1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 92 /* 93 * Configurable number of RX/TX ring descriptors 94 */ 95 #define RTE_TEST_RX_DESC_DEFAULT 128 96 #define RTE_TEST_TX_DESC_DEFAULT 512 97 98 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 99 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 100 101 /* ethernet addresses of ports */ 102 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 103 104 /* mask of enabled ports */ 105 static uint64_t l2fwd_enabled_port_mask; 106 static uint64_t l2fwd_enabled_crypto_mask; 107 108 /* list of enabled ports */ 109 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 110 111 112 struct pkt_buffer { 113 unsigned len; 114 struct rte_mbuf *buffer[MAX_PKT_BURST]; 115 }; 116 117 struct op_buffer { 118 unsigned len; 119 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 120 }; 121 122 #define MAX_RX_QUEUE_PER_LCORE 16 123 #define MAX_TX_QUEUE_PER_PORT 16 124 125 enum l2fwd_crypto_xform_chain { 126 L2FWD_CRYPTO_CIPHER_HASH, 127 L2FWD_CRYPTO_HASH_CIPHER, 128 L2FWD_CRYPTO_CIPHER_ONLY, 129 L2FWD_CRYPTO_HASH_ONLY 130 }; 131 132 struct l2fwd_key { 133 uint8_t *data; 134 uint32_t length; 135 phys_addr_t phys_addr; 136 }; 137 138 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN]; 139 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN]; 140 141 /** l2fwd crypto application command line options */ 142 struct l2fwd_crypto_options { 143 unsigned portmask; 144 unsigned nb_ports_per_lcore; 145 unsigned refresh_period; 146 unsigned single_lcore:1; 147 148 enum cdev_type type; 149 unsigned sessionless:1; 150 151 enum l2fwd_crypto_xform_chain xform_chain; 152 153 struct rte_crypto_sym_xform cipher_xform; 154 unsigned ckey_param; 155 int ckey_random_size; 156 157 struct l2fwd_key iv; 158 unsigned iv_param; 159 int iv_random_size; 160 161 struct rte_crypto_sym_xform auth_xform; 162 uint8_t akey_param; 163 int akey_random_size; 164 165 struct l2fwd_key aad; 166 unsigned aad_param; 167 int aad_random_size; 168 169 int digest_size; 170 171 uint16_t block_size; 172 char string_type[MAX_STR_LEN]; 173 }; 174 175 /** l2fwd crypto lcore params */ 176 struct l2fwd_crypto_params { 177 uint8_t dev_id; 178 uint8_t qp_id; 179 180 unsigned digest_length; 181 unsigned block_size; 182 183 struct l2fwd_key iv; 184 struct l2fwd_key aad; 185 struct rte_cryptodev_sym_session *session; 186 187 uint8_t do_cipher; 188 uint8_t do_hash; 189 uint8_t hash_verify; 190 191 enum rte_crypto_cipher_algorithm cipher_algo; 192 enum rte_crypto_auth_algorithm auth_algo; 193 }; 194 195 /** lcore configuration */ 196 struct lcore_queue_conf { 197 unsigned nb_rx_ports; 198 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 199 200 unsigned nb_crypto_devs; 201 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 202 203 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 204 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 205 } __rte_cache_aligned; 206 207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 208 209 static const struct rte_eth_conf port_conf = { 210 .rxmode = { 211 .mq_mode = ETH_MQ_RX_NONE, 212 .max_rx_pkt_len = ETHER_MAX_LEN, 213 .split_hdr_size = 0, 214 .header_split = 0, /**< Header Split disabled */ 215 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 216 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 217 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 218 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 219 }, 220 .txmode = { 221 .mq_mode = ETH_MQ_TX_NONE, 222 }, 223 }; 224 225 struct rte_mempool *l2fwd_pktmbuf_pool; 226 struct rte_mempool *l2fwd_crypto_op_pool; 227 228 /* Per-port statistics struct */ 229 struct l2fwd_port_statistics { 230 uint64_t tx; 231 uint64_t rx; 232 233 uint64_t crypto_enqueued; 234 uint64_t crypto_dequeued; 235 236 uint64_t dropped; 237 } __rte_cache_aligned; 238 239 struct l2fwd_crypto_statistics { 240 uint64_t enqueued; 241 uint64_t dequeued; 242 243 uint64_t errors; 244 } __rte_cache_aligned; 245 246 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 247 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 248 249 /* A tsc-based timer responsible for triggering statistics printout */ 250 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 251 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 252 253 /* default period is 10 seconds */ 254 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 255 256 /* Print out statistics on packets dropped */ 257 static void 258 print_stats(void) 259 { 260 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 261 uint64_t total_packets_enqueued, total_packets_dequeued, 262 total_packets_errors; 263 unsigned portid; 264 uint64_t cdevid; 265 266 total_packets_dropped = 0; 267 total_packets_tx = 0; 268 total_packets_rx = 0; 269 total_packets_enqueued = 0; 270 total_packets_dequeued = 0; 271 total_packets_errors = 0; 272 273 const char clr[] = { 27, '[', '2', 'J', '\0' }; 274 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 275 276 /* Clear screen and move to top left */ 277 printf("%s%s", clr, topLeft); 278 279 printf("\nPort statistics ===================================="); 280 281 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 282 /* skip disabled ports */ 283 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 284 continue; 285 printf("\nStatistics for port %u ------------------------------" 286 "\nPackets sent: %32"PRIu64 287 "\nPackets received: %28"PRIu64 288 "\nPackets dropped: %29"PRIu64, 289 portid, 290 port_statistics[portid].tx, 291 port_statistics[portid].rx, 292 port_statistics[portid].dropped); 293 294 total_packets_dropped += port_statistics[portid].dropped; 295 total_packets_tx += port_statistics[portid].tx; 296 total_packets_rx += port_statistics[portid].rx; 297 } 298 printf("\nCrypto statistics =================================="); 299 300 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 301 /* skip disabled ports */ 302 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 303 continue; 304 printf("\nStatistics for cryptodev %"PRIu64 305 " -------------------------" 306 "\nPackets enqueued: %28"PRIu64 307 "\nPackets dequeued: %28"PRIu64 308 "\nPackets errors: %30"PRIu64, 309 cdevid, 310 crypto_statistics[cdevid].enqueued, 311 crypto_statistics[cdevid].dequeued, 312 crypto_statistics[cdevid].errors); 313 314 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 315 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 316 total_packets_errors += crypto_statistics[cdevid].errors; 317 } 318 printf("\nAggregate statistics ===============================" 319 "\nTotal packets received: %22"PRIu64 320 "\nTotal packets enqueued: %22"PRIu64 321 "\nTotal packets dequeued: %22"PRIu64 322 "\nTotal packets sent: %26"PRIu64 323 "\nTotal packets dropped: %23"PRIu64 324 "\nTotal packets crypto errors: %17"PRIu64, 325 total_packets_rx, 326 total_packets_enqueued, 327 total_packets_dequeued, 328 total_packets_tx, 329 total_packets_dropped, 330 total_packets_errors); 331 printf("\n====================================================\n"); 332 } 333 334 static void 335 fill_supported_algorithm_tables(void) 336 { 337 unsigned i; 338 339 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) 340 strcpy(supported_auth_algo[i], "NOT_SUPPORTED"); 341 342 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM"); 343 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GMAC], "AES_GMAC"); 344 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC"); 345 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5], "MD5"); 