xref: /dpdk/examples/l2fwd-crypto/main.c (revision 2f45703c17acb943aaded9f79676fd56a72542b2)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 
92 /*
93  * Configurable number of RX/TX ring descriptors
94  */
95 #define RTE_TEST_RX_DESC_DEFAULT 128
96 #define RTE_TEST_TX_DESC_DEFAULT 512
97 
98 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
99 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
100 
101 /* ethernet addresses of ports */
102 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
103 
104 /* mask of enabled ports */
105 static uint64_t l2fwd_enabled_port_mask;
106 static uint64_t l2fwd_enabled_crypto_mask;
107 
108 /* list of enabled ports */
109 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
110 
111 
112 struct pkt_buffer {
113 	unsigned len;
114 	struct rte_mbuf *buffer[MAX_PKT_BURST];
115 };
116 
117 struct op_buffer {
118 	unsigned len;
119 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
120 };
121 
122 #define MAX_RX_QUEUE_PER_LCORE 16
123 #define MAX_TX_QUEUE_PER_PORT 16
124 
125 enum l2fwd_crypto_xform_chain {
126 	L2FWD_CRYPTO_CIPHER_HASH,
127 	L2FWD_CRYPTO_HASH_CIPHER,
128 	L2FWD_CRYPTO_CIPHER_ONLY,
129 	L2FWD_CRYPTO_HASH_ONLY
130 };
131 
132 struct l2fwd_key {
133 	uint8_t *data;
134 	uint32_t length;
135 	phys_addr_t phys_addr;
136 };
137 
138 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
139 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
140 
141 /** l2fwd crypto application command line options */
142 struct l2fwd_crypto_options {
143 	unsigned portmask;
144 	unsigned nb_ports_per_lcore;
145 	unsigned refresh_period;
146 	unsigned single_lcore:1;
147 
148 	enum cdev_type type;
149 	unsigned sessionless:1;
150 
151 	enum l2fwd_crypto_xform_chain xform_chain;
152 
153 	struct rte_crypto_sym_xform cipher_xform;
154 	unsigned ckey_param;
155 	int ckey_random_size;
156 
157 	struct l2fwd_key iv;
158 	unsigned iv_param;
159 	int iv_random_size;
160 
161 	struct rte_crypto_sym_xform auth_xform;
162 	uint8_t akey_param;
163 	int akey_random_size;
164 
165 	struct l2fwd_key aad;
166 	unsigned aad_param;
167 	int aad_random_size;
168 
169 	int digest_size;
170 
171 	uint16_t block_size;
172 	char string_type[MAX_STR_LEN];
173 };
174 
175 /** l2fwd crypto lcore params */
176 struct l2fwd_crypto_params {
177 	uint8_t dev_id;
178 	uint8_t qp_id;
179 
180 	unsigned digest_length;
181 	unsigned block_size;
182 
183 	struct l2fwd_key iv;
184 	struct l2fwd_key aad;
185 	struct rte_cryptodev_sym_session *session;
186 
187 	uint8_t do_cipher;
188 	uint8_t do_hash;
189 	uint8_t hash_verify;
190 
191 	enum rte_crypto_cipher_algorithm cipher_algo;
192 	enum rte_crypto_auth_algorithm auth_algo;
193 };
194 
195 /** lcore configuration */
196 struct lcore_queue_conf {
197 	unsigned nb_rx_ports;
198 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
199 
200 	unsigned nb_crypto_devs;
201 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
202 
203 	struct op_buffer op_buf[RTE_MAX_ETHPORTS];
204 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
205 } __rte_cache_aligned;
206 
207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
208 
209 static const struct rte_eth_conf port_conf = {
210 	.rxmode = {
211 		.mq_mode = ETH_MQ_RX_NONE,
212 		.max_rx_pkt_len = ETHER_MAX_LEN,
213 		.split_hdr_size = 0,
214 		.header_split   = 0, /**< Header Split disabled */
215 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
216 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
217 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
218 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
219 	},
220 	.txmode = {
221 		.mq_mode = ETH_MQ_TX_NONE,
222 	},
223 };
224 
225 struct rte_mempool *l2fwd_pktmbuf_pool;
226 struct rte_mempool *l2fwd_crypto_op_pool;
227 
228 /* Per-port statistics struct */
229 struct l2fwd_port_statistics {
230 	uint64_t tx;
231 	uint64_t rx;
232 
233 	uint64_t crypto_enqueued;
234 	uint64_t crypto_dequeued;
235 
236 	uint64_t dropped;
237 } __rte_cache_aligned;
238 
239 struct l2fwd_crypto_statistics {
240 	uint64_t enqueued;
241 	uint64_t dequeued;
242 
243 	uint64_t errors;
244 } __rte_cache_aligned;
245 
246 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
247 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
248 
249 /* A tsc-based timer responsible for triggering statistics printout */
250 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
251 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
252 
253 /* default period is 10 seconds */
254 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
255 
256 /* Print out statistics on packets dropped */
257 static void
258 print_stats(void)
259 {
260 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
261 	uint64_t total_packets_enqueued, total_packets_dequeued,
262 		total_packets_errors;
263 	unsigned portid;
264 	uint64_t cdevid;
265 
266 	total_packets_dropped = 0;
267 	total_packets_tx = 0;
268 	total_packets_rx = 0;
269 	total_packets_enqueued = 0;
270 	total_packets_dequeued = 0;
271 	total_packets_errors = 0;
272 
273 	const char clr[] = { 27, '[', '2', 'J', '\0' };
274 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
275 
276 		/* Clear screen and move to top left */
277 	printf("%s%s", clr, topLeft);
278 
279 	printf("\nPort statistics ====================================");
280 
281 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
282 		/* skip disabled ports */
283 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
284 			continue;
285 		printf("\nStatistics for port %u ------------------------------"
286 			   "\nPackets sent: %32"PRIu64
287 			   "\nPackets received: %28"PRIu64
288 			   "\nPackets dropped: %29"PRIu64,
289 			   portid,
290 			   port_statistics[portid].tx,
291 			   port_statistics[portid].rx,
292 			   port_statistics[portid].dropped);
293 
294 		total_packets_dropped += port_statistics[portid].dropped;
295 		total_packets_tx += port_statistics[portid].tx;
296 		total_packets_rx += port_statistics[portid].rx;
297 	}
298 	printf("\nCrypto statistics ==================================");
299 
300 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
301 		/* skip disabled ports */
302 		if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
303 			continue;
304 		printf("\nStatistics for cryptodev %"PRIu64
305 				" -------------------------"
306 			   "\nPackets enqueued: %28"PRIu64
307 			   "\nPackets dequeued: %28"PRIu64
308 			   "\nPackets errors: %30"PRIu64,
309 			   cdevid,
310 			   crypto_statistics[cdevid].enqueued,
311 			   crypto_statistics[cdevid].dequeued,
312 			   crypto_statistics[cdevid].errors);
313 
314 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
315 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
316 		total_packets_errors += crypto_statistics[cdevid].errors;
317 	}
318 	printf("\nAggregate statistics ==============================="
319 		   "\nTotal packets received: %22"PRIu64
320 		   "\nTotal packets enqueued: %22"PRIu64
321 		   "\nTotal packets dequeued: %22"PRIu64
322 		   "\nTotal packets sent: %26"PRIu64
323 		   "\nTotal packets dropped: %23"PRIu64
324 		   "\nTotal packets crypto errors: %17"PRIu64,
325 		   total_packets_rx,
326 		   total_packets_enqueued,
327 		   total_packets_dequeued,
328 		   total_packets_tx,
329 		   total_packets_dropped,
330 		   total_packets_errors);
331 	printf("\n====================================================\n");
332 }
333 
334 static void
335 fill_supported_algorithm_tables(void)
336 {
337 	unsigned i;
338 
339 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
340 		strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
341 
342 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
343 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
