1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_per_lcore.h> 71 #include <rte_prefetch.h> 72 #include <rte_random.h> 73 #include <rte_hexdump.h> 74 75 enum cdev_type { 76 CDEV_TYPE_ANY, 77 CDEV_TYPE_HW, 78 CDEV_TYPE_SW 79 }; 80 81 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 82 83 #define NB_MBUF 8192 84 85 #define MAX_STR_LEN 32 86 #define MAX_KEY_SIZE 128 87 #define MAX_IV_SIZE 16 88 #define MAX_AAD_SIZE 65535 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 rte_iova_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 197 unsigned int mac_updating; 198 }; 199 200 /** l2fwd crypto lcore params */ 201 struct l2fwd_crypto_params { 202 uint8_t dev_id; 203 uint8_t qp_id; 204 205 unsigned digest_length; 206 unsigned block_size; 207 208 struct l2fwd_iv cipher_iv; 209 struct l2fwd_iv auth_iv; 210 struct l2fwd_iv aead_iv; 211 struct l2fwd_key aad; 212 struct rte_cryptodev_sym_session *session; 213 214 uint8_t do_cipher; 215 uint8_t do_hash; 216 uint8_t do_aead; 217 uint8_t hash_verify; 218 219 enum rte_crypto_cipher_algorithm cipher_algo; 220 enum rte_crypto_auth_algorithm auth_algo; 221 enum rte_crypto_aead_algorithm aead_algo; 222 }; 223 224 /** lcore configuration */ 225 struct lcore_queue_conf { 226 unsigned nb_rx_ports; 227 uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 228 229 unsigned nb_crypto_devs; 230 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 231 232 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 233 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 234 } __rte_cache_aligned; 235 236 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 237 238 static const struct rte_eth_conf port_conf = { 239 .rxmode = { 240 .mq_mode = ETH_MQ_RX_NONE, 241 .max_rx_pkt_len = ETHER_MAX_LEN, 242 .split_hdr_size = 0, 243 .header_split = 0, /**< Header Split disabled */ 244 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 245 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 246 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 247 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 248 }, 249 .txmode = { 250 .mq_mode = ETH_MQ_TX_NONE, 251 }, 252 }; 253 254 struct rte_mempool *l2fwd_pktmbuf_pool; 255 struct rte_mempool *l2fwd_crypto_op_pool; 256 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 257 258 /* Per-port statistics struct */ 259 struct l2fwd_port_statistics { 260 uint64_t tx; 261 uint64_t rx; 262 263 uint64_t crypto_enqueued; 264 uint64_t crypto_dequeued; 265 266 uint64_t dropped; 267 } __rte_cache_aligned; 268 269 struct l2fwd_crypto_statistics { 270 uint64_t enqueued; 271 uint64_t dequeued; 272 273 uint64_t errors; 274 } __rte_cache_aligned; 275 276 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 277 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 278 279 /* A tsc-based timer responsible for triggering statistics printout */ 280 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 281 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 282 283 /* default period is 10 seconds */ 284 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 285 286 /* Print out statistics on packets dropped */ 287 static void 288 print_stats(void) 289 { 290 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 291 uint64_t total_packets_enqueued, total_packets_dequeued, 292 total_packets_errors; 293 uint16_t portid; 294 uint64_t cdevid; 295 296 total_packets_dropped = 0; 297 total_packets_tx = 0; 298 total_packets_rx = 0; 299 total_packets_enqueued = 0; 300 total_packets_dequeued = 0; 301 total_packets_errors = 0; 302 303 const char clr[] = { 27, '[', '2', 'J', '\0' }; 304 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 305 306 /* Clear screen and move to top left */ 307 printf("%s%s", clr, topLeft); 308 309 printf("\nPort statistics ===================================="); 310 311 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 312 /* skip disabled ports */ 313 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 314 continue; 315 printf("\nStatistics for port %u ------------------------------" 316 "\nPackets sent: %32"PRIu64 317 "\nPackets received: %28"PRIu64 318 "\nPackets dropped: %29"PRIu64, 319 portid, 320 port_statistics[portid].tx, 321 port_statistics[portid].rx, 322 port_statistics[portid].dropped); 323 324 total_packets_dropped += port_statistics[portid].dropped; 325 total_packets_tx += port_statistics[portid].tx; 326 total_packets_rx += port_statistics[portid].rx; 327 } 328 printf("\nCrypto statistics =================================="); 329 330 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 331 /* skip disabled ports */ 332 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 333 continue; 334 printf("\nStatistics for cryptodev %"PRIu64 335 " -------------------------" 336 "\nPackets enqueued: %28"PRIu64 337 "\nPackets dequeued: %28"PRIu64 338 "\nPackets errors: %30"PRIu64, 339 cdevid, 340 crypto_statistics[cdevid].enqueued, 341 crypto_statistics[cdevid].dequeued, 342 crypto_statistics[cdevid].errors); 343 344 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 345 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 346 total_packets_errors += crypto_statistics[cdevid].errors; 347 } 348 printf("\nAggregate statistics ===============================" 349 "\nTotal packets received: %22"PRIu64 350 "\nTotal packets enqueued: %22"PRIu64 351 "\nTotal packets dequeued: %22"PRIu64 352 "\nTotal packets sent: %26"PRIu64 353 "\nTotal packets dropped: %23"PRIu64 354 "\nTotal packets crypto errors: %17"PRIu64, 355 total_packets_rx, 356 total_packets_enqueued, 357 total_packets_dequeued, 358 total_packets_tx, 359 total_packets_dropped, 360 total_packets_errors); 361 printf("\n====================================================\n"); 362 } 363 364 static int 365 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 366 struct l2fwd_crypto_params *cparams) 367 { 368 struct rte_crypto_op **op_buffer; 369 unsigned ret; 370 371 op_buffer = (struct rte_crypto_op **) 372 qconf->op_buf[cparams->dev_id].buffer; 373 374 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 375 cparams->qp_id, op_buffer, (uint16_t) n); 376 377 crypto_statistics[cparams->dev_id].enqueued += ret; 378 if (unlikely(ret < n)) { 379 crypto_statistics[cparams->dev_id].errors += (n - ret); 380 do { 381 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 382 rte_crypto_op_free(op_buffer[ret]); 383 } while (++ret < n); 384 } 385 386 return 0; 387 } 388 389 static int 390 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 391 struct l2fwd_crypto_params *cparams) 392 { 393 unsigned lcore_id, len; 394 struct lcore_queue_conf *qconf; 395 396 lcore_id = rte_lcore_id(); 397 398 qconf = &lcore_queue_conf[lcore_id]; 399 len = qconf->op_buf[cparams->dev_id].len; 400 qconf->op_buf[cparams->dev_id].buffer[len] = op; 401 len++; 402 403 /* enough ops to be sent */ 404 if (len == MAX_PKT_BURST) { 405 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 406 len = 0; 407 } 408 409 qconf->op_buf[cparams->dev_id].len = len; 410 return 0; 411 } 412 413 static int 414 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 415 struct rte_crypto_op *op, 416 struct l2fwd_crypto_params *cparams) 417 { 418 struct ether_hdr *eth_hdr; 419 struct ipv4_hdr *ip_hdr; 420 421 uint32_t ipdata_offset, data_len; 422 uint32_t pad_len = 0; 423 char *padding; 424 425 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 426 427 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 428 return -1; 429 430 ipdata_offset = sizeof(struct ether_hdr); 431 432 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 433 ipdata_offset); 434 435 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 436 * IPV4_IHL_MULTIPLIER; 437 438 439 /* Zero pad data to be crypto'd so it is block aligned */ 440 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 441 442 if (cparams->do_hash && cparams->hash_verify) 443 data_len -= cparams->digest_length; 444 445 if (cparams->do_cipher) { 446 /* 447 * Following algorithms are block cipher algorithms, 448 * and might need padding 449 */ 450 switch (cparams->cipher_algo) { 451 case RTE_CRYPTO_CIPHER_AES_CBC: 452 case RTE_CRYPTO_CIPHER_AES_ECB: 453 case RTE_CRYPTO_CIPHER_DES_CBC: 454 case RTE_CRYPTO_CIPHER_3DES_CBC: 455 case RTE_CRYPTO_CIPHER_3DES_ECB: 456 if (data_len % cparams->block_size) 457 pad_len = cparams->block_size - 458 (data_len % cparams->block_size); 459 break; 460 default: 461 pad_len = 0; 462 } 463 464 if (pad_len) { 465 padding = rte_pktmbuf_append(m, pad_len); 466 if (unlikely(!padding)) 467 return -1; 468 469 data_len += pad_len; 470 memset(padding, 0, pad_len); 471 } 472 } 473 474 /* Set crypto operation data parameters */ 475 rte_crypto_op_attach_sym_session(op, cparams->session); 476 477 if (cparams->do_hash) { 478 if (cparams->auth_iv.length) { 479 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 480 uint8_t *, 481 IV_OFFSET + 482 cparams->cipher_iv.length); 483 /* 484 * Copy IV at the end of the crypto operation, 485 * after the cipher IV, if added 486 */ 487 rte_memcpy(iv_ptr, cparams->auth_iv.data, 488 cparams->auth_iv.length); 489 } 490 if (!cparams->hash_verify) { 