unsigned nb_crypto_devs; 202 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 203 204 struct op_buffer op_buf[RTE_MAX_ETHPORTS]; 205 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 206 } __rte_cache_aligned; 207 208 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 209 210 static const struct rte_eth_conf port_conf = { 211 .rxmode = { 212 .mq_mode = ETH_MQ_RX_NONE, 213 .max_rx_pkt_len = ETHER_MAX_LEN, 214 .split_hdr_size = 0, 215 .header_split = 0, /**< Header Split disabled */ 216 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 217 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 218 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 219 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 220 }, 221 .txmode = { 222 .mq_mode = ETH_MQ_TX_NONE, 223 }, 224 }; 225 226 struct rte_mempool *l2fwd_pktmbuf_pool; 227 struct rte_mempool *l2fwd_crypto_op_pool; 228 229 /* Per-port statistics struct */ 230 struct l2fwd_port_statistics { 231 uint64_t tx; 232 uint64_t rx; 233 234 uint64_t crypto_enqueued; 235 uint64_t crypto_dequeued; 236 237 uint64_t dropped; 238 } __rte_cache_aligned; 239 240 struct l2fwd_crypto_statistics { 241 uint64_t enqueued; 242 uint64_t dequeued; 243 244 uint64_t errors; 245 } __rte_cache_aligned; 246 247 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 248 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 249 250 /* A tsc-based timer responsible for triggering statistics printout */ 251 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 252 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 253 254 /* default period is 10 seconds */ 255 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 256 257 /* Print out statistics on packets dropped */ 258 static void 259 print_stats(void) 260 { 261 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 262 uint64_t total_packets_enqueued, total_packets_dequeued, 263 total_packets_errors; 264 unsigned portid; 265 uint64_t cdevid; 266 267 total_packets_dropped = 0; 268 total_packets_tx = 0; 269 total_packets_rx = 0; 270 total_packets_enqueued = 0; 271 total_packets_dequeued = 0; 272 total_packets_errors = 0; 273 274 const char clr[] = { 27, '[', '2', 'J', '\0' }; 275 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 276 277 /* Clear screen and move to top left */ 278 printf("%s%s", clr, topLeft); 279 280 printf("\nPort statistics ===================================="); 281 282 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 283 /* skip disabled ports */ 284 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 285 continue; 286 printf("\nStatistics for port %u ------------------------------" 287 "\nPackets sent: %32"PRIu64 288 "\nPackets received: %28"PRIu64 289 "\nPackets dropped: %29"PRIu64, 290 portid, 291 port_statistics[portid].tx, 292 port_statistics[portid].rx, 293 port_statistics[portid].dropped); 294 295 total_packets_dropped += port_statistics[portid].dropped; 296 total_packets_tx += port_statistics[portid].tx; 297 total_packets_rx += port_statistics[portid].rx; 298 } 299 printf("\nCrypto statistics =================================="); 300 301 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 302 /* skip disabled ports */ 303 if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0) 304 continue; 305 printf("\nStatistics for cryptodev %"PRIu64 306 " -------------------------" 307 "\nPackets enqueued: %28"PRIu64 308 "\nPackets dequeued: %28"PRIu64 309 "\nPackets errors: %30"PRIu64, 310 cdevid, 311 crypto_statistics[cdevid].enqueued, 312 crypto_statistics[cdevid].dequeued, 313 crypto_statistics[cdevid].errors); 314 315 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 316 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 317 total_packets_errors += crypto_statistics[cdevid].errors; 318 } 319 printf("\nAggregate statistics ===============================" 320 "\nTotal packets received: %22"PRIu64 321 "\nTotal packets enqueued: %22"PRIu64 322 "\nTotal packets dequeued: %22"PRIu64 323 "\nTotal packets sent: %26"PRIu64 324 "\nTotal packets dropped: %23"PRIu64 325 "\nTotal packets crypto errors: %17"PRIu64, 326 total_packets_rx, 327 total_packets_enqueued, 328 total_packets_dequeued, 329 total_packets_tx, 330 total_packets_dropped, 331 total_packets_errors); 332 printf("\n====================================================\n"); 333 } 334 335 static void 336 fill_supported_algorithm_tables(void) 337 { 338 unsigned i; 339 340 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) 341 strcpy(supported_auth_algo[i], "NOT_SUPPORTED"); 342 343 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM"); 344 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC"); 345 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL"); 346 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC], 347 "AES_XCBC_MAC"); 348 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC"); 349 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC"); 350 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC"); 351 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC"); 352 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC"); 353 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2"); 354 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9"); 355 356 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) 357 strcpy(supported_cipher_algo[i], "NOT_SUPPORTED"); 358 359 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC"); 360 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR"); 361 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM"); 362 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL"); 363 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2"); 364 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8"); 365 } 366 367 368 static int 369 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 370 struct l2fwd_crypto_params *cparams) 371 { 372 struct rte_crypto_op **op_buffer; 373 unsigned ret; 374 375 op_buffer = (struct rte_crypto_op **) 376 qconf->op_buf[cparams->dev_id].buffer; 377 378 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 379 cparams->qp_id, op_buffer, (uint16_t) n); 380 381 crypto_statistics[cparams->dev_id].enqueued += ret; 382 if (unlikely(ret < n)) { 383 crypto_statistics[cparams->dev_id].errors += (n - ret); 384 do { 385 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 386 rte_crypto_op_free(op_buffer[ret]); 387 } while (++ret < n); 388 } 389 390 return 0; 391 } 392 393 static int 394 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 395 struct l2fwd_crypto_params *cparams) 396 { 397 unsigned lcore_id, len; 398 struct lcore_queue_conf *qconf; 399 400 lcore_id = rte_lcore_id(); 401 402 qconf = &lcore_queue_conf[lcore_id]; 403 len = qconf->op_buf[cparams->dev_id].len; 404 qconf->op_buf[cparams->dev_id].buffer[len] = op; 405 len++; 406 407 /* enough ops to be sent */ 408 if (len == MAX_PKT_BURST) { 409 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 410 len = 0; 411 } 412 413 qconf->op_buf[cparams->dev_id].len = len; 414 return 0; 415 } 416 417 static int 418 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 419 struct rte_crypto_op *op, 420 struct l2fwd_crypto_params *cparams) 421 { 422 struct ether_hdr *eth_hdr; 423 struct ipv4_hdr *ip_hdr; 424 425 unsigned ipdata_offset, pad_len, data_len; 426 char *padding; 427 428 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 429 430 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 431 return -1; 432 433 ipdata_offset = sizeof(struct ether_hdr); 434 435 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 436 ipdata_offset); 437 438 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 439 * IPV4_IHL_MULTIPLIER; 440 441 442 /* Zero pad data to be crypto'd so it is block aligned */ 443 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 444 pad_len = data_len % cparams->block_size ? cparams->block_size - 445 (data_len % cparams->block_size) : 0; 446 447 if (pad_len) { 448 padding = rte_pktmbuf_append(m, pad_len); 449 if (unlikely(!padding)) 450 return -1; 451 452 data_len += pad_len; 453 memset(padding, 0, pad_len); 454 } 455 456 /* Set crypto operation data parameters */ 457 rte_crypto_op_attach_sym_session(op, cparams->session); 458 459 if (cparams->do_hash) { 460 if (!cparams->hash_verify) { 461 /* Append space for digest to end of packet */ 462 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 463 cparams->digest_length); 464 } else { 465 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 466 cparams->digest_length); 467 } 468 469 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 470 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 471 op->sym->auth.digest.length = cparams->digest_length; 472 473 /* For SNOW3G/KASUMI algorithms, offset/length must be in bits */ 474 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 475 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9) { 476 op->sym->auth.data.offset = ipdata_offset << 3; 477 op->sym->auth.data.length = data_len << 3; 478 } else { 479 op->sym->auth.data.offset = ipdata_offset; 480 op->sym->auth.data.length = data_len; 481 } 482 483 if (cparams->aad.length) { 484 op->sym->auth.aad.data = cparams->aad.data; 485 op->sym->auth.aad.phys_addr = cparams->aad.phys_addr; 486 op->sym->auth.aad.length = cparams->aad.length; 487 } 488 } 489 490 if (cparams->do_cipher) { 491 op->sym->cipher.iv.data = cparams->iv.data; 492 op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr; 493 op->sym->cipher.iv.length = cparams->iv.length; 494 495 /* For SNOW3G algorithms, offset/length must be in bits */ 496 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 497 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8) { 498 op->sym->cipher.data.offset = ipdata_offset << 3; 499 if (cparams->do_hash && cparams->hash_verify) 500 /* Do not cipher the hash tag */ 501 op->sym->cipher.data.length = (data_len - 502 cparams->digest_length) << 3; 503 else 504 op->sym->cipher.data.length = data_len << 3; 505 506 } else { 507 op->sym->cipher.data.offset = ipdata_offset; 508 if (cparams->do_hash && cparams->hash_verify) 509 /* Do not cipher the hash tag */ 510 op->sym->cipher.data.length = data_len - 511 cparams->digest_length; 512 else 513 op->sym->cipher.data.length = data_len; 514 } 515 } 516 517 op->sym->m_src = m; 518 519 return l2fwd_crypto_enqueue(op, cparams); 520 } 521 522 523 /* Send the burst of packets on an output interface */ 524 static int 525 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 526 uint8_t port) 527 { 528 struct rte_mbuf **pkt_buffer; 529 unsigned ret; 530 531 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 532 533 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 534 port_statistics[port].tx += ret; 535 if (unlikely(ret < n)) { 536 port_statistics[port].dropped += (n - ret); 537 do { 538 rte_pktmbuf_free(pkt_buffer[ret]); 539 } while (++ret < n); 540 } 541 542 return 0; 543 } 544 545 /* Enqueue packets for TX and prepare them to be sent */ 546 static int 547 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 548 { 549 unsigned lcore_id, len; 550 struct lcore_queue_conf *qconf; 551 552 lcore_id = rte_lcore_id(); 553 554 qconf = &lcore_queue_conf[lcore_id]; 555 len = qconf->pkt_buf[port].len; 556 qconf->pkt_buf[port].buffer[len] = m; 557 len++; 558 559 /* enough pkts to be sent */ 560 if (unlikely(len == MAX_PKT_BURST)) { 561 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 562 len = 0; 563 } 564 565 qconf->pkt_buf[port].len = len; 566 return 0; 567 } 568 569 static void 570 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 571 { 572 struct ether_hdr *eth; 573 void *tmp; 574 unsigned dst_port; 575 576 dst_port = l2fwd_dst_ports[portid]; 577 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 578 579 /* 02:00:00:00:00:xx */ 580 tmp = ð->d_addr.addr_bytes[0]; 581 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); 582 583 /* src addr */ 584 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 585 586 l2fwd_send_packet(m, (uint8_t) dst_port); 587 } 588 589 /** Generate random key */ 590 static void 591 generate_random_key(uint8_t *key, unsigned length) 592 { 593 int fd; 594 int ret; 595 596 fd = open("/dev/urandom", O_RDONLY); 597 if (fd < 0) 598 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 599 600 ret = read(fd, key, length); 601 close(fd); 602 603 if (ret != (signed)length) 604 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 605 } 606 607 static struct rte_cryptodev_sym_session * 608 initialize_crypto_session(struct l2fwd_crypto_options *options, 609 uint8_t cdev_id) 610 { 611 struct rte_crypto_sym_xform *first_xform; 612 613 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 614 first_xform = &options->cipher_xform; 615 first_xform->next = &options->auth_xform; 616 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 617 first_xform = &options->auth_xform; 618 first_xform->next = &options->cipher_xform; 619 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 620 first_xform = &options->cipher_xform; 621 } else { 622 first_xform = &options->auth_xform; 623 } 624 625 /* Setup Cipher Parameters */ 626 return rte_cryptodev_sym_session_create(cdev_id, first_xform); 627 } 628 629 static void 630 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 631 632 /* main processing loop */ 633 static void 634 l2fwd_main_loop(struct l2fwd_crypto_options *options) 635 { 636 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 637 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 638 639 unsigned lcore_id = rte_lcore_id(); 640 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 641 unsigned i, j, portid, nb_rx, len; 642 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 643 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 644 US_PER_S * BURST_TX_DRAIN_US; 645 struct l2fwd_crypto_params *cparams; 646 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 647 648 if (qconf->nb_rx_ports == 0) { 649 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 650 return; 651 } 652 653 