344 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
345 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
346 		"AES_XCBC_MAC");
347 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
348 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
349 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
350 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
351 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
352 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
353 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
354 
355 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
356 		strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
357 
358 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
359 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
360 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
361 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
362 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
363 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
364 }
365 
366 
367 static int
368 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
369 		struct l2fwd_crypto_params *cparams)
370 {
371 	struct rte_crypto_op **op_buffer;
372 	unsigned ret;
373 
374 	op_buffer = (struct rte_crypto_op **)
375 			qconf->op_buf[cparams->dev_id].buffer;
376 
377 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
378 			cparams->qp_id,	op_buffer, (uint16_t) n);
379 
380 	crypto_statistics[cparams->dev_id].enqueued += ret;
381 	if (unlikely(ret < n)) {
382 		crypto_statistics[cparams->dev_id].errors += (n - ret);
383 		do {
384 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
385 			rte_crypto_op_free(op_buffer[ret]);
386 		} while (++ret < n);
387 	}
388 
389 	return 0;
390 }
391 
392 static int
393 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
394 		struct l2fwd_crypto_params *cparams)
395 {
396 	unsigned lcore_id, len;
397 	struct lcore_queue_conf *qconf;
398 
399 	lcore_id = rte_lcore_id();
400 
401 	qconf = &lcore_queue_conf[lcore_id];
402 	len = qconf->op_buf[cparams->dev_id].len;
403 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
404 	len++;
405 
406 	/* enough ops to be sent */
407 	if (len == MAX_PKT_BURST) {
408 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
409 		len = 0;
410 	}
411 
412 	qconf->op_buf[cparams->dev_id].len = len;
413 	return 0;
414 }
415 
416 static int
417 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
418 		struct rte_crypto_op *op,
419 		struct l2fwd_crypto_params *cparams)
420 {
421 	struct ether_hdr *eth_hdr;
422 	struct ipv4_hdr *ip_hdr;
423 
424 	unsigned ipdata_offset, pad_len, data_len;
425 	char *padding;
426 
427 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
428 
429 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
430 		return -1;
431 
432 	ipdata_offset = sizeof(struct ether_hdr);
433 
434 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
435 			ipdata_offset);
436 
437 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
438 			* IPV4_IHL_MULTIPLIER;
439 
440 
441 	/* Zero pad data to be crypto'd so it is block aligned */
442 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
443 	pad_len = data_len % cparams->block_size ? cparams->block_size -
444 			(data_len % cparams->block_size) : 0;
445 
446 	if (pad_len) {
447 		padding = rte_pktmbuf_append(m, pad_len);
448 		if (unlikely(!padding))
449 			return -1;
450 
451 		data_len += pad_len;
452 		memset(padding, 0, pad_len);
453 	}
454 
455 	/* Set crypto operation data parameters */
456 	rte_crypto_op_attach_sym_session(op, cparams->session);
457 
458 	if (cparams->do_hash) {
459 		if (!cparams->hash_verify) {
460 			/* Append space for digest to end of packet */
461 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
462 				cparams->digest_length);
463 		} else {
464 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
465 				cparams->digest_length);
466 		}
467 
468 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
469 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
470 		op->sym->auth.digest.length = cparams->digest_length;
471 
472 		/* For SNOW3G/KASUMI algorithms, offset/length must be in bits */
473 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
474 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
475 			op->sym->auth.data.offset = ipdata_offset << 3;
476 			op->sym->auth.data.length = data_len << 3;
477 		} else {
478 			op->sym->auth.data.offset = ipdata_offset;
479 			op->sym->auth.data.length = data_len;
480 		}
481 
482 		if (cparams->aad.length) {
483 			op->sym->auth.aad.data = cparams->aad.data;
484 			op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
485 			op->sym->auth.aad.length = cparams->aad.length;
486 		}
487 	}
488 
489 	if (cparams->do_cipher) {
490 		op->sym->cipher.iv.data = cparams->iv.data;
491 		op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
492 		op->sym->cipher.iv.length = cparams->iv.length;
493 
494 		/* For SNOW3G algorithms, offset/length must be in bits */
495 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
496 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8) {
497 			op->sym->cipher.data.offset = ipdata_offset << 3;
498 			if (cparams->do_hash && cparams->hash_verify)
499 				/* Do not cipher the hash tag */
500 				op->sym->cipher.data.length = (data_len -
501 					cparams->digest_length) << 3;
502 			else
503 				op->sym->cipher.data.length = data_len << 3;
504 
505 		} else {
506 			op->sym->cipher.data.offset = ipdata_offset;
507 			if (cparams->do_hash && cparams->hash_verify)
508 				/* Do not cipher the hash tag */
509 				op->sym->cipher.data.length = data_len -
510 					cparams->digest_length;
511 			else
512 				op->sym->cipher.data.length = data_len;
513 		}
514 	}
515 
516 	op->sym->m_src = m;
517 
518 	return l2fwd_crypto_enqueue(op, cparams);
519 }
520 
521 
522 /* Send the burst of packets on an output interface */
523 static int
524 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
525 		uint8_t port)
526 {
527 	struct rte_mbuf **pkt_buffer;
528 	unsigned ret;
529 
530 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
531 
532 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
533 	port_statistics[port].tx += ret;
534 	if (unlikely(ret < n)) {
535 		port_statistics[port].dropped += (n - ret);
536 		do {
537 			rte_pktmbuf_free(pkt_buffer[ret]);
538 		} while (++ret < n);
539 	}
540 
541 	return 0;
542 }
543 
544 /* Enqueue packets for TX and prepare them to be sent */
545 static int
546 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
547 {
548 	unsigned lcore_id, len;
549 	struct lcore_queue_conf *qconf;
550 
551 	lcore_id = rte_lcore_id();
552 
553 	qconf = &lcore_queue_conf[lcore_id];
554 	len = qconf->pkt_buf[port].len;
555 	qconf->pkt_buf[port].buffer[len] = m;
556 	len++;
557 
558 	/* enough pkts to be sent */
559 	if (unlikely(len == MAX_PKT_BURST)) {
560 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
561 		len = 0;
562 	}
563 
564 	qconf->pkt_buf[port].len = len;
565 	return 0;
566 }
567 
568 static void
569 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
570 {
571 	struct ether_hdr *eth;
572 	void *tmp;
573 	unsigned dst_port;
574 
575 	dst_port = l2fwd_dst_ports[portid];
576 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
577 
578 	/* 02:00:00:00:00:xx */
579 	tmp = &eth->d_addr.addr_bytes[0];
580 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
581 
582 	/* src addr */
583 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
584 
585 	l2fwd_send_packet(m, (uint8_t) dst_port);
586 }
587 
588 /** Generate random key */
589 static void
590 generate_random_key(uint8_t *key, unsigned length)
591 {
592 	int fd;
593 	int ret;
594 
595 	fd = open("/dev/urandom", O_RDONLY);
596 	if (fd < 0)
597 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