491 /* Append space for digest to end of packet */ 492 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 493 cparams->digest_length); 494 } else { 495 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 496 uint8_t *) + ipdata_offset + data_len; 497 } 498 499 op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, 500 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 501 502 /* For wireless algorithms, offset/length must be in bits */ 503 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 504 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 505 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 506 op->sym->auth.data.offset = ipdata_offset << 3; 507 op->sym->auth.data.length = data_len << 3; 508 } else { 509 op->sym->auth.data.offset = ipdata_offset; 510 op->sym->auth.data.length = data_len; 511 } 512 } 513 514 if (cparams->do_cipher) { 515 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 516 IV_OFFSET); 517 /* Copy IV at the end of the crypto operation */ 518 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 519 cparams->cipher_iv.length); 520 521 /* For wireless algorithms, offset/length must be in bits */ 522 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 523 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 524 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 525 op->sym->cipher.data.offset = ipdata_offset << 3; 526 op->sym->cipher.data.length = data_len << 3; 527 } else { 528 op->sym->cipher.data.offset = ipdata_offset; 529 op->sym->cipher.data.length = data_len; 530 } 531 } 532 533 if (cparams->do_aead) { 534 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 535 IV_OFFSET); 536 /* Copy IV at the end of the crypto operation */ 537 /* 538 * If doing AES-CCM, nonce is copied one byte 539 * after the start of IV field 540 */ 541 if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 542 rte_memcpy(iv_ptr + 1, cparams->aead_iv.data, 543 cparams->aead_iv.length); 544 else 545 rte_memcpy(iv_ptr, cparams->aead_iv.data, 546 cparams->aead_iv.length); 547 548 op->sym->aead.data.offset = ipdata_offset; 549 op->sym->aead.data.length = data_len; 550 551 if (!cparams->hash_verify) { 552 /* Append space for digest to end of packet */ 553 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 554 cparams->digest_length); 555 } else { 556 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 557 uint8_t *) + ipdata_offset + data_len; 558 } 559 560 op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, 561 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 562 563 if (cparams->aad.length) { 564 op->sym->aead.aad.data = cparams->aad.data; 565 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 566 } 567 } 568 569 op->sym->m_src = m; 570 571 return l2fwd_crypto_enqueue(op, cparams); 572 } 573 574 575 /* Send the burst of packets on an output interface */ 576 static int 577 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 578 uint16_t port) 579 { 580 struct rte_mbuf **pkt_buffer; 581 unsigned ret; 582 583 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 584 585 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 586 port_statistics[port].tx += ret; 587 if (unlikely(ret < n)) { 588 port_statistics[port].dropped += (n - ret); 589 do { 590 rte_pktmbuf_free(pkt_buffer[ret]); 591 } while (++ret < n); 592 } 593 594 return 0; 595 } 596 597 /* Enqueue packets for TX and prepare them to be sent */ 598 static int 599 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 600 { 601 unsigned lcore_id, len; 602 struct lcore_queue_conf *qconf; 603 604 lcore_id = rte_lcore_id(); 605 606 qconf = &lcore_queue_conf[lcore_id]; 607 len = qconf->pkt_buf[port].len; 608 qconf->pkt_buf[port].buffer[len] = m; 609 len++; 610 611 /* enough pkts to be sent */ 612 if (unlikely(len == MAX_PKT_BURST)) { 613 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 614 len = 0; 615 } 616 617 qconf->pkt_buf[port].len = len; 618 return 0; 619 } 620 621 static void 622 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid) 623 { 624 struct ether_hdr *eth; 625 void *tmp; 626 627 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 628 629 /* 02:00:00:00:00:xx */ 630 tmp = ð->d_addr.addr_bytes[0]; 631 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 632 633 /* src addr */ 634 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 635 } 636 637 static void 638 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid, 639 struct l2fwd_crypto_options *options) 640 { 641 uint16_t dst_port; 642 643 dst_port = l2fwd_dst_ports[portid]; 644 645 if (options->mac_updating) 646 l2fwd_mac_updating(m, dst_port); 647 648 l2fwd_send_packet(m, dst_port); 649 } 650 651 /** Generate random key */ 652 static void 653 generate_random_key(uint8_t *key, unsigned length) 654 { 655 int fd; 656 int ret; 657 658 fd = open("/dev/urandom", O_RDONLY); 659 if (fd < 0) 660 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 661 662 ret = read(fd, key, length); 663 close(fd); 664 665 if (ret != (signed)length) 666 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 667 } 668 669 static struct rte_cryptodev_sym_session * 670 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 671 { 672 struct rte_crypto_sym_xform *first_xform; 673 struct rte_cryptodev_sym_session *session; 674 int retval = rte_cryptodev_socket_id(cdev_id); 675 676 if (retval < 0) 677 return NULL; 678 679 uint8_t socket_id = (uint8_t) retval; 680 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 681 682 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 683 first_xform = &options->aead_xform; 684 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 685 first_xform = &options->cipher_xform; 686 first_xform->next = &options->auth_xform; 687 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 688 first_xform = &options->auth_xform; 689 first_xform->next = &options->cipher_xform; 690 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 691 first_xform = &options->cipher_xform; 692 } else { 693 first_xform = &options->auth_xform; 694 } 695 696 session = rte_cryptodev_sym_session_create(sess_mp); 697 698 if (session == NULL) 699 return NULL; 700 701 if (rte_cryptodev_sym_session_init(cdev_id, session, 702 first_xform, sess_mp) < 0) 703 return NULL; 704 705 return session; 706 } 707 708 static void 709 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 710 711 /* main processing loop */ 712 static void 713 l2fwd_main_loop(struct l2fwd_crypto_options *options) 714 { 715 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 716 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 717 718 unsigned lcore_id = rte_lcore_id(); 719 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 720 unsigned int i, j, nb_rx, len; 721 uint16_t portid; 722 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 723 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 724 US_PER_S * BURST_TX_DRAIN_US; 725 struct l2fwd_crypto_params *cparams; 726 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 727 struct rte_cryptodev_sym_session *session; 728 729 if (qconf->nb_rx_ports == 0) { 730 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 731 return; 732 } 733 734 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 735 736 for (i = 0; i < qconf->nb_rx_ports; i++) { 737 738 portid = qconf->rx_port_list[i]; 739 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 740 portid); 741 } 742 743 for (i = 0; i < qconf->nb_crypto_devs; i++) { 744 port_cparams[i].do_cipher = 0; 745 port_cparams[i].do_hash = 0; 746 port_cparams[i].do_aead = 0; 747 748 switch (options->xform_chain) { 749 case L2FWD_CRYPTO_AEAD: 750 port_cparams[i].do_aead = 1; 751 break; 752 case L2FWD_CRYPTO_CIPHER_HASH: 753 case L2FWD_CRYPTO_HASH_CIPHER: 754 port_cparams[i].do_cipher = 1; 755 port_cparams[i].do_hash = 1; 756 break; 757 case L2FWD_CRYPTO_HASH_ONLY: 758 port_cparams[i].do_hash = 1; 759 break; 760 case L2FWD_CRYPTO_CIPHER_ONLY: 761 port_cparams[i].do_cipher = 1; 762 break; 763 } 764 765 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 766 port_cparams[i].qp_id = 0; 767 768 port_cparams[i].block_size = options->block_size; 769 770 if (port_cparams[i].do_hash) { 771 port_cparams[i].auth_iv.data = options->auth_iv.data; 772 port_cparams[i].auth_iv.length = options->auth_iv.length; 773 if (!options->auth_iv_param) 774 generate_random_key(port_cparams[i].auth_iv.data, 775 port_cparams[i].auth_iv.length); 776 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 777 port_cparams[i].hash_verify = 1; 778 else 779 port_cparams[i].hash_verify = 0; 780 781 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 782 port_cparams[i].digest_length = 783 options->auth_xform.auth.digest_length; 784 /* Set IV parameters */ 785 if (options->auth_iv.length) { 786 options->auth_xform.auth.iv.offset = 787 IV_OFFSET + options->cipher_iv.length; 788 options->auth_xform.auth.iv.length = 789 options->auth_iv.length; 790 } 791 } 792 793 if (port_cparams[i].do_aead) { 794 port_cparams[i].aead_iv.data = options->aead_iv.data; 795 port_cparams[i].aead_iv.length = options->aead_iv.length; 796 if (!options->aead_iv_param) 797 