1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 phys_addr_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 }; 197 198 /** l2fwd crypto lcore params */ 199 struct l2fwd_crypto_params { 200 uint8_t dev_id; 201 uint8_t qp_id; 202 203 unsigned digest_length; 204 unsigned block_size; 205 206 struct l2fwd_iv cipher_iv; 207 struct l2fwd_iv auth_iv; 208 struct l2fwd_iv aead_iv; 209 struct l2fwd_key aad; 210 struct rte_cryptodev_sym_session *session; 211 212 uint8_t do_cipher; 213 uint8_t do_hash; 214 uint8_t do_aead; 215 uint8_t hash_verify; 216 217 enum rte_crypto_cipher_algorithm cipher_algo; 218 enum rte_crypto_auth_algorithm auth_algo; 219 enum rte_crypto_aead_algorithm aead_algo; 220 }; 221 222 /** lcore configuration */ 223 struct lcore_queue_conf { 224 unsigned nb_rx_ports; 225 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 226 227 unsigned nb_crypto_devs; 228 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 229 230 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 231 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 232 } __rte_cache_aligned; 233 234 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 235 236 static const struct rte_eth_conf port_conf = { 237 .rxmode = { 238 .mq_mode = ETH_MQ_RX_NONE, 239 .max_rx_pkt_len = ETHER_MAX_LEN, 240 .split_hdr_size = 0, 241 .header_split = 0, /**< Header Split disabled */ 242 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 243 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 244 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 245 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 246 }, 247 .txmode = { 248 .mq_mode = ETH_MQ_TX_NONE, 249 }, 250 }; 251 252 struct rte_mempool *l2fwd_pktmbuf_pool; 253 struct rte_mempool *l2fwd_crypto_op_pool; 254 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 255 256 /* Per-port statistics struct */ 257 struct l2fwd_port_statistics { 258 uint64_t tx; 259 uint64_t rx; 260 261 uint64_t crypto_enqueued; 262 uint64_t crypto_dequeued; 263 264 uint64_t dropped; 265 } __rte_cache_aligned; 266 267 struct l2fwd_crypto_statistics { 268 uint64_t enqueued; 269 uint64_t dequeued; 270 271 uint64_t errors; 272 } __rte_cache_aligned; 273 274 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 275 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 276 277 /* A tsc-based timer responsible for triggering statistics printout */ 278 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 279 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 280 281 /* default period is 10 seconds */ 282 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 283 284 /* Print out statistics on packets dropped */ 285 static void 286 print_stats(void) 287 { 288 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 289 uint64_t total_packets_enqueued, total_packets_dequeued, 290 total_packets_errors; 291 unsigned portid; 292 uint64_t cdevid; 293 294 total_packets_dropped = 0; 295 total_packets_tx = 0; 296 total_packets_rx = 0; 297 total_packets_enqueued = 0; 298 total_packets_dequeued = 0; 299 total_packets_errors = 0; 300 301 const char clr[] = { 27, '[', '2', 'J', '\0' }; 302 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 303 304 /* Clear screen and move to top left */ 305 printf("%s%s", clr, topLeft); 306 307 printf("\nPort statistics ===================================="); 308 309 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 310 /* skip disabled ports */ 311 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 312 continue; 313 printf("\nStatistics for port %u ------------------------------" 314 "\nPackets sent: %32"PRIu64 315 "\nPackets received: %28"PRIu64 316 "\nPackets dropped: %29"PRIu64, 317 portid, 318 port_statistics[portid].tx, 319 port_statistics[portid].rx, 320 port_statistics[portid].dropped); 321 322 total_packets_dropped += port_statistics[portid].dropped; 323 total_packets_tx += port_statistics[portid].tx; 324 total_packets_rx += port_statistics[portid].rx; 325 } 326 printf("\nCrypto statistics =================================="); 327 328 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 