xref: /dpdk/examples/l2fwd-crypto/main.c (revision 6b72aad61f09b870427f4ebcedae525a985bb37a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 
92 /*
93  * Configurable number of RX/TX ring descriptors
94  */
95 #define RTE_TEST_RX_DESC_DEFAULT 128
96 #define RTE_TEST_TX_DESC_DEFAULT 512
97 
98 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
99 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
100 
101 /* ethernet addresses of ports */
102 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
103 
104 /* mask of enabled ports */
105 static uint64_t l2fwd_enabled_port_mask;
106 static uint64_t l2fwd_enabled_crypto_mask;
107 
108 /* list of enabled ports */
109 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
110 
111 
112 struct pkt_buffer {
113 	unsigned len;
114 	struct rte_mbuf *buffer[MAX_PKT_BURST];
115 };
116 
117 struct op_buffer {
118 	unsigned len;
119 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
120 };
121 
122 #define MAX_RX_QUEUE_PER_LCORE 16
123 #define MAX_TX_QUEUE_PER_PORT 16
124 
125 enum l2fwd_crypto_xform_chain {
126 	L2FWD_CRYPTO_CIPHER_HASH,
127 	L2FWD_CRYPTO_HASH_CIPHER,
128 	L2FWD_CRYPTO_CIPHER_ONLY,
129 	L2FWD_CRYPTO_HASH_ONLY
130 };
131 
132 struct l2fwd_key {
133 	uint8_t *data;
134 	uint32_t length;
135 	phys_addr_t phys_addr;
136 };
137 
138 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
139 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
140 
141 /** l2fwd crypto application command line options */
142 struct l2fwd_crypto_options {
143 	unsigned portmask;
144 	unsigned nb_ports_per_lcore;
145 	unsigned refresh_period;
146 	unsigned single_lcore:1;
147 
148 	enum cdev_type type;
149 	unsigned sessionless:1;
150 
151 	enum l2fwd_crypto_xform_chain xform_chain;
152 
153 	struct rte_crypto_sym_xform cipher_xform;
154 	unsigned ckey_param;
155 	int ckey_random_size;
156 
157 	struct l2fwd_key iv;
158 	unsigned iv_param;
159 	int iv_random_size;
160 
161 	struct rte_crypto_sym_xform auth_xform;
162 	uint8_t akey_param;
163 	int akey_random_size;
164 
165 	struct l2fwd_key aad;
166 	unsigned aad_param;
167 	int aad_random_size;
168 
169 	int digest_size;
170 
171 	uint16_t block_size;
172 	char string_type[MAX_STR_LEN];
173 };
174 
175 /** l2fwd crypto lcore params */
176 struct l2fwd_crypto_params {
177 	uint8_t dev_id;
178 	uint8_t qp_id;
179 
180 	unsigned digest_length;
181 	unsigned block_size;
182 
183 	struct l2fwd_key iv;
184 	struct l2fwd_key aad;
185 	struct rte_cryptodev_sym_session *session;
186 
187 	uint8_t do_cipher;
188 	uint8_t do_hash;
189 	uint8_t hash_verify;
190 
191 	enum rte_crypto_cipher_algorithm cipher_algo;
192 	enum rte_crypto_auth_algorithm auth_algo;
193 };
194 
195 /** lcore configuration */
196 struct lcore_queue_conf {
197 	unsigned nb_rx_ports;
198 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
199 
200 	unsigned nb_crypto_devs;
201 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
202 
203 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
204 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
205 } __rte_cache_aligned;
206 
207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
208 
209 static const struct rte_eth_conf port_conf = {
210 	.rxmode = {
211 		.mq_mode = ETH_MQ_RX_NONE,
212 		.max_rx_pkt_len = ETHER_MAX_LEN,
213 		.split_hdr_size = 0,
214 		.header_split   = 0, /**< Header Split disabled */
215 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
216 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
217 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
218 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
219 	},
220 	.txmode = {
221 		.mq_mode = ETH_MQ_TX_NONE,
222 	},
223 };
224 
225 struct rte_mempool *l2fwd_pktmbuf_pool;
226 struct rte_mempool *l2fwd_crypto_op_pool;
227 
228 /* Per-port statistics struct */
229 struct l2fwd_port_statistics {
230 	uint64_t tx;
231 	uint64_t rx;
232 
233 	uint64_t crypto_enqueued;
234 	uint64_t crypto_dequeued;
235 
236 	uint64_t dropped;
237 } __rte_cache_aligned;
238 
239 struct l2fwd_crypto_statistics {
240 	uint64_t enqueued;
241 	uint64_t dequeued;
242 
243 	uint64_t errors;
244 } __rte_cache_aligned;
245 
246 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
247 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
248 
249 /* A tsc-based timer responsible for triggering statistics printout */
250 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
251 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
252 
253 /* default period is 10 seconds */
254 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
255 
256 /* Print out statistics on packets dropped */
257 static void
258 print_stats(void)
259 {
260 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
261 	uint64_t total_packets_enqueued, total_packets_dequeued,
262 		total_packets_errors;
263 	unsigned portid;
264 	uint64_t cdevid;
265 
266 	total_packets_dropped = 0;
267 	total_packets_tx = 0;
268 	total_packets_rx = 0;
269 	total_packets_enqueued = 0;
270 	total_packets_dequeued = 0;
271 	total_packets_errors = 0;
272 
273 	const char clr[] = { 27, '[', '2', 'J', '\0' };
274 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
275 
276 		/* Clear screen and move to top left */
277 	printf("%s%s", clr, topLeft);
278 
279 	printf("\nPort statistics ====================================");
280 
281 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
282 		/* skip disabled ports */
283 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
284 			continue;
285 		printf("\nStatistics for port %u ------------------------------"
286 			   "\nPackets sent: %32"PRIu64
287 			   "\nPackets received: %28"PRIu64
288 			   "\nPackets dropped: %29"PRIu64,
289 			   portid,
290 			   port_statistics[portid].tx,
291 			   port_statistics[portid].rx,
292 			   port_statistics[portid].dropped);
293 
294 		total_packets_dropped += port_statistics[portid].dropped;
295 		total_packets_tx += port_statistics[portid].tx;
296 		total_packets_rx += port_statistics[portid].rx;
297 	}
298 	printf("\nCrypto statistics ==================================");
299 
300 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
301 		/* skip disabled ports */
302 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
303 			continue;
304 		printf("\nStatistics for cryptodev %"PRIu64
305 				" -------------------------"
306 			   "\nPackets enqueued: %28"PRIu64
307 			   "\nPackets dequeued: %28"PRIu64
308 			   "\nPackets errors: %30"PRIu64,
309 			   cdevid,
310 			   crypto_statistics[cdevid].enqueued,
311 			   crypto_statistics[cdevid].dequeued,
312 			   crypto_statistics[cdevid].errors);
313 
314 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
315 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
316 		total_packets_errors += crypto_statistics[cdevid].errors;
317 	}
318 	printf("\nAggregate statistics ==============================="
319 		   "\nTotal packets received: %22"PRIu64
320 		   "\nTotal packets enqueued: %22"PRIu64
321 		   "\nTotal packets dequeued: %22"PRIu64
322 		   "\nTotal packets sent: %26"PRIu64
323 		   "\nTotal packets dropped: %23"PRIu64
324 		   "\nTotal packets crypto errors: %17"PRIu64,
325 		   total_packets_rx,
326 		   total_packets_enqueued,
327 		   total_packets_dequeued,
328 		   total_packets_tx,
329 		   total_packets_dropped,
330 		   total_packets_errors);
331 	printf("\n====================================================\n");
332 }
333 
334 static void
335 fill_supported_algorithm_tables(void)
336 {
337 	unsigned i;
338 
339 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
340 		strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
341 
342 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
343 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GMAC], "AES_GMAC");
344 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
345 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5], "MD5");
346 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