generate_random_key(port_cparams[i].aead_iv.data, 798 port_cparams[i].aead_iv.length); 799 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 800 port_cparams[i].digest_length = 801 options->aead_xform.aead.digest_length; 802 if (options->aead_xform.aead.aad_length) { 803 port_cparams[i].aad.data = options->aad.data; 804 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 805 port_cparams[i].aad.length = options->aad.length; 806 if (!options->aad_param) 807 generate_random_key(port_cparams[i].aad.data, 808 port_cparams[i].aad.length); 809 /* 810 * If doing AES-CCM, first 18 bytes has to be reserved, 811 * and actual AAD should start from byte 18 812 */ 813 if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 814 memmove(port_cparams[i].aad.data + 18, 815 port_cparams[i].aad.data, 816 port_cparams[i].aad.length); 817 818 } else 819 port_cparams[i].aad.length = 0; 820 821 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 822 port_cparams[i].hash_verify = 1; 823 else 824 port_cparams[i].hash_verify = 0; 825 826 /* Set IV parameters */ 827 options->aead_xform.aead.iv.offset = IV_OFFSET; 828 options->aead_xform.aead.iv.length = options->aead_iv.length; 829 } 830 831 if (port_cparams[i].do_cipher) { 832 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 833 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 834 if (!options->cipher_iv_param) 835 generate_random_key(port_cparams[i].cipher_iv.data, 836 port_cparams[i].cipher_iv.length); 837 838 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 839 /* Set IV parameters */ 840 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 841 options->cipher_xform.cipher.iv.length = 842 options->cipher_iv.length; 843 } 844 845 session = initialize_crypto_session(options, 846 port_cparams[i].dev_id); 847 if (session == NULL) 848 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 849 850 port_cparams[i].session = session; 851 852 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 853 port_cparams[i].dev_id); 854 } 855 856 l2fwd_crypto_options_print(options); 857 858 /* 859 * Initialize previous tsc timestamp before the loop, 860 * to avoid showing the port statistics immediately, 861 * so user can see the crypto information. 862 */ 863 prev_tsc = rte_rdtsc(); 864 while (1) { 865 866 cur_tsc = rte_rdtsc(); 867 868 /* 869 * Crypto device/TX burst queue drain 870 */ 871 diff_tsc = cur_tsc - prev_tsc; 872 if (unlikely(diff_tsc > drain_tsc)) { 873 /* Enqueue all crypto ops remaining in buffers */ 874 for (i = 0; i < qconf->nb_crypto_devs; i++) { 875 cparams = &port_cparams[i]; 876 len = qconf->op_buf[cparams->dev_id].len; 877 l2fwd_crypto_send_burst(qconf, len, cparams); 878 qconf->op_buf[cparams->dev_id].len = 0; 879 } 880 /* Transmit all packets remaining in buffers */ 881 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 882 if (qconf->pkt_buf[portid].len == 0) 883 continue; 884 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 885 qconf->pkt_buf[portid].len, 886 portid); 887 qconf->pkt_buf[portid].len = 0; 888 } 889 890 /* if timer is enabled */ 891 if (timer_period > 0) { 892 893 /* advance the timer */ 894 timer_tsc += diff_tsc; 895 896 /* if timer has reached its timeout */ 897 if (unlikely(timer_tsc >= 898 (uint64_t)timer_period)) { 899 900 /* do this only on master core */ 901 if (lcore_id == rte_get_master_lcore() 902 && options->refresh_period) { 903 print_stats(); 904 timer_tsc = 0; 905 } 906 } 907 } 908 909 prev_tsc = cur_tsc; 910 } 911 912 /* 913 * Read packet from RX queues 914 */ 915 for (i = 0; i < qconf->nb_rx_ports; i++) { 916 portid = qconf->rx_port_list[i]; 917 918 cparams = &port_cparams[i]; 919 920 nb_rx = rte_eth_rx_burst(portid, 0, 921 pkts_burst, MAX_PKT_BURST); 922 923 port_statistics[portid].rx += nb_rx; 924 925 if (nb_rx) { 926 /* 927 * If we can't allocate a crypto_ops, then drop 928 * the rest of the burst and dequeue and 929 * process the packets to free offload structs 930 */ 931 if (rte_crypto_op_bulk_alloc( 932 l2fwd_crypto_op_pool, 933 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 934 ops_burst, nb_rx) != 935 nb_rx) { 936 for (j = 0; j < nb_rx; j++) 937 rte_pktmbuf_free(pkts_burst[j]); 938 939 nb_rx = 0; 940 } 941 942 /* Enqueue packets from Crypto device*/ 943 for (j = 0; j < nb_rx; j++) { 944 m = pkts_burst[j]; 945 946 l2fwd_simple_crypto_enqueue(m, 947 ops_burst[j], cparams); 948 } 949 } 950 951 /* Dequeue packets from Crypto device */ 952 do { 953 nb_rx = rte_cryptodev_dequeue_burst( 954 cparams->dev_id, cparams->qp_id, 955 ops_burst, MAX_PKT_BURST); 956 957 crypto_statistics[cparams->dev_id].dequeued += 958 nb_rx; 959 960 /* Forward crypto'd packets */ 961 for (j = 0; j < nb_rx; j++) { 962 m = ops_burst[j]->sym->m_src; 963 964 rte_crypto_op_free(ops_burst[j]); 965 l2fwd_simple_forward(m, portid, 966 options); 967 } 968 } while (nb_rx == MAX_PKT_BURST); 969 } 970 } 971 } 972 973 static int 974 l2fwd_launch_one_lcore(void *arg) 975 { 976 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 977 return 0; 978 } 979 980 /* Display command line arguments usage */ 981 static void 982 l2fwd_crypto_usage(const char *prgname) 983 { 984 printf("%s [EAL options] --\n" 985 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 986 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 987 " -s manage all ports from single lcore\n" 988 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 989 " (0 to disable, 10 default, 86400 maximum)\n" 990 991 " --cdev_type HW / SW / ANY\n" 992 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 993 " HASH_ONLY / AEAD\n" 994 995 " --cipher_algo ALGO\n" 996 " --cipher_op ENCRYPT / DECRYPT\n" 997 " --cipher_key KEY (bytes separated with \":\")\n" 998 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 999 " --cipher_iv IV (bytes separated with \":\")\n" 1000 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 1001 1002 " --auth_algo ALGO\n" 1003 " --auth_op GENERATE / VERIFY\n" 1004 " --auth_key KEY (bytes separated with \":\")\n" 1005 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 1006 " --auth_iv IV (bytes separated with \":\")\n" 1007 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 1008 1009 " --aead_algo ALGO\n" 1010 " --aead_op ENCRYPT / DECRYPT\n" 1011 " --aead_key KEY (bytes separated with \":\")\n" 1012 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 1013 " --aead_iv IV (bytes separated with \":\")\n" 1014 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 1015 " --aad AAD (bytes separated with \":\")\n" 1016 " --aad_random_size SIZE: size of AAD when generated randomly\n" 1017 1018 " --digest_size SIZE: size of digest to be generated/verified\n" 1019 1020 " --sessionless\n" 1021 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 1022 1023 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1024 " When enabled:\n" 1025 " - The source MAC address is replaced by the TX port MAC address\n" 1026 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1027 prgname); 1028 } 1029 1030 /** Parse crypto device type command line argument */ 1031 static int 1032 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1033 { 1034 if (strcmp("HW", optarg) == 0) { 1035 *type = CDEV_TYPE_HW; 1036 return 0; 1037 } else if (strcmp("SW", optarg) == 0) { 1038 *type = CDEV_TYPE_SW; 1039 return 0; 1040 } else if (strcmp("ANY", optarg) == 0) { 1041 *type = CDEV_TYPE_ANY; 1042 return 0; 1043 } 1044 1045 return -1; 1046 } 1047 1048 /** Parse crypto chain xform command line argument */ 1049 static int 1050 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1051 { 1052 if (strcmp("CIPHER_HASH", optarg) == 0) { 1053 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1054 return 0; 1055 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1056 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1057 return 0; 1058 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1059 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1060 return 0; 1061 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1062 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1063 return 0; 1064 } else if (strcmp("AEAD", optarg) == 0) { 1065 options->xform_chain = L2FWD_CRYPTO_AEAD; 1066 return 0; 1067 } 1068 1069 return -1; 1070 } 1071 1072 /** Parse crypto cipher algo option command line argument */ 1073 static int 1074 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1075 { 1076 1077 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1078 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1079 "not supported!\n"); 1080 return -1; 1081 } 1082 1083 return 0; 1084 } 1085 1086 /** Parse crypto cipher operation command line argument */ 1087 static int 1088 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1089 { 1090 if (strcmp("ENCRYPT", optarg) == 0) { 1091 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1092 return 0; 1093 } else if (strcmp("DECRYPT", optarg) == 0) { 1094 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1095 return 0; 1096 } 1097 1098 printf("Cipher operation not supported!