346 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL"); 347 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC], 348 "AES_XCBC_MAC"); 349 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC"); 350 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1], "SHA1"); 351 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC"); 352 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224], "SHA224"); 353 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC"); 354 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256], "SHA256"); 355 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC"); 356 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384], "SHA384"); 357 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC"); 358 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512], "SHA512"); 359 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2"); 360 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_ZUC_EIA3], "ZUC_EIA3"); 361 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9"); 362 363 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) 364 strcpy(supported_cipher_algo[i], "NOT_SUPPORTED"); 365 366 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC"); 367 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR"); 368 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM"); 369 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL"); 370 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2"); 371 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_ZUC_EEA3], "ZUC_EEA3"); 372 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8"); 373 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CTR], "3DES_CTR"); 374 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CBC], "3DES_CBC"); 375 } 376 377 378 static int 379 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 380 struct l2fwd_crypto_params *cparams) 381 { 382 struct rte_crypto_op **op_buffer; 383 unsigned ret; 384 385 op_buffer = (struct rte_crypto_op **) 386 qconf->op_buf[cparams->dev_id].buffer; 387 388 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 389 cparams->qp_id, op_buffer, (uint16_t) n); 390 391 crypto_statistics[cparams->dev_id].enqueued += ret; 392 if (unlikely(ret < n)) { 393 crypto_statistics[cparams->dev_id].errors += (n - ret); 394 do { 395 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 396 rte_crypto_op_free(op_buffer[ret]); 397 } while (++ret < n); 398 } 399 400 return 0; 401 } 402 403 static int 404 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 405 struct l2fwd_crypto_params *cparams) 406 { 407 unsigned lcore_id, len; 408 struct lcore_queue_conf *qconf; 409 410 lcore_id = rte_lcore_id(); 411 412 qconf = &lcore_queue_conf[lcore_id]; 413 len = qconf->op_buf[cparams->dev_id].len; 414 qconf->op_buf[cparams->dev_id].buffer[len] = op; 415 len++; 416 417 /* enough ops to be sent */ 418 if (len == MAX_PKT_BURST) { 419 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 420 len = 0; 421 } 422 423 qconf->op_buf[cparams->dev_id].len = len; 424 return 0; 425 } 426 427 static int 428 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 429 struct rte_crypto_op *op, 430 struct l2fwd_crypto_params *cparams) 431 { 432 struct ether_hdr *eth_hdr; 433 struct ipv4_hdr *ip_hdr; 434 435 uint32_t ipdata_offset, data_len; 436 uint32_t pad_len = 0; 437 char *padding; 438 439 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 440 441 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 442 return -1; 443 444 ipdata_offset = sizeof(struct ether_hdr); 445 446 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 447 ipdata_offset); 448 449 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 450 * IPV4_IHL_MULTIPLIER; 451 452 453 /* Zero pad data to be crypto'd so it is block aligned */ 454 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 455 456 if (cparams->do_hash && cparams->hash_verify) 457 data_len -= cparams->digest_length; 458 459 if (cparams->do_cipher) { 460 /* 461 * Following algorithms are block cipher algorithms, 462 * and might need padding 463 */ 464 switch (cparams->cipher_algo) { 465 case RTE_CRYPTO_CIPHER_AES_CBC: 466 case RTE_CRYPTO_CIPHER_AES_ECB: 467 case RTE_CRYPTO_CIPHER_DES_CBC: 468 case RTE_CRYPTO_CIPHER_3DES_CBC: 469 case RTE_CRYPTO_CIPHER_3DES_ECB: 470 if (data_len % cparams->block_size) 471 pad_len = cparams->block_size - 472 (data_len % cparams->block_size); 473 break; 474 default: 475 pad_len = 0; 476 } 477 478 if (pad_len) { 479 padding = rte_pktmbuf_append(m, pad_len); 480 if (unlikely(!padding)) 481 return -1; 482 483 data_len += pad_len; 484 memset(padding, 0, pad_len); 485 } 486 } 487 488 /* Set crypto operation data parameters */ 489 rte_crypto_op_attach_sym_session(op, cparams->session); 490 491 if (cparams->do_hash) { 492 if (!cparams->hash_verify) { 493 /* Append space for digest to end of packet */ 494 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 495 cparams->digest_length); 496 } else { 497 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 498 uint8_t *) + ipdata_offset + data_len; 499 } 500 501 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 502 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 503 op->sym->auth.digest.length = cparams->digest_length; 504 505 /* For wireless algorithms, offset/length must be in bits */ 506 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 507 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 508 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 509 op->sym->auth.data.offset = ipdata_offset << 3; 510 op->sym->auth.data.length = data_len << 3; 511 } else { 512 op->sym->auth.data.offset = ipdata_offset; 513 op->sym->auth.data.length = data_len; 514 } 515 516 if (cparams->aad.length) { 517 op->sym->auth.aad.data = cparams->aad.data; 518 op->sym->auth.aad.phys_addr = cparams->aad.phys_addr; 519 op->sym->auth.aad.length = cparams->aad.length; 520 } 521 } 522 523 if (cparams->do_cipher) { 524 op->sym->cipher.iv.data = cparams->iv.data; 525 op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr; 526 op->sym->cipher.iv.length = cparams->iv.length; 527 528 /* For wireless algorithms, offset/length must be in bits */ 529 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 530 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 531 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 532 op->sym->cipher.data.offset = ipdata_offset << 3; 533 op->sym->cipher.data.length = data_len << 3; 534 } else { 535 op->sym->cipher.data.offset = ipdata_offset; 536 op->sym->cipher.data.length = data_len; 537 } 538 } 539 540 op->sym->m_src = m; 541 542 return l2fwd_crypto_enqueue(op, cparams); 543 } 544 545 546 /* Send the burst of packets on an output interface */ 547 static int 548 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 549 uint8_t port) 550 { 551 struct rte_mbuf **pkt_buffer; 552 unsigned ret; 553 554 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 555 556 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 557 port_statistics[port].tx += ret; 558 if (unlikely(ret < n)) { 559 port_statistics[port].dropped += (n - ret); 560 do { 561 rte_pktmbuf_free(pkt_buffer[ret]); 562 } while (++ret < n); 563 } 564 565 return 0; 566 } 567 568 /* Enqueue packets for TX and prepare them to be sent */ 569 static int 570 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 571 { 572 unsigned lcore_id, len; 573 struct lcore_queue_conf *qconf; 574 575 lcore_id = rte_lcore_id(); 576 577 qconf = &lcore_queue_conf[lcore_id]; 578 len = qconf->pkt_buf[port].len; 579 qconf->pkt_buf[port].buffer[len] = m; 580 len++; 581 582 /* enough pkts to be sent */ 583 if (unlikely(len == MAX_PKT_BURST)) { 584 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 585 len = 0; 586 } 587 588 qconf->pkt_buf[port].len = len; 589 return 0; 590 } 591 592 static void 593 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 594 { 595 struct ether_hdr *eth; 596 void *tmp; 597 unsigned dst_port; 598 599 dst_port = l2fwd_dst_ports[portid]; 600 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 601 602 /* 02:00:00:00:00:xx */ 603 tmp = ð->d_addr.addr_bytes[0]; 604 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); 605 606 /* src addr */ 607 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 608 609 l2fwd_send_packet(m, (uint8_t) dst_port); 610 } 611 612 /** Generate random key */ 613 static void 614 generate_random_key(uint8_t *key, unsigned length) 615 { 616 int fd; 617 int ret; 618 619 fd = open("/dev/urandom", O_RDONLY); 620 if (fd < 0) 621 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 622 623 ret = read(fd, key, length); 624 close(fd); 625 626 if (ret != (signed)length) 627 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 628 } 629 630 static struct rte_cryptodev_sym_session * 631 initialize_crypto_session(struct l2fwd_crypto_options *options, 632 uint8_t cdev_id) 633 { 634 struct rte_crypto_sym_xform *first_xform; 635 636 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 637 first_xform = &options->cipher_xform; 638 first_xform->next = &options->auth_xform; 639 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 640 first_xform = &options->auth_xform; 641 first_xform->next = &options->cipher_xform; 642 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 643 first_xform = &options->cipher_xform; 644 } else { 645 first_xform = &options->auth_xform; 646 } 647 648 /* Setup Cipher Parameters */ 649 return rte_cryptodev_sym_session_create(cdev_id, first_xform); 650 } 651 652 static void 653 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 654 655 /* main processing loop */ 656 static void 657 l2fwd_main_loop(struct l2fwd_crypto_options *options) 658 { 659 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 660 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 661 662 unsigned lcore_id = rte_lcore_id(); 663 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 664 unsigned i, j, portid, nb_rx, len; 665 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 666 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 667 US_PER_S * BURST_TX_DRAIN_US; 668 struct l2fwd_crypto_params *cparams; 669 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 670 671 if (qconf->nb_rx_ports == 0) { 672 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 673 return; 674 } 675 676 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 677 678 for (i = 0; i < qconf->nb_rx_ports; i++) { 679 680 portid = qconf->rx_port_list[i]; 681 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 682 portid); 683 } 684 685 for (i = 0; i < qconf->nb_crypto_devs; i++) { 686 port_cparams[i].do_cipher = 0; 687 port_cparams[i].do_hash = 0; 688 689 switch (options->xform_chain) { 690 case L2FWD_CRYPTO_CIPHER_HASH: 691 case L2FWD_CRYPTO_HASH_CIPHER: 692 port_cparams[i].do_cipher = 1; 693 port_cparams[i].do_hash = 1; 694 break; 695 case L2FWD_CRYPTO_HASH_ONLY: 696 port_cparams[i].do_hash = 1; 697 break; 698 case L2FWD_CRYPTO_CIPHER_ONLY: 699 port_cparams[i].do_cipher = 1; 700 break; 701 } 702 703 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 704 port_cparams[i].qp_id = 0; 705 706 port_cparams[i].block_size = options->block_size; 707 708 if (port_cparams[i].do_hash) { 709 port_cparams[i].digest_length = 710 options->auth_xform.auth.digest_length; 711 if (options->auth_xform.auth.add_auth_data_length) { 712 port_cparams[i].aad.data = options->aad.data; 713 port_cparams[i].aad.length = 714 options->auth_xform.auth.add_auth_data_length; 715 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 716 if (!options->aad_param) 717 generate_random_key(port_cparams[i].aad.data, 718 port_cparams[i].aad.length); 719 720 } 721 722 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 723 port_cparams[i].hash_verify = 1; 724 else 725 port_cparams[i].hash_verify = 0; 726 727 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 728 } 729 730 if (port_cparams[i].do_cipher) { 731 port_cparams[i].iv.data = options->iv.data; 732 port_cparams[i].iv.length = options->iv.length; 733 port_cparams[i].iv.phys_addr = options->iv.phys_addr; 734 if (!options->iv_param) 735 generate_random_key(port_cparams[i].iv.data, 736 port_cparams[i].iv.length); 737 738 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 739 } 740 741 port_cparams[i].session = initialize_crypto_session(options, 742 port_cparams[i].dev_id); 743 744 if (port_cparams[i].session == NULL) 745 return; 746 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 747 port_cparams[i].dev_id); 748 } 749 750 l2fwd_crypto_options_print(options); 751 752 /* 753 * Initialize previous tsc timestamp before the loop, 754 * to avoid showing the port statistics immediately, 755 * so user can see the crypto information. 756 */ 757 prev_tsc = rte_rdtsc(); 758 while (1) { 759 760 cur_tsc = rte_rdtsc(); 761 762 /* 763 * Crypto device/TX burst queue drain 764 */ 765 diff_tsc = cur_tsc - prev_tsc; 766 if (unlikely(diff_tsc > drain_tsc)) { 767 /* Enqueue all crypto ops remaining in buffers */ 768 for (i = 0; i < qconf->nb_crypto_devs; i++) { 769 cparams = &port_cparams[i]; 770 len = qconf->op_buf[cparams->dev_id].len; 771 l2fwd_crypto_send_burst(qconf, len, cparams); 772 qconf->op_buf[cparams->dev_id].len = 0; 773 } 774 /* Transmit all packets remaining in buffers */ 775 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 776 if (qconf->pkt_buf[portid].len == 0) 777 continue; 778 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 779 qconf->pkt_buf[portid].len, 780 (uint8_t) portid); 781 qconf->pkt_buf[portid].len = 0; 782 } 783 784 /* if timer is enabled */ 785 if (timer_period > 0) { 786 787 /* advance the timer */ 788 timer_tsc += diff_tsc; 789 790 /* if timer has reached its timeout */ 791 if (unlikely(timer_tsc >= 792 (uint64_t)timer_period)) { 793 794 /* do this only on master core */ 795 if (lcore_id == rte_get_master_lcore() 796 && options->refresh_period) { 797 print_stats(); 798 timer_tsc = 0; 799 } 800 } 801 } 802 803 prev_tsc = cur_tsc; 804 } 805 806 /* 807 * Read packet from RX queues 808 */ 809 for (i = 0; i < qconf->nb_rx_ports; i++) { 810 portid = qconf->rx_port_list[i]; 811 812 cparams = &port_cparams[i]; 813 814 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 815 pkts_burst, MAX_PKT_BURST); 816 817 port_statistics[portid].rx += nb_rx; 818 819 if (nb_rx) { 820 /* 821 * If we can't allocate a crypto_ops, then drop 822 * the rest of the burst and dequeue and 823 * process the packets to free offload structs 824 */ 825 if (rte_crypto_op_bulk_alloc( 826 l2fwd_crypto_op_pool, 827 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 828 ops_burst, nb_rx) != 829 nb_rx) { 830 for (j = 0; j < nb_rx; j++) 831 rte_pktmbuf_free(pkts_burst[i]); 832 833 nb_rx = 0; 834 } 835 836 /* Enqueue packets from Crypto device*/ 837 for (j = 0; j < nb_rx; j++) { 838 m = pkts_burst[j]; 839 840 l2fwd_simple_crypto_enqueue(m, 841 ops_burst[j], cparams); 842 } 843 } 844 845 /* Dequeue packets from Crypto device */ 846 do { 847 nb_rx = rte_cryptodev_dequeue_burst( 848 cparams->dev_id, cparams->qp_id, 