xref: /dpdk/examples/l2fwd-crypto/main.c (revision 2c59bd32b70d333f2ae89ee6b34c232a8cb6608c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76 
77 enum cdev_type {
78 	CDEV_TYPE_ANY,
79 	CDEV_TYPE_HW,
80 	CDEV_TYPE_SW
81 };
82 
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84 
85 #define NB_MBUF   8192
86 
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 #define MAX_SESSIONS 32
92 #define SESSION_POOL_CACHE_SIZE 0
93 
94 #define MAXIMUM_IV_LENGTH	16
95 #define IV_OFFSET		(sizeof(struct rte_crypto_op) + \
96 				sizeof(struct rte_crypto_sym_op))
97 
98 /*
99  * Configurable number of RX/TX ring descriptors
100  */
101 #define RTE_TEST_RX_DESC_DEFAULT 128
102 #define RTE_TEST_TX_DESC_DEFAULT 512
103 
104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
106 
107 /* ethernet addresses of ports */
108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
109 
110 /* mask of enabled ports */
111 static uint64_t l2fwd_enabled_port_mask;
112 static uint64_t l2fwd_enabled_crypto_mask;
113 
114 /* list of enabled ports */
115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
116 
117 
118 struct pkt_buffer {
119 	unsigned len;
120 	struct rte_mbuf *buffer[MAX_PKT_BURST];
121 };
122 
123 struct op_buffer {
124 	unsigned len;
125 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
126 };
127 
128 #define MAX_RX_QUEUE_PER_LCORE 16
129 #define MAX_TX_QUEUE_PER_PORT 16
130 
131 enum l2fwd_crypto_xform_chain {
132 	L2FWD_CRYPTO_CIPHER_HASH,
133 	L2FWD_CRYPTO_HASH_CIPHER,
134 	L2FWD_CRYPTO_CIPHER_ONLY,
135 	L2FWD_CRYPTO_HASH_ONLY,
136 	L2FWD_CRYPTO_AEAD
137 };
138 
139 struct l2fwd_key {
140 	uint8_t *data;
141 	uint32_t length;
142 	phys_addr_t phys_addr;
143 };
144 
145 struct l2fwd_iv {
146 	uint8_t *data;
147 	uint16_t length;
148 };
149 
150 /** l2fwd crypto application command line options */
151 struct l2fwd_crypto_options {
152 	unsigned portmask;
153 	unsigned nb_ports_per_lcore;
154 	unsigned refresh_period;
155 	unsigned single_lcore:1;
156 
157 	enum cdev_type type;
158 	unsigned sessionless:1;
159 
160 	enum l2fwd_crypto_xform_chain xform_chain;
161 
162 	struct rte_crypto_sym_xform cipher_xform;
163 	unsigned ckey_param;
164 	int ckey_random_size;
165 
166 	struct l2fwd_iv cipher_iv;
167 	unsigned int cipher_iv_param;
168 	int cipher_iv_random_size;
169 
170 	struct rte_crypto_sym_xform auth_xform;
171 	uint8_t akey_param;
172 	int akey_random_size;
173 
174 	struct l2fwd_iv auth_iv;
175 	unsigned int auth_iv_param;
176 	int auth_iv_random_size;
177 
178 	struct rte_crypto_sym_xform aead_xform;
179 	unsigned int aead_key_param;
180 	int aead_key_random_size;
181 
182 	struct l2fwd_iv aead_iv;
183 	unsigned int aead_iv_param;
184 	int aead_iv_random_size;
185 
186 	struct l2fwd_key aad;
187 	unsigned aad_param;
188 	int aad_random_size;
189 
190 	int digest_size;
191 
192 	uint16_t block_size;
193 	char string_type[MAX_STR_LEN];
194 
195 	uint64_t cryptodev_mask;
196 };
197 
198 /** l2fwd crypto lcore params */
199 struct l2fwd_crypto_params {
200 	uint8_t dev_id;
201 	uint8_t qp_id;
202 
203 	unsigned digest_length;
204 	unsigned block_size;
205 
206 	struct l2fwd_iv cipher_iv;
207 	struct l2fwd_iv auth_iv;
208 	struct l2fwd_iv aead_iv;
209 	struct l2fwd_key aad;
210 	struct rte_cryptodev_sym_session *session;
211 
212 	uint8_t do_cipher;
213 	uint8_t do_hash;
214 	uint8_t do_aead;
215 	uint8_t hash_verify;
216 
217 	enum rte_crypto_cipher_algorithm cipher_algo;
218 	enum rte_crypto_auth_algorithm auth_algo;
219 	enum rte_crypto_aead_algorithm aead_algo;
220 };
221 
222 /** lcore configuration */
223 struct lcore_queue_conf {
224 	unsigned nb_rx_ports;
225 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
226 
227 	unsigned nb_crypto_devs;
228 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
229 
230 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
231 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
232 } __rte_cache_aligned;
233 
234 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
235 
236 static const struct rte_eth_conf port_conf = {
237 	.rxmode = {
238 		.mq_mode = ETH_MQ_RX_NONE,
239 		.max_rx_pkt_len = ETHER_MAX_LEN,
240 		.split_hdr_size = 0,
241 		.header_split   = 0, /**< Header Split disabled */
242 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
243 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
244 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
245 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
246 	},
247 	.txmode = {
248 		.mq_mode = ETH_MQ_TX_NONE,
249 	},
250 };
251 
252 struct rte_mempool *l2fwd_pktmbuf_pool;
253 struct rte_mempool *l2fwd_crypto_op_pool;
254 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 };
255 
256 /* Per-port statistics struct */
257 struct l2fwd_port_statistics {
258 	uint64_t tx;
259 	uint64_t rx;
260 
261 	uint64_t crypto_enqueued;
262 	uint64_t crypto_dequeued;
263 
264 	uint64_t dropped;
265 } __rte_cache_aligned;
266 
267 struct l2fwd_crypto_statistics {
268 	uint64_t enqueued;
269 	uint64_t dequeued;
270 
271 	uint64_t errors;
272 } __rte_cache_aligned;
273 
274 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
275 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
276 
277 /* A tsc-based timer responsible for triggering statistics printout */
278 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
279 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
280 
281 /* default period is 10 seconds */
282 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
283 
284 /* Print out statistics on packets dropped */
285 static void
286 print_stats(void)
287 {
288 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
289 	uint64_t total_packets_enqueued, total_packets_dequeued,
290 		total_packets_errors;
291 	unsigned portid;
292 	uint64_t cdevid;
293 
294 	total_packets_dropped = 0;
295 	total_packets_tx = 0;
296 	total_packets_rx = 0;
297 	total_packets_enqueued = 0;
298 	total_packets_dequeued = 0;
299 	total_packets_errors = 0;
300 
301 	const char clr[] = { 27, '[', '2', 'J', '\0' };
302 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
303 
304 		/* Clear screen and move to top left */
305 	printf("%s%s", clr, topLeft);
306 
307 	printf("\nPort statistics ====================================");
308 
309 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
310 		/* skip disabled ports */
311 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
312 			continue;
313 		printf("\nStatistics for port %u ------------------------------"
314 			   "\nPackets sent: %32"PRIu64
315 			   "\nPackets received: %28"PRIu64
316 			   "\nPackets dropped: %29"PRIu64,
317 			   portid,
318 			   port_statistics[portid].tx,
319 			   port_statistics[portid].rx,
320 			   port_statistics[portid].dropped);
321 
322 		total_packets_dropped += port_statistics[portid].dropped;
323 		total_packets_tx += port_statistics[portid].tx;
324 		total_packets_rx += port_statistics[portid].rx;
325 	}
326 	printf("\nCrypto statistics ==================================");
327 
328 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
329 		/* skip disabled ports */
330 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
331 			continue;
332 		printf("\nStatistics for cryptodev %"PRIu64
333 				" -------------------------"
334 			   "\nPackets enqueued: %28"PRIu64
335 			   "\nPackets dequeued: %28"PRIu64
336 			   "\nPackets errors: %30"PRIu64,
337 			   cdevid,
338 			   crypto_statistics[cdevid].enqueued,
339 			   crypto_statistics[cdevid].dequeued,
340 			   crypto_statistics[cdevid].errors);
341 
342 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
343 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
344 		total_packets_errors += crypto_statistics[cdevid].errors;
345 	}
346 	printf("\nAggregate statistics ==============================="
347 		   "\nTotal packets received: %22"PRIu64
348 		   "\nTotal packets enqueued: %22"PRIu64
349 		   "\nTotal packets dequeued: %22"PRIu64
350 		   "\nTotal packets sent: %26"PRIu64
351 		   "\nTotal packets dropped: %23"PRIu64
352 		   "\nTotal packets crypto errors: %17"PRIu64,
353 		   total_packets_rx,
354 		   total_packets_enqueued,
355 		   total_packets_dequeued,
356 		   total_packets_tx,
357 		   total_packets_dropped,
358 		   total_packets_errors);
359 	printf("\n====================================================\n");
360 }
361 
362 static int
363 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
364 		struct l2fwd_crypto_params *cparams)
365 {
366 	struct rte_crypto_op **op_buffer;
367 	unsigned ret;
368 
369 	op_buffer = (struct rte_crypto_op **)
370 			qconf->op_buf[cparams->dev_id].buffer;
371 
372 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
373 			cparams->qp_id,	op_buffer, (uint16_t) n);
374 
375 	crypto_statistics[cparams->dev_id].enqueued += ret;
376 	if (unlikely(ret < n)) {
377 		crypto_statistics[cparams->dev_id].errors += (n - ret);
378 		do {
379 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
380 			rte_crypto_op_free(op_buffer[ret]);
381 		} while (++ret < n);
382 	}
383 
384 	return 0;
385 }
386 
387 static int
388 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
389 		struct l2fwd_crypto_params *cparams)
390 {
391 	unsigned lcore_id, len;
392 	struct lcore_queue_conf *qconf;
393 
394 	lcore_id = rte_lcore_id();
395 
396 	qconf = &lcore_queue_conf[lcore_id];
397 	len = qconf->op_buf[cparams->dev_id].len;
398 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
399 	len++;
400 
401 	/* enough ops to be sent */
402 	if (len == MAX_PKT_BURST) {
403 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
404 		len = 0;
405 	}
406 
407 	qconf->op_buf[cparams->dev_id].len = len;
408 	return 0;
409 }
410 
411 static int
412 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
413 		struct rte_crypto_op *op,
414 		struct l2fwd_crypto_params *cparams)