\n"); 1099 return -1; 1100 } 1101 1102 /** Parse bytes from command line argument */ 1103 static int 1104 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size) 1105 { 1106 unsigned byte_count; 1107 char *token; 1108 1109 errno = 0; 1110 for (byte_count = 0, token = strtok(input_arg, ":"); 1111 (byte_count < max_size) && (token != NULL); 1112 token = strtok(NULL, ":")) { 1113 1114 int number = (int)strtol(token, NULL, 16); 1115 1116 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1117 return -1; 1118 1119 data[byte_count++] = (uint8_t)number; 1120 } 1121 1122 return byte_count; 1123 } 1124 1125 /** Parse size param*/ 1126 static int 1127 parse_size(int *size, const char *q_arg) 1128 { 1129 char *end = NULL; 1130 unsigned long n; 1131 1132 /* parse hexadecimal string */ 1133 n = strtoul(q_arg, &end, 10); 1134 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1135 n = 0; 1136 1137 if (n == 0) { 1138 printf("invalid size\n"); 1139 return -1; 1140 } 1141 1142 *size = n; 1143 return 0; 1144 } 1145 1146 /** Parse crypto cipher operation command line argument */ 1147 static int 1148 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1149 { 1150 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1151 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1152 "not supported!\n"); 1153 return -1; 1154 } 1155 1156 return 0; 1157 } 1158 1159 static int 1160 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1161 { 1162 if (strcmp("VERIFY", optarg) == 0) { 1163 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1164 return 0; 1165 } else if (strcmp("GENERATE", optarg) == 0) { 1166 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1167 return 0; 1168 } 1169 1170 printf("Authentication operation specified not supported!\n"); 1171 return -1; 1172 } 1173 1174 static int 1175 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1176 { 1177 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1178 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1179 "not supported!\n"); 1180 return -1; 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int 1187 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1188 { 1189 if (strcmp("ENCRYPT", optarg) == 0) { 1190 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1191 return 0; 1192 } else if (strcmp("DECRYPT", optarg) == 0) { 1193 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1194 return 0; 1195 } 1196 1197 printf("AEAD operation specified not supported!\n"); 1198 return -1; 1199 } 1200 static int 1201 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1202 const char *q_arg) 1203 { 1204 char *end = NULL; 1205 uint64_t pm; 1206 1207 /* parse hexadecimal string */ 1208 pm = strtoul(q_arg, &end, 16); 1209 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1210 pm = 0; 1211 1212 options->cryptodev_mask = pm; 1213 if (options->cryptodev_mask == 0) { 1214 printf("invalid cryptodev_mask specified\n"); 1215 return -1; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** Parse long options */ 1222 static int 1223 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1224 struct option *lgopts, int option_index) 1225 { 1226 int retval; 1227 1228 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1229 retval = parse_cryptodev_type(&options->type, optarg); 1230 if (retval == 0) 1231 snprintf(options->string_type, MAX_STR_LEN, 1232 "%s", optarg); 1233 return retval; 1234 } 1235 1236 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1237 return parse_crypto_opt_chain(options, optarg); 1238 1239 /* Cipher options */ 1240 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1241 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1242 optarg); 1243 1244 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1245 return parse_cipher_op(&options->cipher_xform.cipher.op, 1246 optarg); 1247 1248 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1249 options->ckey_param = 1; 1250 options->cipher_xform.cipher.key.length = 1251 parse_bytes(options->cipher_xform.cipher.key.data, optarg, 1252 MAX_KEY_SIZE); 1253 if (options->cipher_xform.cipher.key.length > 0) 1254 return 0; 1255 else 1256 return -1; 1257 } 1258 1259 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1260 return parse_size(&options->ckey_random_size, optarg); 1261 1262 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1263 options->cipher_iv_param = 1; 1264 options->cipher_iv.length = 1265 parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE); 1266 if (options->cipher_iv.length > 0) 1267 return 0; 1268 else 1269 return -1; 1270 } 1271 1272 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1273 return parse_size(&options->cipher_iv_random_size, optarg); 1274 1275 /* Authentication options */ 1276 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1277 return parse_auth_algo(&options->auth_xform.auth.algo, 1278 optarg); 1279 } 1280 1281 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1282 return parse_auth_op(&options->auth_xform.auth.op, 1283 optarg); 1284 1285 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1286 options->akey_param = 1; 1287 options->auth_xform.auth.key.length = 1288 parse_bytes(options->auth_xform.auth.key.data, optarg, 1289 MAX_KEY_SIZE); 1290 if (options->auth_xform.auth.key.length > 0) 1291 return 0; 1292 else 1293 return -1; 1294 } 1295 1296 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1297 return parse_size(&options->akey_random_size, optarg); 1298 } 1299 1300 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1301 options->auth_iv_param = 1; 1302 options->auth_iv.length = 1303 parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE); 1304 if (options->auth_iv.length > 0) 1305 return 0; 1306 else 1307 return -1; 1308 } 1309 1310 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1311 return parse_size(&options->auth_iv_random_size, optarg); 1312 1313 /* AEAD options */ 1314 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1315 return parse_aead_algo(&options->aead_xform.aead.algo, 1316 optarg); 1317 } 1318 1319 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1320 return parse_aead_op(&options->aead_xform.aead.op, 1321 optarg); 1322 1323 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1324 options->aead_key_param = 1; 1325 options->aead_xform.aead.key.length = 1326 parse_bytes(options->aead_xform.aead.key.data, optarg, 1327 MAX_KEY_SIZE); 1328 if (options->aead_xform.aead.key.length > 0) 1329 return 0; 1330 else 1331 return -1; 1332 } 1333 1334 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1335 return parse_size(&options->aead_key_random_size, optarg); 1336 1337 1338 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1339 options->aead_iv_param = 1; 1340 options->aead_iv.length = 1341 parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE); 1342 if (options->aead_iv.length > 0) 1343 return 0; 1344 else 1345 return -1; 1346 } 1347 1348 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1349 return parse_size(&options->aead_iv_random_size, optarg); 1350 1351 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1352 options->aad_param = 1; 1353 options->aad.length = 1354 parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE); 1355 if (options->aad.length > 0) 1356 return 0; 1357 else 1358 return -1; 1359 } 1360 1361 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1362 return parse_size(&options->aad_random_size, optarg); 1363 } 1364 1365 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1366 return parse_size(&options->digest_size, optarg); 1367 } 1368 1369 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1370 options->sessionless = 1; 1371 return 0; 1372 } 1373 1374 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1375 return parse_cryptodev_mask(options, optarg); 1376 1377 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1378 options->mac_updating = 1; 1379 return 0; 1380 } 1381 1382 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1383 options->mac_updating = 0; 1384 return 0; 1385 } 1386 1387 return -1; 1388 } 1389 1390 /** Parse port mask */ 1391 static int 1392 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1393 const char *q_arg) 1394 { 1395 char *end = NULL; 1396 unsigned long pm; 1397 1398 /* parse hexadecimal string */ 1399 pm = strtoul(q_arg, &end, 16); 1400 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1401 pm = 0; 1402 1403 options->portmask = pm; 1404 if (options->portmask == 0) { 1405 printf("invalid portmask specified\n"); 1406 return -1; 1407 } 1408 1409 return pm; 1410 } 1411 1412 /** Parse number of queues */ 1413 static int 1414 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1415 const char *q_arg) 1416 { 1417 char *end = NULL; 1418 unsigned long n; 1419 1420 /* parse hexadecimal string */ 1421 n = strtoul(q_arg, &end, 10); 1422 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1423 n = 0; 1424 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1425 n = 0; 1426 1427 options->nb_ports_per_lcore = n; 1428 if (options->nb_ports_per_lcore == 0) { 1429 printf("invalid number of ports selected\n"); 1430 return -1; 1431 } 1432 1433 return 0; 1434 } 1435 1436 /** Parse timer period */ 1437 static int 1438 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1439 const char *q_arg) 