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 654 655 for (i = 0; i < qconf->nb_rx_ports; i++) { 656 657 portid = qconf->rx_port_list[i]; 658 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 659 portid); 660 } 661 662 for (i = 0; i < qconf->nb_crypto_devs; i++) { 663 port_cparams[i].do_cipher = 0; 664 port_cparams[i].do_hash = 0; 665 666 switch (options->xform_chain) { 667 case L2FWD_CRYPTO_CIPHER_HASH: 668 case L2FWD_CRYPTO_HASH_CIPHER: 669 port_cparams[i].do_cipher = 1; 670 port_cparams[i].do_hash = 1; 671 break; 672 case L2FWD_CRYPTO_HASH_ONLY: 673 port_cparams[i].do_hash = 1; 674 break; 675 case L2FWD_CRYPTO_CIPHER_ONLY: 676 port_cparams[i].do_cipher = 1; 677 break; 678 } 679 680 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 681 port_cparams[i].qp_id = 0; 682 683 port_cparams[i].block_size = options->block_size; 684 685 if (port_cparams[i].do_hash) { 686 port_cparams[i].digest_length = 687 options->auth_xform.auth.digest_length; 688 if (options->auth_xform.auth.add_auth_data_length) { 689 port_cparams[i].aad.data = options->aad.data; 690 port_cparams[i].aad.length = 691 options->auth_xform.auth.add_auth_data_length; 692 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 693 if (!options->aad_param) 694 generate_random_key(port_cparams[i].aad.data, 695 port_cparams[i].aad.length); 696 697 } 698 699 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 700 port_cparams[i].hash_verify = 1; 701 else 702 port_cparams[i].hash_verify = 0; 703 704 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 705 } 706 707 if (port_cparams[i].do_cipher) { 708 port_cparams[i].iv.data = options->iv.data; 709 port_cparams[i].iv.length = options->iv.length; 710 port_cparams[i].iv.phys_addr = options->iv.phys_addr; 711 if (!options->iv_param) 712 generate_random_key(port_cparams[i].iv.data, 713 port_cparams[i].iv.length); 714 715 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 716 } 717 718 port_cparams[i].session = initialize_crypto_session(options, 719 port_cparams[i].dev_id); 720 721 if (port_cparams[i].session == NULL) 722 return; 723 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 724 port_cparams[i].dev_id); 725 } 726 727 l2fwd_crypto_options_print(options); 728 729 /* 730 * Initialize previous tsc timestamp before the loop, 731 * to avoid showing the port statistics immediately, 732 * so user can see the crypto information. 733 */ 734 prev_tsc = rte_rdtsc(); 735 while (1) { 736 737 cur_tsc = rte_rdtsc(); 738 739 /* 740 * Crypto device/TX burst queue drain 741 */ 742 diff_tsc = cur_tsc - prev_tsc; 743 if (unlikely(diff_tsc > drain_tsc)) { 744 /* Enqueue all crypto ops remaining in buffers */ 745 for (i = 0; i < qconf->nb_crypto_devs; i++) { 746 cparams = &port_cparams[i]; 747 len = qconf->op_buf[cparams->dev_id].len; 748 l2fwd_crypto_send_burst(qconf, len, cparams); 749 qconf->op_buf[cparams->dev_id].len = 0; 750 } 751 /* Transmit all packets remaining in buffers */ 752 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 753 if (qconf->pkt_buf[portid].len == 0) 754 continue; 755 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 756 qconf->pkt_buf[portid].len, 757 (uint8_t) portid); 758 qconf->pkt_buf[portid].len = 0; 759 } 760 761 /* if timer is enabled */ 762 if (timer_period > 0) { 763 764 /* advance the timer */ 765 timer_tsc += diff_tsc; 766 767 /* if timer has reached its timeout */ 768 if (unlikely(timer_tsc >= 769 (uint64_t)timer_period)) { 770 771 /* do this only on master core */ 772 if (lcore_id == rte_get_master_lcore() 773 && options->refresh_period) { 774 print_stats(); 775 timer_tsc = 0; 776 } 777 } 778 } 779 780 prev_tsc = cur_tsc; 781 } 782 783 /* 784 * Read packet from RX queues 785 */ 786 for (i = 0; i < qconf->nb_rx_ports; i++) { 787 portid = qconf->rx_port_list[i]; 788 789 cparams = &port_cparams[i]; 790 791 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 792 pkts_burst, MAX_PKT_BURST); 793 794 port_statistics[portid].rx += nb_rx; 795 796 if (nb_rx) { 797 /* 798 * If we can't allocate a crypto_ops, then drop 799 * the rest of the burst and dequeue and 800 * process the packets to free offload structs 801 */ 802 if (rte_crypto_op_bulk_alloc( 803 l2fwd_crypto_op_pool, 804 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 805 ops_burst, nb_rx) != 806 nb_rx) { 807 for (j = 0; j < nb_rx; j++) 808 rte_pktmbuf_free(pkts_burst[i]); 809 810 nb_rx = 0; 811 } 812 813 /* Enqueue packets from Crypto device*/ 814 for (j = 0; j < nb_rx; j++) { 815 m = pkts_burst[j]; 816 817 l2fwd_simple_crypto_enqueue(m, 818 ops_burst[j], cparams); 819 } 820 } 821 822 /* Dequeue packets from Crypto device */ 823 do { 824 nb_rx = rte_cryptodev_dequeue_burst( 825 cparams->dev_id, cparams->qp_id, 826 ops_burst, MAX_PKT_BURST); 827 828 crypto_statistics[cparams->dev_id].dequeued += 829 nb_rx; 830 831 /* Forward crypto'd packets */ 832 for (j = 0; j < nb_rx; j++) { 833 m = ops_burst[j]->sym->m_src; 834 835 rte_crypto_op_free(ops_burst[j]); 836 l2fwd_simple_forward(m, portid); 837 } 838 } while (nb_rx == MAX_PKT_BURST); 839 } 840 } 841 } 842 843 static int 844 l2fwd_launch_one_lcore(void *arg) 845 { 846 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 847 return 0; 848 } 849 850 /* Display command line arguments usage */ 851 static void 852 l2fwd_crypto_usage(const char *prgname) 853 { 854 printf("%s [EAL options] --\n" 855 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 856 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 857 " -s manage all ports from single lcore\n" 858 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 859 " (0 to disable, 10 default, 86400 maximum)\n" 860 861 " --cdev_type HW / SW / ANY\n" 862 " --chain HASH_CIPHER / CIPHER_HASH\n" 863 864 " --cipher_algo ALGO\n" 865 " --cipher_op ENCRYPT / DECRYPT\n" 866 " --cipher_key KEY (bytes separated with \":\")\n" 867 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 868 " --iv IV (bytes separated with \":\")\n" 869 " --iv_random_size SIZE: size of IV when generated randomly\n" 870 871 " --auth_algo ALGO\n" 872 " --auth_op GENERATE / VERIFY\n" 873 " --auth_key KEY (bytes separated with \":\")\n" 874 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 875 " --aad AAD (bytes separated with \":\")\n" 876 " --aad_random_size SIZE: size of AAD when generated randomly\n" 877 " --digest_size SIZE: size of digest to be generated/verified\n" 878 879 " --sessionless\n", 880 prgname); 881 } 882 883 /** Parse crypto device type command line argument */ 884 static int 885 parse_cryptodev_type(enum cdev_type *type, char *optarg) 886 { 887 if (strcmp("HW", optarg) == 0) { 888 *type = CDEV_TYPE_HW; 889 return 0; 890 } else if (strcmp("SW", optarg) == 0) { 891 *type = CDEV_TYPE_SW; 892 return 0; 893 } else if (strcmp("ANY", optarg) == 0) { 894 *type = CDEV_TYPE_ANY; 895 return 0; 896 } 897 898 return -1; 899 } 900 901 /** Parse crypto chain xform command line argument */ 902 static int 903 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 904 { 905 if (strcmp("CIPHER_HASH", optarg) == 0) { 906 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 907 return 0; 908 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 909 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 910 return 0; 911 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 912 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 913 return 0; 914 } else if (strcmp("HASH_ONLY", optarg) == 0) { 915 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 916 return 0; 917 } 918 919 return -1; 920 } 921 922 /** Parse crypto cipher algo option command line argument */ 923 static int 924 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 925 { 926 unsigned i; 927 928 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) { 929 if (!strcmp(supported_cipher_algo[i], optarg)) { 930 *algo = (enum rte_crypto_cipher_algorithm)i; 931 return 0; 932 } 933 } 934 935 printf("Cipher algorithm not supported!