598 
599 	ret = read(fd, key, length);
600 	close(fd);
601 
602 	if (ret != (signed)length)
603 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
604 }
605 
606 static struct rte_cryptodev_sym_session *
607 initialize_crypto_session(struct l2fwd_crypto_options *options,
608 		uint8_t cdev_id)
609 {
610 	struct rte_crypto_sym_xform *first_xform;
611 
612 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
613 		first_xform = &options->cipher_xform;
614 		first_xform->next = &options->auth_xform;
615 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
616 		first_xform = &options->auth_xform;
617 		first_xform->next = &options->cipher_xform;
618 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
619 		first_xform = &options->cipher_xform;
620 	} else {
621 		first_xform = &options->auth_xform;
622 	}
623 
624 	/* Setup Cipher Parameters */
625 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
626 }
627 
628 static void
629 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
630 
631 /* main processing loop */
632 static void
633 l2fwd_main_loop(struct l2fwd_crypto_options *options)
634 {
635 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
636 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
637 
638 	unsigned lcore_id = rte_lcore_id();
639 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
640 	unsigned i, j, portid, nb_rx, len;
641 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
642 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
643 			US_PER_S * BURST_TX_DRAIN_US;
644 	struct l2fwd_crypto_params *cparams;
645 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
646 
647 	if (qconf->nb_rx_ports == 0) {
648 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
649 		return;
650 	}
651 
652 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
653 
654 	for (i = 0; i < qconf->nb_rx_ports; i++) {
655 
656 		portid = qconf->rx_port_list[i];
657 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
658 			portid);
659 	}
660 
661 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
662 		port_cparams[i].do_cipher = 0;
663 		port_cparams[i].do_hash = 0;
664 
665 		switch (options->xform_chain) {
666 		case L2FWD_CRYPTO_CIPHER_HASH:
667 		case L2FWD_CRYPTO_HASH_CIPHER:
668 			port_cparams[i].do_cipher = 1;
669 			port_cparams[i].do_hash = 1;
670 			break;
671 		case L2FWD_CRYPTO_HASH_ONLY:
672 			port_cparams[i].do_hash = 1;
673 			break;
674 		case L2FWD_CRYPTO_CIPHER_ONLY:
675 			port_cparams[i].do_cipher = 1;
676 			break;
677 		}
678 
679 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
680 		port_cparams[i].qp_id = 0;
681 
682 		port_cparams[i].block_size = options->block_size;
683 
684 		if (port_cparams[i].do_hash) {
685 			port_cparams[i].digest_length =
686 					options->auth_xform.auth.digest_length;
687 			if (options->auth_xform.auth.add_auth_data_length) {
688 				port_cparams[i].aad.data = options->aad.data;
689 				port_cparams[i].aad.length =
690 					options->auth_xform.auth.add_auth_data_length;
691 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
692 				if (!options->aad_param)
693 					generate_random_key(port_cparams[i].aad.data,
694 						port_cparams[i].aad.length);
695 
696 			}
697 
698 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
699 				port_cparams[i].hash_verify = 1;
700 			else
701 				port_cparams[i].hash_verify = 0;
702 
703 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
704 		}
705 
706 		if (port_cparams[i].do_cipher) {
707 			port_cparams[i].iv.data = options->iv.data;
708 			port_cparams[i].iv.length = options->iv.length;
709 			port_cparams[i].iv.phys_addr = options->iv.phys_addr;
710 			if (!options->iv_param)
711 				generate_random_key(port_cparams[i].iv.data,
712 						port_cparams[i].iv.length);
713 
714 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
715 		}
716 
717 		port_cparams[i].session = initialize_crypto_session(options,
718 				port_cparams[i].dev_id);
719 
720 		if (port_cparams[i].session == NULL)
721 			return;
722 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
723 				port_cparams[i].dev_id);
724 	}
725 
726 	l2fwd_crypto_options_print(options);
727 
728 	/*
729 	 * Initialize previous tsc timestamp before the loop,
730 	 * to avoid showing the port statistics immediately,
731 	 * so user can see the crypto information.
732 	 */
733 	prev_tsc = rte_rdtsc();
734 	while (1) {
735 
736 		cur_tsc = rte_rdtsc();
737 
738 		/*
739 		 * Crypto device/TX burst queue drain
740 		 */
741 		diff_tsc = cur_tsc - prev_tsc;
742 		if (unlikely(diff_tsc > drain_tsc)) {
743 			/* Enqueue all crypto ops remaining in buffers */
744 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
745 				cparams = &port_cparams[i];
746 				len = qconf->op_buf[cparams->dev_id].len;
747 				l2fwd_crypto_send_burst(qconf, len, cparams);
748 				qconf->op_buf[cparams->dev_id].len = 0;
749 			}
750 			/* Transmit all packets remaining in buffers */
751 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
752 				if (qconf->pkt_buf[portid].len == 0)
753 					continue;
754 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
755 						 qconf->pkt_buf[portid].len,
756 						 (uint8_t) portid);
757 				qconf->pkt_buf[portid].len = 0;
758 			}
759 
760 			/* if timer is enabled */
761 			if (timer_period > 0) {
762 
763 				/* advance the timer */
764 				timer_tsc += diff_tsc;
765 
766 				/* if timer has reached its timeout */
767 				if (unlikely(timer_tsc >=
768 						(uint64_t)timer_period)) {
769 
770 					/* do this only on master core */
771 					if (lcore_id == rte_get_master_lcore()
772 						&& options->refresh_period) {
773 						print_stats();
774 						timer_tsc = 0;
775 					}
776 				}
777 			}
778 
779 			prev_tsc = cur_tsc;
780 		}
781 
782 		/*
783 		 * Read packet from RX queues
784 		 */
785 		for (i = 0; i < qconf->nb_rx_ports; i++) {
786 			portid = qconf->rx_port_list[i];
787 
788 			cparams = &port_cparams[i];
789 
790 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
791 						 pkts_burst, MAX_PKT_BURST);
792 
793 			port_statistics[portid].rx += nb_rx;
794 
795 			if (nb_rx) {
796 				/*
797 				 * If we can't allocate a crypto_ops, then drop
798 				 * the rest of the burst and dequeue and
799 				 * process the packets to free offload structs
800 				 */
801 				if (rte_crypto_op_bulk_alloc(
802 						l2fwd_crypto_op_pool,
803 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
804 						ops_burst, nb_rx) !=
805 								nb_rx) {
806 					for (j = 0; j < nb_rx; j++)
807 						rte_pktmbuf_free(pkts_burst[i]);
808 
809 					nb_rx = 0;
810 				}
811 
812 				/* Enqueue packets from Crypto device*/
813 				for (j = 0; j < nb_rx; j++) {
814 					m = pkts_burst[j];
815 
816 					l2fwd_simple_crypto_enqueue(m,
817 							ops_burst[j], cparams);
818 				}
819 			}
820 
821 			/* Dequeue packets from Crypto device */
822 			do {
823 				nb_rx = rte_cryptodev_dequeue_burst(
824 						cparams->dev_id, cparams->qp_id,
825 						ops_burst, MAX_PKT_BURST);
826 
827 				crypto_statistics[cparams->dev_id].dequeued +=
828 						nb_rx;
829 
830 				/* Forward crypto'd packets */
831 				for (j = 0; j < nb_rx; j++) {
832 					m = ops_burst[j]->sym->m_src;
833 
834 					rte_crypto_op_free(ops_burst[j]);
835 					l2fwd_simple_forward(m, portid);
836 				}
837 			} while (nb_rx == MAX_PKT_BURST);
838 		}
839 	}
840 }
841 
842 static int
843 l2fwd_launch_one_lcore(void *arg)
844 {
845 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
846 	return 0;
847 }
848 
849 /* Display command line arguments usage */
850 static void
851 l2fwd_crypto_usage(const char *prgname)
852 {
853 	printf("%s [EAL options] --\n"
854 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
855 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