415 {
416 	struct ether_hdr *eth_hdr;
417 	struct ipv4_hdr *ip_hdr;
418 
419 	uint32_t ipdata_offset, data_len;
420 	uint32_t pad_len = 0;
421 	char *padding;
422 
423 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
424 
425 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
426 		return -1;
427 
428 	ipdata_offset = sizeof(struct ether_hdr);
429 
430 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
431 			ipdata_offset);
432 
433 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
434 			* IPV4_IHL_MULTIPLIER;
435 
436 
437 	/* Zero pad data to be crypto'd so it is block aligned */
438 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
439 
440 	if (cparams->do_hash && cparams->hash_verify)
441 		data_len -= cparams->digest_length;
442 
443 	if (cparams->do_cipher) {
444 		/*
445 		 * Following algorithms are block cipher algorithms,
446 		 * and might need padding
447 		 */
448 		switch (cparams->cipher_algo) {
449 		case RTE_CRYPTO_CIPHER_AES_CBC:
450 		case RTE_CRYPTO_CIPHER_AES_ECB:
451 		case RTE_CRYPTO_CIPHER_DES_CBC:
452 		case RTE_CRYPTO_CIPHER_3DES_CBC:
453 		case RTE_CRYPTO_CIPHER_3DES_ECB:
454 			if (data_len % cparams->block_size)
455 				pad_len = cparams->block_size -
456 					(data_len % cparams->block_size);
457 			break;
458 		default:
459 			pad_len = 0;
460 		}
461 
462 		if (pad_len) {
463 			padding = rte_pktmbuf_append(m, pad_len);
464 			if (unlikely(!padding))
465 				return -1;
466 
467 			data_len += pad_len;
468 			memset(padding, 0, pad_len);
469 		}
470 	}
471 
472 	/* Set crypto operation data parameters */
473 	rte_crypto_op_attach_sym_session(op, cparams->session);
474 
475 	if (cparams->do_hash) {
476 		if (cparams->auth_iv.length) {
477 			uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op,
478 						uint8_t *,
479 						IV_OFFSET +
480 						cparams->cipher_iv.length);
481 			/*
482 			 * Copy IV at the end of the crypto operation,
483 			 * after the cipher IV, if added
484 			 */
485 			rte_memcpy(iv_ptr, cparams->auth_iv.data,
486 					cparams->auth_iv.length);
487 		}
488 		if (!cparams->hash_verify) {
489 			/* Append space for digest to end of packet */
490 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
491 				cparams->digest_length);
492 		} else {
493 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
494 				uint8_t *) + ipdata_offset + data_len;
495 		}
496 
497 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
498 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
499 
500 		/* For wireless algorithms, offset/length must be in bits */
501 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
502 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
503 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
504 			op->sym->auth.data.offset = ipdata_offset << 3;
505 			op->sym->auth.data.length = data_len << 3;
506 		} else {
507 			op->sym->auth.data.offset = ipdata_offset;
508 			op->sym->auth.data.length = data_len;
509 		}
510 	}
511 
512 	if (cparams->do_cipher) {
513 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
514 							IV_OFFSET);
515 		/* Copy IV at the end of the crypto operation */
516 		rte_memcpy(iv_ptr, cparams->cipher_iv.data,
517 				cparams->cipher_iv.length);
518 
519 		/* For wireless algorithms, offset/length must be in bits */
520 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
521 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
522 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
523 			op->sym->cipher.data.offset = ipdata_offset << 3;
524 			op->sym->cipher.data.length = data_len << 3;
525 		} else {
526 			op->sym->cipher.data.offset = ipdata_offset;
527 			op->sym->cipher.data.length = data_len;
528 		}
529 	}
530 
531 	if (cparams->do_aead) {
532 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
533 							IV_OFFSET);
534 		/* Copy IV at the end of the crypto operation */
535 		rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length);
536 
537 		op->sym->aead.data.offset = ipdata_offset;
538 		op->sym->aead.data.length = data_len;
539 
540 		if (!cparams->hash_verify) {
541 			/* Append space for digest to end of packet */
542 			op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m,
543 				cparams->digest_length);
544 		} else {
545 			op->sym->aead.digest.data = rte_pktmbuf_mtod(m,
546 				uint8_t *) + ipdata_offset + data_len;
547 		}
548 
549 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
550 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
551 
552 		if (cparams->aad.length) {
553 			op->sym->aead.aad.data = cparams->aad.data;
554 			op->sym->aead.aad.phys_addr = cparams->aad.phys_addr;
555 		}
556 	}
557 
558 	op->sym->m_src = m;
559 
560 	return l2fwd_crypto_enqueue(op, cparams);
561 }
562 
563 
564 /* Send the burst of packets on an output interface */
565 static int
566 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
567 		uint8_t port)
568 {
569 	struct rte_mbuf **pkt_buffer;
570 	unsigned ret;
571 
572 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
573 
574 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
575 	port_statistics[port].tx += ret;
576 	if (unlikely(ret < n)) {
577 		port_statistics[port].dropped += (n - ret);
578 		do {
579 			rte_pktmbuf_free(pkt_buffer[ret]);
580 		} while (++ret < n);
581 	}
582 
583 	return 0;
584 }
585 
586 /* Enqueue packets for TX and prepare them to be sent */
587 static int
588 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
589 {
590 	unsigned lcore_id, len;
591 	struct lcore_queue_conf *qconf;
592 
593 	lcore_id = rte_lcore_id();
594 
595 	qconf = &lcore_queue_conf[lcore_id];
596 	len = qconf->pkt_buf[port].len;
597 	qconf->pkt_buf[port].buffer[len] = m;
598 	len++;
599 
600 	/* enough pkts to be sent */
601 	if (unlikely(len == MAX_PKT_BURST)) {
602 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
603 		len = 0;
604 	}
605 
606 	qconf->pkt_buf[port].len = len;
607 	return 0;
608 }
609 
610 static void
611 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
612 {
613 	struct ether_hdr *eth;
614 	void *tmp;
615 	unsigned dst_port;
616 
617 	dst_port = l2fwd_dst_ports[portid];
618 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
619 
620 	/* 02:00:00:00:00:xx */
621 	tmp = &eth->d_addr.addr_bytes[0];
622 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
623 
624 	/* src addr */
625 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
626 
627 	l2fwd_send_packet(m, (uint8_t) dst_port);
628 }
629 
630 /** Generate random key */
631 static void
632 generate_random_key(uint8_t *key, unsigned length)
633 {
634 	int fd;
635 	int ret;
636 
637 	fd = open("/dev/urandom", O_RDONLY);
638 	if (fd < 0)
639 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
640 
641 	ret = read(fd, key, length);
642 	close(fd);
643 
644 	if (ret != (signed)length)
645 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
646 }
647 
648 static struct rte_cryptodev_sym_session *
649 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
650 {
651 	struct rte_crypto_sym_xform *first_xform;
652 
653 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
654 		first_xform = &options->aead_xform;
655 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
656 		first_xform = &options->cipher_xform;
657 		first_xform->next = &options->auth_xform;
658 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
659 		first_xform = &options->auth_xform;
660 		first_xform->next = &options->cipher_xform;
661 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
662 		first_xform = &options->cipher_xform;
663 	} else {
664 		first_xform = &options->auth_xform;
665 	}
666 
667 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
668 }
669 
670 static void
671 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
672 
673 /* main processing loop */
674 static void
675 l2fwd_main_loop(struct l2fwd_crypto_options *options)
676 {
677 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
678 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
679 
680 	unsigned lcore_id = rte_lcore_id();
681 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
682 	unsigned i, j, portid, nb_rx, len;
683 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
684 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
685 			US_PER_S * BURST_TX_DRAIN_US;
686 	struct l2fwd_crypto_params *cparams;
687 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
688 	struct rte_cryptodev_sym_session *session;
689 
690 	if (qconf->nb_rx_ports == 0) {
691 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
692 		return;
693 	}
694 
695 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
696 
697 	for (i = 0; i < qconf->nb_rx_ports; i++) {
698 
699 		portid = qconf->rx_port_list[i];
700 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
701 			portid);
702 	}
703 
704 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
705 		port_cparams[i].do_cipher = 0;
706 		port_cparams[i].do_hash = 0;
707 		port_cparams[i].do_aead = 0;
708 
709 		switch (options->xform_chain) {
710 		case L2FWD_CRYPTO_AEAD:
711 			port_cparams[i].do_aead = 1;
712 			break;
713 		case L2FWD_CRYPTO_CIPHER_HASH:
714 		case L2FWD_CRYPTO_HASH_CIPHER:
715 			port_cparams[i].do_cipher = 1;
716 			port_cparams[i].do_hash = 1;
717 			break;
718 		case L2FWD_CRYPTO_HASH_ONLY:
719 			port_cparams[i].do_hash = 1;
720 			break;
721 		case L2FWD_CRYPTO_CIPHER_ONLY:
722 			port_cparams[i].do_cipher = 1;
723 			break;
724 		}
725 
726 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
727 		port_cparams[i].qp_id = 0;
728 
729 		port_cparams[i].block_size = options->block_size;
730 
731 		if (port_cparams[i].do_hash) {
732 			port_cparams[i].auth_iv.data = options->auth_iv.data;
733 			port_cparams[i].auth_iv.length = options->auth_iv.length;
734 			if (!options->auth_iv_param)
735 				generate_random_key(port_cparams[i].auth_iv.data,