\n"); 936 return -1; 937 } 938 939 /** Parse crypto cipher operation command line argument */ 940 static int 941 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 942 { 943 if (strcmp("ENCRYPT", optarg) == 0) { 944 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 945 return 0; 946 } else if (strcmp("DECRYPT", optarg) == 0) { 947 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 948 return 0; 949 } 950 951 printf("Cipher operation not supported!\n"); 952 return -1; 953 } 954 955 /** Parse crypto key command line argument */ 956 static int 957 parse_key(uint8_t *data, char *input_arg) 958 { 959 unsigned byte_count; 960 char *token; 961 962 for (byte_count = 0, token = strtok(input_arg, ":"); 963 (byte_count < MAX_KEY_SIZE) && (token != NULL); 964 token = strtok(NULL, ":")) { 965 966 int number = (int)strtol(token, NULL, 16); 967 968 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 969 return -1; 970 971 data[byte_count++] = (uint8_t)number; 972 } 973 974 return byte_count; 975 } 976 977 /** Parse size param*/ 978 static int 979 parse_size(int *size, const char *q_arg) 980 { 981 char *end = NULL; 982 unsigned long n; 983 984 /* parse hexadecimal string */ 985 n = strtoul(q_arg, &end, 10); 986 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 987 n = 0; 988 989 if (n == 0) { 990 printf("invalid size\n"); 991 return -1; 992 } 993 994 *size = n; 995 return 0; 996 } 997 998 /** Parse crypto cipher operation command line argument */ 999 static int 1000 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1001 { 1002 unsigned i; 1003 1004 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) { 1005 if (!strcmp(supported_auth_algo[i], optarg)) { 1006 *algo = (enum rte_crypto_auth_algorithm)i; 1007 return 0; 1008 } 1009 } 1010 1011 printf("Authentication algorithm specified not supported!\n"); 1012 return -1; 1013 } 1014 1015 static int 1016 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1017 { 1018 if (strcmp("VERIFY", optarg) == 0) { 1019 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1020 return 0; 1021 } else if (strcmp("GENERATE", optarg) == 0) { 1022 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1023 return 0; 1024 } 1025 1026 printf("Authentication operation specified not supported!\n"); 1027 return -1; 1028 } 1029 1030 /** Parse long options */ 1031 static int 1032 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1033 struct option *lgopts, int option_index) 1034 { 1035 int retval; 1036 1037 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1038 retval = parse_cryptodev_type(&options->type, optarg); 1039 if (retval == 0) 1040 snprintf(options->string_type, MAX_STR_LEN, 1041 "%s", optarg); 1042 return retval; 1043 } 1044 1045 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1046 return parse_crypto_opt_chain(options, optarg); 1047 1048 /* Cipher options */ 1049 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1050 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1051 optarg); 1052 1053 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1054 return parse_cipher_op(&options->cipher_xform.cipher.op, 1055 optarg); 1056 1057 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1058 options->ckey_param = 1; 1059 options->cipher_xform.cipher.key.length = 1060 parse_key(options->cipher_xform.cipher.key.data, optarg); 1061 if (options->cipher_xform.cipher.key.length > 0) 1062 return 0; 1063 else 1064 return -1; 1065 } 1066 1067 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1068 return parse_size(&options->ckey_random_size, optarg); 1069 1070 else if (strcmp(lgopts[option_index].name, "iv") == 0) { 1071 options->iv_param = 1; 1072 options->iv.length = 1073 parse_key(options->iv.data, optarg); 1074 if (options->iv.length > 0) 1075 return 0; 1076 else 1077 return -1; 1078 } 1079 1080 else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0) 1081 return parse_size(&options->iv_random_size, optarg); 1082 1083 /* Authentication options */ 1084 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1085 return parse_auth_algo(&options->auth_xform.auth.algo, 1086 optarg); 1087 } 1088 1089 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1090 return parse_auth_op(&options->auth_xform.auth.op, 1091 optarg); 1092 1093 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1094 options->akey_param = 1; 1095 options->auth_xform.auth.key.length = 1096 parse_key(options->auth_xform.auth.key.data, optarg); 1097 if (options->auth_xform.auth.key.length > 0) 1098 return 0; 1099 else 1100 return -1; 1101 } 1102 1103 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1104 return parse_size(&options->akey_random_size, optarg); 1105 } 1106 1107 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1108 options->aad_param = 1; 1109 options->aad.length = 1110 parse_key(options->aad.data, optarg); 1111 if (options->aad.length > 0) 1112 return 0; 1113 else 1114 return -1; 1115 } 1116 1117 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1118 return parse_size(&options->aad_random_size, optarg); 1119 } 1120 1121 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1122 return parse_size(&options->digest_size, optarg); 1123 } 1124 1125 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1126 options->sessionless = 1; 1127 return 0; 1128 } 1129 1130 return -1; 1131 } 1132 1133 /** Parse port mask */ 1134 static int 1135 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1136 const char *q_arg) 1137 { 1138 char *end = NULL; 1139 unsigned long pm; 1140 1141 /* parse hexadecimal string */ 1142 pm = strtoul(q_arg, &end, 16); 1143 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1144 pm = 0; 1145 1146 options->portmask = pm; 1147 if (options->portmask == 0) { 1148 printf("invalid portmask specified\n"); 1149 return -1; 1150 } 1151 1152 return pm; 1153 } 1154 1155 /** Parse number of queues */ 1156 static int 1157 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1158 const char *q_arg) 1159 { 1160 char *end = NULL; 1161 unsigned long n; 1162 1163 /* parse hexadecimal string */ 1164 n = strtoul(q_arg, &end, 10); 1165 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1166 