856 		"  -s manage all ports from single lcore\n"
857 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
858 		" (0 to disable, 10 default, 86400 maximum)\n"
859 
860 		"  --cdev_type HW / SW / ANY\n"
861 		"  --chain HASH_CIPHER / CIPHER_HASH\n"
862 
863 		"  --cipher_algo ALGO\n"
864 		"  --cipher_op ENCRYPT / DECRYPT\n"
865 		"  --cipher_key KEY (bytes separated with \":\")\n"
866 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
867 		"  --iv IV (bytes separated with \":\")\n"
868 		"  --iv_random_size SIZE: size of IV when generated randomly\n"
869 
870 		"  --auth_algo ALGO\n"
871 		"  --auth_op GENERATE / VERIFY\n"
872 		"  --auth_key KEY (bytes separated with \":\")\n"
873 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
874 		"  --aad AAD (bytes separated with \":\")\n"
875 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
876 		"  --digest_size SIZE: size of digest to be generated/verified\n"
877 
878 		"  --sessionless\n",
879 	       prgname);
880 }
881 
882 /** Parse crypto device type command line argument */
883 static int
884 parse_cryptodev_type(enum cdev_type *type, char *optarg)
885 {
886 	if (strcmp("HW", optarg) == 0) {
887 		*type = CDEV_TYPE_HW;
888 		return 0;
889 	} else if (strcmp("SW", optarg) == 0) {
890 		*type = CDEV_TYPE_SW;
891 		return 0;
892 	} else if (strcmp("ANY", optarg) == 0) {
893 		*type = CDEV_TYPE_ANY;
894 		return 0;
895 	}
896 
897 	return -1;
898 }
899 
900 /** Parse crypto chain xform command line argument */
901 static int
902 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
903 {
904 	if (strcmp("CIPHER_HASH", optarg) == 0) {
905 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
906 		return 0;
907 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
908 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
909 		return 0;
910 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
911 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
912 		return 0;
913 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
914 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
915 		return 0;
916 	}
917 
918 	return -1;
919 }
920 
921 /** Parse crypto cipher algo option command line argument */
922 static int
923 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
924 {
925 	unsigned i;
926 
927 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
928 		if (!strcmp(supported_cipher_algo[i], optarg)) {
929 			*algo = (enum rte_crypto_cipher_algorithm)i;
930 			return 0;
931 		}
932 	}
933 
934 	printf("Cipher algorithm  not supported!\n");
935 	return -1;
936 }
937 
938 /** Parse crypto cipher operation command line argument */
939 static int
940 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
941 {
942 	if (strcmp("ENCRYPT", optarg) == 0) {
943 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
944 		return 0;
945 	} else if (strcmp("DECRYPT", optarg) == 0) {
946 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
947 		return 0;
948 	}
949 
950 	printf("Cipher operation not supported!\n");
951 	return -1;
952 }
953 
954 /** Parse crypto key command line argument */
955 static int
956 parse_key(uint8_t *data, char *input_arg)
957 {
958 	unsigned byte_count;
959 	char *token;
960 
961 	for (byte_count = 0, token = strtok(input_arg, ":");
962 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
963 			token = strtok(NULL, ":")) {
964 
965 		int number = (int)strtol(token, NULL, 16);
966 
967 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
968 			return -1;
969 
970 		data[byte_count++] = (uint8_t)number;
971 	}
972 
973 	return byte_count;
974 }
975 
976 /** Parse size param*/
977 static int
978 parse_size(int *size, const char *q_arg)
979 {
980 	char *end = NULL;
981 	unsigned long n;
982 
983 	/* parse hexadecimal string */
984 	n = strtoul(q_arg, &end, 10);
985 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
986 		n = 0;
987 
988 	if (n == 0) {
989 		printf("invalid size\n");
990 		return -1;
991 	}
992 
993 	*size = n;
994 	return 0;
995 }
996 
997 /** Parse crypto cipher operation command line argument */
998 static int
999 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1000 {
1001 	unsigned i;
1002 
1003 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
1004 		if (!strcmp(supported_auth_algo[i], optarg)) {
1005 			*algo = (enum rte_crypto_auth_algorithm)i;
1006 			return 0;
1007 		}
1008 	}
1009 
1010 	printf("Authentication algorithm specified not supported!\n");
1011 	return -1;
1012 }
1013 
1014 static int
1015 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1016 {
1017 	if (strcmp("VERIFY", optarg) == 0) {
1018 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1019 		return 0;
1020 	} else if (strcmp("GENERATE", optarg) == 0) {
1021 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1022 		return 0;
1023 	}
1024 
1025 	printf("Authentication operation specified not supported!\n");
1026 	return -1;
1027 }
1028 
1029 /** Parse long options */
1030 static int
1031 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1032 		struct option *lgopts, int option_index)
1033 {
1034 	int retval;
1035 
1036 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1037 		retval = parse_cryptodev_type(&options->type, optarg);
1038 		if (retval == 0)
1039 			snprintf(options->string_type, MAX_STR_LEN,
1040 				"%s", optarg);
1041 		return retval;
1042 	}
1043 
1044 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1045 		return parse_crypto_opt_chain(options, optarg);
1046 
1047 	/* Cipher options */
1048 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1049 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1050 				optarg);
1051 
1052 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1053 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1054 				optarg);
1055 
1056 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1057 		options->ckey_param = 1;
1058 		options->cipher_xform.cipher.key.length =
1059 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1060 		if (options->cipher_xform.cipher.key.length > 0)
1061 			return 0;
1062 		else
1063 			return -1;
1064 	}
1065 
1066 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1067 		return parse_size(&options->ckey_random_size, optarg);
1068 
1069 	else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1070 		options->iv_param = 1;
1071 		options->iv.length =
1072 			parse_key(options->iv.data, optarg);
1073 		if (options->iv.length > 0)
1074 			return 0;
1075 		else
1076 			return -1;
1077 	}
1078 
1079 	else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1080 		return parse_size(&options->iv_random_size, optarg);
1081 
1082 	/* Authentication options */
1083 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1084 		return parse_auth_algo(&options->auth_xform.auth.algo,
1085 				optarg);
1086 	}
1087 
1088 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1089 		return parse_auth_op(&options->auth_xform.auth.op,
1090 				optarg);
1091 
1092 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1093 		options->akey_param = 1;
1094 		options->auth_xform.auth.key.length =
1095 			parse_key(options->auth_xform.auth.key.data, optarg);
1096 		if (options->auth_xform.auth.key.length > 0)
1097 			return 0;
1098 		else
1099 			return -1;
1100 	}
1101 
1102 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1103 		return parse_size(&options->akey_random_size, optarg);
1104 	}
1105 
1106 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1107 		options->aad_param = 1;
1108 		options->aad.length =
1109 			parse_key(options->aad.data, optarg);
1110 		if (options->aad.length > 0)
1111 			return 0;
1112 		else
1113 			return -1;
1114 	}
1115 
1116 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1117 		return parse_size(&options->aad_random_size, optarg);