849 ops_burst, MAX_PKT_BURST); 850 851 crypto_statistics[cparams->dev_id].dequeued += 852 nb_rx; 853 854 /* Forward crypto'd packets */ 855 for (j = 0; j < nb_rx; j++) { 856 m = ops_burst[j]->sym->m_src; 857 858 rte_crypto_op_free(ops_burst[j]); 859 l2fwd_simple_forward(m, portid); 860 } 861 } while (nb_rx == MAX_PKT_BURST); 862 } 863 } 864 } 865 866 static int 867 l2fwd_launch_one_lcore(void *arg) 868 { 869 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 870 return 0; 871 } 872 873 /* Display command line arguments usage */ 874 static void 875 l2fwd_crypto_usage(const char *prgname) 876 { 877 printf("%s [EAL options] --\n" 878 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 879 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 880 " -s manage all ports from single lcore\n" 881 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 882 " (0 to disable, 10 default, 86400 maximum)\n" 883 884 " --cdev_type HW / SW / ANY\n" 885 " --chain HASH_CIPHER / CIPHER_HASH\n" 886 887 " --cipher_algo ALGO\n" 888 " --cipher_op ENCRYPT / DECRYPT\n" 889 " --cipher_key KEY (bytes separated with \":\")\n" 890 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 891 " --iv IV (bytes separated with \":\")\n" 892 " --iv_random_size SIZE: size of IV when generated randomly\n" 893 894 " --auth_algo ALGO\n" 895 " --auth_op GENERATE / VERIFY\n" 896 " --auth_key KEY (bytes separated with \":\")\n" 897 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 898 " --aad AAD (bytes separated with \":\")\n" 899 " --aad_random_size SIZE: size of AAD when generated randomly\n" 900 " --digest_size SIZE: size of digest to be generated/verified\n" 901 902 " --sessionless\n", 903 prgname); 904 } 905 906 /** Parse crypto device type command line argument */ 907 static int 908 parse_cryptodev_type(enum cdev_type *type, char *optarg) 909 { 910 if (strcmp("HW", optarg) == 0) { 911 *type = CDEV_TYPE_HW; 912 return 0; 913 } else if (strcmp("SW", optarg) == 0) { 914 *type = CDEV_TYPE_SW; 915 return 0; 916 } else if (strcmp("ANY", optarg) == 0) { 917 *type = CDEV_TYPE_ANY; 918 return 0; 919 } 920 921 return -1; 922 } 923 924 /** Parse crypto chain xform command line argument */ 925 static int 926 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 927 { 928 if (strcmp("CIPHER_HASH", optarg) == 0) { 929 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 930 return 0; 931 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 932 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 933 return 0; 934 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 935 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 936 return 0; 937 } else if (strcmp("HASH_ONLY", optarg) == 0) { 938 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 939 return 0; 940 } 941 942 return -1; 943 } 944 945 /** Parse crypto cipher algo option command line argument */ 946 static int 947 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 948 { 949 unsigned i; 950 951 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) { 952 if (!strcmp(supported_cipher_algo[i], optarg)) { 953 *algo = (enum rte_crypto_cipher_algorithm)i; 954 return 0; 955 } 956 } 957 958 printf("Cipher algorithm not supported!\n"); 959 return -1; 960 } 961 962 /** Parse crypto cipher operation command line argument */ 963 static int 964 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 965 { 966 if (strcmp("ENCRYPT", optarg) == 0) { 967 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 968 return 0; 969 } else if (strcmp("DECRYPT", optarg) == 0) { 970 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 971 return 0; 972 } 973 974 printf("Cipher operation not supported!\n"); 975 return -1; 976 } 977 978 /** Parse crypto key command line argument */ 979 static int 980 parse_key(uint8_t *data, char *input_arg) 981 { 982 unsigned byte_count; 983 char *token; 984 985 for (byte_count = 0, token = strtok(input_arg, ":"); 986 (byte_count < MAX_KEY_SIZE) && (token != NULL); 987 token = strtok(NULL, ":")) { 988 989 int number = (int)strtol(token, NULL, 16); 990 991 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 992 return -1; 993 994 data[byte_count++] = (uint8_t)number; 995 } 996 997 return byte_count; 998 } 999 1000 /** Parse size param*/ 1001 static int 1002 parse_size(int *size, const char *q_arg) 1003 { 1004 char *end = NULL; 1005 unsigned long n; 1006 1007 /* parse hexadecimal string */ 1008 n = strtoul(q_arg, &end, 10); 1009 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1010 n = 0; 1011 1012 if (n == 0) { 1013 printf("invalid size\n"); 1014 return -1; 1015 } 1016 1017 *size = n; 1018 return 0; 1019 } 1020 1021 /** Parse crypto cipher operation command line argument */ 1022 static int 1023 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1024 { 1025 unsigned i; 1026 1027 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) { 1028 if (!strcmp(supported_auth_algo[i], optarg)) { 1029 *algo = (enum rte_crypto_auth_algorithm)i; 1030 return 0; 1031 } 1032 } 1033 1034 printf("Authentication algorithm specified not supported!\n"); 1035 return -1; 1036 } 1037 1038 static int 1039 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1040 { 1041 if (strcmp("VERIFY", optarg) == 0) { 1042 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1043 return 0; 1044 } else if (strcmp("GENERATE", optarg) == 0) { 1045 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1046 return 0; 1047 } 1048 1049 printf("Authentication operation specified not supported!\n"); 1050 return -1; 1051 } 1052 1053 /** Parse long options */ 1054 static int 1055 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1056 struct option *lgopts, int option_index) 1057 { 1058 int retval; 1059 1060 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1061 retval = parse_cryptodev_type(&options->type, optarg); 1062 if (retval == 0) 1063 snprintf(options->string_type, MAX_STR_LEN, 1064 "%s", optarg); 1065 return retval; 1066 } 1067 1068 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1069 return parse_crypto_opt_chain(options, optarg); 1070 1071 /* Cipher options */ 1072 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1073 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1074 optarg); 1075 1076 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1077 return parse_cipher_op(&options->cipher_xform.cipher.op, 1078 optarg); 1079 1080 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1081 options->ckey_param = 1; 1082 options->cipher_xform.cipher.key.length = 1083 parse_key(options->cipher_xform.cipher.key.data, optarg); 1084 if (options->cipher_xform.cipher.key.length > 0) 1085 return 0; 1086 else 1087 return -1; 1088 } 1089 1090 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1091 return parse_size(&options->ckey_random_size, optarg); 1092 1093 else if (strcmp(lgopts[option_index].name, "iv") == 0) { 1094 options->iv_param = 1; 1095 options->iv.length = 1096 parse_key(options->iv.data, optarg); 1097 if (options->iv.length > 0) 1098 return 0; 1099 else 1100 return -1; 1101 } 1102 1103 else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0) 1104 return parse_size(&options->iv_random_size, optarg); 1105 1106 /* Authentication options */ 1107 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1108 return parse_auth_algo(&options->auth_xform.auth.algo, 1109 optarg); 1110 } 1111 1112 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1113 return parse_auth_op(&options->auth_xform.auth.op, 1114 optarg); 1115 1116 