347 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
348 		"AES_XCBC_MAC");
349 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
350 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1], "SHA1");
351 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
352 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224], "SHA224");
353 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
354 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256], "SHA256");
355 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
356 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384], "SHA384");
357 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
358 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512], "SHA512");
359 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
360 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_ZUC_EIA3], "ZUC_EIA3");
361 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
362 
363 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
364 		strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
365 
366 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
367 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
368 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
369 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
370 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
371 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_ZUC_EEA3], "ZUC_EEA3");
372 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
373 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CTR], "3DES_CTR");
374 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CBC], "3DES_CBC");
375 }
376 
377 
378 static int
379 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
380 		struct l2fwd_crypto_params *cparams)
381 {
382 	struct rte_crypto_op **op_buffer;
383 	unsigned ret;
384 
385 	op_buffer = (struct rte_crypto_op **)
386 			qconf->op_buf[cparams->dev_id].buffer;
387 
388 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
389 			cparams->qp_id,	op_buffer, (uint16_t) n);
390 
391 	crypto_statistics[cparams->dev_id].enqueued += ret;
392 	if (unlikely(ret < n)) {
393 		crypto_statistics[cparams->dev_id].errors += (n - ret);
394 		do {
395 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
396 			rte_crypto_op_free(op_buffer[ret]);
397 		} while (++ret < n);
398 	}
399 
400 	return 0;
401 }
402 
403 static int
404 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
405 		struct l2fwd_crypto_params *cparams)
406 {
407 	unsigned lcore_id, len;
408 	struct lcore_queue_conf *qconf;
409 
410 	lcore_id = rte_lcore_id();
411 
412 	qconf = &lcore_queue_conf[lcore_id];
413 	len = qconf->op_buf[cparams->dev_id].len;
414 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
415 	len++;
416 
417 	/* enough ops to be sent */
418 	if (len == MAX_PKT_BURST) {
419 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
420 		len = 0;
421 	}
422 
423 	qconf->op_buf[cparams->dev_id].len = len;
424 	return 0;
425 }
426 
427 static int
428 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
429 		struct rte_crypto_op *op,
430 		struct l2fwd_crypto_params *cparams)
431 {
432 	struct ether_hdr *eth_hdr;
433 	struct ipv4_hdr *ip_hdr;
434 
435 	uint32_t ipdata_offset, data_len;
436 	uint32_t pad_len = 0;
437 	char *padding;
438 
439 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
440 
441 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
442 		return -1;
443 
444 	ipdata_offset = sizeof(struct ether_hdr);
445 
446 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
447 			ipdata_offset);
448 
449 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
450 			* IPV4_IHL_MULTIPLIER;
451 
452 
453 	/* Zero pad data to be crypto'd so it is block aligned */
454 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
455 
456 	if (cparams->do_hash && cparams->hash_verify)
457 		data_len -= cparams->digest_length;
458 
459 	if (cparams->do_cipher) {
460 		/*
461 		 * Following algorithms are block cipher algorithms,
462 		 * and might need padding
463 		 */
464 		switch (cparams->cipher_algo) {
465 		case RTE_CRYPTO_CIPHER_AES_CBC:
466 		case RTE_CRYPTO_CIPHER_AES_ECB:
467 		case RTE_CRYPTO_CIPHER_DES_CBC:
468 		case RTE_CRYPTO_CIPHER_3DES_CBC:
469 		case RTE_CRYPTO_CIPHER_3DES_ECB:
470 			if (data_len % cparams->block_size)
471 				pad_len = cparams->block_size -
472 					(data_len % cparams->block_size);
473 			break;
474 		default:
475 			pad_len = 0;
476 		}
477 
478 		if (pad_len) {
479 			padding = rte_pktmbuf_append(m, pad_len);
480 			if (unlikely(!padding))
481 				return -1;
482 
483 			data_len += pad_len;
484 			memset(padding, 0, pad_len);
485 		}
486 	}
487 
488 	/* Set crypto operation data parameters */
489 	rte_crypto_op_attach_sym_session(op, cparams->session);
490 
491 	if (cparams->do_hash) {
492 		if (!cparams->hash_verify) {
493 			/* Append space for digest to end of packet */
494 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
495 				cparams->digest_length);
496 		} else {
497 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
498 				uint8_t *) + ipdata_offset + data_len;
499 		}
500 
501 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
502 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
503 		op->sym->auth.digest.length = cparams->digest_length;
504 
505 		/* For wireless algorithms, offset/length must be in bits */
506 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
507 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
508 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
509 			op->sym->auth.data.offset = ipdata_offset << 3;
510 			op->sym->auth.data.length = data_len << 3;
511 		} else {
512 			op->sym->auth.data.offset = ipdata_offset;
513 			op->sym->auth.data.length = data_len;
514 		}
515 
516 		if (cparams->aad.length) {
517 			op->sym->auth.aad.data = cparams->aad.data;
518 			op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
519 			op->sym->auth.aad.length = cparams->aad.length;
520 		}
521 	}
522 
523 	if (cparams->do_cipher) {
524 		op->sym->cipher.iv.data = cparams->iv.data;
525 		op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
526 		op->sym->cipher.iv.length = cparams->iv.length;
527 
528 		/* For wireless algorithms, offset/length must be in bits */
529 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
530 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
531 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
532 			op->sym->cipher.data.offset = ipdata_offset << 3;
533 			op->sym->cipher.data.length = data_len << 3;
534 		} else {
535 			op->sym->cipher.data.offset = ipdata_offset;
536 			op->sym->cipher.data.length = data_len;
537 		}
538 	}
539 
540 	op->sym->m_src = m;
541 
542 	return l2fwd_crypto_enqueue(op, cparams);
543 }
544 
545 
546 /* Send the burst of packets on an output interface */
547 static int
548 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
549 		uint8_t port)
550 {
551 	struct rte_mbuf **pkt_buffer;
552 	unsigned ret;
553 
554 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
555 
556 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
557 	port_statistics[port].tx += ret;
558 	if (unlikely(ret < n)) {
559 		port_statistics[port].dropped += (n - ret);
560 		do {
561 			rte_pktmbuf_free(pkt_buffer[ret]);
562 		} while (++ret < n);
563 	}
564 
565 	return 0;
566 }
567 
568 /* Enqueue packets for TX and prepare them to be sent */
569 static int
570 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
571 {
572 	unsigned lcore_id, len;
573 	struct lcore_queue_conf *qconf;
574 
575 	lcore_id = rte_lcore_id();
576 
577 	qconf = &lcore_queue_conf[lcore_id];
578 	len = qconf->pkt_buf[port].len;
579 	qconf->pkt_buf[port].buffer[len] = m;
580 	len++;
581 
582 	/* enough pkts to be sent */
583 	if (unlikely(len == MAX_PKT_BURST)) {
584 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
585 		len = 0;
586 	}
587 
588 	qconf->pkt_buf[port].len = len;
589 	return 0;
590 }
591 
592 static void