1118 	}
1119 
1120 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1121 		return parse_size(&options->digest_size, optarg);
1122 	}
1123 
1124 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1125 		options->sessionless = 1;
1126 		return 0;
1127 	}
1128 
1129 	return -1;
1130 }
1131 
1132 /** Parse port mask */
1133 static int
1134 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1135 		const char *q_arg)
1136 {
1137 	char *end = NULL;
1138 	unsigned long pm;
1139 
1140 	/* parse hexadecimal string */
1141 	pm = strtoul(q_arg, &end, 16);
1142 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1143 		pm = 0;
1144 
1145 	options->portmask = pm;
1146 	if (options->portmask == 0) {
1147 		printf("invalid portmask specified\n");
1148 		return -1;
1149 	}
1150 
1151 	return pm;
1152 }
1153 
1154 /** Parse number of queues */
1155 static int
1156 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1157 		const char *q_arg)
1158 {
1159 	char *end = NULL;
1160 	unsigned long n;
1161 
1162 	/* parse hexadecimal string */
1163 	n = strtoul(q_arg, &end, 10);
1164 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1165 		n = 0;
1166 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1167 		n = 0;
1168 
1169 	options->nb_ports_per_lcore = n;
1170 	if (options->nb_ports_per_lcore == 0) {
1171 		printf("invalid number of ports selected\n");
1172 		return -1;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /** Parse timer period */
1179 static int
1180 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1181 		const char *q_arg)
1182 {
1183 	char *end = NULL;
1184 	unsigned long n;
1185 
1186 	/* parse number string */
1187 	n = (unsigned)strtol(q_arg, &end, 10);
1188 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1189 		n = 0;
1190 
1191 	if (n >= MAX_TIMER_PERIOD) {
1192 		printf("Warning refresh period specified %lu is greater than "
1193 				"max value %lu! using max value",
1194 				n, MAX_TIMER_PERIOD);
1195 		n = MAX_TIMER_PERIOD;
1196 	}
1197 
1198 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1199 
1200 	return 0;
1201 }
1202 
1203 /** Generate default options for application */
1204 static void
1205 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1206 {
1207 	options->portmask = 0xffffffff;
1208 	options->nb_ports_per_lcore = 1;
1209 	options->refresh_period = 10000;
1210 	options->single_lcore = 0;
1211 	options->sessionless = 0;
1212 
1213 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1214 
1215 	/* Cipher Data */
1216 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1217 	options->cipher_xform.next = NULL;
1218 	options->ckey_param = 0;
1219 	options->ckey_random_size = -1;
1220 	options->cipher_xform.cipher.key.length = 0;
1221 	options->iv_param = 0;
1222 	options->iv_random_size = -1;
1223 	options->iv.length = 0;
1224 
1225 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1226 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1227 
1228 	/* Authentication Data */
1229 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1230 	options->auth_xform.next = NULL;
1231 	options->akey_param = 0;
1232 	options->akey_random_size = -1;
1233 	options->auth_xform.auth.key.length = 0;
1234 	options->aad_param = 0;
1235 	options->aad_random_size = -1;
1236 	options->aad.length = 0;
1237 	options->digest_size = -1;
1238 
1239 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1240 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1241 
1242 	options->type = CDEV_TYPE_ANY;
1243 }
1244 
1245 static void
1246 display_cipher_info(struct l2fwd_crypto_options *options)
1247 {
1248 	printf("\n---- Cipher information ---\n");
1249 	printf("Algorithm: %s\n",
1250 		supported_cipher_algo[options->cipher_xform.cipher.algo]);
1251 	rte_hexdump(stdout, "Cipher key:",
1252 			options->cipher_xform.cipher.key.data,
1253 			options->cipher_xform.cipher.key.length);
1254 	rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1255 }
1256 
1257 static void
1258 display_auth_info(struct l2fwd_crypto_options *options)
1259 {
1260 	printf("\n---- Authentication information ---\n");
1261 	printf("Algorithm: %s\n",
1262 		supported_auth_algo[options->auth_xform.auth.algo]);
1263 	rte_hexdump(stdout, "Auth key:",
1264 			options->auth_xform.auth.key.data,
1265 			options->auth_xform.auth.key.length);
1266 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1267 }
1268 
1269 static void
1270 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1271 {
1272 	char string_cipher_op[MAX_STR_LEN];
1273 	char string_auth_op[MAX_STR_LEN];
1274 
1275 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1276 		strcpy(string_cipher_op, "Encrypt");
1277 	else
1278 		strcpy(string_cipher_op, "Decrypt");
1279 
1280 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1281 		strcpy(string_auth_op, "Auth generate");
1282 	else
1283 		strcpy(string_auth_op, "Auth verify");
1284 
1285 	printf("Options:-\nn");
1286 	printf("portmask: %x\n", options->portmask);
1287 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1288 	printf("refresh period : %u\n", options->refresh_period);
1289 	printf("single lcore mode: %s\n",
1290 			options->single_lcore ? "enabled" : "disabled");
1291 	printf("stats_printing: %s\n",
1292 			options->refresh_period == 0 ? "disabled" : "enabled");
1293 
1294 	printf("sessionless crypto: %s\n",
1295 			options->sessionless ? "enabled" : "disabled");
1296 
1297 	if (options->ckey_param && (options->ckey_random_size != -1))
1298 		printf("Cipher key already parsed, ignoring size of random key\n");
1299 
1300 	if (options->akey_param && (options->akey_random_size != -1))
1301 		printf("Auth key already parsed, ignoring size of random key\n");
1302 
1303 	if (options->iv_param && (options->iv_random_size != -1))
1304 		printf("IV already parsed, ignoring size of random IV\n");
1305 
1306 	if (options->aad_param && (options->aad_random_size != -1))
1307 		printf("AAD already parsed, ignoring size of random AAD\n");
1308 
1309 	printf("\nCrypto chain: ");
1310 	switch (options->xform_chain) {
1311 	case L2FWD_CRYPTO_CIPHER_HASH:
1312 		printf("Input --> %s --> %s --> Output\n",
1313 			string_cipher_op, string_auth_op);
1314 		display_cipher_info(options);
1315 		display_auth_info(options);
1316 		break;
1317 	case L2FWD_CRYPTO_HASH_CIPHER:
1318 		printf("Input --> %s --> %s --> Output\n",
1319 			string_auth_op, string_cipher_op);
1320 		display_cipher_info(options);
1321 		display_auth_info(options);
1322 		break;
1323 	case L2FWD_CRYPTO_HASH_ONLY:
1324 		printf("Input --> %s --> Output\n", string_auth_op);
1325 		display_auth_info(options);
1326 		break;
1327 	case L2FWD_CRYPTO_CIPHER_ONLY:
1328 		printf("Input --> %s --> Output\n", string_cipher_op);
1329 		display_cipher_info(options);
1330 		break;
1331 	}
1332 }
1333 
1334 /* Parse the argument given in the command line of the application */
1335 static int
1336 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1337 		int argc, char **argv)
1338 {
1339 	int opt, retval, option_index;
1340 	char **argvopt = argv, *prgname = argv[0];
1341 
1342 	static struct option lgopts[] = {
1343 			{ "sessionless", no_argument, 0, 0 },
1344 
1345 			{ "cdev_type", required_argument, 0, 0 },
1346 			{ "chain", required_argument, 0, 0 },
1347 
1348 			{ "cipher_algo", required_argument, 0, 0 },
1349 			{ "cipher_op", required_argument, 0, 0 },
1350 			{ "cipher_key", required_argument, 0, 0 },
1351 			{ "cipher_key_random_size", required_argument, 0, 0 },
1352 
1353 			{ "auth_algo", required_argument, 0, 0 },
1354 			{ "auth_op", required_argument, 0, 0 },
1355 			{ "auth_key", required_argument, 0, 0 },
1356 			{ "auth_key_random_size", required_argument, 0, 0 },
1357 
1358 			{ "iv", required_argument, 0, 0 },
1359 			{ "iv_random_size", required_argument, 0, 0 },