1440 { 1441 char *end = NULL; 1442 unsigned long n; 1443 1444 /* parse number string */ 1445 n = (unsigned)strtol(q_arg, &end, 10); 1446 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1447 n = 0; 1448 1449 if (n >= MAX_TIMER_PERIOD) { 1450 printf("Warning refresh period specified %lu is greater than " 1451 "max value %lu! using max value", 1452 n, MAX_TIMER_PERIOD); 1453 n = MAX_TIMER_PERIOD; 1454 } 1455 1456 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1457 1458 return 0; 1459 } 1460 1461 /** Generate default options for application */ 1462 static void 1463 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1464 { 1465 options->portmask = 0xffffffff; 1466 options->nb_ports_per_lcore = 1; 1467 options->refresh_period = 10000; 1468 options->single_lcore = 0; 1469 options->sessionless = 0; 1470 1471 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1472 1473 /* Cipher Data */ 1474 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1475 options->cipher_xform.next = NULL; 1476 options->ckey_param = 0; 1477 options->ckey_random_size = -1; 1478 options->cipher_xform.cipher.key.length = 0; 1479 options->cipher_iv_param = 0; 1480 options->cipher_iv_random_size = -1; 1481 options->cipher_iv.length = 0; 1482 1483 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1484 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1485 1486 /* Authentication Data */ 1487 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1488 options->auth_xform.next = NULL; 1489 options->akey_param = 0; 1490 options->akey_random_size = -1; 1491 options->auth_xform.auth.key.length = 0; 1492 options->auth_iv_param = 0; 1493 options->auth_iv_random_size = -1; 1494 options->auth_iv.length = 0; 1495 1496 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1497 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1498 1499 /* AEAD Data */ 1500 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1501 options->aead_xform.next = NULL; 1502 options->aead_key_param = 0; 1503 options->aead_key_random_size = -1; 1504 options->aead_xform.aead.key.length = 0; 1505 options->aead_iv_param = 0; 1506 options->aead_iv_random_size = -1; 1507 options->aead_iv.length = 0; 1508 1509 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1510 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1511 1512 options->aad_param = 0; 1513 options->aad_random_size = -1; 1514 options->aad.length = 0; 1515 1516 options->digest_size = -1; 1517 1518 options->type = CDEV_TYPE_ANY; 1519 options->cryptodev_mask = UINT64_MAX; 1520 1521 options->mac_updating = 1; 1522 } 1523 1524 static void 1525 display_cipher_info(struct l2fwd_crypto_options *options) 1526 { 1527 printf("\n---- Cipher information ---\n"); 1528 printf("Algorithm: %s\n", 1529 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1530 rte_hexdump(stdout, "Cipher key:", 1531 options->cipher_xform.cipher.key.data, 1532 options->cipher_xform.cipher.key.length); 1533 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1534 } 1535 1536 static void 1537 display_auth_info(struct l2fwd_crypto_options *options) 1538 { 1539 printf("\n---- Authentication information ---\n"); 1540 printf("Algorithm: %s\n", 1541 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1542 rte_hexdump(stdout, "Auth key:", 1543 options->auth_xform.auth.key.data, 1544 options->auth_xform.auth.key.length); 1545 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1546 } 1547 1548 static void 1549 display_aead_info(struct l2fwd_crypto_options *options) 1550 { 1551 printf("\n---- AEAD information ---\n"); 1552 printf("Algorithm: %s\n", 1553 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1554 rte_hexdump(stdout, "AEAD key:", 1555 options->aead_xform.aead.key.data, 1556 options->aead_xform.aead.key.length); 1557 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1558 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1559 } 1560 1561 static void 1562 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1563 { 1564 char string_cipher_op[MAX_STR_LEN]; 1565 char string_auth_op[MAX_STR_LEN]; 1566 char string_aead_op[MAX_STR_LEN]; 1567 1568 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1569 strcpy(string_cipher_op, "Encrypt"); 1570 else 1571 strcpy(string_cipher_op, "Decrypt"); 1572 1573 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1574 strcpy(string_auth_op, "Auth generate"); 1575 else 1576 strcpy(string_auth_op, "Auth verify"); 1577 1578 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1579 strcpy(string_aead_op, "Authenticated encryption"); 1580 else 1581 strcpy(string_aead_op, "Authenticated decryption"); 1582 1583 1584 printf("Options:-\nn"); 1585 printf("portmask: %x\n", options->portmask); 1586 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1587 printf("refresh period : %u\n", options->refresh_period); 1588 printf("single lcore mode: %s\n", 1589 options->single_lcore ? "enabled" : "disabled"); 1590 printf("stats_printing: %s\n", 1591 options->refresh_period == 0 ? "disabled" : "enabled"); 1592 1593 printf("sessionless crypto: %s\n", 1594 options->sessionless ? "enabled" : "disabled"); 1595 1596 if (options->ckey_param && (options->ckey_random_size != -1)) 1597 printf("Cipher key already parsed, ignoring size of random key\n"); 1598 1599 if (options->akey_param && (options->akey_random_size != -1)) 1600 printf("Auth key already parsed, ignoring size of random key\n"); 1601 1602 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1603 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1604 1605 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1606 printf("Auth IV already parsed, ignoring size of random IV\n"); 1607 1608 if (options->aad_param && (options->aad_random_size != -1)) 1609 printf("AAD already parsed, ignoring size of random AAD\n"); 1610 1611 printf("\nCrypto chain: "); 1612 switch (options->xform_chain) { 1613 case L2FWD_CRYPTO_AEAD: 1614 printf("Input --> %s --> Output\n", string_aead_op); 1615 display_aead_info(options); 1616 break; 1617 case L2FWD_CRYPTO_CIPHER_HASH: 1618 printf("Input --> %s --> %s --> Output\n", 1619 string_cipher_op, string_auth_op); 1620 display_cipher_info(options); 1621 display_auth_info(options); 1622 break; 1623 case L2FWD_CRYPTO_HASH_CIPHER: 1624 printf("Input --> %s --> %s --> Output\n", 1625 string_auth_op, string_cipher_op); 1626 display_cipher_info(options); 1627 display_auth_info(options); 1628 break; 1629 case L2FWD_CRYPTO_HASH_ONLY: 1630 printf("Input --> %s --> Output\n", string_auth_op); 1631 display_auth_info(options); 1632 break; 1633 case L2FWD_CRYPTO_CIPHER_ONLY: 1634 printf("Input --> %s --> Output\n", string_cipher_op); 1635 display_cipher_info(options); 1636 break; 1637 } 1638 } 1639 1640 /* Parse the argument given in the command line of the application */ 1641 static int 1642 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1643 int argc, char **argv) 1644 { 1645 int opt, retval, option_index; 1646 char **argvopt = argv, *prgname = argv[0]; 1647 1648 static struct option lgopts[] = { 1649 { "sessionless", no_argument, 0, 0 }, 1650 1651 { "cdev_type", required_argument, 0, 0 }, 1652 { "chain", required_argument, 0, 0 }, 1653 1654 { "cipher_algo", required_argument, 0, 0 }, 1655 { "cipher_op", required_argument, 0, 0 }, 1656 { "cipher_key", required_argument, 0, 0 }, 1657 { "cipher_key_random_size", required_argument, 0, 0 }, 1658 { "cipher_iv", required_argument, 0, 0 }, 1659 { "cipher_iv_random_size", required_argument, 0, 0 }, 1660 1661 { "auth_algo", required_argument, 0, 0 }, 1662 { "auth_op", required_argument, 0, 0 }, 1663 { "auth_key", required_argument, 0, 0 }, 1664 { "auth_key_random_size", required_argument, 0, 0 }, 1665 { "auth_iv", required_argument, 0, 0 }, 1666 { "auth_iv_random_size", required_argument, 0, 0 }, 1667 1668 { "aead_algo", required_argument, 0, 0 }, 1669 { "aead_op", required_argument, 0, 0 }, 1670 { "aead_key", required_argument, 0, 0 }, 1671 { "aead_key_random_size", required_argument, 0, 0 }, 1672 { "aead_iv", required_argument, 0, 0 }, 1673 { "aead_iv_random_size", required_argument, 0, 0 }, 1674 1675 { "aad", required_argument, 0, 0 }, 1676 { "aad_random_size", required_argument, 0, 0 }, 1677 1678 { "digest_size", required_argument, 0, 0 }, 1679 1680 { "sessionless", no_argument, 0, 0 }, 1681 { "cryptodev_mask", required_argument, 0, 0}, 1682 1683 { "mac-updating", no_argument, 0, 0}, 1684 { "no-mac-updating", no_argument, 0, 0}, 1685 1686 { NULL, 0, 0, 0 } 1687 }; 1688 1689 l2fwd_crypto_default_options(options); 1690 1691 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1692 &option_index)) != EOF) { 1693 switch (opt) { 1694 /* long options */ 1695 case 0: 1696 retval = l2fwd_crypto_parse_args_long_options(options, 1697 lgopts, option_index); 1698 if (retval < 0) { 1699 l2fwd_crypto_usage(prgname); 1700 return -1; 1701 } 1702 break; 1703 1704 /* portmask */ 1705 case 'p': 1706 retval = l2fwd_crypto_parse_portmask(options, optarg); 1707 if (retval < 0) { 1708 l2fwd_crypto_usage(prgname); 1709 return -1; 1710 } 1711 break; 1712 1713 /* nqueue */ 1714 case 'q': 1715 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1716 