n = 0; 1167 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1168 n = 0; 1169 1170 options->nb_ports_per_lcore = n; 1171 if (options->nb_ports_per_lcore == 0) { 1172 printf("invalid number of ports selected\n"); 1173 return -1; 1174 } 1175 1176 return 0; 1177 } 1178 1179 /** Parse timer period */ 1180 static int 1181 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1182 const char *q_arg) 1183 { 1184 char *end = NULL; 1185 unsigned long n; 1186 1187 /* parse number string */ 1188 n = (unsigned)strtol(q_arg, &end, 10); 1189 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1190 n = 0; 1191 1192 if (n >= MAX_TIMER_PERIOD) { 1193 printf("Warning refresh period specified %lu is greater than " 1194 "max value %lu! using max value", 1195 n, MAX_TIMER_PERIOD); 1196 n = MAX_TIMER_PERIOD; 1197 } 1198 1199 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1200 1201 return 0; 1202 } 1203 1204 /** Generate default options for application */ 1205 static void 1206 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1207 { 1208 options->portmask = 0xffffffff; 1209 options->nb_ports_per_lcore = 1; 1210 options->refresh_period = 10000; 1211 options->single_lcore = 0; 1212 options->sessionless = 0; 1213 1214 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1215 1216 /* Cipher Data */ 1217 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1218 options->cipher_xform.next = NULL; 1219 options->ckey_param = 0; 1220 options->ckey_random_size = -1; 1221 options->cipher_xform.cipher.key.length = 0; 1222 options->iv_param = 0; 1223 options->iv_random_size = -1; 1224 options->iv.length = 0; 1225 1226 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1227 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1228 1229 /* Authentication Data */ 1230 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1231 options->auth_xform.next = NULL; 1232 options->akey_param = 0; 1233 options->akey_random_size = -1; 1234 options->auth_xform.auth.key.length = 0; 1235 options->aad_param = 0; 1236 options->aad_random_size = -1; 1237 options->aad.length = 0; 1238 options->digest_size = -1; 1239 1240 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1241 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1242 1243 options->type = CDEV_TYPE_ANY; 1244 } 1245 1246 static void 1247 display_cipher_info(struct l2fwd_crypto_options *options) 1248 { 1249 printf("\n---- Cipher information ---\n"); 1250 printf("Algorithm: %s\n", 1251 supported_cipher_algo[options->cipher_xform.cipher.algo]); 1252 rte_hexdump(stdout, "Cipher key:", 1253 options->cipher_xform.cipher.key.data, 1254 options->cipher_xform.cipher.key.length); 1255 rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length); 1256 } 1257 1258 static void 1259 display_auth_info(struct l2fwd_crypto_options *options) 1260 { 1261 printf("\n---- Authentication information ---\n"); 1262 printf("Algorithm: %s\n", 1263 supported_auth_algo[options->auth_xform.auth.algo]); 1264 rte_hexdump(stdout, "Auth key:", 1265 options->auth_xform.auth.key.data, 1266 options->auth_xform.auth.key.length); 1267 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1268 } 1269 1270 static void 1271 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1272 { 1273 char string_cipher_op[MAX_STR_LEN]; 1274 char string_auth_op[MAX_STR_LEN]; 1275 1276 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1277 strcpy(string_cipher_op, "Encrypt"); 1278 else 1279 strcpy(string_cipher_op, "Decrypt"); 1280 1281 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1282 strcpy(string_auth_op, "Auth generate"); 1283 else 1284 strcpy(string_auth_op, "Auth verify"); 1285 1286 printf("Options:-\nn"); 1287 printf("portmask: %x\n", options->portmask); 1288 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1289 printf("refresh period : %u\n", options->refresh_period); 1290 printf("single lcore mode: %s\n", 1291 options->single_lcore ? "enabled" : "disabled"); 1292 printf("stats_printing: %s\n", 1293 options->refresh_period == 0 ? "disabled" : "enabled"); 1294 1295 printf("sessionless crypto: %s\n", 1296 options->sessionless ? "enabled" : "disabled"); 1297 1298 if (options->ckey_param && (options->ckey_random_size != -1)) 1299 printf("Cipher key already parsed, ignoring size of random key\n"); 1300 1301 if (options->akey_param && (options->akey_random_size != -1)) 1302 printf("Auth key already parsed, ignoring size of random key\n"); 1303 1304 if (options->iv_param && (options->iv_random_size != -1)) 1305 printf("IV already parsed, ignoring size of random IV\n"); 1306 1307 if (options->aad_param && (options->aad_random_size != -1)) 1308 printf("AAD already parsed, ignoring size of random AAD\n"); 1309 1310 printf("\nCrypto chain: "); 1311 switch (options->xform_chain) { 1312 case L2FWD_CRYPTO_CIPHER_HASH: 1313 printf("Input --> %s --> %s --> Output\n", 1314 string_cipher_op, string_auth_op); 1315 display_cipher_info(options); 1316 display_auth_info(options); 1317 break; 1318 case L2FWD_CRYPTO_HASH_CIPHER: 1319 printf("Input --> %s --> %s --> Output\n", 1320 string_auth_op, string_cipher_op); 1321 display_cipher_info(options); 1322 display_auth_info(options); 1323 break; 1324 case L2FWD_CRYPTO_HASH_ONLY: 1325 printf("Input --> %s --> Output\n", string_auth_op); 1326 display_auth_info(options); 1327 break; 1328 case L2FWD_CRYPTO_CIPHER_ONLY: 1329 printf("Input --> %s --> Output\n", string_cipher_op); 1330 display_cipher_info(options); 1331 break; 1332 } 1333 } 1334 1335 /* Parse the argument given in the command line of the application */ 1336 static int 1337 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1338 int argc, char **argv) 1339 { 1340 int opt, retval, option_index; 1341 char **argvopt = argv, *prgname = argv[0]; 1342 1343 static struct option lgopts[] = { 1344 { "sessionless", no_argument, 0, 0 }, 1345 1346 { "cdev_type", required_argument, 0, 0 }, 1347 { "chain", required_argument, 0, 0 }, 1348 1349 { "cipher_algo", required_argument, 0, 0 }, 1350 { "cipher_op", required_argument, 0, 0 }, 1351 { "cipher_key", required_argument, 0, 0 }, 1352 { "cipher_key_random_size", required_argument, 0, 0 }, 1353 1354 { "auth_algo", required_argument, 0, 0 }, 1355 { "auth_op", required_argument, 0, 0 }, 1356 { "auth_key", required_argument, 0, 0 }, 1357 { "auth_key_random_size", required_argument, 0, 0 }, 1358 1359 { "iv", required_argument, 0, 0 }, 1360 { "iv_random_size", required_argument, 0, 0 }, 1361 { "aad", required_argument, 0, 0 }, 1362 { "aad_random_size", required_argument, 0, 0 }, 1363 { "digest_size", required_argument, 0, 0 }, 1364 1365 { "sessionless", no_argument, 0, 0 }, 1366 1367 { NULL, 0, 0, 0 } 1368 }; 1369 1370 l2fwd_crypto_default_options(options); 1371 1372 while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts, 1373 &option_index)) != EOF) { 1374 switch (opt) { 1375 /* long options */ 1376 case 0: 1377 retval = l2fwd_crypto_parse_args_long_options(options, 1378 lgopts, option_index); 1379 if (retval < 0) { 1380 