736 						port_cparams[i].auth_iv.length);
737 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
738 				port_cparams[i].hash_verify = 1;
739 			else
740 				port_cparams[i].hash_verify = 0;
741 
742 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
743 			/* Set IV parameters */
744 			if (options->auth_iv.length) {
745 				options->auth_xform.auth.iv.offset =
746 					IV_OFFSET + options->cipher_iv.length;
747 				options->auth_xform.auth.iv.length =
748 					options->auth_iv.length;
749 			}
750 		}
751 
752 		if (port_cparams[i].do_aead) {
753 			port_cparams[i].aead_algo = options->aead_xform.aead.algo;
754 			port_cparams[i].digest_length =
755 					options->aead_xform.aead.digest_length;
756 			if (options->aead_xform.aead.add_auth_data_length) {
757 				port_cparams[i].aad.data = options->aad.data;
758 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
759 				port_cparams[i].aad.length = options->aad.length;
760 				if (!options->aad_param)
761 					generate_random_key(port_cparams[i].aad.data,
762 						port_cparams[i].aad.length);
763 
764 			} else
765 				port_cparams[i].aad.length = 0;
766 
767 			if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT)
768 				port_cparams[i].hash_verify = 1;
769 			else
770 				port_cparams[i].hash_verify = 0;
771 
772 			/* Set IV parameters */
773 			options->aead_xform.aead.iv.offset = IV_OFFSET;
774 			options->aead_xform.aead.iv.length = options->aead_iv.length;
775 		}
776 
777 		if (port_cparams[i].do_cipher) {
778 			port_cparams[i].cipher_iv.data = options->cipher_iv.data;
779 			port_cparams[i].cipher_iv.length = options->cipher_iv.length;
780 			if (!options->cipher_iv_param)
781 				generate_random_key(port_cparams[i].cipher_iv.data,
782 						port_cparams[i].cipher_iv.length);
783 
784 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
785 			/* Set IV parameters */
786 			options->cipher_xform.cipher.iv.offset = IV_OFFSET;
787 			options->cipher_xform.cipher.iv.length =
788 						options->cipher_iv.length;
789 		}
790 
791 		session = initialize_crypto_session(options,
792 				port_cparams[i].dev_id);
793 		if (session == NULL)
794 			rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n");
795 
796 		port_cparams[i].session = session;
797 
798 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
799 				port_cparams[i].dev_id);
800 	}
801 
802 	l2fwd_crypto_options_print(options);
803 
804 	/*
805 	 * Initialize previous tsc timestamp before the loop,
806 	 * to avoid showing the port statistics immediately,
807 	 * so user can see the crypto information.
808 	 */
809 	prev_tsc = rte_rdtsc();
810 	while (1) {
811 
812 		cur_tsc = rte_rdtsc();
813 
814 		/*
815 		 * Crypto device/TX burst queue drain
816 		 */
817 		diff_tsc = cur_tsc - prev_tsc;
818 		if (unlikely(diff_tsc > drain_tsc)) {
819 			/* Enqueue all crypto ops remaining in buffers */
820 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
821 				cparams = &port_cparams[i];
822 				len = qconf->op_buf[cparams->dev_id].len;
823 				l2fwd_crypto_send_burst(qconf, len, cparams);
824 				qconf->op_buf[cparams->dev_id].len = 0;
825 			}
826 			/* Transmit all packets remaining in buffers */
827 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
828 				if (qconf->pkt_buf[portid].len == 0)
829 					continue;
830 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
831 						 qconf->pkt_buf[portid].len,
832 						 (uint8_t) portid);
833 				qconf->pkt_buf[portid].len = 0;
834 			}
835 
836 			/* if timer is enabled */
837 			if (timer_period > 0) {
838 
839 				/* advance the timer */
840 				timer_tsc += diff_tsc;
841 
842 				/* if timer has reached its timeout */
843 				if (unlikely(timer_tsc >=
844 						(uint64_t)timer_period)) {
845 
846 					/* do this only on master core */
847 					if (lcore_id == rte_get_master_lcore()
848 						&& options->refresh_period) {
849 						print_stats();
850 						timer_tsc = 0;
851 					}
852 				}
853 			}
854 
855 			prev_tsc = cur_tsc;
856 		}
857 
858 		/*
859 		 * Read packet from RX queues
860 		 */
861 		for (i = 0; i < qconf->nb_rx_ports; i++) {
862 			portid = qconf->rx_port_list[i];
863 
864 			cparams = &port_cparams[i];
865 
866 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
867 						 pkts_burst, MAX_PKT_BURST);
868 
869 			port_statistics[portid].rx += nb_rx;
870 
871 			if (nb_rx) {
872 				/*
873 				 * If we can't allocate a crypto_ops, then drop
874 				 * the rest of the burst and dequeue and
875 				 * process the packets to free offload structs
876 				 */
877 				if (rte_crypto_op_bulk_alloc(
878 						l2fwd_crypto_op_pool,
879 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
880 						ops_burst, nb_rx) !=
881 								nb_rx) {
882 					for (j = 0; j < nb_rx; j++)
883 						rte_pktmbuf_free(pkts_burst[j]);
884 
885 					nb_rx = 0;
886 				}
887 
888 				/* Enqueue packets from Crypto device*/
889 				for (j = 0; j < nb_rx; j++) {
890 					m = pkts_burst[j];
891 
892 					l2fwd_simple_crypto_enqueue(m,
893 							ops_burst[j], cparams);
894 				}
895 			}
896 
897 			/* Dequeue packets from Crypto device */
898 			do {
899 				nb_rx = rte_cryptodev_dequeue_burst(
900 						cparams->dev_id, cparams->qp_id,
901 						ops_burst, MAX_PKT_BURST);
902 
903 				crypto_statistics[cparams->dev_id].dequeued +=
904 						nb_rx;
905 
906 				/* Forward crypto'd packets */
907 				for (j = 0; j < nb_rx; j++) {
908 					m = ops_burst[j]->sym->m_src;
909 
910 					rte_crypto_op_free(ops_burst[j]);
911 					l2fwd_simple_forward(m, portid);
912 				}
913 			} while (nb_rx == MAX_PKT_BURST);
914 		}
915 	}
916 }
917 
918 static int
919 l2fwd_launch_one_lcore(void *arg)
920 {
921 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
922 	return 0;
923 }
924 
925 /* Display command line arguments usage */
926 static void
927 l2fwd_crypto_usage(const char *prgname)
928 {
929 	printf("%s [EAL options] --\n"
930 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
931 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
932 		"  -s manage all ports from single lcore\n"
933 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
934 		" (0 to disable, 10 default, 86400 maximum)\n"
935 
936 		"  --cdev_type HW / SW / ANY\n"
937 		"  --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
938 		" HASH_ONLY / AEAD\n"
939 
940 		"  --cipher_algo ALGO\n"
941 		"  --cipher_op ENCRYPT / DECRYPT\n"
942 		"  --cipher_key KEY (bytes separated with \":\")\n"
943 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
944 		"  --cipher_iv IV (bytes separated with \":\")\n"
945 		"  --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
946 
947 		"  --auth_algo ALGO\n"
948 		"  --auth_op GENERATE / VERIFY\n"
949 		"  --auth_key KEY (bytes separated with \":\")\n"
950 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
951 		"  --auth_iv IV (bytes separated with \":\")\n"
952 		"  --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
953 
954 		"  --aead_algo ALGO\n"
955 		"  --aead_op ENCRYPT / DECRYPT\n"
956 		"  --aead_key KEY (bytes separated with \":\")\n"
957 		"  --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
958 		"  --aead_iv IV (bytes separated with \":\")\n"
959 		"  --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
960 		"  --aad AAD (bytes separated with \":\")\n"
961 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
962 
963 		"  --digest_size SIZE: size of digest to be generated/verified\n"
964 
965 		"  --sessionless\n"
966 		"  --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n",
967 	       prgname);
968 }
969 
970 /** Parse crypto device type command line argument */
971 static int
972 parse_cryptodev_type(enum cdev_type *type, char *optarg)
973 {
974 	if (strcmp("HW", optarg) == 0) {
975 		*type = CDEV_TYPE_HW;
976 		return 0;
977 	} else if (strcmp("SW", optarg) == 0) {
978 		*type = CDEV_TYPE_SW;
979 		return 0;
980 	} else if (strcmp("ANY", optarg) == 0) {
981 		*type = CDEV_TYPE_ANY;
982 		return 0;
983 	}
984 
985 	return -1;
986 }
987 
988 /** Parse crypto chain xform command line argument */
989 static int
990 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
991 {
992 	if (strcmp("CIPHER_HASH", optarg) == 0) {
993 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
994 		return 0;
995 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
996 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
997 		return 0;
998 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
999 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
1000 		return 0;
1001 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
1002 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
1003 		return 0;
1004 	} else if (strcmp("AEAD", optarg) == 0) {
1005 		options->xform_chain = L2FWD_CRYPTO_AEAD;
1006 		return 0;
1007 	}
1008 
1009 	return -1;
1010 }
1011 
1012 /** Parse crypto cipher algo option command line argument */
1013 static int
1014 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
1015 {
1016 
1017 	if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) {
1018 		RTE_LOG(ERR, USER1, "Cipher algorithm specified "
1019 				"not supported!\n");
1020 		return -1;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 /** Parse crypto cipher operation command line argument */
1027 static int
1028 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
1029 {
1030 	if (strcmp("ENCRYPT", optarg) == 0) {
1031 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1032 		return 0;
1033 	} else if (strcmp("DECRYPT", optarg) == 0) {
1034 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1035 		return 0;
1036 	}
1037 
1038 	printf("Cipher operation not supported!\n");
1039 	return -1;
1040 }
1041 
1042 /** Parse crypto key command line argument */
1043 static int
1044 parse_key(uint8_t *data, char *input_arg)
1045 {