if (retval < 0) { 1717 l2fwd_crypto_usage(prgname); 1718 return -1; 1719 } 1720 break; 1721 1722 /* single */ 1723 case 's': 1724 options->single_lcore = 1; 1725 1726 break; 1727 1728 /* timer period */ 1729 case 'T': 1730 retval = l2fwd_crypto_parse_timer_period(options, 1731 optarg); 1732 if (retval < 0) { 1733 l2fwd_crypto_usage(prgname); 1734 return -1; 1735 } 1736 break; 1737 1738 default: 1739 l2fwd_crypto_usage(prgname); 1740 return -1; 1741 } 1742 } 1743 1744 1745 if (optind >= 0) 1746 argv[optind-1] = prgname; 1747 1748 retval = optind-1; 1749 optind = 1; /* reset getopt lib */ 1750 1751 return retval; 1752 } 1753 1754 /* Check the link status of all ports in up to 9s, and print them finally */ 1755 static void 1756 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 1757 { 1758 #define CHECK_INTERVAL 100 /* 100ms */ 1759 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1760 uint16_t portid; 1761 uint8_t count, all_ports_up, print_flag = 0; 1762 struct rte_eth_link link; 1763 1764 printf("\nChecking link status"); 1765 fflush(stdout); 1766 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1767 all_ports_up = 1; 1768 for (portid = 0; portid < port_num; portid++) { 1769 if ((port_mask & (1 << portid)) == 0) 1770 continue; 1771 memset(&link, 0, sizeof(link)); 1772 rte_eth_link_get_nowait(portid, &link); 1773 /* print link status if flag set */ 1774 if (print_flag == 1) { 1775 if (link.link_status) 1776 printf( 1777 "Port%d Link Up. Speed %u Mbps - %s\n", 1778 portid, link.link_speed, 1779 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1780 ("full-duplex") : ("half-duplex\n")); 1781 else 1782 printf("Port %d Link Down\n", portid); 1783 continue; 1784 } 1785 /* clear all_ports_up flag if any link down */ 1786 if (link.link_status == ETH_LINK_DOWN) { 1787 all_ports_up = 0; 1788 break; 1789 } 1790 } 1791 /* after finally printing all link status, get out */ 1792 if (print_flag == 1) 1793 break; 1794 1795 if (all_ports_up == 0) { 1796 printf("."); 1797 fflush(stdout); 1798 rte_delay_ms(CHECK_INTERVAL); 1799 } 1800 1801 /* set the print_flag if all ports up or timeout */ 1802 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1803 print_flag = 1; 1804 printf("done\n"); 1805 } 1806 } 1807 } 1808 1809 /* Check if device has to be HW/SW or any */ 1810 static int 1811 check_type(const struct l2fwd_crypto_options *options, 1812 const struct rte_cryptodev_info *dev_info) 1813 { 1814 if (options->type == CDEV_TYPE_HW && 1815 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1816 return 0; 1817 if (options->type == CDEV_TYPE_SW && 1818 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1819 return 0; 1820 if (options->type == CDEV_TYPE_ANY) 1821 return 0; 1822 1823 return -1; 1824 } 1825 1826 static const struct rte_cryptodev_capabilities * 1827 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1828 const struct rte_cryptodev_info *dev_info, 1829 uint8_t cdev_id) 1830 { 1831 unsigned int i = 0; 1832 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1833 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1834 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1835 options->cipher_xform.cipher.algo; 1836 1837 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1838 cap_cipher_algo = cap->sym.cipher.algo; 1839 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1840 if (cap_cipher_algo == opt_cipher_algo) { 1841 if (check_type(options, dev_info) == 0) 1842 break; 1843 } 1844 } 1845 cap = &dev_info->capabilities[++i]; 1846 } 1847 1848 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1849 printf("Algorithm %s not supported by cryptodev %u" 1850 " or device not of preferred type (%s)\n", 1851 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1852 cdev_id, 1853 options->string_type); 1854 return NULL; 1855 } 1856 1857 return cap; 1858 } 1859 1860 static const struct rte_cryptodev_capabilities * 1861 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1862 const struct rte_cryptodev_info *dev_info, 1863 uint8_t cdev_id) 1864 { 1865 unsigned int i = 0; 1866 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1867 enum rte_crypto_auth_algorithm cap_auth_algo; 1868 enum rte_crypto_auth_algorithm opt_auth_algo = 1869 options->auth_xform.auth.algo; 1870 1871 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1872 cap_auth_algo = cap->sym.auth.algo; 1873 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1874 if (cap_auth_algo == opt_auth_algo) { 1875 if (check_type(options, dev_info) == 0) 1876 break; 1877 } 1878 } 1879 cap = &dev_info->capabilities[++i]; 1880 } 1881 1882 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1883 printf("Algorithm %s not supported by cryptodev %u" 1884 " or device not of preferred type (%s)\n", 1885 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1886 cdev_id, 1887 options->string_type); 1888 return NULL; 1889 } 1890 1891 return cap; 1892 } 1893 1894 static const struct rte_cryptodev_capabilities * 1895 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1896 const struct rte_cryptodev_info *dev_info, 1897 uint8_t cdev_id) 1898 { 1899 unsigned int i = 0; 1900 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1901 enum rte_crypto_aead_algorithm cap_aead_algo; 1902 enum rte_crypto_aead_algorithm opt_aead_algo = 1903 options->aead_xform.aead.algo; 1904 1905 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1906 cap_aead_algo = cap->sym.aead.algo; 1907 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1908 if (cap_aead_algo == opt_aead_algo) { 1909 if (check_type(options, dev_info) == 0) 1910 break; 1911 } 1912 } 1913 cap = &dev_info->capabilities[++i]; 1914 } 1915 1916 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1917 printf("Algorithm %s not supported by cryptodev %u" 1918 " or device not of preferred type (%s)\n", 1919 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1920 cdev_id, 1921 options->string_type); 1922 return NULL; 1923 } 1924 1925 return cap; 1926 } 1927 1928 /* Check if the device is enabled by cryptodev_mask */ 1929 static int 1930 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1931 uint8_t cdev_id) 1932 { 1933 if (options->cryptodev_mask & (1 << cdev_id)) 1934 return 0; 1935 1936 return -1; 1937 } 1938 1939 static inline int 1940 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1941 uint16_t increment) 1942 { 1943 uint16_t supp_size; 1944 1945 /* Single value */ 1946 if (increment == 0) { 1947 if (length == min) 1948 return 0; 1949 else 1950 return -1; 1951 } 1952 1953 /* Range of values */ 1954 for (supp_size = min; supp_size <= max; supp_size += increment) { 1955 if (length == supp_size) 1956 return 0; 1957 } 1958 1959 return -1; 1960 } 1961 1962 static int 1963 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1964 unsigned int iv_param, int iv_random_size, 1965 uint16_t *iv_length) 1966 { 1967 /* 1968 * Check if length of provided IV is supported 1969 * by the algorithm chosen. 1970 */ 1971 if (iv_param) { 1972 if (check_supported_size(*iv_length, 1973 iv_range_size->min, 1974 iv_range_size->max, 1975 iv_range_size->increment) 1976 != 0) { 1977 printf("Unsupported IV length\n"); 1978 return -1; 1979 } 1980 /* 1981 * Check if length of IV to be randomly generated 1982 * is supported by the algorithm chosen. 1983 */ 1984 } else if (iv_random_size != -1) { 1985 if (check_supported_size(iv_random_size, 1986 iv_range_size->min, 1987 iv_range_size->max, 1988 iv_range_size->increment) 1989 != 0) { 1990 printf("Unsupported IV length\n"); 1991 return -1; 1992 } 1993 *iv_length = iv_random_size; 1994 /* No size provided, use minimum size. */ 1995 } else 1996 *iv_length = iv_range_size->min; 1997 1998 return 0; 1999 } 2000 2001 static int 2002 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 2003 uint8_t *enabled_cdevs) 2004 { 2005 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 2006 const struct rte_cryptodev_capabilities *cap; 2007 unsigned int sess_sz, max_sess_sz = 0; 2008 int retval; 2009 2010 cdev_count = rte_cryptodev_count(); 2011 if (cdev_count == 0) { 2012 printf("No crypto devices available\n"); 2013 return -1; 2014 } 2015 2016 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 2017 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 2018 if (sess_sz > max_sess_sz) 2019 max_sess_sz = sess_sz; 2020 } 2021 2022 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 2023 cdev_id++) { 2024 struct rte_cryptodev_qp_conf qp_conf; 2025 struct rte_cryptodev_info dev_info; 2026 retval = rte_cryptodev_socket_id(cdev_id); 2027 2028 if (retval < 0) { 2029 printf("Invalid crypto device id used\n"); 2030 return -1; 2031 } 2032 2033 uint8_t socket_id = (uint8_t) retval; 2034 2035 struct rte_cryptodev_config conf = { 2036 .nb_queue_pairs = 1, 2037 .socket_id = socket_id, 2038 }; 2039 2040 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2041 continue; 2042 2043 rte_cryptodev_info_get(cdev_id, &dev_info); 2044 2045 if (session_pool_socket[socket_id] == NULL) { 2046 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2047 struct rte_mempool *sess_mp; 2048 2049 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2050 "sess_mp_%u", socket_id); 2051 2052 /* 2053 * Create enough objects for session headers and 2054 * device private data 2055 */ 2056 sess_mp = rte_mempool_create(mp_name, 2057 MAX_SESSIONS * 2, 2058 max_sess_sz, 2059 SESSION_POOL_CACHE_SIZE, 2060 0, NULL, NULL, NULL, 2061 NULL, socket_id, 2062 0); 2063 2064 if (sess_mp == NULL) { 2065 printf("Cannot create session pool on socket %d\n", 2066 socket_id); 2067 return -ENOMEM; 2068 } 2069 2070 printf("Allocated session pool on socket %d\n", socket_id); 2071 session_pool_socket[socket_id] = sess_mp; 2072 } 2073 2074 /* Set AEAD parameters */ 2075 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2076 /* Check if device supports AEAD algo */ 2077 cap = check_device_support_aead_algo(options, &dev_info, 2078 cdev_id); 2079 if (cap == NULL) 2080 continue; 2081 2082 options->block_size = cap->sym.aead.block_size; 2083 2084 check_iv_param(&cap->sym.aead.iv_size, 2085 options->aead_iv_param, 2086 options->aead_iv_random_size, 2087 &options->aead_iv.length); 2088 2089 /* 2090 * Check if length of provided AEAD key is supported 2091 * by the algorithm chosen. 