593 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
594 {
595 	struct ether_hdr *eth;
596 	void *tmp;
597 	unsigned dst_port;
598 
599 	dst_port = l2fwd_dst_ports[portid];
600 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
601 
602 	/* 02:00:00:00:00:xx */
603 	tmp = &eth->d_addr.addr_bytes[0];
604 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
605 
606 	/* src addr */
607 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
608 
609 	l2fwd_send_packet(m, (uint8_t) dst_port);
610 }
611 
612 /** Generate random key */
613 static void
614 generate_random_key(uint8_t *key, unsigned length)
615 {
616 	int fd;
617 	int ret;
618 
619 	fd = open("/dev/urandom", O_RDONLY);
620 	if (fd < 0)
621 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
622 
623 	ret = read(fd, key, length);
624 	close(fd);
625 
626 	if (ret != (signed)length)
627 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
628 }
629 
630 static struct rte_cryptodev_sym_session *
631 initialize_crypto_session(struct l2fwd_crypto_options *options,
632 		uint8_t cdev_id)
633 {
634 	struct rte_crypto_sym_xform *first_xform;
635 
636 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
637 		first_xform = &options->cipher_xform;
638 		first_xform->next = &options->auth_xform;
639 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
640 		first_xform = &options->auth_xform;
641 		first_xform->next = &options->cipher_xform;
642 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
643 		first_xform = &options->cipher_xform;
644 	} else {
645 		first_xform = &options->auth_xform;
646 	}
647 
648 	/* Setup Cipher Parameters */
649 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
650 }
651 
652 static void
653 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
654 
655 /* main processing loop */
656 static void
657 l2fwd_main_loop(struct l2fwd_crypto_options *options)
658 {
659 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
660 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
661 
662 	unsigned lcore_id = rte_lcore_id();
663 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
664 	unsigned i, j, portid, nb_rx, len;
665 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
666 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
667 			US_PER_S * BURST_TX_DRAIN_US;
668 	struct l2fwd_crypto_params *cparams;
669 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
670 
671 	if (qconf->nb_rx_ports == 0) {
672 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
673 		return;
674 	}
675 
676 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
677 
678 	for (i = 0; i < qconf->nb_rx_ports; i++) {
679 
680 		portid = qconf->rx_port_list[i];
681 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
682 			portid);
683 	}
684 
685 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
686 		port_cparams[i].do_cipher = 0;
687 		port_cparams[i].do_hash = 0;
688 
689 		switch (options->xform_chain) {
690 		case L2FWD_CRYPTO_CIPHER_HASH:
691 		case L2FWD_CRYPTO_HASH_CIPHER:
692 			port_cparams[i].do_cipher = 1;
693 			port_cparams[i].do_hash = 1;
694 			break;
695 		case L2FWD_CRYPTO_HASH_ONLY:
696 			port_cparams[i].do_hash = 1;
697 			break;
698 		case L2FWD_CRYPTO_CIPHER_ONLY:
699 			port_cparams[i].do_cipher = 1;
700 			break;
701 		}
702 
703 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
704 		port_cparams[i].qp_id = 0;
705 
706 		port_cparams[i].block_size = options->block_size;
707 
708 		if (port_cparams[i].do_hash) {
709 			port_cparams[i].digest_length =
710 					options->auth_xform.auth.digest_length;
711 			if (options->auth_xform.auth.add_auth_data_length) {
712 				port_cparams[i].aad.data = options->aad.data;
713 				port_cparams[i].aad.length =
714 					options->auth_xform.auth.add_auth_data_length;
715 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
716 				if (!options->aad_param)
717 					generate_random_key(port_cparams[i].aad.data,
718 						port_cparams[i].aad.length);
719 
720 			}
721 
722 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
723 				port_cparams[i].hash_verify = 1;
724 			else
725 				port_cparams[i].hash_verify = 0;
726 
727 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
728 		}
729 
730 		if (port_cparams[i].do_cipher) {
731 			port_cparams[i].iv.data = options->iv.data;
732 			port_cparams[i].iv.length = options->iv.length;
733 			port_cparams[i].iv.phys_addr = options->iv.phys_addr;
734 			if (!options->iv_param)
735 				generate_random_key(port_cparams[i].iv.data,
736 						port_cparams[i].iv.length);
737 
738 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
739 		}
740 
741 		port_cparams[i].session = initialize_crypto_session(options,
742 				port_cparams[i].dev_id);
743 
744 		if (port_cparams[i].session == NULL)
745 			return;
746 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
747 				port_cparams[i].dev_id);
748 	}
749 
750 	l2fwd_crypto_options_print(options);
751 
752 	/*
753 	 * Initialize previous tsc timestamp before the loop,
754 	 * to avoid showing the port statistics immediately,
755 	 * so user can see the crypto information.
756 	 */
757 	prev_tsc = rte_rdtsc();
758 	while (1) {
759 
760 		cur_tsc = rte_rdtsc();
761 
762 		/*
763 		 * Crypto device/TX burst queue drain
764 		 */
765 		diff_tsc = cur_tsc - prev_tsc;
766 		if (unlikely(diff_tsc > drain_tsc)) {
767 			/* Enqueue all crypto ops remaining in buffers */
768 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
769 				cparams = &port_cparams[i];
770 				len = qconf->op_buf[cparams->dev_id].len;
771 				l2fwd_crypto_send_burst(qconf, len, cparams);
772 				qconf->op_buf[cparams->dev_id].len = 0;
773 			}
774 			/* Transmit all packets remaining in buffers */
775 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
776 				if (qconf->pkt_buf[portid].len == 0)
777 					continue;
778 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
779 						 qconf->pkt_buf[portid].len,
780 						 (uint8_t) portid);
781 				qconf->pkt_buf[portid].len = 0;
782 			}
783 
784 			/* if timer is enabled */
785 			if (timer_period > 0) {
786 
787 				/* advance the timer */
788 				timer_tsc += diff_tsc;
789 
790 				/* if timer has reached its timeout */
791 				if (unlikely(timer_tsc >=
792 						(uint64_t)timer_period)) {
793 
794 					/* do this only on master core */
795 					if (lcore_id == rte_get_master_lcore()
796 						&& options->refresh_period) {
797 						print_stats();
798 						timer_tsc = 0;
799 					}
800 				}
801 			}
802 
803 			prev_tsc = cur_tsc;
804 		}
805 
806 		/*
807 		 * Read packet from RX queues
808 		 */
809 		for (i = 0; i < qconf->nb_rx_ports; i++) {
810 			portid = qconf->rx_port_list[i];
811 
812 			cparams = &port_cparams[i];
813 
814 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
815 						 pkts_burst, MAX_PKT_BURST);
816 
817 			port_statistics[portid].rx += nb_rx;
818 
819 			if (nb_rx) {
820 				/*
821 				 * If we can't allocate a crypto_ops, then drop
822 				 * the rest of the burst and dequeue and
823 				 * process the packets to free offload structs
824 				 */
825 				if (rte_crypto_op_bulk_alloc(
826 						l2fwd_crypto_op_pool,
827 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
828 						ops_burst, nb_rx) !=
829 								nb_rx) {
830 					for (j = 0; j < nb_rx; j++)
831 						rte_pktmbuf_free(pkts_burst[i]);
832 
833 					nb_rx = 0;
834 				}
835 
836 				/* Enqueue packets from Crypto device*/
837 				for (j = 0; j < nb_rx; j++) {
838 					m = pkts_burst[j];
839 
840 					l2fwd_simple_crypto_enqueue(m,
841 							ops_burst[j], cparams);
842 				}
843 			}
844 
845 			/* Dequeue packets from Crypto device */
846 			do {
847 				nb_rx = rte_cryptodev_dequeue_burst(
848 						cparams->dev_id, cparams->qp_id,
849 						ops_burst, MAX_PKT_BURST);
850 
851 				crypto_statistics[cparams->dev_id].dequeued +=
852 						nb_rx;
853 
854 				/* Forward crypto'd packets */
855 				for (j = 0; j < nb_rx; j++) {
856 					m = ops_burst[j]->sym->m_src;