1046 	unsigned byte_count;
1047 	char *token;
1048 
1049 	for (byte_count = 0, token = strtok(input_arg, ":");
1050 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
1051 			token = strtok(NULL, ":")) {
1052 
1053 		int number = (int)strtol(token, NULL, 16);
1054 
1055 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
1056 			return -1;
1057 
1058 		data[byte_count++] = (uint8_t)number;
1059 	}
1060 
1061 	return byte_count;
1062 }
1063 
1064 /** Parse size param*/
1065 static int
1066 parse_size(int *size, const char *q_arg)
1067 {
1068 	char *end = NULL;
1069 	unsigned long n;
1070 
1071 	/* parse hexadecimal string */
1072 	n = strtoul(q_arg, &end, 10);
1073 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1074 		n = 0;
1075 
1076 	if (n == 0) {
1077 		printf("invalid size\n");
1078 		return -1;
1079 	}
1080 
1081 	*size = n;
1082 	return 0;
1083 }
1084 
1085 /** Parse crypto cipher operation command line argument */
1086 static int
1087 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1088 {
1089 	if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) {
1090 		RTE_LOG(ERR, USER1, "Authentication algorithm specified "
1091 				"not supported!\n");
1092 		return -1;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static int
1099 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1100 {
1101 	if (strcmp("VERIFY", optarg) == 0) {
1102 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1103 		return 0;
1104 	} else if (strcmp("GENERATE", optarg) == 0) {
1105 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1106 		return 0;
1107 	}
1108 
1109 	printf("Authentication operation specified not supported!\n");
1110 	return -1;
1111 }
1112 
1113 static int
1114 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg)
1115 {
1116 	if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) {
1117 		RTE_LOG(ERR, USER1, "AEAD algorithm specified "
1118 				"not supported!\n");
1119 		return -1;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static int
1126 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg)
1127 {
1128 	if (strcmp("ENCRYPT", optarg) == 0) {
1129 		*op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1130 		return 0;
1131 	} else if (strcmp("DECRYPT", optarg) == 0) {
1132 		*op = RTE_CRYPTO_AEAD_OP_DECRYPT;
1133 		return 0;
1134 	}
1135 
1136 	printf("AEAD operation specified not supported!\n");
1137 	return -1;
1138 }
1139 static int
1140 parse_cryptodev_mask(struct l2fwd_crypto_options *options,
1141 		const char *q_arg)
1142 {
1143 	char *end = NULL;
1144 	uint64_t pm;
1145 
1146 	/* parse hexadecimal string */
1147 	pm = strtoul(q_arg, &end, 16);
1148 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1149 		pm = 0;
1150 
1151 	options->cryptodev_mask = pm;
1152 	if (options->cryptodev_mask == 0) {
1153 		printf("invalid cryptodev_mask specified\n");
1154 		return -1;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /** Parse long options */
1161 static int
1162 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1163 		struct option *lgopts, int option_index)
1164 {
1165 	int retval;
1166 
1167 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1168 		retval = parse_cryptodev_type(&options->type, optarg);
1169 		if (retval == 0)
1170 			snprintf(options->string_type, MAX_STR_LEN,
1171 				"%s", optarg);
1172 		return retval;
1173 	}
1174 
1175 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1176 		return parse_crypto_opt_chain(options, optarg);
1177 
1178 	/* Cipher options */
1179 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1180 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1181 				optarg);
1182 
1183 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1184 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1185 				optarg);
1186 
1187 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1188 		options->ckey_param = 1;
1189 		options->cipher_xform.cipher.key.length =
1190 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1191 		if (options->cipher_xform.cipher.key.length > 0)
1192 			return 0;
1193 		else
1194 			return -1;
1195 	}
1196 
1197 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1198 		return parse_size(&options->ckey_random_size, optarg);
1199 
1200 	else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
1201 		options->cipher_iv_param = 1;
1202 		options->cipher_iv.length =
1203 			parse_key(options->cipher_iv.data, optarg);
1204 		if (options->cipher_iv.length > 0)
1205 			return 0;
1206 		else
1207 			return -1;
1208 	}
1209 
1210 	else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
1211 		return parse_size(&options->cipher_iv_random_size, optarg);
1212 
1213 	/* Authentication options */
1214 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1215 		return parse_auth_algo(&options->auth_xform.auth.algo,
1216 				optarg);
1217 	}
1218 
1219 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1220 		return parse_auth_op(&options->auth_xform.auth.op,
1221 				optarg);
1222 
1223 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1224 		options->akey_param = 1;
1225 		options->auth_xform.auth.key.length =
1226 			parse_key(options->auth_xform.auth.key.data, optarg);
1227 		if (options->auth_xform.auth.key.length > 0)
1228 			return 0;
1229 		else
1230 			return -1;
1231 	}
1232 
1233 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1234 		return parse_size(&options->akey_random_size, optarg);
1235 	}
1236 
1237 	else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
1238 		options->auth_iv_param = 1;
1239 		options->auth_iv.length =
1240 			parse_key(options->auth_iv.data, optarg);
1241 		if (options->auth_iv.length > 0)
1242 			return 0;
1243 		else
1244 			return -1;
1245 	}
1246 
1247 	else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
1248 		return parse_size(&options->auth_iv_random_size, optarg);
1249 
1250 	/* AEAD options */
1251 	else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
1252 		return parse_aead_algo(&options->aead_xform.aead.algo,
1253 				optarg);
1254 	}
1255 
1256 	else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
1257 		return parse_aead_op(&options->aead_xform.aead.op,
1258 				optarg);
1259 
1260 	else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
1261 		options->aead_key_param = 1;
1262 		options->aead_xform.aead.key.length =
1263 			parse_key(options->aead_xform.aead.key.data, optarg);
1264 		if (options->aead_xform.aead.key.length > 0)
1265 			return 0;
1266 		else
1267 			return -1;
1268 	}
1269 
1270 	else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
1271 		return parse_size(&options->aead_key_random_size, optarg);
1272 
1273 
1274 	else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
1275 		options->aead_iv_param = 1;
1276 		options->aead_iv.length =
1277 			parse_key(options->aead_iv.data, optarg);
1278 		if (options->aead_iv.length > 0)
1279 			return 0;
1280 		else
1281 			return -1;
1282 	}
1283 
1284 	else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
1285 		return parse_size(&options->aead_iv_random_size, optarg);
1286 
1287 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1288 		options->aad_param = 1;
1289 		options->aad.length =
1290 			parse_key(options->aad.data, optarg);
1291 		if (options->aad.length > 0)
1292 			return 0;
1293 		else
1294 			return -1;
1295 	}
1296 
1297 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1298 		return parse_size(&options->aad_random_size, optarg);
1299 	}
1300 
1301 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1302 		return parse_size(&options->digest_size, optarg);
1303 	}
1304 
1305 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1306 		options->sessionless = 1;
1307 		return 0;
1308 	}
1309 
1310 	else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
1311 		return parse_cryptodev_mask(options, optarg);
1312 
1313 	return -1;
1314 }
1315 
1316 /** Parse port mask */
1317 static int
1318 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1319 		const char *q_arg)
1320 {
1321 	char *end = NULL;
1322 	unsigned long pm;
1323 
1324 	/* parse hexadecimal string */
1325 	pm = strtoul(q_arg, &end, 16);
1326 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1327 		pm = 0;
1328 
1329 	options->portmask = pm;
1330 	if (options->portmask == 0) {
1331 		printf("invalid portmask specified\n");
1332 		return -1;
1333 	}
1334 
1335 	return pm;
1336 }
1337 
1338 /** Parse number of queues */
1339 static int
1340 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1341 		const char *q_arg)
1342 {
1343 	char *end = NULL;
1344 	unsigned long n;
1345 
1346 	/* parse hexadecimal string */
1347 	n = strtoul(q_arg, &end, 10);
1348 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1349 		n = 0;
1350 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1351 		n = 0;
1352 
1353 	options->nb_ports_per_lcore = n;
1354 	if (options->nb_ports_per_lcore == 0) {
1355 		printf("invalid number of ports selected\n");
1356 		return -1;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 /** Parse timer period */
1363 static int
1364 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1365 		const char *q_arg)
1366 {
1367 	char *end = NULL;
1368 	unsigned long n;
1369 
1370 	/* parse number string */
1371 	n = (unsigned)strtol(q_arg, &end, 10);
1372 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1373 		n = 0;
1374 
1375 	if (n >= MAX_TIMER_PERIOD) {
1376 		printf("Warning refresh period specified %lu is greater than "
1377 				"max value %lu! using max value",
1378 				n, MAX_TIMER_PERIOD);
1379 		n = MAX_TIMER_PERIOD;
1380 	}
1381 
1382 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1383 
1384 	return 0;
1385 }
1386 
1387 /** Generate default options for application */
1388 static void
1389 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1390 {
1391 	options->portmask = 0xffffffff;