2092 */ 2093 if (options->aead_key_param) { 2094 if (check_supported_size( 2095 options->aead_xform.aead.key.length, 2096 cap->sym.aead.key_size.min, 2097 cap->sym.aead.key_size.max, 2098 cap->sym.aead.key_size.increment) 2099 != 0) { 2100 printf("Unsupported aead key length\n"); 2101 return -1; 2102 } 2103 /* 2104 * Check if length of the aead key to be randomly generated 2105 * is supported by the algorithm chosen. 2106 */ 2107 } else if (options->aead_key_random_size != -1) { 2108 if (check_supported_size(options->aead_key_random_size, 2109 cap->sym.aead.key_size.min, 2110 cap->sym.aead.key_size.max, 2111 cap->sym.aead.key_size.increment) 2112 != 0) { 2113 printf("Unsupported aead key length\n"); 2114 return -1; 2115 } 2116 options->aead_xform.aead.key.length = 2117 options->aead_key_random_size; 2118 /* No size provided, use minimum size. */ 2119 } else 2120 options->aead_xform.aead.key.length = 2121 cap->sym.aead.key_size.min; 2122 2123 if (!options->aead_key_param) 2124 generate_random_key( 2125 options->aead_xform.aead.key.data, 2126 options->aead_xform.aead.key.length); 2127 2128 /* 2129 * Check if length of provided AAD is supported 2130 * by the algorithm chosen. 2131 */ 2132 if (options->aad_param) { 2133 if (check_supported_size(options->aad.length, 2134 cap->sym.aead.aad_size.min, 2135 cap->sym.aead.aad_size.max, 2136 cap->sym.aead.aad_size.increment) 2137 != 0) { 2138 printf("Unsupported AAD length\n"); 2139 return -1; 2140 } 2141 /* 2142 * Check if length of AAD to be randomly generated 2143 * is supported by the algorithm chosen. 2144 */ 2145 } else if (options->aad_random_size != -1) { 2146 if (check_supported_size(options->aad_random_size, 2147 cap->sym.aead.aad_size.min, 2148 cap->sym.aead.aad_size.max, 2149 cap->sym.aead.aad_size.increment) 2150 != 0) { 2151 printf("Unsupported AAD length\n"); 2152 return -1; 2153 } 2154 options->aad.length = options->aad_random_size; 2155 /* No size provided, use minimum size. */ 2156 } else 2157 options->aad.length = cap->sym.auth.aad_size.min; 2158 2159 options->aead_xform.aead.aad_length = 2160 options->aad.length; 2161 2162 /* Check if digest size is supported by the algorithm. */ 2163 if (options->digest_size != -1) { 2164 if (check_supported_size(options->digest_size, 2165 cap->sym.aead.digest_size.min, 2166 cap->sym.aead.digest_size.max, 2167 cap->sym.aead.digest_size.increment) 2168 != 0) { 2169 printf("Unsupported digest length\n"); 2170 return -1; 2171 } 2172 options->aead_xform.aead.digest_length = 2173 options->digest_size; 2174 /* No size provided, use minimum size. */ 2175 } else 2176 options->aead_xform.aead.digest_length = 2177 cap->sym.aead.digest_size.min; 2178 } 2179 2180 /* Set cipher parameters */ 2181 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2182 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2183 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2184 /* Check if device supports cipher algo */ 2185 cap = check_device_support_cipher_algo(options, &dev_info, 2186 cdev_id); 2187 if (cap == NULL) 2188 continue; 2189 2190 options->block_size = cap->sym.cipher.block_size; 2191 2192 check_iv_param(&cap->sym.cipher.iv_size, 2193 options->cipher_iv_param, 2194 options->cipher_iv_random_size, 2195 &options->cipher_iv.length); 2196 2197 /* 2198 * Check if length of provided cipher key is supported 2199 * by the algorithm chosen. 2200 */ 2201 if (options->ckey_param) { 2202 if (check_supported_size( 2203 options->cipher_xform.cipher.key.length, 2204 cap->sym.cipher.key_size.min, 2205 cap->sym.cipher.key_size.max, 2206 cap->sym.cipher.key_size.increment) 2207 != 0) { 2208 printf("Unsupported cipher key length\n"); 2209 return -1; 2210 } 2211 /* 2212 * Check if length of the cipher key to be randomly generated 2213 * is supported by the algorithm chosen. 2214 */ 2215 } else if (options->ckey_random_size != -1) { 2216 if (check_supported_size(options->ckey_random_size, 2217 cap->sym.cipher.key_size.min, 2218 cap->sym.cipher.key_size.max, 2219 cap->sym.cipher.key_size.increment) 2220 != 0) { 2221 printf("Unsupported cipher key length\n"); 2222 return -1; 2223 } 2224 options->cipher_xform.cipher.key.length = 2225 options->ckey_random_size; 2226 /* No size provided, use minimum size. */ 2227 } else 2228 options->cipher_xform.cipher.key.length = 2229 cap->sym.cipher.key_size.min; 2230 2231 if (!options->ckey_param) 2232 generate_random_key( 2233 options->cipher_xform.cipher.key.data, 2234 options->cipher_xform.cipher.key.length); 2235 2236 } 2237 2238 /* Set auth parameters */ 2239 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2240 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2241 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2242 /* Check if device supports auth algo */ 2243 cap = check_device_support_auth_algo(options, &dev_info, 2244 cdev_id); 2245 if (cap == NULL) 2246 continue; 2247 2248 check_iv_param(&cap->sym.auth.iv_size, 2249 options->auth_iv_param, 2250 options->auth_iv_random_size, 2251 &options->auth_iv.length); 2252 /* 2253 * Check if length of provided auth key is supported 2254 * by the algorithm chosen. 2255 */ 2256 if (options->akey_param) { 2257 if (check_supported_size( 2258 options->auth_xform.auth.key.length, 2259 cap->sym.auth.key_size.min, 2260 cap->sym.auth.key_size.max, 2261 cap->sym.auth.key_size.increment) 2262 != 0) { 2263 printf("Unsupported auth key length\n"); 2264 return -1; 2265 } 2266 /* 2267 * Check if length of the auth key to be randomly generated 2268 * is supported by the algorithm chosen. 2269 */ 2270 } else if (options->akey_random_size != -1) { 2271 if (check_supported_size(options->akey_random_size, 2272 cap->sym.auth.key_size.min, 2273 cap->sym.auth.key_size.max, 2274 cap->sym.auth.key_size.increment) 2275 != 0) { 2276 printf("Unsupported auth key length\n"); 2277 return -1; 2278 } 2279 options->auth_xform.auth.key.length = 2280 options->akey_random_size; 2281 /* No size provided, use minimum size. */ 2282 } else 2283 options->auth_xform.auth.key.length = 2284 cap->sym.auth.key_size.min; 2285 2286 if (!options->akey_param) 2287 generate_random_key( 2288 options->auth_xform.auth.key.data, 2289 options->auth_xform.auth.key.length); 2290 2291 /* Check if digest size is supported by the algorithm. */ 2292 if (options->digest_size != -1) { 2293 if (check_supported_size(options->digest_size, 2294 cap->sym.auth.digest_size.min, 2295 cap->sym.auth.digest_size.max, 2296 cap->sym.auth.digest_size.increment) 2297 != 0) { 2298 printf("Unsupported digest length\n"); 2299 return -1; 2300 } 2301 options->auth_xform.auth.digest_length = 2302 options->digest_size; 2303 /* No size provided, use minimum size. */ 2304 } else 2305 options->auth_xform.auth.digest_length = 2306 cap->sym.auth.digest_size.min; 2307 } 2308 2309 retval = rte_cryptodev_configure(cdev_id, &conf); 2310 if (retval < 0) { 2311 printf("Failed to configure cryptodev %u", cdev_id); 2312 return -1; 2313 } 2314 2315 qp_conf.nb_descriptors = 2048; 2316 2317 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2318 socket_id, session_pool_socket[socket_id]); 2319 if (retval < 0) { 2320 printf("Failed to setup queue pair %u on cryptodev %u", 2321 0, cdev_id); 2322 return -1; 2323 } 2324 2325 retval = rte_cryptodev_start(cdev_id); 2326 if (retval < 0) { 2327 printf("Failed to start device %u: error %d\n", 2328 cdev_id, retval); 2329 return -1; 2330 } 2331 2332 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2333 2334 enabled_cdevs[cdev_id] = 1; 2335 enabled_cdev_count++; 2336 } 2337 2338 return enabled_cdev_count; 2339 } 2340 2341 static int 2342 initialize_ports(struct l2fwd_crypto_options *options) 2343 { 2344 uint16_t last_portid, portid; 2345 unsigned enabled_portcount = 0; 2346 unsigned nb_ports = rte_eth_dev_count(); 2347 2348 if (nb_ports == 0) { 2349 printf("No Ethernet ports - bye\n"); 2350 return -1; 2351 } 2352 2353 /* Reset l2fwd_dst_ports */ 2354 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2355 