857 
858 					rte_crypto_op_free(ops_burst[j]);
859 					l2fwd_simple_forward(m, portid);
860 				}
861 			} while (nb_rx == MAX_PKT_BURST);
862 		}
863 	}
864 }
865 
866 static int
867 l2fwd_launch_one_lcore(void *arg)
868 {
869 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
870 	return 0;
871 }
872 
873 /* Display command line arguments usage */
874 static void
875 l2fwd_crypto_usage(const char *prgname)
876 {
877 	printf("%s [EAL options] --\n"
878 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
879 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
880 		"  -s manage all ports from single lcore\n"
881 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
882 		" (0 to disable, 10 default, 86400 maximum)\n"
883 
884 		"  --cdev_type HW / SW / ANY\n"
885 		"  --chain HASH_CIPHER / CIPHER_HASH\n"
886 
887 		"  --cipher_algo ALGO\n"
888 		"  --cipher_op ENCRYPT / DECRYPT\n"
889 		"  --cipher_key KEY (bytes separated with \":\")\n"
890 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
891 		"  --iv IV (bytes separated with \":\")\n"
892 		"  --iv_random_size SIZE: size of IV when generated randomly\n"
893 
894 		"  --auth_algo ALGO\n"
895 		"  --auth_op GENERATE / VERIFY\n"
896 		"  --auth_key KEY (bytes separated with \":\")\n"
897 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
898 		"  --aad AAD (bytes separated with \":\")\n"
899 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
900 		"  --digest_size SIZE: size of digest to be generated/verified\n"
901 
902 		"  --sessionless\n",
903 	       prgname);
904 }
905 
906 /** Parse crypto device type command line argument */
907 static int
908 parse_cryptodev_type(enum cdev_type *type, char *optarg)
909 {
910 	if (strcmp("HW", optarg) == 0) {
911 		*type = CDEV_TYPE_HW;
912 		return 0;
913 	} else if (strcmp("SW", optarg) == 0) {
914 		*type = CDEV_TYPE_SW;
915 		return 0;
916 	} else if (strcmp("ANY", optarg) == 0) {
917 		*type = CDEV_TYPE_ANY;
918 		return 0;
919 	}
920 
921 	return -1;
922 }
923 
924 /** Parse crypto chain xform command line argument */
925 static int
926 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
927 {
928 	if (strcmp("CIPHER_HASH", optarg) == 0) {
929 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
930 		return 0;
931 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
932 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
933 		return 0;
934 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
935 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
936 		return 0;
937 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
938 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
939 		return 0;
940 	}
941 
942 	return -1;
943 }
944 
945 /** Parse crypto cipher algo option command line argument */
946 static int
947 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
948 {
949 	unsigned i;
950 
951 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
952 		if (!strcmp(supported_cipher_algo[i], optarg)) {
953 			*algo = (enum rte_crypto_cipher_algorithm)i;
954 			return 0;
955 		}
956 	}
957 
958 	printf("Cipher algorithm  not supported!\n");
959 	return -1;
960 }
961 
962 /** Parse crypto cipher operation command line argument */
963 static int
964 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
965 {
966 	if (strcmp("ENCRYPT", optarg) == 0) {
967 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
968 		return 0;
969 	} else if (strcmp("DECRYPT", optarg) == 0) {
970 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
971 		return 0;
972 	}
973 
974 	printf("Cipher operation not supported!\n");
975 	return -1;
976 }
977 
978 /** Parse crypto key command line argument */
979 static int
980 parse_key(uint8_t *data, char *input_arg)
981 {
982 	unsigned byte_count;
983 	char *token;
984 
985 	for (byte_count = 0, token = strtok(input_arg, ":");
986 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
987 			token = strtok(NULL, ":")) {
988 
989 		int number = (int)strtol(token, NULL, 16);
990 
991 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
992 			return -1;
993 
994 		data[byte_count++] = (uint8_t)number;
995 	}
996 
997 	return byte_count;
998 }
999 
1000 /** Parse size param*/
1001 static int
1002 parse_size(int *size, const char *q_arg)
1003 {
1004 	char *end = NULL;
1005 	unsigned long n;
1006 
1007 	/* parse hexadecimal string */
1008 	n = strtoul(q_arg, &end, 10);
1009 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1010 		n = 0;
1011 
1012 	if (n == 0) {
1013 		printf("invalid size\n");
1014 		return -1;
1015 	}
1016 
1017 	*size = n;
1018 	return 0;
1019 }
1020 
1021 /** Parse crypto cipher operation command line argument */
1022 static int
1023 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1024 {
1025 	unsigned i;
1026 
1027 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
1028 		if (!strcmp(supported_auth_algo[i], optarg)) {
1029 			*algo = (enum rte_crypto_auth_algorithm)i;
1030 			return 0;
1031 		}
1032 	}
1033 
1034 	printf("Authentication algorithm specified not supported!\n");
1035 	return -1;
1036 }
1037 
1038 static int
1039 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1040 {
1041 	if (strcmp("VERIFY", optarg) == 0) {
1042 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1043 		return 0;
1044 	} else if (strcmp("GENERATE", optarg) == 0) {
1045 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1046 		return 0;
1047 	}
1048 
1049 	printf("Authentication operation specified not supported!\n");
1050 	return -1;
1051 }
1052 
1053 /** Parse long options */
1054 static int
1055 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1056 		struct option *lgopts, int option_index)
1057 {
1058 	int retval;
1059 
1060 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1061 		retval = parse_cryptodev_type(&options->type, optarg);
1062 		if (retval == 0)
1063 			snprintf(options->string_type, MAX_STR_LEN,
1064 				"%s", optarg);
1065 		return retval;
1066 	}
1067 
1068 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1069 		return parse_crypto_opt_chain(options, optarg);
1070 
1071 	/* Cipher options */
1072 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1073 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1074 				optarg);
1075 
1076 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1077 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1078 				optarg);
1079 
1080 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1081 		options->ckey_param = 1;
1082 		options->cipher_xform.cipher.key.length =
1083 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1084 		if (options->cipher_xform.cipher.key.length > 0)
1085 			return 0;
1086 		else
1087 			return -1;
1088 	}
1089 
1090 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1091 		return parse_size(&options->ckey_random_size, optarg);
1092 
1093 	else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1094 		options->iv_param = 1;
1095 		options->iv.length =
1096 			parse_key(options->iv.data, optarg);
1097 		if (options->iv.length > 0)
1098 			return 0;
1099 		else
1100 			return -1;
1101 	}
1102 
1103 	else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1104 		return parse_size(&options->iv_random_size, optarg);
1105 
1106 	/* Authentication options */
1107 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1108 		return parse_auth_algo(&options->auth_xform.auth.algo,
1109 				optarg);
1110 	}
1111 
1112 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1113 		return parse_auth_op(&options->auth_xform.auth.op,
1114 				optarg);
1115 
1116 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1117 		options->akey_param = 1;
1118 		options->auth_xform.auth.key.length =
1119 			parse_key(options->auth_xform.auth.key.data, optarg);
1120 		if (options->auth_xform.auth.key.length > 0)
1121 			return 0;
1122 		else
1123 			return -1;
1124 	}
1125 
1126 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1127 		return parse_size(&options->akey_random_size, optarg);