1392 	options->nb_ports_per_lcore = 1;
1393 	options->refresh_period = 10000;
1394 	options->single_lcore = 0;
1395 	options->sessionless = 0;
1396 
1397 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1398 
1399 	/* Cipher Data */
1400 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1401 	options->cipher_xform.next = NULL;
1402 	options->ckey_param = 0;
1403 	options->ckey_random_size = -1;
1404 	options->cipher_xform.cipher.key.length = 0;
1405 	options->cipher_iv_param = 0;
1406 	options->cipher_iv_random_size = -1;
1407 	options->cipher_iv.length = 0;
1408 
1409 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1410 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1411 
1412 	/* Authentication Data */
1413 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1414 	options->auth_xform.next = NULL;
1415 	options->akey_param = 0;
1416 	options->akey_random_size = -1;
1417 	options->auth_xform.auth.key.length = 0;
1418 	options->auth_iv_param = 0;
1419 	options->auth_iv_random_size = -1;
1420 	options->auth_iv.length = 0;
1421 
1422 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1423 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1424 
1425 	/* AEAD Data */
1426 	options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD;
1427 	options->aead_xform.next = NULL;
1428 	options->aead_key_param = 0;
1429 	options->aead_key_random_size = -1;
1430 	options->aead_xform.aead.key.length = 0;
1431 	options->aead_iv_param = 0;
1432 	options->aead_iv_random_size = -1;
1433 	options->aead_iv.length = 0;
1434 
1435 	options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM;
1436 	options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1437 
1438 	options->aad_param = 0;
1439 	options->aad_random_size = -1;
1440 	options->aad.length = 0;
1441 
1442 	options->digest_size = -1;
1443 
1444 	options->type = CDEV_TYPE_ANY;
1445 	options->cryptodev_mask = UINT64_MAX;
1446 }
1447 
1448 static void
1449 display_cipher_info(struct l2fwd_crypto_options *options)
1450 {
1451 	printf("\n---- Cipher information ---\n");
1452 	printf("Algorithm: %s\n",
1453 		rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]);
1454 	rte_hexdump(stdout, "Cipher key:",
1455 			options->cipher_xform.cipher.key.data,
1456 			options->cipher_xform.cipher.key.length);
1457 	rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length);
1458 }
1459 
1460 static void
1461 display_auth_info(struct l2fwd_crypto_options *options)
1462 {
1463 	printf("\n---- Authentication information ---\n");
1464 	printf("Algorithm: %s\n",
1465 		rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]);
1466 	rte_hexdump(stdout, "Auth key:",
1467 			options->auth_xform.auth.key.data,
1468 			options->auth_xform.auth.key.length);
1469 	rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length);
1470 }
1471 
1472 static void
1473 display_aead_info(struct l2fwd_crypto_options *options)
1474 {
1475 	printf("\n---- AEAD information ---\n");
1476 	printf("Algorithm: %s\n",
1477 		rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]);
1478 	rte_hexdump(stdout, "AEAD key:",
1479 			options->aead_xform.aead.key.data,
1480 			options->aead_xform.aead.key.length);
1481 	rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length);
1482 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1483 }
1484 
1485 static void
1486 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1487 {
1488 	char string_cipher_op[MAX_STR_LEN];
1489 	char string_auth_op[MAX_STR_LEN];
1490 	char string_aead_op[MAX_STR_LEN];
1491 
1492 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1493 		strcpy(string_cipher_op, "Encrypt");
1494 	else
1495 		strcpy(string_cipher_op, "Decrypt");
1496 
1497 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1498 		strcpy(string_auth_op, "Auth generate");
1499 	else
1500 		strcpy(string_auth_op, "Auth verify");
1501 
1502 	if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
1503 		strcpy(string_aead_op, "Authenticated encryption");
1504 	else
1505 		strcpy(string_aead_op, "Authenticated decryption");
1506 
1507 
1508 	printf("Options:-\nn");
1509 	printf("portmask: %x\n", options->portmask);
1510 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1511 	printf("refresh period : %u\n", options->refresh_period);
1512 	printf("single lcore mode: %s\n",
1513 			options->single_lcore ? "enabled" : "disabled");
1514 	printf("stats_printing: %s\n",
1515 			options->refresh_period == 0 ? "disabled" : "enabled");
1516 
1517 	printf("sessionless crypto: %s\n",
1518 			options->sessionless ? "enabled" : "disabled");
1519 
1520 	if (options->ckey_param && (options->ckey_random_size != -1))
1521 		printf("Cipher key already parsed, ignoring size of random key\n");
1522 
1523 	if (options->akey_param && (options->akey_random_size != -1))
1524 		printf("Auth key already parsed, ignoring size of random key\n");
1525 
1526 	if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
1527 		printf("Cipher IV already parsed, ignoring size of random IV\n");
1528 
1529 	if (options->auth_iv_param && (options->auth_iv_random_size != -1))
1530 		printf("Auth IV already parsed, ignoring size of random IV\n");
1531 
1532 	if (options->aad_param && (options->aad_random_size != -1))
1533 		printf("AAD already parsed, ignoring size of random AAD\n");
1534 
1535 	printf("\nCrypto chain: ");
1536 	switch (options->xform_chain) {
1537 	case L2FWD_CRYPTO_AEAD:
1538 		printf("Input --> %s --> Output\n", string_aead_op);
1539 		display_aead_info(options);
1540 		break;
1541 	case L2FWD_CRYPTO_CIPHER_HASH:
1542 		printf("Input --> %s --> %s --> Output\n",
1543 			string_cipher_op, string_auth_op);
1544 		display_cipher_info(options);
1545 		display_auth_info(options);
1546 		break;
1547 	case L2FWD_CRYPTO_HASH_CIPHER:
1548 		printf("Input --> %s --> %s --> Output\n",
1549 			string_auth_op, string_cipher_op);
1550 		display_cipher_info(options);
1551 		display_auth_info(options);
1552 		break;
1553 	case L2FWD_CRYPTO_HASH_ONLY:
1554 		printf("Input --> %s --> Output\n", string_auth_op);
1555 		display_auth_info(options);
1556 		break;
1557 	case L2FWD_CRYPTO_CIPHER_ONLY:
1558 		printf("Input --> %s --> Output\n", string_cipher_op);
1559 		display_cipher_info(options);
1560 		break;
1561 	}
1562 }
1563 
1564 /* Parse the argument given in the command line of the application */
1565 static int
1566 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1567 		int argc, char **argv)
1568 {
1569 	int opt, retval, option_index;
1570 	char **argvopt = argv, *prgname = argv[0];
1571 
1572 	static struct option lgopts[] = {
1573 			{ "sessionless", no_argument, 0, 0 },
1574 
1575 			{ "cdev_type", required_argument, 0, 0 },
1576 			{ "chain", required_argument, 0, 0 },
1577 
1578 			{ "cipher_algo", required_argument, 0, 0 },
1579 			{ "cipher_op", required_argument, 0, 0 },
1580 			{ "cipher_key", required_argument, 0, 0 },
1581 			{ "cipher_key_random_size", required_argument, 0, 0 },
1582 			{ "cipher_iv", required_argument, 0, 0 },
1583 			{ "cipher_iv_random_size", required_argument, 0, 0 },
1584 
1585 			{ "auth_algo", required_argument, 0, 0 },
1586 			{ "auth_op", required_argument, 0, 0 },
1587 			{ "auth_key", required_argument, 0, 0 },
1588 			{ "auth_key_random_size", required_argument, 0, 0 },
1589 			{ "auth_iv", required_argument, 0, 0 },
1590 			{ "auth_iv_random_size", required_argument, 0, 0 },
1591 
1592 			{ "aead_algo", required_argument, 0, 0 },
1593 			{ "aead_op", required_argument, 0, 0 },
1594 			{ "aead_key", required_argument, 0, 0 },
1595 			{ "aead_key_random_size", required_argument, 0, 0 },
1596 			{ "aead_iv", required_argument, 0, 0 },
1597 			{ "aead_iv_random_size", required_argument, 0, 0 },
1598 
1599 			{ "aad", required_argument, 0, 0 },
1600 			{ "aad_random_size", required_argument, 0, 0 },
1601 
1602 			{ "digest_size", required_argument, 0, 0 },
1603 
1604 			{ "sessionless", no_argument, 0, 0 },
1605 			{ "cryptodev_mask", required_argument, 0, 0},
1606 
1607 			{ NULL, 0, 0, 0 }
1608 	};
1609 
1610 	l2fwd_crypto_default_options(options);
1611 
1612 	while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
1613 			&option_index)) != EOF) {
1614 		switch (opt) {
1615 		/* long options */
1616 		case 0:
1617 			retval = l2fwd_crypto_parse_args_long_options(options,
1618 					lgopts, option_index);
1619 			if (retval < 0) {
1620 				l2fwd_crypto_usage(prgname);
1621 				return -1;
1622 			}
1623 			break;
1624 
1625 		/* portmask */
1626 		case 'p':
1627 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1628 			if (retval < 0) {
1629 				l2fwd_crypto_usage(prgname);
1630 				return -1;
1631 			}
1632 			break;
1633 
1634 		/* nqueue */
1635 		case 'q':
1636 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1637 			if (retval < 0) {
1638 				l2fwd_crypto_usage(prgname);
1639 				return -1;
1640 			}
1641 			break;
1642 
1643 		/* single  */
1644 		case 's':
1645 			options->single_lcore = 1;
1646 
1647 			break;
1648 
1649 		/* timer period */
1650 		case 'T':
1651 			retval = l2fwd_crypto_parse_timer_period(options,
1652 					optarg);
1653 			if (retval < 0) {
1654 				l2fwd_crypto_usage(prgname);
1655 				return -1;
1656 			}
1657 			break;
1658 
1659 		default:
1660 			l2fwd_crypto_usage(prgname);
1661 			return -1;
1662 		}
1663 	}
1664 
1665 
1666 	if (optind >= 0)
1667 		argv[optind-1] = prgname;
1668 
1669 	retval = optind-1;
1670 	optind = 1; /* reset getopt lib */
1671 
1672 	return retval;
1673 }
1674 
1675 /* Check the link status of all ports in up to 9s, and print them finally */
1676 static void
1677 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1678 {
1679 #define CHECK_INTERVAL 100 /* 100ms */
1680 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1681 	uint8_t portid, count, all_ports_up, print_flag = 0;
1682 	struct rte_eth_link link;