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1117 options->akey_param = 1; 1118 options->auth_xform.auth.key.length = 1119 parse_key(options->auth_xform.auth.key.data, optarg); 1120 if (options->auth_xform.auth.key.length > 0) 1121 return 0; 1122 else 1123 return -1; 1124 } 1125 1126 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1127 return parse_size(&options->akey_random_size, optarg); 1128 } 1129 1130 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1131 options->aad_param = 1; 1132 options->aad.length = 1133 parse_key(options->aad.data, optarg); 1134 if (options->aad.length > 0) 1135 return 0; 1136 else 1137 return -1; 1138 } 1139 1140 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1141 return parse_size(&options->aad_random_size, optarg); 1142 } 1143 1144 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1145 return parse_size(&options->digest_size, optarg); 1146 } 1147 1148 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1149 options->sessionless = 1; 1150 return 0; 1151 } 1152 1153 return -1; 1154 } 1155 1156 /** Parse port mask */ 1157 static int 1158 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1159 const char *q_arg) 1160 { 1161 char *end = NULL; 1162 unsigned long pm; 1163 1164 /* parse hexadecimal string */ 1165 pm = strtoul(q_arg, &end, 16); 1166 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1167 pm = 0; 1168 1169 options->portmask = pm; 1170 if (options->portmask == 0) { 1171 printf("invalid portmask specified\n"); 1172 return -1; 1173 } 1174 1175 return pm; 1176 } 1177 1178 /** Parse number of queues */ 1179 static int 1180 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1181 const char *q_arg) 1182 { 1183 char *end = NULL; 1184 unsigned long n; 1185 1186 /* parse hexadecimal string */ 1187 n = strtoul(q_arg, &end, 10); 1188 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1189 n = 0; 1190 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1191 n = 0; 1192 1193 options->nb_ports_per_lcore = n; 1194 if (options->nb_ports_per_lcore == 0) { 1195 printf("invalid number of ports selected\n"); 1196 return -1; 1197 } 1198 1199 return 0; 1200 } 1201 1202 /** Parse timer period */ 1203 static int 1204 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1205 const char *q_arg) 1206 { 1207 char *end = NULL; 1208 unsigned long n; 1209 1210 /* parse number string */ 1211 n = (unsigned)strtol(q_arg, &end, 10); 1212 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1213 n = 0; 1214 1215 if (n >= MAX_TIMER_PERIOD) { 1216 printf("Warning refresh period specified %lu is greater than " 1217 "max value %lu! using max value", 1218 n, MAX_TIMER_PERIOD); 1219 n = MAX_TIMER_PERIOD; 1220 } 1221 1222 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1223 1224 return 0; 1225 } 1226 1227 /** Generate default options for application */ 1228 static void 1229 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1230 { 1231 options->portmask = 0xffffffff; 1232 options->nb_ports_per_lcore = 1; 1233 options->refresh_period = 10000; 1234 options->single_lcore = 0; 1235 options->sessionless = 0; 1236 1237 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1238 1239 /* Cipher Data */ 1240 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1241 options->cipher_xform.next = NULL; 1242 options->ckey_param = 0; 1243 options->ckey_random_size = -1; 1244 options->cipher_xform.cipher.key.length = 0; 1245 options->iv_param = 0; 1246 options->iv_random_size = -1; 1247 options->iv.length = 0; 1248 1249 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1250 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1251 1252 /* Authentication Data */ 1253 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1254 options->auth_xform.next = NULL; 1255 options->akey_param = 0; 1256 options->akey_random_size = -1; 1257 options->auth_xform.auth.key.length = 0; 1258 options->aad_param = 0; 1259 options->aad_random_size = -1; 1260 options->aad.length = 0; 1261 options->digest_size = -1; 1262 1263 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1264 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1265 1266 options->type = CDEV_TYPE_ANY; 1267 } 1268 1269 static void 1270 display_cipher_info(struct l2fwd_crypto_options *options) 1271 { 1272 printf("\n---- Cipher information ---\n"); 1273 printf("Algorithm: %s\n", 1274 supported_cipher_algo[options->cipher_xform.cipher.algo]); 1275 rte_hexdump(stdout, "Cipher key:", 1276 options->cipher_xform.cipher.key.data, 1277 options->cipher_xform.cipher.key.length); 1278 rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length); 1279 } 1280 1281 static void 1282 display_auth_info(struct l2fwd_crypto_options *options) 1283 { 1284 printf("\n---- Authentication information ---\n"); 1285 printf("Algorithm: %s\n", 1286 supported_auth_algo[options->auth_xform.auth.algo]); 1287 rte_hexdump(stdout, "Auth key:", 1288 options->auth_xform.auth.key.data, 1289 options->auth_xform.auth.key.length); 1290 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1291 } 1292 1293 static void 1294 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1295 { 1296 char string_cipher_op[MAX_STR_LEN]; 1297 char string_auth_op[MAX_STR_LEN]; 1298 1299 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1300 strcpy(string_cipher_op, "Encrypt"); 1301 else 1302 strcpy(string_cipher_op, "Decrypt"); 1303 1304 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1305 strcpy(string_auth_op, "Auth generate"); 1306 else 1307 strcpy(string_auth_op, "Auth verify"); 1308 1309 printf("Options:-\nn"); 1310 printf("portmask: %x\n", options->portmask); 1311 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1312 printf("refresh period : %u\n", options->refresh_period); 1313 printf("single lcore mode: %s\n", 1314 options->single_lcore ? "enabled" : "disabled"); 1315 printf("stats_printing: %s\n", 1316 options->refresh_period == 0 ? "disabled" : "enabled"); 1317 1318 printf("sessionless crypto: %s\n", 1319 options->sessionless ? "enabled" : "disabled"); 1320 1321 if (options->ckey_param && (options->ckey_random_size != -1)) 1322 printf("Cipher key already parsed, ignoring size of random key\n"); 1323 1324 if (options->akey_param && (options->akey_random_size != -1)) 1325 printf("Auth key already parsed, ignoring size of random key\n"); 1326 1327 if (options->iv_param && (options->iv_random_size != -1)) 1328 printf("IV already parsed, ignoring size of random IV\n"); 1329 1330 if (options->aad_param && (options->aad_random_size != -1)) 1331 printf("AAD already parsed, ignoring size of random AAD\n"); 1332 1333 printf("\nCrypto chain: "); 1334 switch (options->xform_chain) { 1335 case L2FWD_CRYPTO_CIPHER_HASH: 1336 printf("Input --> %s --> %s --> Output\n", 1337 string_cipher_op, string_auth_op); 1338 display_cipher_info(options); 1339 display_auth_info(options); 1340 break; 1341 case L2FWD_CRYPTO_HASH_CIPHER: 1342 printf("Input --> %s --> %s --> Output\n", 1343 string_auth_op, string_cipher_op); 1344 display_cipher_info(options); 1345 display_auth_info(options); 1346 break; 1347 case L2FWD_CRYPTO_HASH_ONLY: 1348 printf("Input --> %s --> Output\n", string_auth_op); 1349 display_auth_info(options); 1350 break; 1351 case L2FWD_CRYPTO_CIPHER_ONLY: 1352 printf("Input --> %s --> Output\n", string_cipher_op); 1353 display_cipher_info(options); 1354 break; 1355 } 1356 } 1357 1358 /* Parse the argument given in the command line of the application */ 1359 static int 1360 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1361 int argc, char **argv) 1362 { 1363 