1128 	}
1129 
1130 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1131 		options->aad_param = 1;
1132 		options->aad.length =
1133 			parse_key(options->aad.data, optarg);
1134 		if (options->aad.length > 0)
1135 			return 0;
1136 		else
1137 			return -1;
1138 	}
1139 
1140 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1141 		return parse_size(&options->aad_random_size, optarg);
1142 	}
1143 
1144 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1145 		return parse_size(&options->digest_size, optarg);
1146 	}
1147 
1148 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1149 		options->sessionless = 1;
1150 		return 0;
1151 	}
1152 
1153 	return -1;
1154 }
1155 
1156 /** Parse port mask */
1157 static int
1158 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1159 		const char *q_arg)
1160 {
1161 	char *end = NULL;
1162 	unsigned long pm;
1163 
1164 	/* parse hexadecimal string */
1165 	pm = strtoul(q_arg, &end, 16);
1166 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1167 		pm = 0;
1168 
1169 	options->portmask = pm;
1170 	if (options->portmask == 0) {
1171 		printf("invalid portmask specified\n");
1172 		return -1;
1173 	}
1174 
1175 	return pm;
1176 }
1177 
1178 /** Parse number of queues */
1179 static int
1180 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1181 		const char *q_arg)
1182 {
1183 	char *end = NULL;
1184 	unsigned long n;
1185 
1186 	/* parse hexadecimal string */
1187 	n = strtoul(q_arg, &end, 10);
1188 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1189 		n = 0;
1190 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1191 		n = 0;
1192 
1193 	options->nb_ports_per_lcore = n;
1194 	if (options->nb_ports_per_lcore == 0) {
1195 		printf("invalid number of ports selected\n");
1196 		return -1;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /** Parse timer period */
1203 static int
1204 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1205 		const char *q_arg)
1206 {
1207 	char *end = NULL;
1208 	unsigned long n;
1209 
1210 	/* parse number string */
1211 	n = (unsigned)strtol(q_arg, &end, 10);
1212 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1213 		n = 0;
1214 
1215 	if (n >= MAX_TIMER_PERIOD) {
1216 		printf("Warning refresh period specified %lu is greater than "
1217 				"max value %lu! using max value",
1218 				n, MAX_TIMER_PERIOD);
1219 		n = MAX_TIMER_PERIOD;
1220 	}
1221 
1222 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1223 
1224 	return 0;
1225 }
1226 
1227 /** Generate default options for application */
1228 static void
1229 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1230 {
1231 	options->portmask = 0xffffffff;
1232 	options->nb_ports_per_lcore = 1;
1233 	options->refresh_period = 10000;
1234 	options->single_lcore = 0;
1235 	options->sessionless = 0;
1236 
1237 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1238 
1239 	/* Cipher Data */
1240 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1241 	options->cipher_xform.next = NULL;
1242 	options->ckey_param = 0;
1243 	options->ckey_random_size = -1;
1244 	options->cipher_xform.cipher.key.length = 0;
1245 	options->iv_param = 0;
1246 	options->iv_random_size = -1;
1247 	options->iv.length = 0;
1248 
1249 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1250 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1251 
1252 	/* Authentication Data */
1253 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1254 	options->auth_xform.next = NULL;
1255 	options->akey_param = 0;
1256 	options->akey_random_size = -1;
1257 	options->auth_xform.auth.key.length = 0;
1258 	options->aad_param = 0;
1259 	options->aad_random_size = -1;
1260 	options->aad.length = 0;
1261 	options->digest_size = -1;
1262 
1263 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1264 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1265 
1266 	options->type = CDEV_TYPE_ANY;
1267 }
1268 
1269 static void
1270 display_cipher_info(struct l2fwd_crypto_options *options)
1271 {
1272 	printf("\n---- Cipher information ---\n");
1273 	printf("Algorithm: %s\n",
1274 		supported_cipher_algo[options->cipher_xform.cipher.algo]);
1275 	rte_hexdump(stdout, "Cipher key:",
1276 			options->cipher_xform.cipher.key.data,
1277 			options->cipher_xform.cipher.key.length);
1278 	rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1279 }
1280 
1281 static void
1282 display_auth_info(struct l2fwd_crypto_options *options)
1283 {
1284 	printf("\n---- Authentication information ---\n");
1285 	printf("Algorithm: %s\n",
1286 		supported_auth_algo[options->auth_xform.auth.algo]);
1287 	rte_hexdump(stdout, "Auth key:",
1288 			options->auth_xform.auth.key.data,
1289 			options->auth_xform.auth.key.length);
1290 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1291 }
1292 
1293 static void
1294 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1295 {
1296 	char string_cipher_op[MAX_STR_LEN];
1297 	char string_auth_op[MAX_STR_LEN];
1298 
1299 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1300 		strcpy(string_cipher_op, "Encrypt");
1301 	else
1302 		strcpy(string_cipher_op, "Decrypt");
1303 
1304 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1305 		strcpy(string_auth_op, "Auth generate");
1306 	else
1307 		strcpy(string_auth_op, "Auth verify");
1308 
1309 	printf("Options:-\nn");
1310 	printf("portmask: %x\n", options->portmask);
1311 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1312 	printf("refresh period : %u\n", options->refresh_period);
1313 	printf("single lcore mode: %s\n",
1314 			options->single_lcore ? "enabled" : "disabled");
1315 	printf("stats_printing: %s\n",
1316 			options->refresh_period == 0 ? "disabled" : "enabled");
1317 
1318 	printf("sessionless crypto: %s\n",
1319 			options->sessionless ? "enabled" : "disabled");
1320 
1321 	if (options->ckey_param && (options->ckey_random_size != -1))
1322 		printf("Cipher key already parsed, ignoring size of random key\n");
1323 
1324 	if (options->akey_param && (options->akey_random_size != -1))
1325 		printf("Auth key already parsed, ignoring size of random key\n");
1326 
1327 	if (options->iv_param && (options->iv_random_size != -1))
1328 		printf("IV already parsed, ignoring size of random IV\n");
1329 
1330 	if (options->aad_param && (options->aad_random_size != -1))
1331 		printf("AAD already parsed, ignoring size of random AAD\n");
1332 
1333 	printf("\nCrypto chain: ");
1334 	switch (options->xform_chain) {
1335 	case L2FWD_CRYPTO_CIPHER_HASH:
1336 		printf("Input --> %s --> %s --> Output\n",
1337 			string_cipher_op, string_auth_op);
1338 		display_cipher_info(options);
1339 		display_auth_info(options);
1340 		break;
1341 	case L2FWD_CRYPTO_HASH_CIPHER:
1342 		printf("Input --> %s --> %s --> Output\n",
1343 			string_auth_op, string_cipher_op);
1344 		display_cipher_info(options);
1345 		display_auth_info(options);
1346 		break;
1347 	case L2FWD_CRYPTO_HASH_ONLY:
1348 		printf("Input --> %s --> Output\n", string_auth_op);
1349 		display_auth_info(options);
1350 		break;
1351 	case L2FWD_CRYPTO_CIPHER_ONLY:
1352 		printf("Input --> %s --> Output\n", string_cipher_op);
1353 		display_cipher_info(options);
1354 		break;
1355 	}
1356 }
1357 
1358 /* Parse the argument given in the command line of the application */
1359 static int
1360 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1361 		int argc, char **argv)
1362 {
1363 	int opt, retval, option_index;
1364 	char **argvopt = argv, *prgname = argv[0];
1365 
1366 	static struct option lgopts[] = {
1367 			{ "sessionless", no_argument, 0, 0 },
1368 
1369 			{ "cdev_type", required_argument, 0, 0 },
1370 			{ "chain", required_argument, 0, 0 },
1371 
1372 			{ "cipher_algo", required_argument, 0, 0 },
1373 			{ "cipher_op", required_argument, 0, 0 },
1374 			{ "cipher_key", required_argument, 0, 0 },
1375 			{ "cipher_key_random_size", required_argument, 0, 0 },
1376 
1377 			{ "auth_algo", required_argument, 0, 0 },
1378 			{ "auth_op", required_argument, 0, 0 },