1360 			{ "aad", required_argument, 0, 0 },
1361 			{ "aad_random_size", required_argument, 0, 0 },
1362 			{ "digest_size", required_argument, 0, 0 },
1363 
1364 			{ "sessionless", no_argument, 0, 0 },
1365 
1366 			{ NULL, 0, 0, 0 }
1367 	};
1368 
1369 	l2fwd_crypto_default_options(options);
1370 
1371 	while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1372 			&option_index)) != EOF) {
1373 		switch (opt) {
1374 		/* long options */
1375 		case 0:
1376 			retval = l2fwd_crypto_parse_args_long_options(options,
1377 					lgopts, option_index);
1378 			if (retval < 0) {
1379 				l2fwd_crypto_usage(prgname);
1380 				return -1;
1381 			}
1382 			break;
1383 
1384 		/* portmask */
1385 		case 'p':
1386 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1387 			if (retval < 0) {
1388 				l2fwd_crypto_usage(prgname);
1389 				return -1;
1390 			}
1391 			break;
1392 
1393 		/* nqueue */
1394 		case 'q':
1395 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1396 			if (retval < 0) {
1397 				l2fwd_crypto_usage(prgname);
1398 				return -1;
1399 			}
1400 			break;
1401 
1402 		/* single  */
1403 		case 's':
1404 			options->single_lcore = 1;
1405 
1406 			break;
1407 
1408 		/* timer period */
1409 		case 'T':
1410 			retval = l2fwd_crypto_parse_timer_period(options,
1411 					optarg);
1412 			if (retval < 0) {
1413 				l2fwd_crypto_usage(prgname);
1414 				return -1;
1415 			}
1416 			break;
1417 
1418 		default:
1419 			l2fwd_crypto_usage(prgname);
1420 			return -1;
1421 		}
1422 	}
1423 
1424 
1425 	if (optind >= 0)
1426 		argv[optind-1] = prgname;
1427 
1428 	retval = optind-1;
1429 	optind = 0; /* reset getopt lib */
1430 
1431 	return retval;
1432 }
1433 
1434 /* Check the link status of all ports in up to 9s, and print them finally */
1435 static void
1436 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1437 {
1438 #define CHECK_INTERVAL 100 /* 100ms */
1439 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1440 	uint8_t portid, count, all_ports_up, print_flag = 0;
1441 	struct rte_eth_link link;
1442 
1443 	printf("\nChecking link status");
1444 	fflush(stdout);
1445 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1446 		all_ports_up = 1;
1447 		for (portid = 0; portid < port_num; portid++) {
1448 			if ((port_mask & (1 << portid)) == 0)
1449 				continue;
1450 			memset(&link, 0, sizeof(link));
1451 			rte_eth_link_get_nowait(portid, &link);
1452 			/* print link status if flag set */
1453 			if (print_flag == 1) {
1454 				if (link.link_status)
1455 					printf("Port %d Link Up - speed %u "
1456 						"Mbps - %s\n", (uint8_t)portid,
1457 						(unsigned)link.link_speed,
1458 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1459 					("full-duplex") : ("half-duplex\n"));
1460 				else
1461 					printf("Port %d Link Down\n",
1462 						(uint8_t)portid);
1463 				continue;
1464 			}
1465 			/* clear all_ports_up flag if any link down */
1466 			if (link.link_status == ETH_LINK_DOWN) {
1467 				all_ports_up = 0;
1468 				break;
1469 			}
1470 		}
1471 		/* after finally printing all link status, get out */
1472 		if (print_flag == 1)
1473 			break;
1474 
1475 		if (all_ports_up == 0) {
1476 			printf(".");
1477 			fflush(stdout);
1478 			rte_delay_ms(CHECK_INTERVAL);
1479 		}
1480 
1481 		/* set the print_flag if all ports up or timeout */
1482 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1483 			print_flag = 1;
1484 			printf("done\n");
1485 		}
1486 	}
1487 }
1488 
1489 /* Check if device has to be HW/SW or any */
1490 static int
1491 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1492 {
1493 	if (options->type == CDEV_TYPE_HW &&
1494 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1495 		return 0;
1496 	if (options->type == CDEV_TYPE_SW &&
1497 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1498 		return 0;
1499 	if (options->type == CDEV_TYPE_ANY)
1500 		return 0;
1501 
1502 	return -1;
1503 }
1504 
1505 static inline int
1506 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1507 		uint16_t increment)
1508 {
1509 	uint16_t supp_size;
1510 
1511 	/* Single value */
1512 	if (increment == 0) {
1513 		if (length == min)
1514 			return 0;
1515 		else
1516 			return -1;
1517 	}
1518 
1519 	/* Range of values */
1520 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1521 		if (length == supp_size)
1522 			return 0;
1523 	}
1524 
1525 	return -1;
1526 }
1527 static int
1528 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1529 		uint8_t *enabled_cdevs)
1530 {
1531 	unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1532 	const struct rte_cryptodev_capabilities *cap;
1533 	enum rte_crypto_auth_algorithm cap_auth_algo;
1534 	enum rte_crypto_auth_algorithm opt_auth_algo;
1535 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1536 	enum rte_crypto_cipher_algorithm opt_cipher_algo;
1537 	int retval;
1538 
1539 	cdev_count = rte_cryptodev_count();
1540 	if (cdev_count == 0) {
1541 		printf("No crypto devices available\n");
1542 		return -1;
1543 	}
1544 
1545 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1546 			cdev_id++) {
1547 		struct rte_cryptodev_qp_conf qp_conf;
1548 		struct rte_cryptodev_info dev_info;
1549 
1550 		struct rte_cryptodev_config conf = {
1551 			.nb_queue_pairs = 1,
1552 			.socket_id = SOCKET_ID_ANY,
1553 			.session_mp = {
1554 				.nb_objs = 2048,
1555 				.cache_size = 64
1556 			}
1557 		};
1558 
1559 		rte_cryptodev_info_get(cdev_id, &dev_info);
1560 
1561 		/* Set cipher parameters */
1562 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1563 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1564 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1565 			/* Check if device supports cipher algo */
1566 			i = 0;
1567 			opt_cipher_algo = options->cipher_xform.cipher.algo;
1568 			cap = &dev_info.capabilities[i];
1569 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1570 				cap_cipher_algo = cap->sym.cipher.algo;
1571 				if (cap->sym.xform_type ==
1572 						RTE_CRYPTO_SYM_XFORM_CIPHER) {
1573 					if (cap_cipher_algo == opt_cipher_algo) {
1574 						if (check_type(options, &dev_info) == 0)
1575 							break;
1576 					}
1577 				}
1578 				cap = &dev_info.capabilities[++i];
1579 			}
1580 
1581 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1582 				printf("Algorithm %s not supported by cryptodev %u"
1583 					" or device not of preferred type (%s)\n",
1584 					supported_cipher_algo[opt_cipher_algo],
1585 					cdev_id,
1586 					options->string_type);
1587 				continue;
1588 			}
1589 
1590 			options->block_size = cap->sym.cipher.block_size;
1591 			/*
1592 			 * Check if length of provided IV is supported
1593 			 * by the algorithm chosen.
1594 			 */
1595 			if (options->iv_param) {
1596 				if (check_supported_size(options->iv.length,
1597 						cap->sym.cipher.iv_size.min,
1598 						cap->sym.cipher.iv_size.max,
1599 						cap->sym.cipher.iv_size.increment)
1600 							!= 0) {
1601 					printf("Unsupported IV length\n");
1602 					return -1;
1603 				}
1604 			/*
1605 			 * Check if length of IV to be randomly generated
1606 			 * is supported by the algorithm chosen.
1607 			 */
1608 			} else if (options->iv_random_size != -1) {
1609 				if (check_supported_size(options->iv_random_size,
1610 						cap->sym.cipher.iv_size.min,
1611 						cap->sym.cipher.iv_size.max,
1612 						cap->sym.cipher.iv_size.increment)
1613 							!= 0) {
1614 					printf("Unsupported IV length\n");
1615 					return -1;
1616 				}
1617 				options->iv.length = options->iv_random_size;
1618 			/* No size provided, use minimum size. */
1619 			} else
1620 				options->iv.length = cap->sym.cipher.iv_size.min;
1621 
1622 			/*
1623 			 * Check if length of provided cipher key is supported
1624 			 * by the algorithm chosen.