int opt, retval, option_index; 1364 char **argvopt = argv, *prgname = argv[0]; 1365 1366 static struct option lgopts[] = { 1367 { "sessionless", no_argument, 0, 0 }, 1368 1369 { "cdev_type", required_argument, 0, 0 }, 1370 { "chain", required_argument, 0, 0 }, 1371 1372 { "cipher_algo", required_argument, 0, 0 }, 1373 { "cipher_op", required_argument, 0, 0 }, 1374 { "cipher_key", required_argument, 0, 0 }, 1375 { "cipher_key_random_size", required_argument, 0, 0 }, 1376 1377 { "auth_algo", required_argument, 0, 0 }, 1378 { "auth_op", required_argument, 0, 0 }, 1379 { "auth_key", required_argument, 0, 0 }, 1380 { "auth_key_random_size", required_argument, 0, 0 }, 1381 1382 { "iv", required_argument, 0, 0 }, 1383 { "iv_random_size", required_argument, 0, 0 }, 1384 { "aad", required_argument, 0, 0 }, 1385 { "aad_random_size", required_argument, 0, 0 }, 1386 { "digest_size", required_argument, 0, 0 }, 1387 1388 { "sessionless", no_argument, 0, 0 }, 1389 1390 { NULL, 0, 0, 0 } 1391 }; 1392 1393 l2fwd_crypto_default_options(options); 1394 1395 while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts, 1396 &option_index)) != EOF) { 1397 switch (opt) { 1398 /* long options */ 1399 case 0: 1400 retval = l2fwd_crypto_parse_args_long_options(options, 1401 lgopts, option_index); 1402 if (retval < 0) { 1403 l2fwd_crypto_usage(prgname); 1404 return -1; 1405 } 1406 break; 1407 1408 /* portmask */ 1409 case 'p': 1410 retval = l2fwd_crypto_parse_portmask(options, optarg); 1411 if (retval < 0) { 1412 l2fwd_crypto_usage(prgname); 1413 return -1; 1414 } 1415 break; 1416 1417 /* nqueue */ 1418 case 'q': 1419 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1420 if (retval < 0) { 1421 l2fwd_crypto_usage(prgname); 1422 return -1; 1423 } 1424 break; 1425 1426 /* single */ 1427 case 's': 1428 options->single_lcore = 1; 1429 1430 break; 1431 1432 /* timer period */ 1433 case 'T': 1434 retval = l2fwd_crypto_parse_timer_period(options, 1435 optarg); 1436 if (retval < 0) { 1437 l2fwd_crypto_usage(prgname); 1438 return -1; 1439 } 1440 break; 1441 1442 default: 1443 l2fwd_crypto_usage(prgname); 1444 return -1; 1445 } 1446 } 1447 1448 1449 if (optind >= 0) 1450 argv[optind-1] = prgname; 1451 1452 retval = optind-1; 1453 optind = 0; /* reset getopt lib */ 1454 1455 return retval; 1456 } 1457 1458 /* Check the link status of all ports in up to 9s, and print them finally */ 1459 static void 1460 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1461 { 1462 #define CHECK_INTERVAL 100 /* 100ms */ 1463 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1464 uint8_t portid, count, all_ports_up, print_flag = 0; 1465 struct rte_eth_link link; 1466 1467 printf("\nChecking link status"); 1468 fflush(stdout); 1469 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1470 all_ports_up = 1; 1471 for (portid = 0; portid < port_num; portid++) { 1472 if ((port_mask & (1 << portid)) == 0) 1473 continue; 1474 memset(&link, 0, sizeof(link)); 1475 rte_eth_link_get_nowait(portid, &link); 1476 /* print link status if flag set */ 1477 if (print_flag == 1) { 1478 if (link.link_status) 1479 printf("Port %d Link Up - speed %u " 1480 "Mbps - %s\n", (uint8_t)portid, 1481 (unsigned)link.link_speed, 1482 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1483 ("full-duplex") : ("half-duplex\n")); 1484 else 1485 printf("Port %d Link Down\n", 1486 (uint8_t)portid); 1487 continue; 1488 } 1489 /* clear all_ports_up flag if any link down */ 1490 if (link.link_status == ETH_LINK_DOWN) { 1491 all_ports_up = 0; 1492 break; 1493 } 1494 } 1495 /* after finally printing all link status, get out */ 1496 if (print_flag == 1) 1497 break; 1498 1499 if (all_ports_up == 0) { 1500 printf("."); 1501 fflush(stdout); 1502 rte_delay_ms(CHECK_INTERVAL); 1503 } 1504 1505 /* set the print_flag if all ports up or timeout */ 1506 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1507 print_flag = 1; 1508 printf("done\n"); 1509 } 1510 } 1511 } 1512 1513 /* Check if device has to be HW/SW or any */ 1514 static int 1515 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info) 1516 { 1517 if (options->type == CDEV_TYPE_HW && 1518 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1519 return 0; 1520 if (options->type == CDEV_TYPE_SW && 1521 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1522 return 0; 1523 if (options->type == CDEV_TYPE_ANY) 1524 return 0; 1525 1526 return -1; 1527 } 1528 1529 static inline int 1530 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1531 uint16_t increment) 1532 { 1533 uint16_t supp_size; 1534 1535 /* Single value */ 1536 if (increment == 0) { 1537 if (length == min) 1538 return 0; 1539 else 1540 return -1; 1541 } 1542 1543 /* Range of values */ 1544 for (supp_size = min; supp_size <= max; supp_size += increment) { 1545 if (length == supp_size) 1546 return 0; 1547 } 1548 1549 return -1; 1550 } 1551 static int 1552 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1553 uint8_t *enabled_cdevs) 1554 { 1555 unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0; 1556 const struct rte_cryptodev_capabilities *cap; 1557 enum rte_crypto_auth_algorithm cap_auth_algo; 1558 enum rte_crypto_auth_algorithm opt_auth_algo; 1559 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1560 enum rte_crypto_cipher_algorithm opt_cipher_algo; 1561 int retval; 1562 1563 cdev_count = rte_cryptodev_count(); 1564 if (cdev_count == 0) { 1565 printf("No crypto devices available\n"); 1566 return -1; 1567 } 1568 1569 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1570 cdev_id++) { 1571 struct rte_cryptodev_qp_conf qp_conf; 1572 struct rte_cryptodev_info dev_info; 1573 1574 struct rte_cryptodev_config conf = { 1575 .nb_queue_pairs = 1, 1576 .socket_id = SOCKET_ID_ANY, 1577 .session_mp = { 1578 .nb_objs = 2048, 1579 .cache_size = 64 1580 } 1581 }; 1582 1583 rte_cryptodev_info_get(cdev_id, &dev_info); 1584 1585 /* Set cipher parameters */ 1586 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 1587 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 1588 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 1589 /* Check if device supports cipher algo */ 1590 i = 0; 1591 opt_cipher_algo = options->cipher_xform.cipher.algo; 1592 cap = &dev_info.capabilities[i]; 1593 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1594 cap_cipher_algo = cap->sym.cipher.algo; 1595 if (cap->sym.xform_type == 1596 RTE_CRYPTO_SYM_XFORM_CIPHER) { 1597 if (cap_cipher_algo == opt_cipher_algo) { 1598 if (check_type(options, &dev_info) == 0) 1599 break; 1600 } 1601 } 1602 cap = &dev_info.capabilities[++i]; 1603 } 1604 1605 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1606 printf("Algorithm %s not supported by cryptodev %u" 1607 " or device not of preferred type (%s)\n", 1608 supported_cipher_algo[opt_cipher_algo], 1609 cdev_id, 1610 options->string_type); 1611 continue; 1612 } 1613 1614 options->block_size = cap->sym.cipher.block_size; 1615 /* 1616 * Check if length of provided IV is supported 1617 * by the algorithm chosen. 1618 */ 1619 if (options->iv_param) { 1620 if (check_supported_size(options->iv.length, 1621 cap->sym.cipher.iv_size.min, 1622 cap->sym.cipher.iv_size.max, 1623 cap->sym.cipher.iv_size.increment) 1624 != 0) { 1625 printf("Unsupported IV length\n"); 1626 return -1; 1627 } 1628 /* 1629 * Check if length of IV to be randomly generated 1630 * is supported by the algorithm chosen. 