1379 			{ "auth_key", required_argument, 0, 0 },
1380 			{ "auth_key_random_size", required_argument, 0, 0 },
1381 
1382 			{ "iv", required_argument, 0, 0 },
1383 			{ "iv_random_size", required_argument, 0, 0 },
1384 			{ "aad", required_argument, 0, 0 },
1385 			{ "aad_random_size", required_argument, 0, 0 },
1386 			{ "digest_size", required_argument, 0, 0 },
1387 
1388 			{ "sessionless", no_argument, 0, 0 },
1389 
1390 			{ NULL, 0, 0, 0 }
1391 	};
1392 
1393 	l2fwd_crypto_default_options(options);
1394 
1395 	while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1396 			&option_index)) != EOF) {
1397 		switch (opt) {
1398 		/* long options */
1399 		case 0:
1400 			retval = l2fwd_crypto_parse_args_long_options(options,
1401 					lgopts, option_index);
1402 			if (retval < 0) {
1403 				l2fwd_crypto_usage(prgname);
1404 				return -1;
1405 			}
1406 			break;
1407 
1408 		/* portmask */
1409 		case 'p':
1410 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1411 			if (retval < 0) {
1412 				l2fwd_crypto_usage(prgname);
1413 				return -1;
1414 			}
1415 			break;
1416 
1417 		/* nqueue */
1418 		case 'q':
1419 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1420 			if (retval < 0) {
1421 				l2fwd_crypto_usage(prgname);
1422 				return -1;
1423 			}
1424 			break;
1425 
1426 		/* single  */
1427 		case 's':
1428 			options->single_lcore = 1;
1429 
1430 			break;
1431 
1432 		/* timer period */
1433 		case 'T':
1434 			retval = l2fwd_crypto_parse_timer_period(options,
1435 					optarg);
1436 			if (retval < 0) {
1437 				l2fwd_crypto_usage(prgname);
1438 				return -1;
1439 			}
1440 			break;
1441 
1442 		default:
1443 			l2fwd_crypto_usage(prgname);
1444 			return -1;
1445 		}
1446 	}
1447 
1448 
1449 	if (optind >= 0)
1450 		argv[optind-1] = prgname;
1451 
1452 	retval = optind-1;
1453 	optind = 0; /* reset getopt lib */
1454 
1455 	return retval;
1456 }
1457 
1458 /* Check the link status of all ports in up to 9s, and print them finally */
1459 static void
1460 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1461 {
1462 #define CHECK_INTERVAL 100 /* 100ms */
1463 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1464 	uint8_t portid, count, all_ports_up, print_flag = 0;
1465 	struct rte_eth_link link;
1466 
1467 	printf("\nChecking link status");
1468 	fflush(stdout);
1469 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1470 		all_ports_up = 1;
1471 		for (portid = 0; portid < port_num; portid++) {
1472 			if ((port_mask & (1 << portid)) == 0)
1473 				continue;
1474 			memset(&link, 0, sizeof(link));
1475 			rte_eth_link_get_nowait(portid, &link);
1476 			/* print link status if flag set */
1477 			if (print_flag == 1) {
1478 				if (link.link_status)
1479 					printf("Port %d Link Up - speed %u "
1480 						"Mbps - %s\n", (uint8_t)portid,
1481 						(unsigned)link.link_speed,
1482 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1483 					("full-duplex") : ("half-duplex\n"));
1484 				else
1485 					printf("Port %d Link Down\n",
1486 						(uint8_t)portid);
1487 				continue;
1488 			}
1489 			/* clear all_ports_up flag if any link down */
1490 			if (link.link_status == ETH_LINK_DOWN) {
1491 				all_ports_up = 0;
1492 				break;
1493 			}
1494 		}
1495 		/* after finally printing all link status, get out */
1496 		if (print_flag == 1)
1497 			break;
1498 
1499 		if (all_ports_up == 0) {
1500 			printf(".");
1501 			fflush(stdout);
1502 			rte_delay_ms(CHECK_INTERVAL);
1503 		}
1504 
1505 		/* set the print_flag if all ports up or timeout */
1506 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1507 			print_flag = 1;
1508 			printf("done\n");
1509 		}
1510 	}
1511 }
1512 
1513 /* Check if device has to be HW/SW or any */
1514 static int
1515 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1516 {
1517 	if (options->type == CDEV_TYPE_HW &&
1518 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1519 		return 0;
1520 	if (options->type == CDEV_TYPE_SW &&
1521 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1522 		return 0;
1523 	if (options->type == CDEV_TYPE_ANY)
1524 		return 0;
1525 
1526 	return -1;
1527 }
1528 
1529 static inline int
1530 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1531 		uint16_t increment)
1532 {
1533 	uint16_t supp_size;
1534 
1535 	/* Single value */
1536 	if (increment == 0) {
1537 		if (length == min)
1538 			return 0;
1539 		else
1540 			return -1;
1541 	}
1542 
1543 	/* Range of values */
1544 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1545 		if (length == supp_size)
1546 			return 0;
1547 	}
1548 
1549 	return -1;
1550 }
1551 static int
1552 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1553 		uint8_t *enabled_cdevs)
1554 {
1555 	unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1556 	const struct rte_cryptodev_capabilities *cap;
1557 	enum rte_crypto_auth_algorithm cap_auth_algo;
1558 	enum rte_crypto_auth_algorithm opt_auth_algo;
1559 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1560 	enum rte_crypto_cipher_algorithm opt_cipher_algo;
1561 	int retval;
1562 
1563 	cdev_count = rte_cryptodev_count();
1564 	if (cdev_count == 0) {
1565 		printf("No crypto devices available\n");
1566 		return -1;
1567 	}
1568 
1569 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1570 			cdev_id++) {
1571 		struct rte_cryptodev_qp_conf qp_conf;
1572 		struct rte_cryptodev_info dev_info;
1573 
1574 		struct rte_cryptodev_config conf = {
1575 			.nb_queue_pairs = 1,
1576 			.socket_id = SOCKET_ID_ANY,
1577 			.session_mp = {
1578 				.nb_objs = 2048,
1579 				.cache_size = 64
1580 			}
1581 		};
1582 
1583 		rte_cryptodev_info_get(cdev_id, &dev_info);
1584 
1585 		/* Set cipher parameters */
1586 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1587 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1588 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1589 			/* Check if device supports cipher algo */
1590 			i = 0;
1591 			opt_cipher_algo = options->cipher_xform.cipher.algo;
1592 			cap = &dev_info.capabilities[i];
1593 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1594 				cap_cipher_algo = cap->sym.cipher.algo;
1595 				if (cap->sym.xform_type ==
1596 						RTE_CRYPTO_SYM_XFORM_CIPHER) {
1597 					if (cap_cipher_algo == opt_cipher_algo) {
1598 						if (check_type(options, &dev_info) == 0)
1599 							break;
1600 					}
1601 				}
1602 				cap = &dev_info.capabilities[++i];
1603 			}
1604 
1605 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1606 				printf("Algorithm %s not supported by cryptodev %u"
1607 					" or device not of preferred type (%s)\n",
1608 					supported_cipher_algo[opt_cipher_algo],
1609 					cdev_id,
1610 					options->string_type);
1611 				continue;
1612 			}
1613 
1614 			options->block_size = cap->sym.cipher.block_size;
1615 			/*
1616 			 * Check if length of provided IV is supported
1617 			 * by the algorithm chosen.
1618 			 */
1619 			if (options->iv_param) {
1620 				if (check_supported_size(options->iv.length,
1621 						cap->sym.cipher.iv_size.min,
1622 						cap->sym.cipher.iv_size.max,
1623 						cap->sym.cipher.iv_size.increment)
1624 							!= 0) {
1625 					printf("Unsupported IV length\n");
1626 					return -1;
1627 				}
1628 			/*
1629 			 * Check if length of IV to be randomly generated
1630 			 * is supported by the algorithm chosen.
1631 			 */
1632 			} else if (options->iv_random_size != -1) {
1633 				if (check_supported_size(options->iv_random_size,
1634 						cap->sym.cipher.iv_size.min,
1635 						cap->sym.cipher.iv_size.max,
1636 						cap->sym.cipher.iv_size.increment)
1637 							!= 0) {
1638 					printf("Unsupported IV length\n");
1639 					return -1;
1640 				}
1641 				options->iv.length = options->iv_random_size;
1642 			/* No size provided, use minimum size. */
1643 			} else
1644 				options->iv.length = cap->sym.cipher.iv_size.min;
1645 
1646 			/*
1647 			 * Check if length of provided cipher key is supported
1648 			 * by the algorithm chosen.