l2fwd_crypto_usage(prgname); 1381 return -1; 1382 } 1383 break; 1384 1385 /* portmask */ 1386 case 'p': 1387 retval = l2fwd_crypto_parse_portmask(options, optarg); 1388 if (retval < 0) { 1389 l2fwd_crypto_usage(prgname); 1390 return -1; 1391 } 1392 break; 1393 1394 /* nqueue */ 1395 case 'q': 1396 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1397 if (retval < 0) { 1398 l2fwd_crypto_usage(prgname); 1399 return -1; 1400 } 1401 break; 1402 1403 /* single */ 1404 case 's': 1405 options->single_lcore = 1; 1406 1407 break; 1408 1409 /* timer period */ 1410 case 'T': 1411 retval = l2fwd_crypto_parse_timer_period(options, 1412 optarg); 1413 if (retval < 0) { 1414 l2fwd_crypto_usage(prgname); 1415 return -1; 1416 } 1417 break; 1418 1419 default: 1420 l2fwd_crypto_usage(prgname); 1421 return -1; 1422 } 1423 } 1424 1425 1426 if (optind >= 0) 1427 argv[optind-1] = prgname; 1428 1429 retval = optind-1; 1430 optind = 0; /* reset getopt lib */ 1431 1432 return retval; 1433 } 1434 1435 /* Check the link status of all ports in up to 9s, and print them finally */ 1436 static void 1437 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1438 { 1439 #define CHECK_INTERVAL 100 /* 100ms */ 1440 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1441 uint8_t portid, count, all_ports_up, print_flag = 0; 1442 struct rte_eth_link link; 1443 1444 printf("\nChecking link status"); 1445 fflush(stdout); 1446 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1447 all_ports_up = 1; 1448 for (portid = 0; portid < port_num; portid++) { 1449 if ((port_mask & (1 << portid)) == 0) 1450 continue; 1451 memset(&link, 0, sizeof(link)); 1452 rte_eth_link_get_nowait(portid, &link); 1453 /* print link status if flag set */ 1454 if (print_flag == 1) { 1455 if (link.link_status) 1456 printf("Port %d Link Up - speed %u " 1457 "Mbps - %s\n", (uint8_t)portid, 1458 (unsigned)link.link_speed, 1459 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1460 ("full-duplex") : ("half-duplex\n")); 1461 else 1462 printf("Port %d Link Down\n", 1463 (uint8_t)portid); 1464 continue; 1465 } 1466 /* clear all_ports_up flag if any link down */ 1467 if (link.link_status == ETH_LINK_DOWN) { 1468 all_ports_up = 0; 1469 break; 1470 } 1471 } 1472 /* after finally printing all link status, get out */ 1473 if (print_flag == 1) 1474 break; 1475 1476 if (all_ports_up == 0) { 1477 printf("."); 1478 fflush(stdout); 1479 rte_delay_ms(CHECK_INTERVAL); 1480 } 1481 1482 /* set the print_flag if all ports up or timeout */ 1483 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1484 print_flag = 1; 1485 printf("done\n"); 1486 } 1487 } 1488 } 1489 1490 /* Check if device has to be HW/SW or any */ 1491 static int 1492 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info) 1493 { 1494 if (options->type == CDEV_TYPE_HW && 1495 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1496 return 0; 1497 if (options->type == CDEV_TYPE_SW && 1498 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1499 return 0; 1500 if (options->type == CDEV_TYPE_ANY) 1501 return 0; 1502 1503 return -1; 1504 } 1505 1506 static inline int 1507 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1508 uint16_t increment) 1509 { 1510 uint16_t supp_size; 1511 1512 /* Single value */ 1513 if (increment == 0) { 1514 if (length == min) 1515 return 0; 1516 else 1517 return -1; 1518 } 1519 1520 /* Range of values */ 1521 for (supp_size = min; supp_size <= max; supp_size += increment) { 1522 if (length == supp_size) 1523 return 0; 1524 } 1525 1526 return -1; 1527 } 1528 static int 1529 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1530 uint8_t *enabled_cdevs) 1531 { 1532 unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0; 1533 const struct rte_cryptodev_capabilities *cap; 1534 enum rte_crypto_auth_algorithm cap_auth_algo; 1535 enum rte_crypto_auth_algorithm opt_auth_algo; 1536 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1537 enum rte_crypto_cipher_algorithm opt_cipher_algo; 1538 int retval; 1539 1540 cdev_count = rte_cryptodev_count(); 1541 if (cdev_count == 0) { 1542 printf("No crypto devices available\n"); 1543 return -1; 1544 } 1545 1546 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1547 cdev_id++) { 1548 struct rte_cryptodev_qp_conf qp_conf; 1549 struct rte_cryptodev_info dev_info; 1550 1551 struct rte_cryptodev_config conf = { 1552 .nb_queue_pairs = 1, 1553 .socket_id = SOCKET_ID_ANY, 1554 .session_mp = { 1555 .nb_objs = 2048, 1556 .cache_size = 64 1557 } 1558 }; 1559 1560 rte_cryptodev_info_get(cdev_id, &dev_info); 1561 1562 /* Set cipher parameters */ 1563 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 1564 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 1565 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 1566 /* Check if device supports cipher algo */ 1567 i = 0; 1568 opt_cipher_algo = options->cipher_xform.cipher.algo; 1569 cap = &dev_info.capabilities[i]; 1570 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1571 cap_cipher_algo = cap->sym.cipher.algo; 1572 if (cap->sym.xform_type == 1573 RTE_CRYPTO_SYM_XFORM_CIPHER) { 1574 if (cap_cipher_algo == opt_cipher_algo) { 1575 if (check_type(options, &dev_info) == 0) 1576 break; 1577 } 1578 } 1579 cap = &dev_info.capabilities[++i]; 1580 } 1581 1582 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1583 printf("Algorithm %s not supported by cryptodev %u" 1584 " or device not of preferred type (%s)\n", 1585 supported_cipher_algo[opt_cipher_algo], 1586 cdev_id, 1587 options->string_type); 1588 continue; 1589 } 1590 1591 options->block_size = cap->sym.cipher.block_size; 1592 /* 1593 * Check if length of provided IV is supported 1594 * by the algorithm chosen. 1595 */ 1596 if (options->iv_param) { 1597 if (check_supported_size(options->iv.length, 1598 cap->sym.cipher.iv_size.min, 1599 cap->sym.cipher.iv_size.max, 1600 cap->sym.cipher.iv_size.increment) 1601 != 0) { 1602 printf("Unsupported IV length\n"); 1603 return -1; 1604 } 1605 /* 1606 * Check if length of IV to be randomly generated 1607 * is supported by the algorithm chosen. 1608 */ 1609 } else if (options->iv_random_size != -1) { 1610 if (check_supported_size(options->iv_random_size, 1611 cap->sym.cipher.iv_size.min, 1612 cap->sym.cipher.iv_size.max, 1613 cap->sym.cipher.iv_size.increment) 1614 != 0) { 1615 printf("Unsupported IV length\n"); 1616 return -1; 1617 } 1618 options->iv.length = options->iv_random_size; 1619 /* No size provided, use minimum size. */ 1620 } else 1621 options->iv.length = cap->sym.cipher.iv_size.min; 1622 1623 /* 1624 * Check if length of provided cipher key is supported 1625 * by the algorithm chosen. 1626 */ 1627 if (options->ckey_param) { 1628 if (check_supported_size( 1629 options->cipher_xform.cipher.key.length, 1630 cap->sym.cipher.key_size.min, 1631 cap->sym.cipher.key_size.max, 1632 cap->sym.cipher.key_size.increment) 1633 != 0) { 1634 printf("Unsupported cipher key length\n"); 1635 return -1; 1636 } 1637 /* 1638 * Check if length of the cipher key to be randomly generated 1639 * is supported by the algorithm chosen. 