1631 */ 1632 } else if (options->iv_random_size != -1) { 1633 if (check_supported_size(options->iv_random_size, 1634 cap->sym.cipher.iv_size.min, 1635 cap->sym.cipher.iv_size.max, 1636 cap->sym.cipher.iv_size.increment) 1637 != 0) { 1638 printf("Unsupported IV length\n"); 1639 return -1; 1640 } 1641 options->iv.length = options->iv_random_size; 1642 /* No size provided, use minimum size. */ 1643 } else 1644 options->iv.length = cap->sym.cipher.iv_size.min; 1645 1646 /* 1647 * Check if length of provided cipher key is supported 1648 * by the algorithm chosen. 1649 */ 1650 if (options->ckey_param) { 1651 if (check_supported_size( 1652 options->cipher_xform.cipher.key.length, 1653 cap->sym.cipher.key_size.min, 1654 cap->sym.cipher.key_size.max, 1655 cap->sym.cipher.key_size.increment) 1656 != 0) { 1657 printf("Unsupported cipher key length\n"); 1658 return -1; 1659 } 1660 /* 1661 * Check if length of the cipher key to be randomly generated 1662 * is supported by the algorithm chosen. 1663 */ 1664 } else if (options->ckey_random_size != -1) { 1665 if (check_supported_size(options->ckey_random_size, 1666 cap->sym.cipher.key_size.min, 1667 cap->sym.cipher.key_size.max, 1668 cap->sym.cipher.key_size.increment) 1669 != 0) { 1670 printf("Unsupported cipher key length\n"); 1671 return -1; 1672 } 1673 options->cipher_xform.cipher.key.length = 1674 options->ckey_random_size; 1675 /* No size provided, use minimum size. */ 1676 } else 1677 options->cipher_xform.cipher.key.length = 1678 cap->sym.cipher.key_size.min; 1679 1680 if (!options->ckey_param) 1681 generate_random_key( 1682 options->cipher_xform.cipher.key.data, 1683 options->cipher_xform.cipher.key.length); 1684 1685 } 1686 1687 /* Set auth parameters */ 1688 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 1689 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 1690 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 1691 /* Check if device supports auth algo */ 1692 i = 0; 1693 opt_auth_algo = options->auth_xform.auth.algo; 1694 cap = &dev_info.capabilities[i]; 1695 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1696 cap_auth_algo = cap->sym.auth.algo; 1697 if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) && 1698 (cap_auth_algo == opt_auth_algo) && 1699 (check_type(options, &dev_info) == 0)) { 1700 break; 1701 } 1702 cap = &dev_info.capabilities[++i]; 1703 } 1704 1705 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1706 printf("Algorithm %s not supported by cryptodev %u" 1707 " or device not of preferred type (%s)\n", 1708 supported_auth_algo[opt_auth_algo], 1709 cdev_id, 1710 options->string_type); 1711 continue; 1712 } 1713 1714 options->block_size = cap->sym.auth.block_size; 1715 /* 1716 * Check if length of provided AAD is supported 1717 * by the algorithm chosen. 1718 */ 1719 if (options->aad_param) { 1720 if (check_supported_size(options->aad.length, 1721 cap->sym.auth.aad_size.min, 1722 cap->sym.auth.aad_size.max, 1723 cap->sym.auth.aad_size.increment) 1724 != 0) { 1725 printf("Unsupported AAD length\n"); 1726 return -1; 1727 } 1728 /* 1729 * Check if length of AAD to be randomly generated 1730 * is supported by the algorithm chosen. 1731 */ 1732 } else if (options->aad_random_size != -1) { 1733 if (check_supported_size(options->aad_random_size, 1734 cap->sym.auth.aad_size.min, 1735 cap->sym.auth.aad_size.max, 1736 cap->sym.auth.aad_size.increment) 1737 != 0) { 1738 printf("Unsupported AAD length\n"); 1739 return -1; 1740 } 1741 options->aad.length = options->aad_random_size; 1742 /* No size provided, use minimum size. */ 1743 } else 1744 options->aad.length = cap->sym.auth.aad_size.min; 1745 1746 options->auth_xform.auth.add_auth_data_length = 1747 options->aad.length; 1748 1749 /* 1750 * Check if length of provided auth key is supported 1751 * by the algorithm chosen. 1752 */ 1753 if (options->akey_param) { 1754 if (check_supported_size( 1755 options->auth_xform.auth.key.length, 1756 cap->sym.auth.key_size.min, 1757 cap->sym.auth.key_size.max, 1758 cap->sym.auth.key_size.increment) 1759 != 0) { 1760 printf("Unsupported auth key length\n"); 1761 return -1; 1762 } 1763 /* 1764 * Check if length of the auth key to be randomly generated 1765 * is supported by the algorithm chosen. 1766 */ 1767 } else if (options->akey_random_size != -1) { 1768 if (check_supported_size(options->akey_random_size, 1769 cap->sym.auth.key_size.min, 1770 cap->sym.auth.key_size.max, 1771 cap->sym.auth.key_size.increment) 1772 != 0) { 1773 printf("Unsupported auth key length\n"); 1774 return -1; 1775 } 1776 options->auth_xform.auth.key.length = 1777 options->akey_random_size; 1778 /* No size provided, use minimum size. */ 1779 } else 1780 options->auth_xform.auth.key.length = 1781 cap->sym.auth.key_size.min; 1782 1783 if (!options->akey_param) 1784 generate_random_key( 1785 options->auth_xform.auth.key.data, 1786 options->auth_xform.auth.key.length); 1787 1788 /* Check if digest size is supported by the algorithm. */ 1789 if (options->digest_size != -1) { 1790 if (check_supported_size(options->digest_size, 1791 cap->sym.auth.digest_size.min, 1792 cap->sym.auth.digest_size.max, 1793 cap->sym.auth.digest_size.increment) 1794 != 0) { 1795 printf("Unsupported digest length\n"); 1796 return -1; 1797 } 1798 options->auth_xform.auth.digest_length = 1799 options->digest_size; 1800 /* No size provided, use minimum size. */ 1801 } else 1802 options->auth_xform.auth.digest_length = 1803 cap->sym.auth.digest_size.min; 1804 } 1805 1806 retval = rte_cryptodev_configure(cdev_id, &conf); 1807 if (retval < 0) { 1808 printf("Failed to configure cryptodev %u", cdev_id); 1809 return -1; 1810 } 1811 1812 qp_conf.nb_descriptors = 2048; 1813 1814 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 1815 SOCKET_ID_ANY); 1816 if (retval < 0) { 1817 printf("Failed to setup queue pair %u on cryptodev %u", 1818 0, cdev_id); 1819 return -1; 1820 } 1821 1822 retval = rte_cryptodev_start(cdev_id); 1823 if (retval < 0) { 1824 printf("Failed to start device %u: error %d\n", 1825 cdev_id, retval); 1826 return -1; 1827 } 1828 1829 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 1830 1831 enabled_cdevs[cdev_id] = 1; 1832 enabled_cdev_count++; 1833 } 1834 1835 return enabled_cdev_count; 1836 } 1837 1838 static int 1839 initialize_ports(struct l2fwd_crypto_options *options) 1840 { 1841 uint8_t last_portid, portid; 1842 unsigned enabled_portcount = 0; 1843 unsigned nb_ports = rte_eth_dev_count(); 1844 1845 if (nb_ports == 0) { 1846 printf("No Ethernet ports - bye\n"); 1847 return -1; 1848 } 1849 1850 /* Reset l2fwd_dst_ports */ 1851 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 1852 l2fwd_dst_ports[portid] = 0; 1853 1854 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 1855 int retval; 1856 1857 /* Skip ports that are not enabled */ 1858 if ((options->portmask & (1 << portid)) == 0) 1859 continue; 1860 1861 /* init port */ 1862 printf("Initializing port %u... ", (unsigned) portid); 1863 fflush(stdout); 1864 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 1865 if (retval < 0) { 1866 printf("Cannot configure device: err=%d, port=%u\n", 1867 retval, (unsigned) portid); 1868 return -1; 1869 } 1870 1871 /* init one RX queue */ 1872 fflush(stdout); 1873 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1874 rte_eth_dev_socket_id(portid), 1875 NULL, l2fwd_pktmbuf_pool); 1876 if (retval < 0) { 1877 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 1878 retval, (unsigned) portid); 1879 return -1; 1880 } 1881 1882 /* init one TX queue on each port */ 1883 fflush(stdout); 1884 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 1885 