1649 			 */
1650 			if (options->ckey_param) {
1651 				if (check_supported_size(
1652 						options->cipher_xform.cipher.key.length,
1653 						cap->sym.cipher.key_size.min,
1654 						cap->sym.cipher.key_size.max,
1655 						cap->sym.cipher.key_size.increment)
1656 							!= 0) {
1657 					printf("Unsupported cipher key length\n");
1658 					return -1;
1659 				}
1660 			/*
1661 			 * Check if length of the cipher key to be randomly generated
1662 			 * is supported by the algorithm chosen.
1663 			 */
1664 			} else if (options->ckey_random_size != -1) {
1665 				if (check_supported_size(options->ckey_random_size,
1666 						cap->sym.cipher.key_size.min,
1667 						cap->sym.cipher.key_size.max,
1668 						cap->sym.cipher.key_size.increment)
1669 							!= 0) {
1670 					printf("Unsupported cipher key length\n");
1671 					return -1;
1672 				}
1673 				options->cipher_xform.cipher.key.length =
1674 							options->ckey_random_size;
1675 			/* No size provided, use minimum size. */
1676 			} else
1677 				options->cipher_xform.cipher.key.length =
1678 						cap->sym.cipher.key_size.min;
1679 
1680 			if (!options->ckey_param)
1681 				generate_random_key(
1682 					options->cipher_xform.cipher.key.data,
1683 					options->cipher_xform.cipher.key.length);
1684 
1685 		}
1686 
1687 		/* Set auth parameters */
1688 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1689 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1690 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1691 			/* Check if device supports auth algo */
1692 			i = 0;
1693 			opt_auth_algo = options->auth_xform.auth.algo;
1694 			cap = &dev_info.capabilities[i];
1695 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1696 				cap_auth_algo = cap->sym.auth.algo;
1697 				if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1698 						(cap_auth_algo == opt_auth_algo) &&
1699 						(check_type(options, &dev_info) == 0)) {
1700 					break;
1701 				}
1702 				cap = &dev_info.capabilities[++i];
1703 			}
1704 
1705 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1706 				printf("Algorithm %s not supported by cryptodev %u"
1707 					" or device not of preferred type (%s)\n",
1708 					supported_auth_algo[opt_auth_algo],
1709 					cdev_id,
1710 					options->string_type);
1711 				continue;
1712 			}
1713 
1714 			options->block_size = cap->sym.auth.block_size;
1715 			/*
1716 			 * Check if length of provided AAD is supported
1717 			 * by the algorithm chosen.
1718 			 */
1719 			if (options->aad_param) {
1720 				if (check_supported_size(options->aad.length,
1721 						cap->sym.auth.aad_size.min,
1722 						cap->sym.auth.aad_size.max,
1723 						cap->sym.auth.aad_size.increment)
1724 							!= 0) {
1725 					printf("Unsupported AAD length\n");
1726 					return -1;
1727 				}
1728 			/*
1729 			 * Check if length of AAD to be randomly generated
1730 			 * is supported by the algorithm chosen.
1731 			 */
1732 			} else if (options->aad_random_size != -1) {
1733 				if (check_supported_size(options->aad_random_size,
1734 						cap->sym.auth.aad_size.min,
1735 						cap->sym.auth.aad_size.max,
1736 						cap->sym.auth.aad_size.increment)
1737 							!= 0) {
1738 					printf("Unsupported AAD length\n");
1739 					return -1;
1740 				}
1741 				options->aad.length = options->aad_random_size;
1742 			/* No size provided, use minimum size. */
1743 			} else
1744 				options->aad.length = cap->sym.auth.aad_size.min;
1745 
1746 			options->auth_xform.auth.add_auth_data_length =
1747 						options->aad.length;
1748 
1749 			/*
1750 			 * Check if length of provided auth key is supported
1751 			 * by the algorithm chosen.
1752 			 */
1753 			if (options->akey_param) {
1754 				if (check_supported_size(
1755 						options->auth_xform.auth.key.length,
1756 						cap->sym.auth.key_size.min,
1757 						cap->sym.auth.key_size.max,
1758 						cap->sym.auth.key_size.increment)
1759 							!= 0) {
1760 					printf("Unsupported auth key length\n");
1761 					return -1;
1762 				}
1763 			/*
1764 			 * Check if length of the auth key to be randomly generated
1765 			 * is supported by the algorithm chosen.
1766 			 */
1767 			} else if (options->akey_random_size != -1) {
1768 				if (check_supported_size(options->akey_random_size,
1769 						cap->sym.auth.key_size.min,
1770 						cap->sym.auth.key_size.max,
1771 						cap->sym.auth.key_size.increment)
1772 							!= 0) {
1773 					printf("Unsupported auth key length\n");
1774 					return -1;
1775 				}
1776 				options->auth_xform.auth.key.length =
1777 							options->akey_random_size;
1778 			/* No size provided, use minimum size. */
1779 			} else
1780 				options->auth_xform.auth.key.length =
1781 						cap->sym.auth.key_size.min;
1782 
1783 			if (!options->akey_param)
1784 				generate_random_key(
1785 					options->auth_xform.auth.key.data,
1786 					options->auth_xform.auth.key.length);
1787 
1788 			/* Check if digest size is supported by the algorithm. */
1789 			if (options->digest_size != -1) {
1790 				if (check_supported_size(options->digest_size,
1791 						cap->sym.auth.digest_size.min,
1792 						cap->sym.auth.digest_size.max,
1793 						cap->sym.auth.digest_size.increment)
1794 							!= 0) {
1795 					printf("Unsupported digest length\n");
1796 					return -1;
1797 				}
1798 				options->auth_xform.auth.digest_length =
1799 							options->digest_size;
1800 			/* No size provided, use minimum size. */
1801 			} else
1802 				options->auth_xform.auth.digest_length =
1803 						cap->sym.auth.digest_size.min;
1804 		}
1805 
1806 		retval = rte_cryptodev_configure(cdev_id, &conf);
1807 		if (retval < 0) {
1808 			printf("Failed to configure cryptodev %u", cdev_id);
1809 			return -1;
1810 		}
1811 
1812 		qp_conf.nb_descriptors = 2048;
1813 
1814 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1815 				SOCKET_ID_ANY);
1816 		if (retval < 0) {
1817 			printf("Failed to setup queue pair %u on cryptodev %u",
1818 					0, cdev_id);
1819 			return -1;
1820 		}
1821 
1822 		retval = rte_cryptodev_start(cdev_id);
1823 		if (retval < 0) {
1824 			printf("Failed to start device %u: error %d\n",
1825 					cdev_id, retval);
1826 			return -1;
1827 		}
1828 
1829 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
1830 
1831 		enabled_cdevs[cdev_id] = 1;
1832 		enabled_cdev_count++;
1833 	}
1834 
1835 	return enabled_cdev_count;
1836 }
1837 
1838 static int
1839 initialize_ports(struct l2fwd_crypto_options *options)
1840 {
1841 	uint8_t last_portid, portid;
1842 	unsigned enabled_portcount = 0;
1843 	unsigned nb_ports = rte_eth_dev_count();
1844 
1845 	if (nb_ports == 0) {
1846 		printf("No Ethernet ports - bye\n");
1847 		return -1;
1848 	}
1849 
1850 	/* Reset l2fwd_dst_ports */
1851 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1852 		l2fwd_dst_ports[portid] = 0;
1853 
1854 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1855 		int retval;
1856 
1857 		/* Skip ports that are not enabled */
1858 		if ((options->portmask & (1 << portid)) == 0)
1859 			continue;
1860 
1861 		/* init port */
1862 		printf("Initializing port %u... ", (unsigned) portid);
1863 		fflush(stdout);
1864 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1865 		if (retval < 0) {
1866 			printf("Cannot configure device: err=%d, port=%u\n",
1867 				  retval, (unsigned) portid);
1868 			return -1;
1869 		}
1870 
1871 		/* init one RX queue */
1872 		fflush(stdout);
1873 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1874 					     rte_eth_dev_socket_id(portid),
1875 					     NULL, l2fwd_pktmbuf_pool);
1876 		if (retval < 0) {
1877 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1878 					retval, (unsigned) portid);
1879 			return -1;
1880 		}
1881 
1882 		/* init one TX queue on each port */
1883 		fflush(stdout);
1884 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1885 				rte_eth_dev_socket_id(portid),