329 /* skip disabled ports */ 330 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 331 continue; 332 printf("\nStatistics for cryptodev %"PRIu64 333 " -------------------------" 334 "\nPackets enqueued: %28"PRIu64 335 "\nPackets dequeued: %28"PRIu64 336 "\nPackets errors: %30"PRIu64, 337 cdevid, 338 crypto_statistics[cdevid].enqueued, 339 crypto_statistics[cdevid].dequeued, 340 crypto_statistics[cdevid].errors); 341 342 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 343 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 344 total_packets_errors += crypto_statistics[cdevid].errors; 345 } 346 printf("\nAggregate statistics ===============================" 347 "\nTotal packets received: %22"PRIu64 348 "\nTotal packets enqueued: %22"PRIu64 349 "\nTotal packets dequeued: %22"PRIu64 350 "\nTotal packets sent: %26"PRIu64 351 "\nTotal packets dropped: %23"PRIu64 352 "\nTotal packets crypto errors: %17"PRIu64, 353 total_packets_rx, 354 total_packets_enqueued, 355 total_packets_dequeued, 356 total_packets_tx, 357 total_packets_dropped, 358 total_packets_errors); 359 printf("\n====================================================\n"); 360 } 361 362 static int 363 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 364 struct l2fwd_crypto_params *cparams) 365 { 366 struct rte_crypto_op **op_buffer; 367 unsigned ret; 368 369 op_buffer = (struct rte_crypto_op **) 370 qconf->op_buf[cparams->dev_id].buffer; 371 372 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 373 cparams->qp_id, op_buffer, (uint16_t) n); 374 375 crypto_statistics[cparams->dev_id].enqueued += ret; 376 if (unlikely(ret < n)) { 377 crypto_statistics[cparams->dev_id].errors += (n - ret); 378 do { 379 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 380 rte_crypto_op_free(op_buffer[ret]); 381 } while (++ret < n); 382 } 383 384 return 0; 385 } 386 387 static int 388 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 389 struct l2fwd_crypto_params *cparams) 390 { 391 unsigned lcore_id, len; 392 struct lcore_queue_conf *qconf; 393 394 lcore_id = rte_lcore_id(); 395 396 qconf = &lcore_queue_conf[lcore_id]; 397 len = qconf->op_buf[cparams->dev_id].len; 398 qconf->op_buf[cparams->dev_id].buffer[len] = op; 399 len++; 400 401 /* enough ops to be sent */ 402 if (len == MAX_PKT_BURST) { 403 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 404 len = 0; 405 } 406 407 qconf->op_buf[cparams->dev_id].len = len; 408 return 0; 409 } 410 411 static int 412 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 413 struct rte_crypto_op *op, 414 struct l2fwd_crypto_params *cparams) 415 { 416 struct ether_hdr *eth_hdr; 417 struct ipv4_hdr *ip_hdr; 418 419 uint32_t ipdata_offset, data_len; 420 uint32_t pad_len = 0; 421 char *padding; 422 423 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 424 425 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 426 return -1; 427 428 ipdata_offset = sizeof(struct ether_hdr); 429 430 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 431 ipdata_offset); 432 433 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 434 * IPV4_IHL_MULTIPLIER; 435 436 437 /* Zero pad data to be crypto'd so it is block aligned */ 438 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 439 440 if (cparams->do_hash && cparams->hash_verify) 441 data_len -= cparams->digest_length; 442 443 if (cparams->do_cipher) { 444 /* 445 * Following algorithms are block cipher algorithms, 446 * and might need padding 447 */ 448 switch (cparams->cipher_algo) { 449 case RTE_CRYPTO_CIPHER_AES_CBC: 450 case RTE_CRYPTO_CIPHER_AES_ECB: 451 case RTE_CRYPTO_CIPHER_DES_CBC: 452 case RTE_CRYPTO_CIPHER_3DES_CBC: 453 case RTE_CRYPTO_CIPHER_3DES_ECB: 454 if (data_len % cparams->block_size) 455 pad_len = cparams->block_size - 456 (data_len % cparams->block_size); 457 break; 458 default: 459 pad_len = 0; 460 } 461 462 if (pad_len) { 463 padding = rte_pktmbuf_append(m, pad_len); 464 if (unlikely(!padding)) 465 return -1; 466 467 data_len += pad_len; 468 memset(padding, 0, pad_len); 469 } 470 } 471 472 /* Set crypto operation data parameters */ 473 