1683 
1684 	printf("\nChecking link status");
1685 	fflush(stdout);
1686 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1687 		all_ports_up = 1;
1688 		for (portid = 0; portid < port_num; portid++) {
1689 			if ((port_mask & (1 << portid)) == 0)
1690 				continue;
1691 			memset(&link, 0, sizeof(link));
1692 			rte_eth_link_get_nowait(portid, &link);
1693 			/* print link status if flag set */
1694 			if (print_flag == 1) {
1695 				if (link.link_status)
1696 					printf("Port %d Link Up - speed %u "
1697 						"Mbps - %s\n", (uint8_t)portid,
1698 						(unsigned)link.link_speed,
1699 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1700 					("full-duplex") : ("half-duplex\n"));
1701 				else
1702 					printf("Port %d Link Down\n",
1703 						(uint8_t)portid);
1704 				continue;
1705 			}
1706 			/* clear all_ports_up flag if any link down */
1707 			if (link.link_status == ETH_LINK_DOWN) {
1708 				all_ports_up = 0;
1709 				break;
1710 			}
1711 		}
1712 		/* after finally printing all link status, get out */
1713 		if (print_flag == 1)
1714 			break;
1715 
1716 		if (all_ports_up == 0) {
1717 			printf(".");
1718 			fflush(stdout);
1719 			rte_delay_ms(CHECK_INTERVAL);
1720 		}
1721 
1722 		/* set the print_flag if all ports up or timeout */
1723 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1724 			print_flag = 1;
1725 			printf("done\n");
1726 		}
1727 	}
1728 }
1729 
1730 /* Check if device has to be HW/SW or any */
1731 static int
1732 check_type(const struct l2fwd_crypto_options *options,
1733 		const struct rte_cryptodev_info *dev_info)
1734 {
1735 	if (options->type == CDEV_TYPE_HW &&
1736 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1737 		return 0;
1738 	if (options->type == CDEV_TYPE_SW &&
1739 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1740 		return 0;
1741 	if (options->type == CDEV_TYPE_ANY)
1742 		return 0;
1743 
1744 	return -1;
1745 }
1746 
1747 static const struct rte_cryptodev_capabilities *
1748 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
1749 		const struct rte_cryptodev_info *dev_info,
1750 		uint8_t cdev_id)
1751 {
1752 	unsigned int i = 0;
1753 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1754 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1755 	enum rte_crypto_cipher_algorithm opt_cipher_algo =
1756 					options->cipher_xform.cipher.algo;
1757 
1758 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1759 		cap_cipher_algo = cap->sym.cipher.algo;
1760 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1761 			if (cap_cipher_algo == opt_cipher_algo) {
1762 				if (check_type(options, dev_info) == 0)
1763 					break;
1764 			}
1765 		}
1766 		cap = &dev_info->capabilities[++i];
1767 	}
1768 
1769 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1770 		printf("Algorithm %s not supported by cryptodev %u"
1771 			" or device not of preferred type (%s)\n",
1772 			rte_crypto_cipher_algorithm_strings[opt_cipher_algo],
1773 			cdev_id,
1774 			options->string_type);
1775 		return NULL;
1776 	}
1777 
1778 	return cap;
1779 }
1780 
1781 static const struct rte_cryptodev_capabilities *
1782 check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
1783 		const struct rte_cryptodev_info *dev_info,
1784 		uint8_t cdev_id)
1785 {
1786 	unsigned int i = 0;
1787 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1788 	enum rte_crypto_auth_algorithm cap_auth_algo;
1789 	enum rte_crypto_auth_algorithm opt_auth_algo =
1790 					options->auth_xform.auth.algo;
1791 
1792 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1793 		cap_auth_algo = cap->sym.auth.algo;
1794 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1795 			if (cap_auth_algo == opt_auth_algo) {
1796 				if (check_type(options, dev_info) == 0)
1797 					break;
1798 			}
1799 		}
1800 		cap = &dev_info->capabilities[++i];
1801 	}
1802 
1803 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1804 		printf("Algorithm %s not supported by cryptodev %u"
1805 			" or device not of preferred type (%s)\n",
1806 			rte_crypto_auth_algorithm_strings[opt_auth_algo],
1807 			cdev_id,
1808 			options->string_type);
1809 		return NULL;
1810 	}
1811 
1812 	return cap;
1813 }
1814 
1815 static const struct rte_cryptodev_capabilities *
1816 check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
1817 		const struct rte_cryptodev_info *dev_info,
1818 		uint8_t cdev_id)
1819 {
1820 	unsigned int i = 0;
1821 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1822 	enum rte_crypto_aead_algorithm cap_aead_algo;
1823 	enum rte_crypto_aead_algorithm opt_aead_algo =
1824 					options->aead_xform.aead.algo;
1825 
1826 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1827 		cap_aead_algo = cap->sym.aead.algo;
1828 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1829 			if (cap_aead_algo == opt_aead_algo) {
1830 				if (check_type(options, dev_info) == 0)
1831 					break;
1832 			}
1833 		}
1834 		cap = &dev_info->capabilities[++i];
1835 	}
1836 
1837 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1838 		printf("Algorithm %s not supported by cryptodev %u"
1839 			" or device not of preferred type (%s)\n",
1840 			rte_crypto_aead_algorithm_strings[opt_aead_algo],
1841 			cdev_id,
1842 			options->string_type);
1843 		return NULL;
1844 	}
1845 
1846 	return cap;
1847 }
1848 
1849 /* Check if the device is enabled by cryptodev_mask */
1850 static int
1851 check_cryptodev_mask(struct l2fwd_crypto_options *options,
1852 		uint8_t cdev_id)
1853 {
1854 	if (options->cryptodev_mask & (1 << cdev_id))
1855 		return 0;
1856 
1857 	return -1;
1858 }
1859 
1860 static inline int
1861 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1862 		uint16_t increment)
1863 {
1864 	uint16_t supp_size;
1865 
1866 	/* Single value */
1867 	if (increment == 0) {
1868 		if (length == min)
1869 			return 0;
1870 		else
1871 			return -1;
1872 	}
1873 
1874 	/* Range of values */
1875 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1876 		if (length == supp_size)
1877 			return 0;
1878 	}
1879 
1880 	return -1;
1881 }
1882 
1883 static int
1884 check_iv_param(const struct rte_crypto_param_range *iv_range_size,
1885 		unsigned int iv_param, int iv_random_size,
1886 		uint16_t *iv_length)
1887 {
1888 	/*
1889 	 * Check if length of provided IV is supported
1890 	 * by the algorithm chosen.
1891 	 */
1892 	if (iv_param) {
1893 		if (check_supported_size(*iv_length,
1894 				iv_range_size->min,
1895 				iv_range_size->max,
1896 				iv_range_size->increment)
1897 					!= 0) {
1898 			printf("Unsupported IV length\n");
1899 			return -1;
1900 		}
1901 	/*
1902 	 * Check if length of IV to be randomly generated
1903 	 * is supported by the algorithm chosen.
1904 	 */
1905 	} else if (iv_random_size != -1) {
1906 		if (check_supported_size(iv_random_size,
1907 				iv_range_size->min,
1908 				iv_range_size->max,
1909 				iv_range_size->increment)
1910 					!= 0) {
1911 			printf("Unsupported IV length\n");
1912 			return -1;
1913 		}
1914 		*iv_length = iv_random_size;
1915 	/* No size provided, use minimum size. */
1916 	} else
1917 		*iv_length = iv_range_size->min;
1918 
1919 	return 0;
1920 }
1921 
1922 static int
1923 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1924 		uint8_t *enabled_cdevs)
1925 {
1926 	unsigned int cdev_id, cdev_count, enabled_cdev_count = 0;
1927 	const struct rte_cryptodev_capabilities *cap;
1928 	unsigned int sess_sz, max_sess_sz = 0;
1929 	int retval;
1930 
1931 	cdev_count = rte_cryptodev_count();
1932 	if (cdev_count == 0) {
1933 		printf("No crypto devices available\n");
1934 		return -1;
1935 	}
1936 
1937 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1938 		sess_sz = sizeof(struct rte_cryptodev_sym_session) +
1939 			rte_cryptodev_get_private_session_size(cdev_id);
1940 		if (sess_sz > max_sess_sz)
1941 			max_sess_sz = sess_sz;
1942 	}
1943 
1944 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1945 			cdev_id++) {
1946 		struct rte_cryptodev_qp_conf qp_conf;
1947 		struct rte_cryptodev_info dev_info;
1948 		uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
1949 
1950 		struct rte_cryptodev_config conf = {
1951 			.nb_queue_pairs = 1,
1952 			.socket_id = socket_id,
1953 		};
1954 
1955 		if (check_cryptodev_mask(options, (uint8_t)cdev_id))
1956 			continue;
1957 
1958 		rte_cryptodev_info_get(cdev_id, &dev_info);
1959 
1960 		if (session_pool_socket[socket_id] == NULL) {
1961 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1962 			struct rte_mempool *sess_mp;
1963 
1964 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1965 				"sess_mp_%u", socket_id);
1966 
1967 			/*
1968 			 * Create enough objects for session headers and
1969 			 * device private data
1970 			 */
1971 			sess_mp = rte_mempool_create(mp_name,
1972 						MAX_SESSIONS * 2,
1973 						max_sess_sz,
1974 						SESSION_POOL_CACHE_SIZE,
1975 						0, NULL, NULL, NULL,
1976 						NULL, socket_id,
1977 						0);
1978 
1979 			if (sess_mp == NULL) {
1980 				printf("Cannot create session pool on socket %d\n",
1981 					socket_id);
1982 				return -ENOMEM;
1983 			}
1984 
1985 			printf("Allocated session pool on socket %d\n", socket_id);
1986 			session_pool_socket[socket_id] = sess_mp;
1987 		}
1988 
1989 		/* Set AEAD parameters */
1990 		if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
1991 			/* Check if device supports AEAD algo */
1992 			cap = check_device_support_aead_algo(options, &dev_info,
1993 							cdev_id);
1994 			if (cap == NULL)
1995 				continue;
1996 
1997 			options->block_size = cap->sym.aead.block_size;
1998 
1999 			check_iv_param(&cap->sym.aead.iv_size,
2000 					options->aead_iv_param,
2001 					options->aead_iv_random_size,
2002 					&options->aead_iv.length);
2003 
2004 			/*
2005 			 * Check if length of provided AEAD key is supported
2006 			 * by the algorithm chosen.