1886 				NULL);
1887 		if (retval < 0) {
1888 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1889 				retval, (unsigned) portid);
1890 
1891 			return -1;
1892 		}
1893 
1894 		/* Start device */
1895 		retval = rte_eth_dev_start(portid);
1896 		if (retval < 0) {
1897 			printf("rte_eth_dev_start:err=%d, port=%u\n",
1898 					retval, (unsigned) portid);
1899 			return -1;
1900 		}
1901 
1902 		rte_eth_promiscuous_enable(portid);
1903 
1904 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1905 
1906 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1907 				(unsigned) portid,
1908 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
1909 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
1910 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
1911 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
1912 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
1913 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1914 
1915 		/* initialize port stats */
1916 		memset(&port_statistics, 0, sizeof(port_statistics));
1917 
1918 		/* Setup port forwarding table */
1919 		if (enabled_portcount % 2) {
1920 			l2fwd_dst_ports[portid] = last_portid;
1921 			l2fwd_dst_ports[last_portid] = portid;
1922 		} else {
1923 			last_portid = portid;
1924 		}
1925 
1926 		l2fwd_enabled_port_mask |= (1 << portid);
1927 		enabled_portcount++;
1928 	}
1929 
1930 	if (enabled_portcount == 1) {
1931 		l2fwd_dst_ports[last_portid] = last_portid;
1932 	} else if (enabled_portcount % 2) {
1933 		printf("odd number of ports in portmask- bye\n");
1934 		return -1;
1935 	}
1936 
1937 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1938 
1939 	return enabled_portcount;
1940 }
1941 
1942 static void
1943 reserve_key_memory(struct l2fwd_crypto_options *options)
1944 {
1945 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1946 						MAX_KEY_SIZE, 0);
1947 	if (options->cipher_xform.cipher.key.data == NULL)
1948 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1949 
1950 
1951 	options->auth_xform.auth.key.data = rte_malloc("auth key",
1952 						MAX_KEY_SIZE, 0);
1953 	if (options->auth_xform.auth.key.data == NULL)
1954 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1955 
1956 	options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1957 	if (options->iv.data == NULL)
1958 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1959 	options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1960 
1961 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1962 	if (options->aad.data == NULL)
1963 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1964 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1965 }
1966 
1967 int
1968 main(int argc, char **argv)
1969 {
1970 	struct lcore_queue_conf *qconf;
1971 	struct l2fwd_crypto_options options;
1972 
1973 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1974 	unsigned lcore_id, rx_lcore_id;
1975 	int ret, enabled_cdevcount, enabled_portcount;
1976 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1977 
1978 	/* init EAL */
1979 	ret = rte_eal_init(argc, argv);
1980 	if (ret < 0)
1981 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1982 	argc -= ret;
1983 	argv += ret;
1984 
1985 	/* reserve memory for Cipher/Auth key and IV */
1986 	reserve_key_memory(&options);
1987 
1988 	/* fill out the supported algorithm tables */
1989 	fill_supported_algorithm_tables();
1990 
1991 	/* parse application arguments (after the EAL ones) */
1992 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
1993 	if (ret < 0)
1994 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1995 
1996 	/* create the mbuf pool */
1997 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1998 			sizeof(struct rte_crypto_op),
1999 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2000 	if (l2fwd_pktmbuf_pool == NULL)
2001 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2002 
2003 	/* create crypto op pool */
2004 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2005 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
2006 			rte_socket_id());
2007 	if (l2fwd_crypto_op_pool == NULL)
2008 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2009 
2010 	/* Enable Ethernet ports */
2011 	enabled_portcount = initialize_ports(&options);
2012 	if (enabled_portcount < 1)
2013 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2014 
2015 	nb_ports = rte_eth_dev_count();
2016 	/* Initialize the port/queue configuration of each logical core */
2017 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
2018 			portid < nb_ports; portid++) {
2019 
2020 		/* skip ports that are not enabled */
2021 		if ((options.portmask & (1 << portid)) == 0)
2022 			continue;
2023 
2024 		if (options.single_lcore && qconf == NULL) {
2025 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2026 				rx_lcore_id++;
2027 				if (rx_lcore_id >= RTE_MAX_LCORE)
2028 					rte_exit(EXIT_FAILURE,
2029 							"Not enough cores\n");
2030 			}
2031 		} else if (!options.single_lcore) {
2032 			/* get the lcore_id for this port */
2033 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2034 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2035 			       options.nb_ports_per_lcore) {
2036 				rx_lcore_id++;
2037 				if (rx_lcore_id >= RTE_MAX_LCORE)
2038 					rte_exit(EXIT_FAILURE,
2039 							"Not enough cores\n");
2040 			}
2041 		}
2042 
2043 		/* Assigned a new logical core in the loop above. */
2044 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2045 			qconf = &lcore_queue_conf[rx_lcore_id];
2046 
2047 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2048 		qconf->nb_rx_ports++;
2049 
2050 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2051 	}
2052 
2053 	/* Enable Crypto devices */
2054 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2055 			enabled_cdevs);
2056 	if (enabled_cdevcount < 0)
2057 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2058 
2059 	if (enabled_cdevcount < enabled_portcount)
2060 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2061 				"has to be more or equal to number of ports (%d)\n",
2062 				enabled_cdevcount, enabled_portcount);
2063 
2064 	nb_cryptodevs = rte_cryptodev_count();
2065 
2066 	/* Initialize the port/cryptodev configuration of each logical core */
2067 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2068 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2069 			cdev_id++) {
2070 		/* Crypto op not supported by crypto device */
2071 		if (!enabled_cdevs[cdev_id])
2072 			continue;
2073 
2074 		if (options.single_lcore && qconf == NULL) {
2075 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2076 				rx_lcore_id++;
2077 				if (rx_lcore_id >= RTE_MAX_LCORE)
2078 					rte_exit(EXIT_FAILURE,
2079 							"Not enough cores\n");
2080 			}
2081 		} else if (!options.single_lcore) {
2082 			/* get the lcore_id for this port */
2083 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2084 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2085 			       options.nb_ports_per_lcore) {
2086 				rx_lcore_id++;
2087 				if (rx_lcore_id >= RTE_MAX_LCORE)
2088 					rte_exit(EXIT_FAILURE,
2089 							"Not enough cores\n");
2090 			}
2091 		}
2092 
2093 		/* Assigned a new logical core in the loop above. */
2094 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2095 			qconf = &lcore_queue_conf[rx_lcore_id];
2096 
2097 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2098 		qconf->nb_crypto_devs++;
2099 
2100 		enabled_cdevcount--;
2101 
2102 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2103 				(unsigned)cdev_id);
2104 	}
2105 
2106 	/* launch per-lcore init on every lcore */
2107 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2108 			CALL_MASTER);
2109 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2110 		if (rte_eal_wait_lcore(lcore_id) < 0)
2111 			return -1;
2112 	}
2113 
2114 	return 0;
2115 }
2116