rte_eth_dev_socket_id(portid), 1886 NULL); 1887 if (retval < 0) { 1888 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 1889 retval, (unsigned) portid); 1890 1891 return -1; 1892 } 1893 1894 /* Start device */ 1895 retval = rte_eth_dev_start(portid); 1896 if (retval < 0) { 1897 printf("rte_eth_dev_start:err=%d, port=%u\n", 1898 retval, (unsigned) portid); 1899 return -1; 1900 } 1901 1902 rte_eth_promiscuous_enable(portid); 1903 1904 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 1905 1906 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 1907 (unsigned) portid, 1908 l2fwd_ports_eth_addr[portid].addr_bytes[0], 1909 l2fwd_ports_eth_addr[portid].addr_bytes[1], 1910 l2fwd_ports_eth_addr[portid].addr_bytes[2], 1911 l2fwd_ports_eth_addr[portid].addr_bytes[3], 1912 l2fwd_ports_eth_addr[portid].addr_bytes[4], 1913 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 1914 1915 /* initialize port stats */ 1916 memset(&port_statistics, 0, sizeof(port_statistics)); 1917 1918 /* Setup port forwarding table */ 1919 if (enabled_portcount % 2) { 1920 l2fwd_dst_ports[portid] = last_portid; 1921 l2fwd_dst_ports[last_portid] = portid; 1922 } else { 1923 last_portid = portid; 1924 } 1925 1926 l2fwd_enabled_port_mask |= (1 << portid); 1927 enabled_portcount++; 1928 } 1929 1930 if (enabled_portcount == 1) { 1931 l2fwd_dst_ports[last_portid] = last_portid; 1932 } else if (enabled_portcount % 2) { 1933 printf("odd number of ports in portmask- bye\n"); 1934 return -1; 1935 } 1936 1937 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 1938 1939 return enabled_portcount; 1940 } 1941 1942 static void 1943 reserve_key_memory(struct l2fwd_crypto_options *options) 1944 { 1945 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 1946 MAX_KEY_SIZE, 0); 1947 if (options->cipher_xform.cipher.key.data == NULL) 1948 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 1949 1950 1951 options->auth_xform.auth.key.data = rte_malloc("auth key", 1952 MAX_KEY_SIZE, 0); 1953 if (options->auth_xform.auth.key.data == NULL) 1954 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 1955 1956 options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0); 1957 if (options->iv.data == NULL) 1958 rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV"); 1959 options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data); 1960 1961 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 1962 if (options->aad.data == NULL) 1963 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 1964 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 1965 } 1966 1967 int 1968 main(int argc, char **argv) 1969 { 1970 struct lcore_queue_conf *qconf; 1971 struct l2fwd_crypto_options options; 1972 1973 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 1974 unsigned lcore_id, rx_lcore_id; 1975 int ret, enabled_cdevcount, enabled_portcount; 1976 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 1977 1978 /* init EAL */ 1979 ret = rte_eal_init(argc, argv); 1980 if (ret < 0) 1981 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 1982 argc -= ret; 1983 argv += ret; 1984 1985 /* reserve memory for Cipher/Auth key and IV */ 1986 reserve_key_memory(&options); 1987 1988 /* fill out the supported algorithm tables */ 1989 fill_supported_algorithm_tables(); 1990 1991 /* parse application arguments (after the EAL ones) */ 1992 ret = l2fwd_crypto_parse_args(&options, argc, argv); 1993 if (ret < 0) 1994 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 1995 1996 /* create the mbuf pool */ 1997 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 1998 sizeof(struct rte_crypto_op), 1999 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2000 if (l2fwd_pktmbuf_pool == NULL) 2001 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2002 2003 /* create crypto op pool */ 2004 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2005 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0, 2006 rte_socket_id()); 2007 if (l2fwd_crypto_op_pool == NULL) 2008 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2009 2010 /* Enable Ethernet ports */ 2011 enabled_portcount = initialize_ports(&options); 2012 if (enabled_portcount < 1) 2013 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2014 2015 nb_ports = rte_eth_dev_count(); 2016 /* Initialize the port/queue configuration of each logical core */ 2017 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2018 portid < nb_ports; portid++) { 2019 2020 /* skip ports that are not enabled */ 2021 if ((options.portmask & (1 << portid)) == 0) 2022 continue; 2023 2024 if (options.single_lcore && qconf == NULL) { 2025 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2026 rx_lcore_id++; 2027 if (rx_lcore_id >= RTE_MAX_LCORE) 2028 rte_exit(EXIT_FAILURE, 2029 "Not enough cores\n"); 2030 } 2031 } else if (!options.single_lcore) { 2032 /* get the lcore_id for this port */ 2033 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2034 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2035 options.nb_ports_per_lcore) { 2036 rx_lcore_id++; 2037 if (rx_lcore_id >= RTE_MAX_LCORE) 2038 rte_exit(EXIT_FAILURE, 2039 "Not enough cores\n"); 2040 } 2041 } 2042 2043 /* Assigned a new logical core in the loop above. */ 2044 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2045 qconf = &lcore_queue_conf[rx_lcore_id]; 2046 2047 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2048 qconf->nb_rx_ports++; 2049 2050 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2051 } 2052 2053 /* Enable Crypto devices */ 2054 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2055 enabled_cdevs); 2056 if (enabled_cdevcount < 0) 2057 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2058 2059 if (enabled_cdevcount < enabled_portcount) 2060 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2061 "has to be more or equal to number of ports (%d)\n", 2062 enabled_cdevcount, enabled_portcount); 2063 2064 nb_cryptodevs = rte_cryptodev_count(); 2065 2066 /* Initialize the port/cryptodev configuration of each logical core */ 2067 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2068 cdev_id < nb_cryptodevs && enabled_cdevcount; 2069 cdev_id++) { 2070 /* Crypto op not supported by crypto device */ 2071 if (!enabled_cdevs[cdev_id]) 2072 continue; 2073 2074 if (options.single_lcore && qconf == NULL) { 2075 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2076 rx_lcore_id++; 2077 if (rx_lcore_id >= RTE_MAX_LCORE) 2078 rte_exit(EXIT_FAILURE, 2079 "Not enough cores\n"); 2080 } 2081 } else if (!options.single_lcore) { 2082 /* get the lcore_id for this port */ 2083 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2084 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2085 options.nb_ports_per_lcore) { 2086 rx_lcore_id++; 2087 if (rx_lcore_id >= RTE_MAX_LCORE) 2088 rte_exit(EXIT_FAILURE, 2089 "Not enough cores\n"); 2090 } 2091 } 2092 2093 /* Assigned a new logical core in the loop above. */ 2094 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2095 qconf = &lcore_queue_conf[rx_lcore_id]; 2096 2097 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2098 qconf->nb_crypto_devs++; 2099 2100 enabled_cdevcount--; 2101 2102 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2103 (unsigned)cdev_id); 2104 } 2105 2106 /* launch per-lcore init on every lcore */ 2107 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2108 CALL_MASTER); 2109 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2110 if (rte_eal_wait_lcore(lcore_id) < 0) 2111 return -1; 2112 } 2113 2114 return 0; 2115 } 2116