2007 			 */
2008 			if (options->aead_key_param) {
2009 				if (check_supported_size(
2010 						options->aead_xform.aead.key.length,
2011 						cap->sym.aead.key_size.min,
2012 						cap->sym.aead.key_size.max,
2013 						cap->sym.aead.key_size.increment)
2014 							!= 0) {
2015 					printf("Unsupported aead key length\n");
2016 					return -1;
2017 				}
2018 			/*
2019 			 * Check if length of the aead key to be randomly generated
2020 			 * is supported by the algorithm chosen.
2021 			 */
2022 			} else if (options->aead_key_random_size != -1) {
2023 				if (check_supported_size(options->ckey_random_size,
2024 						cap->sym.aead.key_size.min,
2025 						cap->sym.aead.key_size.max,
2026 						cap->sym.aead.key_size.increment)
2027 							!= 0) {
2028 					printf("Unsupported aead key length\n");
2029 					return -1;
2030 				}
2031 				options->aead_xform.aead.key.length =
2032 							options->ckey_random_size;
2033 			/* No size provided, use minimum size. */
2034 			} else
2035 				options->aead_xform.aead.key.length =
2036 						cap->sym.aead.key_size.min;
2037 
2038 			if (!options->aead_key_param)
2039 				generate_random_key(
2040 					options->aead_xform.aead.key.data,
2041 					options->aead_xform.aead.key.length);
2042 
2043 			/*
2044 			 * Check if length of provided AAD is supported
2045 			 * by the algorithm chosen.
2046 			 */
2047 			if (options->aad_param) {
2048 				if (check_supported_size(options->aad.length,
2049 						cap->sym.aead.aad_size.min,
2050 						cap->sym.aead.aad_size.max,
2051 						cap->sym.aead.aad_size.increment)
2052 							!= 0) {
2053 					printf("Unsupported AAD length\n");
2054 					return -1;
2055 				}
2056 			/*
2057 			 * Check if length of AAD to be randomly generated
2058 			 * is supported by the algorithm chosen.
2059 			 */
2060 			} else if (options->aad_random_size != -1) {
2061 				if (check_supported_size(options->aad_random_size,
2062 						cap->sym.aead.aad_size.min,
2063 						cap->sym.aead.aad_size.max,
2064 						cap->sym.aead.aad_size.increment)
2065 							!= 0) {
2066 					printf("Unsupported AAD length\n");
2067 					return -1;
2068 				}
2069 				options->aad.length = options->aad_random_size;
2070 			/* No size provided, use minimum size. */
2071 			} else
2072 				options->aad.length = cap->sym.auth.aad_size.min;
2073 
2074 			options->aead_xform.aead.add_auth_data_length =
2075 						options->aad.length;
2076 
2077 			/* Check if digest size is supported by the algorithm. */
2078 			if (options->digest_size != -1) {
2079 				if (check_supported_size(options->digest_size,
2080 						cap->sym.aead.digest_size.min,
2081 						cap->sym.aead.digest_size.max,
2082 						cap->sym.aead.digest_size.increment)
2083 							!= 0) {
2084 					printf("Unsupported digest length\n");
2085 					return -1;
2086 				}
2087 				options->aead_xform.aead.digest_length =
2088 							options->digest_size;
2089 			/* No size provided, use minimum size. */
2090 			} else
2091 				options->aead_xform.aead.digest_length =
2092 						cap->sym.aead.digest_size.min;
2093 		}
2094 
2095 		/* Set cipher parameters */
2096 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2097 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2098 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2099 			/* Check if device supports cipher algo */
2100 			cap = check_device_support_cipher_algo(options, &dev_info,
2101 							cdev_id);
2102 			if (cap == NULL)
2103 				continue;
2104 
2105 			options->block_size = cap->sym.cipher.block_size;
2106 
2107 			check_iv_param(&cap->sym.cipher.iv_size,
2108 					options->cipher_iv_param,
2109 					options->cipher_iv_random_size,
2110 					&options->cipher_iv.length);
2111 
2112 			/*
2113 			 * Check if length of provided cipher key is supported
2114 			 * by the algorithm chosen.
2115 			 */
2116 			if (options->ckey_param) {
2117 				if (check_supported_size(
2118 						options->cipher_xform.cipher.key.length,
2119 						cap->sym.cipher.key_size.min,
2120 						cap->sym.cipher.key_size.max,
2121 						cap->sym.cipher.key_size.increment)
2122 							!= 0) {
2123 					printf("Unsupported cipher key length\n");
2124 					return -1;
2125 				}
2126 			/*
2127 			 * Check if length of the cipher key to be randomly generated
2128 			 * is supported by the algorithm chosen.
2129 			 */
2130 			} else if (options->ckey_random_size != -1) {
2131 				if (check_supported_size(options->ckey_random_size,
2132 						cap->sym.cipher.key_size.min,
2133 						cap->sym.cipher.key_size.max,
2134 						cap->sym.cipher.key_size.increment)
2135 							!= 0) {
2136 					printf("Unsupported cipher key length\n");
2137 					return -1;
2138 				}
2139 				options->cipher_xform.cipher.key.length =
2140 							options->ckey_random_size;
2141 			/* No size provided, use minimum size. */
2142 			} else
2143 				options->cipher_xform.cipher.key.length =
2144 						cap->sym.cipher.key_size.min;
2145 
2146 			if (!options->ckey_param)
2147 				generate_random_key(
2148 					options->cipher_xform.cipher.key.data,
2149 					options->cipher_xform.cipher.key.length);
2150 
2151 		}
2152 
2153 		/* Set auth parameters */
2154 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2155 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2156 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2157 			/* Check if device supports auth algo */
2158 			cap = check_device_support_auth_algo(options, &dev_info,
2159 							cdev_id);
2160 			if (cap == NULL)
2161 				continue;
2162 
2163 			check_iv_param(&cap->sym.auth.iv_size,
2164 					options->auth_iv_param,
2165 					options->auth_iv_random_size,
2166 					&options->auth_iv.length);
2167 			/*
2168 			 * Check if length of provided auth key is supported
2169 			 * by the algorithm chosen.
2170 			 */
2171 			if (options->akey_param) {
2172 				if (check_supported_size(
2173 						options->auth_xform.auth.key.length,
2174 						cap->sym.auth.key_size.min,
2175 						cap->sym.auth.key_size.max,
2176 						cap->sym.auth.key_size.increment)
2177 							!= 0) {
2178 					printf("Unsupported auth key length\n");
2179 					return -1;
2180 				}
2181 			/*
2182 			 * Check if length of the auth key to be randomly generated
2183 			 * is supported by the algorithm chosen.