1640 */ 1641 } else if (options->ckey_random_size != -1) { 1642 if (check_supported_size(options->ckey_random_size, 1643 cap->sym.cipher.key_size.min, 1644 cap->sym.cipher.key_size.max, 1645 cap->sym.cipher.key_size.increment) 1646 != 0) { 1647 printf("Unsupported cipher key length\n"); 1648 return -1; 1649 } 1650 options->cipher_xform.cipher.key.length = 1651 options->ckey_random_size; 1652 /* No size provided, use minimum size. */ 1653 } else 1654 options->cipher_xform.cipher.key.length = 1655 cap->sym.cipher.key_size.min; 1656 1657 if (!options->ckey_param) 1658 generate_random_key( 1659 options->cipher_xform.cipher.key.data, 1660 options->cipher_xform.cipher.key.length); 1661 1662 } 1663 1664 /* Set auth parameters */ 1665 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 1666 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 1667 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 1668 /* Check if device supports auth algo */ 1669 i = 0; 1670 opt_auth_algo = options->auth_xform.auth.algo; 1671 cap = &dev_info.capabilities[i]; 1672 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1673 cap_auth_algo = cap->sym.auth.algo; 1674 if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) && 1675 (cap_auth_algo == opt_auth_algo) && 1676 (check_type(options, &dev_info) == 0)) { 1677 break; 1678 } 1679 cap = &dev_info.capabilities[++i]; 1680 } 1681 1682 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1683 printf("Algorithm %s not supported by cryptodev %u" 1684 " or device not of preferred type (%s)\n", 1685 supported_auth_algo[opt_auth_algo], 1686 cdev_id, 1687 options->string_type); 1688 continue; 1689 } 1690 1691 options->block_size = cap->sym.auth.block_size; 1692 /* 1693 * Check if length of provided AAD is supported 1694 * by the algorithm chosen. 1695 */ 1696 if (options->aad_param) { 1697 if (check_supported_size(options->aad.length, 1698 cap->sym.auth.aad_size.min, 1699 cap->sym.auth.aad_size.max, 1700 cap->sym.auth.aad_size.increment) 1701 != 0) { 1702 printf("Unsupported AAD length\n"); 1703 return -1; 1704 } 1705 /* 1706 * Check if length of AAD to be randomly generated 1707 * is supported by the algorithm chosen. 1708 */ 1709 } else if (options->aad_random_size != -1) { 1710 if (check_supported_size(options->aad_random_size, 1711 cap->sym.auth.aad_size.min, 1712 cap->sym.auth.aad_size.max, 1713 cap->sym.auth.aad_size.increment) 1714 != 0) { 1715 printf("Unsupported AAD length\n"); 1716 return -1; 1717 } 1718 options->aad.length = options->aad_random_size; 1719 /* No size provided, use minimum size. */ 1720 } else 1721 options->aad.length = cap->sym.auth.aad_size.min; 1722 1723 options->auth_xform.auth.add_auth_data_length = 1724 options->aad.length; 1725 1726 /* 1727 * Check if length of provided auth key is supported 1728 * by the algorithm chosen. 1729 */ 1730 if (options->akey_param) { 1731 if (check_supported_size( 1732 options->auth_xform.auth.key.length, 1733 cap->sym.auth.key_size.min, 1734 cap->sym.auth.key_size.max, 1735 cap->sym.auth.key_size.increment) 1736 != 0) { 1737 printf("Unsupported auth key length\n"); 1738 return -1; 1739 } 1740 /* 1741 * Check if length of the auth key to be randomly generated 1742 * is supported by the algorithm chosen. 1743 */ 1744 } else if (options->akey_random_size != -1) { 1745 if (check_supported_size(options->akey_random_size, 1746 cap->sym.auth.key_size.min, 1747 cap->sym.auth.key_size.max, 1748 cap->sym.auth.key_size.increment) 1749 != 0) { 1750 printf("Unsupported auth key length\n"); 1751 return -1; 1752 } 1753 options->auth_xform.auth.key.length = 1754 options->akey_random_size; 1755 /* No size provided, use minimum size. */ 1756 } else 1757 options->auth_xform.auth.key.length = 1758 cap->sym.auth.key_size.min; 1759 1760 if (!options->akey_param) 1761 generate_random_key( 1762 options->auth_xform.auth.key.data, 1763 options->auth_xform.auth.key.length); 1764 1765 /* Check if digest size is supported by the algorithm. */ 1766 if (options->digest_size != -1) { 1767 if (check_supported_size(options->digest_size, 1768 cap->sym.auth.digest_size.min, 1769 cap->sym.auth.digest_size.max, 1770 cap->sym.auth.digest_size.increment) 1771 != 0) { 1772 printf("Unsupported digest length\n"); 1773 return -1; 1774 } 1775 options->auth_xform.auth.digest_length = 1776 options->digest_size; 1777 /* No size provided, use minimum size. */ 1778 } else 1779 options->auth_xform.auth.digest_length = 1780 cap->sym.auth.digest_size.min; 1781 } 1782 1783 retval = rte_cryptodev_configure(cdev_id, &conf); 1784 if (retval < 0) { 1785 printf("Failed to configure cryptodev %u", cdev_id); 1786 return -1; 1787 } 1788 1789 qp_conf.nb_descriptors = 2048; 1790 1791 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 1792 SOCKET_ID_ANY); 1793 if (retval < 0) { 1794 printf("Failed to setup queue pair %u on cryptodev %u", 1795 0, cdev_id); 1796 return -1; 1797 } 1798 1799 l2fwd_enabled_crypto_mask |= (1 << cdev_id); 1800 1801 enabled_cdevs[cdev_id] = 1; 1802 enabled_cdev_count++; 1803 } 1804 1805 return enabled_cdev_count; 1806 } 1807 1808 static int 1809 initialize_ports(struct l2fwd_crypto_options *options) 1810 { 1811 uint8_t last_portid, portid; 1812 unsigned enabled_portcount = 0; 1813 unsigned nb_ports = rte_eth_dev_count(); 1814 1815 if (nb_ports == 0) { 1816 printf("No Ethernet ports - bye\n"); 1817 return -1; 1818 } 1819 1820 /* Reset l2fwd_dst_ports */ 1821 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 1822 l2fwd_dst_ports[portid] = 0; 1823 1824 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 1825 int retval; 1826 1827 /* Skip ports that are not enabled */ 1828 if ((options->portmask & (1 << portid)) == 0) 1829 continue; 1830 1831 /* init port */ 1832 printf("Initializing port %u... ", (unsigned) portid); 1833 fflush(stdout); 1834 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 1835 if (retval < 0) { 1836 printf("Cannot configure device: err=%d, port=%u\n", 1837 retval, (unsigned) portid); 1838 return -1; 1839 } 1840 1841 /* init one RX queue */ 1842 fflush(stdout); 1843 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1844 rte_eth_dev_socket_id(portid), 1845 NULL, l2fwd_pktmbuf_pool); 1846 if (retval < 0) { 1847 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 1848 retval, (unsigned) portid); 1849 return -1; 1850 } 1851 1852 /* init one TX queue on each port */ 1853 fflush(stdout); 1854 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 1855 rte_eth_dev_socket_id(portid), 1856 NULL); 1857 if (retval < 0) { 1858 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 1859 retval, (unsigned) portid); 1860 1861 return -1; 1862 } 1863 1864 /* Start device */ 1865 retval = rte_eth_dev_start(portid); 1866 if (retval < 0) { 1867 printf("rte_eth_dev_start:err=%d, port=%u\n", 1868 retval, (unsigned) portid); 1869 return -1; 1870 } 1871 1872 rte_eth_promiscuous_enable(portid); 1873 1874 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 1875 1876 