l2fwd_dst_ports[portid] = 0; 2356 2357 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2358 int retval; 2359 2360 /* Skip ports that are not enabled */ 2361 if ((options->portmask & (1 << portid)) == 0) 2362 continue; 2363 2364 /* init port */ 2365 printf("Initializing port %u... ", portid); 2366 fflush(stdout); 2367 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2368 if (retval < 0) { 2369 printf("Cannot configure device: err=%d, port=%u\n", 2370 retval, portid); 2371 return -1; 2372 } 2373 2374 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2375 &nb_txd); 2376 if (retval < 0) { 2377 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2378 retval, portid); 2379 return -1; 2380 } 2381 2382 /* init one RX queue */ 2383 fflush(stdout); 2384 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2385 rte_eth_dev_socket_id(portid), 2386 NULL, l2fwd_pktmbuf_pool); 2387 if (retval < 0) { 2388 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2389 retval, portid); 2390 return -1; 2391 } 2392 2393 /* init one TX queue on each port */ 2394 fflush(stdout); 2395 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2396 rte_eth_dev_socket_id(portid), 2397 NULL); 2398 if (retval < 0) { 2399 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2400 retval, portid); 2401 2402 return -1; 2403 } 2404 2405 /* Start device */ 2406 retval = rte_eth_dev_start(portid); 2407 if (retval < 0) { 2408 printf("rte_eth_dev_start:err=%d, port=%u\n", 2409 retval, portid); 2410 return -1; 2411 } 2412 2413 rte_eth_promiscuous_enable(portid); 2414 2415 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2416 2417 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2418 portid, 2419 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2420 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2421 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2422 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2423 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2424 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2425 2426 /* initialize port stats */ 2427 memset(&port_statistics, 0, sizeof(port_statistics)); 2428 2429 /* Setup port forwarding table */ 2430 if (enabled_portcount % 2) { 2431 l2fwd_dst_ports[portid] = last_portid; 2432 l2fwd_dst_ports[last_portid] = portid; 2433 } else { 2434 last_portid = portid; 2435 } 2436 2437 l2fwd_enabled_port_mask |= (1 << portid); 2438 enabled_portcount++; 2439 } 2440 2441 if (enabled_portcount == 1) { 2442 l2fwd_dst_ports[last_portid] = last_portid; 2443 } else if (enabled_portcount % 2) { 2444 printf("odd number of ports in portmask- bye\n"); 2445 return -1; 2446 } 2447 2448 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2449 2450 return enabled_portcount; 2451 } 2452 2453 static void 2454 reserve_key_memory(struct l2fwd_crypto_options *options) 2455 { 2456 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2457 MAX_KEY_SIZE, 0); 2458 if (options->cipher_xform.cipher.key.data == NULL) 2459 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2460 2461 options->auth_xform.auth.key.data = rte_malloc("auth key", 2462 MAX_KEY_SIZE, 0); 2463 if (options->auth_xform.auth.key.data == NULL) 2464 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2465 2466 options->aead_xform.aead.key.data = rte_malloc("aead key", 2467 MAX_KEY_SIZE, 0); 2468 if (options->aead_xform.aead.key.data == NULL) 2469 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2470 2471 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2472 if (options->cipher_iv.data == NULL) 2473 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2474 2475 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2476 if (options->auth_iv.data == NULL) 2477 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2478 2479 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2480 if (options->aead_iv.data == NULL) 2481 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2482 2483 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2484 if (options->aad.data == NULL) 2485 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2486 options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data); 2487 } 2488 2489 int 2490 main(int argc, char **argv) 2491 { 2492 struct lcore_queue_conf *qconf; 2493 struct l2fwd_crypto_options options; 2494 2495 uint8_t nb_cryptodevs, cdev_id; 2496 uint16_t nb_ports, portid; 2497 unsigned lcore_id, rx_lcore_id; 2498 int ret, enabled_cdevcount, enabled_portcount; 2499 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2500 2501 /* init EAL */ 2502 ret = rte_eal_init(argc, argv); 2503 if (ret < 0) 2504 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2505 argc -= ret; 2506 argv += ret; 2507 2508 /* reserve memory for Cipher/Auth key and IV */ 2509 reserve_key_memory(&options); 2510 2511 /* parse application arguments (after the EAL ones) */ 2512 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2513 if (ret < 0) 2514 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2515 2516 printf("MAC updating %s\n", 2517 options.mac_updating ? "enabled" : "disabled"); 2518 2519 /* create the mbuf pool */ 2520 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2521 sizeof(struct rte_crypto_op), 2522 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2523 if (l2fwd_pktmbuf_pool == NULL) 2524 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2525 2526 /* create crypto op pool */ 2527 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2528 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2529 rte_socket_id()); 2530 if (l2fwd_crypto_op_pool == NULL) 2531 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2532 2533 /* Enable Ethernet ports */ 2534 enabled_portcount = initialize_ports(&options); 2535 if (enabled_portcount < 1) 2536 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2537 2538 nb_ports = rte_eth_dev_count(); 2539 /* Initialize the port/queue configuration of each logical core */ 2540 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2541 portid < nb_ports; portid++) { 2542 2543 /* skip ports that are not enabled */ 2544 if ((options.portmask & (1 << portid)) == 0) 2545 continue; 2546 2547 if (options.single_lcore && qconf == NULL) { 2548 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2549 rx_lcore_id++; 2550 if (rx_lcore_id >= RTE_MAX_LCORE) 2551 rte_exit(EXIT_FAILURE, 2552 "Not enough cores\n"); 2553 } 2554 } else if (!options.single_lcore) { 2555 /* get the lcore_id for this port */ 2556 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2557 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2558 options.nb_ports_per_lcore) { 2559 rx_lcore_id++; 2560 if (rx_lcore_id >= RTE_MAX_LCORE) 2561 rte_exit(EXIT_FAILURE, 2562 "Not enough cores\n"); 2563 } 2564 } 2565 2566 /* Assigned a new logical core in the loop above. */ 2567 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2568 qconf = &lcore_queue_conf[rx_lcore_id]; 2569 2570 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2571 qconf->nb_rx_ports++; 2572 2573 printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); 2574 } 2575 2576 /* Enable Crypto devices */ 2577 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2578 enabled_cdevs); 2579 if (enabled_cdevcount < 0) 2580 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2581 2582 if (enabled_cdevcount < enabled_portcount) 2583 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2584 "has to be more or equal to number of ports (%d)\n", 2585 enabled_cdevcount, enabled_portcount); 2586 2587 nb_cryptodevs = rte_cryptodev_count(); 2588 2589 /* Initialize the port/cryptodev configuration of each logical core */ 2590 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2591 cdev_id < nb_cryptodevs && enabled_cdevcount; 2592 cdev_id++) { 2593 /* Crypto op not supported by crypto device */ 2594 if (!enabled_cdevs[cdev_id]) 2595 continue; 2596 2597 if (options.single_lcore && qconf == NULL) { 2598 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2599 rx_lcore_id++; 2600 if (rx_lcore_id >= RTE_MAX_LCORE) 2601 rte_exit(EXIT_FAILURE, 2602 "Not enough cores\n"); 2603 } 2604 } else if (!options.single_lcore) { 2605 /* get the lcore_id for this port */ 2606 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2607 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2608 options.nb_ports_per_lcore) { 2609 rx_lcore_id++; 2610 if (rx_lcore_id >= RTE_MAX_LCORE) 2611 rte_exit(EXIT_FAILURE, 2612 "Not enough cores\n"); 2613 } 2614 } 2615 2616 /* Assigned a new logical core in the loop above. */ 2617 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2618 qconf = &lcore_queue_conf[rx_lcore_id]; 2619 2620 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2621 qconf->nb_crypto_devs++; 2622 2623 enabled_cdevcount--; 2624 2625 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2626 (unsigned)cdev_id); 2627 } 2628 2629 /* launch per-lcore init on every lcore */ 2630 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2631 CALL_MASTER); 2632 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2633 if (rte_eal_wait_lcore(lcore_id) < 0) 2634 return -1; 2635 } 2636 2637 return 0; 2638 } 2639