2184 			 */
2185 			} else if (options->akey_random_size != -1) {
2186 				if (check_supported_size(options->akey_random_size,
2187 						cap->sym.auth.key_size.min,
2188 						cap->sym.auth.key_size.max,
2189 						cap->sym.auth.key_size.increment)
2190 							!= 0) {
2191 					printf("Unsupported auth key length\n");
2192 					return -1;
2193 				}
2194 				options->auth_xform.auth.key.length =
2195 							options->akey_random_size;
2196 			/* No size provided, use minimum size. */
2197 			} else
2198 				options->auth_xform.auth.key.length =
2199 						cap->sym.auth.key_size.min;
2200 
2201 			if (!options->akey_param)
2202 				generate_random_key(
2203 					options->auth_xform.auth.key.data,
2204 					options->auth_xform.auth.key.length);
2205 
2206 			/* Check if digest size is supported by the algorithm. */
2207 			if (options->digest_size != -1) {
2208 				if (check_supported_size(options->digest_size,
2209 						cap->sym.auth.digest_size.min,
2210 						cap->sym.auth.digest_size.max,
2211 						cap->sym.auth.digest_size.increment)
2212 							!= 0) {
2213 					printf("Unsupported digest length\n");
2214 					return -1;
2215 				}
2216 				options->auth_xform.auth.digest_length =
2217 							options->digest_size;
2218 			/* No size provided, use minimum size. */
2219 			} else
2220 				options->auth_xform.auth.digest_length =
2221 						cap->sym.auth.digest_size.min;
2222 		}
2223 
2224 		retval = rte_cryptodev_configure(cdev_id, &conf,
2225 				session_pool_socket[socket_id]);
2226 		if (retval < 0) {
2227 			printf("Failed to configure cryptodev %u", cdev_id);
2228 			return -1;
2229 		}
2230 
2231 		qp_conf.nb_descriptors = 2048;
2232 
2233 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
2234 				socket_id);
2235 		if (retval < 0) {
2236 			printf("Failed to setup queue pair %u on cryptodev %u",
2237 					0, cdev_id);
2238 			return -1;
2239 		}
2240 
2241 		retval = rte_cryptodev_start(cdev_id);
2242 		if (retval < 0) {
2243 			printf("Failed to start device %u: error %d\n",
2244 					cdev_id, retval);
2245 			return -1;
2246 		}
2247 
2248 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
2249 
2250 		enabled_cdevs[cdev_id] = 1;
2251 		enabled_cdev_count++;
2252 	}
2253 
2254 	return enabled_cdev_count;
2255 }
2256 
2257 static int
2258 initialize_ports(struct l2fwd_crypto_options *options)
2259 {
2260 	uint8_t last_portid, portid;
2261 	unsigned enabled_portcount = 0;
2262 	unsigned nb_ports = rte_eth_dev_count();
2263 
2264 	if (nb_ports == 0) {
2265 		printf("No Ethernet ports - bye\n");
2266 		return -1;
2267 	}
2268 
2269 	/* Reset l2fwd_dst_ports */
2270 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
2271 		l2fwd_dst_ports[portid] = 0;
2272 
2273 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
2274 		int retval;
2275 
2276 		/* Skip ports that are not enabled */
2277 		if ((options->portmask & (1 << portid)) == 0)
2278 			continue;
2279 
2280 		/* init port */
2281 		printf("Initializing port %u... ", (unsigned) portid);
2282 		fflush(stdout);
2283 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
2284 		if (retval < 0) {
2285 			printf("Cannot configure device: err=%d, port=%u\n",
2286 				  retval, (unsigned) portid);
2287 			return -1;
2288 		}
2289 
2290 		/* init one RX queue */
2291 		fflush(stdout);
2292 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
2293 					     rte_eth_dev_socket_id(portid),
2294 					     NULL, l2fwd_pktmbuf_pool);
2295 		if (retval < 0) {
2296 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
2297 					retval, (unsigned) portid);
2298 			return -1;
2299 		}
2300 
2301 		/* init one TX queue on each port */
2302 		fflush(stdout);
2303 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
2304 				rte_eth_dev_socket_id(portid),
2305 				NULL);
2306 		if (retval < 0) {
2307 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
2308 				retval, (unsigned) portid);
2309 
2310 			return -1;
2311 		}
2312 
2313 		/* Start device */
2314 		retval = rte_eth_dev_start(portid);
2315 		if (retval < 0) {
2316 			printf("rte_eth_dev_start:err=%d, port=%u\n",
2317 					retval, (unsigned) portid);
2318 			return -1;
2319 		}
2320 
2321 		rte_eth_promiscuous_enable(portid);
2322 
2323 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
2324 
2325 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
2326 				(unsigned) portid,
2327 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
2328 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
2329 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
2330 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
2331 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
2332 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
2333 
2334 		/* initialize port stats */
2335 		memset(&port_statistics, 0, sizeof(port_statistics));
2336 
2337 		/* Setup port forwarding table */
2338 		if (enabled_portcount % 2) {
2339 			l2fwd_dst_ports[portid] = last_portid;
2340 			l2fwd_dst_ports[last_portid] = portid;
2341 		} else {
2342 			last_portid = portid;
2343 		}
2344 
2345 		l2fwd_enabled_port_mask |= (1 << portid);
2346 		enabled_portcount++;
2347 	}
2348 
2349 	if (enabled_portcount == 1) {
2350 		l2fwd_dst_ports[last_portid] = last_portid;
2351 	} else if (enabled_portcount % 2) {
2352 		printf("odd number of ports in portmask- bye\n");
2353 		return -1;
2354 	}
2355 
2356 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
2357 
2358 	return enabled_portcount;
2359 }
2360 
2361 static void
2362 reserve_key_memory(struct l2fwd_crypto_options *options)
2363 {
2364 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
2365 						MAX_KEY_SIZE, 0);
2366 	if (options->cipher_xform.cipher.key.data == NULL)
2367 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
2368 
2369 	options->auth_xform.auth.key.data = rte_malloc("auth key",
2370 						MAX_KEY_SIZE, 0);
2371 	if (options->auth_xform.auth.key.data == NULL)
2372 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
2373 
2374 	options->aead_xform.aead.key.data = rte_malloc("aead key",
2375 						MAX_KEY_SIZE, 0);
2376 	if (options->aead_xform.aead.key.data == NULL)
2377 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key");
2378 
2379 	options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0);
2380 	if (options->cipher_iv.data == NULL)
2381 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV");
2382 
2383 	options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0);
2384 	if (options->auth_iv.data == NULL)
2385 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV");
2386 
2387 	options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0);
2388 	if (options->aead_iv.data == NULL)
2389 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv");
2390 
2391 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
2392 	if (options->aad.data == NULL)
2393 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
2394 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
2395 }
2396 
2397 int
2398 main(int argc, char **argv)
2399 {
2400 	struct lcore_queue_conf *qconf;
2401 	struct l2fwd_crypto_options options;
2402 
2403 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
2404 	unsigned lcore_id, rx_lcore_id;
2405 	int ret, enabled_cdevcount, enabled_portcount;
2406 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
2407 
2408 	/* init EAL */
2409 	ret = rte_eal_init(argc, argv);
2410 	if (ret < 0)
2411 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
2412 	argc -= ret;
2413 	argv += ret;
2414 
2415 	/* reserve memory for Cipher/Auth key and IV */
2416 	reserve_key_memory(&options);
2417 
2418 	/* parse application arguments (after the EAL ones) */
2419 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
2420 	if (ret < 0)
2421 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
2422 
2423 	/* create the mbuf pool */
2424 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
2425 			sizeof(struct rte_crypto_op),
2426 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2427 	if (l2fwd_pktmbuf_pool == NULL)
2428 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2429 
2430 	/* create crypto op pool */
2431 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2432 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH,
2433 			rte_socket_id());
2434 	if (l2fwd_crypto_op_pool == NULL)
2435 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2436 
2437 	/* Enable Ethernet ports */
2438 	enabled_portcount = initialize_ports(&options);
2439 	if (enabled_portcount < 1)
2440 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2441 
2442 	nb_ports = rte_eth_dev_count();
2443 	/* Initialize the port/queue configuration of each logical core */
2444 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
2445 			portid < nb_ports; portid++) {
2446 
2447 		/* skip ports that are not enabled */
2448 		if ((options.portmask & (1 << portid)) == 0)
2449 			continue;
2450 
2451 		if (options.single_lcore && qconf == NULL) {
2452 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2453 				rx_lcore_id++;
2454 				if (rx_lcore_id >= RTE_MAX_LCORE)
2455 					rte_exit(EXIT_FAILURE,
2456 							"Not enough cores\n");
2457 			}
2458 		} else if (!options.single_lcore) {
2459 			/* get the lcore_id for this port */
2460 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2461 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2462 			       options.nb_ports_per_lcore) {
2463 				rx_lcore_id++;
2464 				if (rx_lcore_id >= RTE_MAX_LCORE)
2465 					rte_exit(EXIT_FAILURE,
2466 							"Not enough cores\n");
2467 			}
2468 		}
2469 
2470 		/* Assigned a new logical core in the loop above. */
2471 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2472 			qconf = &lcore_queue_conf[rx_lcore_id];
2473 
2474 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2475 		qconf->nb_rx_ports++;
2476 
2477 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2478 	}
2479 
2480 	/* Enable Crypto devices */
2481 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2482 			enabled_cdevs);
2483 	if (enabled_cdevcount < 0)
2484 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2485 
2486 	if (enabled_cdevcount < enabled_portcount)
2487 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2488 				"has to be more or equal to number of ports (%d)\n",
2489 				enabled_cdevcount, enabled_portcount);
2490 
2491 	nb_cryptodevs = rte_cryptodev_count();
2492 
2493 	/* Initialize the port/cryptodev configuration of each logical core */
2494 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2495 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2496 			cdev_id++) {
2497 		/* Crypto op not supported by crypto device */
2498 		if (!enabled_cdevs[cdev_id])
2499 			continue;
2500 
2501 		if (options.single_lcore && qconf == NULL) {
2502 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2503 				rx_lcore_id++;
2504 				if (rx_lcore_id >= RTE_MAX_LCORE)
2505 					rte_exit(EXIT_FAILURE,
2506 							"Not enough cores\n");
2507 			}
2508 		} else if (!options.single_lcore) {
2509 			/* get the lcore_id for this port */
2510 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2511 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2512 			       options.nb_ports_per_lcore) {
2513 				rx_lcore_id++;
2514 				if (rx_lcore_id >= RTE_MAX_LCORE)
2515 					rte_exit(EXIT_FAILURE,
2516 							"Not enough cores\n");
2517 			}
2518 		}
2519 
2520 		/* Assigned a new logical core in the loop above. */
2521 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2522 			qconf = &lcore_queue_conf[rx_lcore_id];
2523 
2524 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2525 		qconf->nb_crypto_devs++;
2526 
2527 		enabled_cdevcount--;
2528 
2529 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2530 				(unsigned)cdev_id);
2531 	}
2532 
2533 	/* launch per-lcore init on every lcore */
2534 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2535 			CALL_MASTER);
2536 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2537 		if (rte_eal_wait_lcore(lcore_id) < 0)
2538 			return -1;
2539 	}
2540 
2541 	return 0;
2542 }
2543