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 1877 (unsigned) portid, 1878 l2fwd_ports_eth_addr[portid].addr_bytes[0], 1879 l2fwd_ports_eth_addr[portid].addr_bytes[1], 1880 l2fwd_ports_eth_addr[portid].addr_bytes[2], 1881 l2fwd_ports_eth_addr[portid].addr_bytes[3], 1882 l2fwd_ports_eth_addr[portid].addr_bytes[4], 1883 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 1884 1885 /* initialize port stats */ 1886 memset(&port_statistics, 0, sizeof(port_statistics)); 1887 1888 /* Setup port forwarding table */ 1889 if (enabled_portcount % 2) { 1890 l2fwd_dst_ports[portid] = last_portid; 1891 l2fwd_dst_ports[last_portid] = portid; 1892 } else { 1893 last_portid = portid; 1894 } 1895 1896 l2fwd_enabled_port_mask |= (1 << portid); 1897 enabled_portcount++; 1898 } 1899 1900 if (enabled_portcount == 1) { 1901 l2fwd_dst_ports[last_portid] = last_portid; 1902 } else if (enabled_portcount % 2) { 1903 printf("odd number of ports in portmask- bye\n"); 1904 return -1; 1905 } 1906 1907 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 1908 1909 return enabled_portcount; 1910 } 1911 1912 static void 1913 reserve_key_memory(struct l2fwd_crypto_options *options) 1914 { 1915 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 1916 MAX_KEY_SIZE, 0); 1917 if (options->cipher_xform.cipher.key.data == NULL) 1918 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 1919 1920 1921 options->auth_xform.auth.key.data = rte_malloc("auth key", 1922 MAX_KEY_SIZE, 0); 1923 if (options->auth_xform.auth.key.data == NULL) 1924 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 1925 1926 options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0); 1927 if (options->iv.data == NULL) 1928 rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV"); 1929 options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data); 1930 1931 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 1932 if (options->aad.data == NULL) 1933 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 1934 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 1935 } 1936 1937 int 1938 main(int argc, char **argv) 1939 { 1940 struct lcore_queue_conf *qconf; 1941 struct l2fwd_crypto_options options; 1942 1943 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 1944 unsigned lcore_id, rx_lcore_id; 1945 int ret, enabled_cdevcount, enabled_portcount; 1946 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 1947 1948 /* init EAL */ 1949 ret = rte_eal_init(argc, argv); 1950 if (ret < 0) 1951 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 1952 argc -= ret; 1953 argv += ret; 1954 1955 /* reserve memory for Cipher/Auth key and IV */ 1956 reserve_key_memory(&options); 1957 1958 /* fill out the supported algorithm tables */ 1959 fill_supported_algorithm_tables(); 1960 1961 /* parse application arguments (after the EAL ones) */ 1962 ret = l2fwd_crypto_parse_args(&options, argc, argv); 1963 if (ret < 0) 1964 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 1965 1966 /* create the mbuf pool */ 1967 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 1968 sizeof(struct rte_crypto_op), 1969 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 1970 if (l2fwd_pktmbuf_pool == NULL) 1971 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 1972 1973 /* create crypto op pool */ 1974 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 1975 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0, 1976 rte_socket_id()); 1977 if (l2fwd_crypto_op_pool == NULL) 1978 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 1979 1980 /* Enable Ethernet ports */ 1981 enabled_portcount = initialize_ports(&options); 1982 if (enabled_portcount < 1) 1983 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 1984 1985 nb_ports = rte_eth_dev_count(); 1986 /* Initialize the port/queue configuration of each logical core */ 1987 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 1988 portid < nb_ports; portid++) { 1989 1990 /* skip ports that are not enabled */ 1991 if ((options.portmask & (1 << portid)) == 0) 1992 continue; 1993 1994 if (options.single_lcore && qconf == NULL) { 1995 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 1996 rx_lcore_id++; 1997 if (rx_lcore_id >= RTE_MAX_LCORE) 1998 rte_exit(EXIT_FAILURE, 1999 "Not enough cores\n"); 2000 } 2001 } else if (!options.single_lcore) { 2002 /* get the lcore_id for this port */ 2003 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2004 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2005 options.nb_ports_per_lcore) { 2006 rx_lcore_id++; 2007 if (rx_lcore_id >= RTE_MAX_LCORE) 2008 rte_exit(EXIT_FAILURE, 2009 "Not enough cores\n"); 2010 } 2011 } 2012 2013 /* Assigned a new logical core in the loop above. */ 2014 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2015 qconf = &lcore_queue_conf[rx_lcore_id]; 2016 2017 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2018 qconf->nb_rx_ports++; 2019 2020 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2021 } 2022 2023 /* Enable Crypto devices */ 2024 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2025 enabled_cdevs); 2026 if (enabled_cdevcount < 0) 2027 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2028 2029 if (enabled_cdevcount < enabled_portcount) 2030 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2031 "has to be more or equal to number of ports (%d)\n", 2032 enabled_cdevcount, enabled_portcount); 2033 2034 nb_cryptodevs = rte_cryptodev_count(); 2035 2036 /* Initialize the port/cryptodev configuration of each logical core */ 2037 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2038 cdev_id < nb_cryptodevs && enabled_cdevcount; 2039 cdev_id++) { 2040 /* Crypto op not supported by crypto device */ 2041 if (!enabled_cdevs[cdev_id]) 2042 continue; 2043 2044 if (options.single_lcore && qconf == NULL) { 2045 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2046 rx_lcore_id++; 2047 if (rx_lcore_id >= RTE_MAX_LCORE) 2048 rte_exit(EXIT_FAILURE, 2049 "Not enough cores\n"); 2050 } 2051 } else if (!options.single_lcore) { 2052 /* get the lcore_id for this port */ 2053 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2054 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2055 options.nb_ports_per_lcore) { 2056 rx_lcore_id++; 2057 if (rx_lcore_id >= RTE_MAX_LCORE) 2058 rte_exit(EXIT_FAILURE, 2059 "Not enough cores\n"); 2060 } 2061 } 2062 2063 /* Assigned a new logical core in the loop above. */ 2064 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2065 qconf = &lcore_queue_conf[rx_lcore_id]; 2066 2067 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2068 qconf->nb_crypto_devs++; 2069 2070 enabled_cdevcount--; 2071 2072 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2073 (unsigned)cdev_id); 2074 } 2075 2076 /* launch per-lcore init on every lcore */ 2077 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2078 CALL_MASTER); 2079 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2080 if (rte_eal_wait_lcore(lcore_id) < 0) 2081 return -1; 2082 } 2083 2084 return 0; 2085 } 2086