1625 			 */
1626 			if (options->ckey_param) {
1627 				if (check_supported_size(
1628 						options->cipher_xform.cipher.key.length,
1629 						cap->sym.cipher.key_size.min,
1630 						cap->sym.cipher.key_size.max,
1631 						cap->sym.cipher.key_size.increment)
1632 							!= 0) {
1633 					printf("Unsupported cipher key length\n");
1634 					return -1;
1635 				}
1636 			/*
1637 			 * Check if length of the cipher key to be randomly generated
1638 			 * is supported by the algorithm chosen.
1639 			 */
1640 			} else if (options->ckey_random_size != -1) {
1641 				if (check_supported_size(options->ckey_random_size,
1642 						cap->sym.cipher.key_size.min,
1643 						cap->sym.cipher.key_size.max,
1644 						cap->sym.cipher.key_size.increment)
1645 							!= 0) {
1646 					printf("Unsupported cipher key length\n");
1647 					return -1;
1648 				}
1649 				options->cipher_xform.cipher.key.length =
1650 							options->ckey_random_size;
1651 			/* No size provided, use minimum size. */
1652 			} else
1653 				options->cipher_xform.cipher.key.length =
1654 						cap->sym.cipher.key_size.min;
1655 
1656 			if (!options->ckey_param)
1657 				generate_random_key(
1658 					options->cipher_xform.cipher.key.data,
1659 					options->cipher_xform.cipher.key.length);
1660 
1661 		}
1662 
1663 		/* Set auth parameters */
1664 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1665 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1666 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1667 			/* Check if device supports auth algo */
1668 			i = 0;
1669 			opt_auth_algo = options->auth_xform.auth.algo;
1670 			cap = &dev_info.capabilities[i];
1671 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1672 				cap_auth_algo = cap->sym.auth.algo;
1673 				if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1674 						(cap_auth_algo == opt_auth_algo) &&
1675 						(check_type(options, &dev_info) == 0)) {
1676 					break;
1677 				}
1678 				cap = &dev_info.capabilities[++i];
1679 			}
1680 
1681 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1682 				printf("Algorithm %s not supported by cryptodev %u"
1683 					" or device not of preferred type (%s)\n",
1684 					supported_auth_algo[opt_auth_algo],
1685 					cdev_id,
1686 					options->string_type);
1687 				continue;
1688 			}
1689 
1690 			options->block_size = cap->sym.auth.block_size;
1691 			/*
1692 			 * Check if length of provided AAD is supported
1693 			 * by the algorithm chosen.
1694 			 */
1695 			if (options->aad_param) {
1696 				if (check_supported_size(options->aad.length,
1697 						cap->sym.auth.aad_size.min,
1698 						cap->sym.auth.aad_size.max,
1699 						cap->sym.auth.aad_size.increment)
1700 							!= 0) {
1701 					printf("Unsupported AAD length\n");
1702 					return -1;
1703 				}
1704 			/*
1705 			 * Check if length of AAD to be randomly generated
1706 			 * is supported by the algorithm chosen.
1707 			 */
1708 			} else if (options->aad_random_size != -1) {
1709 				if (check_supported_size(options->aad_random_size,
1710 						cap->sym.auth.aad_size.min,
1711 						cap->sym.auth.aad_size.max,
1712 						cap->sym.auth.aad_size.increment)
1713 							!= 0) {
1714 					printf("Unsupported AAD length\n");
1715 					return -1;
1716 				}
1717 				options->aad.length = options->aad_random_size;
1718 			/* No size provided, use minimum size. */
1719 			} else
1720 				options->aad.length = cap->sym.auth.aad_size.min;
1721 
1722 			options->auth_xform.auth.add_auth_data_length =
1723 						options->aad.length;
1724 
1725 			/*
1726 			 * Check if length of provided auth key is supported
1727 			 * by the algorithm chosen.
1728 			 */
1729 			if (options->akey_param) {
1730 				if (check_supported_size(
1731 						options->auth_xform.auth.key.length,
1732 						cap->sym.auth.key_size.min,
1733 						cap->sym.auth.key_size.max,
1734 						cap->sym.auth.key_size.increment)
1735 							!= 0) {
1736 					printf("Unsupported auth key length\n");
1737 					return -1;
1738 				}
1739 			/*
1740 			 * Check if length of the auth key to be randomly generated
1741 			 * is supported by the algorithm chosen.
1742 			 */
1743 			} else if (options->akey_random_size != -1) {
1744 				if (check_supported_size(options->akey_random_size,
1745 						cap->sym.auth.key_size.min,
1746 						cap->sym.auth.key_size.max,
1747 						cap->sym.auth.key_size.increment)
1748 							!= 0) {
1749 					printf("Unsupported auth key length\n");
1750 					return -1;
1751 				}
1752 				options->auth_xform.auth.key.length =
1753 							options->akey_random_size;
1754 			/* No size provided, use minimum size. */
1755 			} else
1756 				options->auth_xform.auth.key.length =
1757 						cap->sym.auth.key_size.min;
1758 
1759 			if (!options->akey_param)
1760 				generate_random_key(
1761 					options->auth_xform.auth.key.data,
1762 					options->auth_xform.auth.key.length);
1763 
1764 			/* Check if digest size is supported by the algorithm. */
1765 			if (options->digest_size != -1) {
1766 				if (check_supported_size(options->digest_size,
1767 						cap->sym.auth.digest_size.min,
1768 						cap->sym.auth.digest_size.max,
1769 						cap->sym.auth.digest_size.increment)
1770 							!= 0) {
1771 					printf("Unsupported digest length\n");
1772 					return -1;
1773 				}
1774 				options->auth_xform.auth.digest_length =
1775 							options->digest_size;
1776 			/* No size provided, use minimum size. */
1777 			} else
1778 				options->auth_xform.auth.digest_length =
1779 						cap->sym.auth.digest_size.min;
1780 		}
1781 
1782 		retval = rte_cryptodev_configure(cdev_id, &conf);
1783 		if (retval < 0) {
1784 			printf("Failed to configure cryptodev %u", cdev_id);
1785 			return -1;
1786 		}
1787 
1788 		qp_conf.nb_descriptors = 2048;
1789 
1790 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1791 				SOCKET_ID_ANY);
1792 		if (retval < 0) {
1793 			printf("Failed to setup queue pair %u on cryptodev %u",
1794 					0, cdev_id);
1795 			return -1;
1796 		}
1797 
1798 		retval = rte_cryptodev_start(cdev_id);
1799 		if (retval < 0) {
1800 			printf("Failed to start device %u: error %d\n",
1801 					cdev_id, retval);
1802 			return -1;
1803 		}
1804 
1805 		l2fwd_enabled_crypto_mask |= (1 << cdev_id);
1806 
1807 		enabled_cdevs[cdev_id] = 1;
1808 		enabled_cdev_count++;
1809 	}
1810 
1811 	return enabled_cdev_count;
1812 }
1813 
1814 static int
1815 initialize_ports(struct l2fwd_crypto_options *options)
1816 {
1817 	uint8_t last_portid, portid;
1818 	unsigned enabled_portcount = 0;
1819 	unsigned nb_ports = rte_eth_dev_count();
1820 
1821 	if (nb_ports == 0) {
1822 		printf("No Ethernet ports - bye\n");
1823 		return -1;
1824 	}
1825 
1826 	/* Reset l2fwd_dst_ports */
1827 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1828 		l2fwd_dst_ports[portid] = 0;
1829 
1830 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1831 		int retval;
1832 
1833 		/* Skip ports that are not enabled */
1834 		if ((options->portmask & (1 << portid)) == 0)
1835 			continue;
1836 
1837 		/* init port */
1838 		printf("Initializing port %u... ", (unsigned) portid);
1839 		fflush(stdout);
1840 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1841 		if (retval < 0) {
1842 			printf("Cannot configure device: err=%d, port=%u\n",
1843 				  retval, (unsigned) portid);
1844 			return -1;
1845 		}
1846 
1847 		/* init one RX queue */
1848 		fflush(stdout);
1849 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1850 					     rte_eth_dev_socket_id(portid),
1851 					     NULL, l2fwd_pktmbuf_pool);
1852 		if (retval < 0) {
1853 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1854 					retval, (unsigned) portid);
1855 			return -1;
1856 		}
1857 
1858 		/* init one TX queue on each port */
1859 		fflush(stdout);
1860 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1861 				rte_eth_dev_socket_id(portid),
1862 				NULL);
1863 		if (retval < 0) {
1864 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1865 				retval, (unsigned) portid);
1866 
1867 			return -1;
1868 		}
1869 
1870 		/* Start device */
1871 		retval = rte_eth_dev_start(portid);
1872 		if (retval < 0) {
1873 			printf("rte_eth_dev_start:err=%d, port=%u\n",
1874 					retval, (unsigned) portid);
1875 			return -1;
1876 		}
1877 
1878 		rte_eth_promiscuous_enable(portid);
1879 
1880 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1881 
1882 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1883 				(unsigned) portid,
1884 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
1885 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
1886 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
1887 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
1888 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
1889 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1890 
1891 		/* initialize port stats */
1892 		memset(&port_statistics, 0, sizeof(port_statistics));
1893 
1894 		/* Setup port forwarding table */
1895 		if (enabled_portcount % 2) {
1896 			l2fwd_dst_ports[portid] = last_portid;
1897 			l2fwd_dst_ports[last_portid] = portid;
1898 		} else {
1899 			last_portid = portid;
1900 		}
1901 
1902 		l2fwd_enabled_port_mask |= (1 << portid);
1903 		enabled_portcount++;
1904 	}
1905 
1906 	if (enabled_portcount == 1) {
1907 		l2fwd_dst_ports[last_portid] = last_portid;
1908 	} else if (enabled_portcount % 2) {
1909 		printf("odd number of ports in portmask- bye\n");
1910 		return -1;
1911 	}
1912 
1913 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1914 
1915 	return enabled_portcount;
1916 }
1917 
1918 static void
1919 reserve_key_memory(struct l2fwd_crypto_options *options)
1920 {
1921 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1922 						MAX_KEY_SIZE, 0);
1923 	if (options->cipher_xform.cipher.key.data == NULL)
1924 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1925 
1926 
1927 	options->auth_xform.auth.key.data = rte_malloc("auth key",
1928 						MAX_KEY_SIZE, 0);
1929 	if (options->auth_xform.auth.key.data == NULL)
1930 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1931 
1932 	options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1933 	if (options->iv.data == NULL)
1934 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1935 	options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1936 
1937 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1938 	if (options->aad.data == NULL)
1939 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1940 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1941 }
1942 
1943 int
1944 main(int argc, char **argv)
1945 {
1946 	struct lcore_queue_conf *qconf;
1947 	struct l2fwd_crypto_options options;
1948 
1949 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1950 	unsigned lcore_id, rx_lcore_id;
1951 	int ret, enabled_cdevcount, enabled_portcount;
1952 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1953 
1954 	/* init EAL */
1955 	ret = rte_eal_init(argc, argv);
1956 	if (ret < 0)
1957 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1958 	argc -= ret;
1959 	argv += ret;
1960 
1961 	/* reserve memory for Cipher/Auth key and IV */
1962 	reserve_key_memory(&options);
1963 
1964 	/* fill out the supported algorithm tables */
1965 	fill_supported_algorithm_tables();
1966 
1967 	/* parse application arguments (after the EAL ones) */
1968 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
1969 	if (ret < 0)
1970 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1971 
1972 	/* create the mbuf pool */
1973 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1974 			sizeof(struct rte_crypto_op),
1975 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
1976 	if (l2fwd_pktmbuf_pool == NULL)
1977 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1978 
1979 	/* create crypto op pool */
1980 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
1981 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
1982 			rte_socket_id());
1983 	if (l2fwd_crypto_op_pool == NULL)
1984 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
1985 
1986 	/* Enable Ethernet ports */
1987 	enabled_portcount = initialize_ports(&options);
1988 	if (enabled_portcount < 1)
1989 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
1990 
1991 	nb_ports = rte_eth_dev_count();
1992 	/* Initialize the port/queue configuration of each logical core */
1993 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
1994 			portid < nb_ports; portid++) {
1995 
1996 		/* skip ports that are not enabled */
1997 		if ((options.portmask & (1 << portid)) == 0)
1998 			continue;
1999 
2000 		if (options.single_lcore && qconf == NULL) {
2001 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2002 				rx_lcore_id++;
2003 				if (rx_lcore_id >= RTE_MAX_LCORE)
2004 					rte_exit(EXIT_FAILURE,
2005 							"Not enough cores\n");
2006 			}
2007 		} else if (!options.single_lcore) {
2008 			/* get the lcore_id for this port */
2009 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2010 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2011 			       options.nb_ports_per_lcore) {
2012 				rx_lcore_id++;
2013 				if (rx_lcore_id >= RTE_MAX_LCORE)
2014 					rte_exit(EXIT_FAILURE,
2015 							"Not enough cores\n");
2016 			}
2017 		}
2018 
2019 		/* Assigned a new logical core in the loop above. */
2020 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2021 			qconf = &lcore_queue_conf[rx_lcore_id];
2022 
2023 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2024 		qconf->nb_rx_ports++;
2025 
2026 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2027 	}
2028 
2029 	/* Enable Crypto devices */
2030 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2031 			enabled_cdevs);
2032 	if (enabled_cdevcount < 0)
2033 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2034 
2035 	if (enabled_cdevcount < enabled_portcount)
2036 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2037 				"has to be more or equal to number of ports (%d)\n",
2038 				enabled_cdevcount, enabled_portcount);
2039 
2040 	nb_cryptodevs = rte_cryptodev_count();
2041 
2042 	/* Initialize the port/cryptodev configuration of each logical core */
2043 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2044 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2045 			cdev_id++) {
2046 		/* Crypto op not supported by crypto device */
2047 		if (!enabled_cdevs[cdev_id])
2048 			continue;
2049 
2050 		if (options.single_lcore && qconf == NULL) {
2051 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2052 				rx_lcore_id++;
2053 				if (rx_lcore_id >= RTE_MAX_LCORE)
2054 					rte_exit(EXIT_FAILURE,
2055 							"Not enough cores\n");
2056 			}
2057 		} else if (!options.single_lcore) {
2058 			/* get the lcore_id for this port */
2059 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2060 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2061 			       options.nb_ports_per_lcore) {
2062 				rx_lcore_id++;
2063 				if (rx_lcore_id >= RTE_MAX_LCORE)
2064 					rte_exit(EXIT_FAILURE,
2065 							"Not enough cores\n");
2066 			}
2067 		}
2068 
2069 		/* Assigned a new logical core in the loop above. */
2070 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2071 			qconf = &lcore_queue_conf[rx_lcore_id];
2072 
2073 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2074 		qconf->nb_crypto_devs++;
2075 
2076 		enabled_cdevcount--;
2077 
2078 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2079 				(unsigned)cdev_id);
2080 	}
2081 
2082 	/* launch per-lcore init on every lcore */
2083 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2084 			CALL_MASTER);
2085 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2086 		if (rte_eal_wait_lcore(lcore_id) < 0)
2087 			return -1;
2088 	}
2089 
2090 	return 0;
2091 }
2092