rte_crypto_op_attach_sym_session(op, cparams->session); 474 475 if (cparams->do_hash) { 476 if (cparams->auth_iv.length) { 477 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 478 uint8_t *, 479 IV_OFFSET + 480 cparams->cipher_iv.length); 481 /* 482 * Copy IV at the end of the crypto operation, 483 * after the cipher IV, if added 484 */ 485 rte_memcpy(iv_ptr, cparams->auth_iv.data, 486 cparams->auth_iv.length); 487 } 488 if (!cparams->hash_verify) { 489 /* Append space for digest to end of packet */ 490 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 491 cparams->digest_length); 492 } else { 493 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 494 uint8_t *) + ipdata_offset + data_len; 495 } 496 497 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 498 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 499 500 /* For wireless algorithms, offset/length must be in bits */ 501 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 502 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 503 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 504 op->sym->auth.data.offset = ipdata_offset << 3; 505 op->sym->auth.data.length = data_len << 3; 506 } else { 507 op->sym->auth.data.offset = ipdata_offset; 508 op->sym->auth.data.length = data_len; 509 } 510 } 511 512 if (cparams->do_cipher) { 513 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 514 IV_OFFSET); 515 /* Copy IV at the end of the crypto operation */ 516 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 517 cparams->cipher_iv.length); 518 519 /* For wireless algorithms, offset/length must be in bits */ 520 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 521 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 522 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 523 op->sym->cipher.data.offset = ipdata_offset << 3; 524 op->sym->cipher.data.length = data_len << 3; 525 } else { 526 op->sym->cipher.data.offset = ipdata_offset; 527 op->sym->cipher.data.length = data_len; 528 } 529 } 530 531 if (cparams->do_aead) { 532 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 533 IV_OFFSET); 534 /* Copy IV at the end of the crypto operation */ 535 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 536 537 op->sym->aead.data.offset = ipdata_offset; 538 op->sym->aead.data.length = data_len; 539 540 if (!cparams->hash_verify) { 541 /* Append space for digest to end of packet */ 542 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 543 cparams->digest_length); 544 } else { 545 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 546 uint8_t *) + ipdata_offset + data_len; 547 } 548 549 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 550 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 551 552 if (cparams->aad.length) { 553 op->sym->aead.aad.data = cparams->aad.data; 554 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 555 } 556 } 557 558 op->sym->m_src = m; 559 560 return l2fwd_crypto_enqueue(op, cparams); 561 } 562 563 564 /* Send the burst of packets on an output interface */ 565 static int 566 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 567 uint8_t port) 568 { 569 struct rte_mbuf **pkt_buffer; 570 unsigned ret; 571 572 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 573 574 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 575 port_statistics[port].tx += ret; 576 if (unlikely(ret < n)) { 577 port_statistics[port].dropped += (n - ret); 578 do { 579 rte_pktmbuf_free(pkt_buffer[ret]); 580 } while (++ret < n); 581 } 582 583 return 0; 584 } 585 586 /* Enqueue packets for TX and prepare them to be sent */ 587 static int 588 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 589 { 590 unsigned lcore_id, len; 591 struct lcore_queue_conf *qconf; 592 593 lcore_id = rte_lcore_id(); 594 595 qconf = &lcore_queue_conf[lcore_id]; 596 len = qconf->pkt_buf[port].len; 597 qconf->pkt_buf[port].buffer[len] = m; 598 len++; 599 600 /* enough pkts to be sent */ 601 if (unlikely(len == MAX_PKT_BURST)) { 602 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 603 len = 0; 604 } 605 606 qconf->pkt_buf[port].len = len; 607 return 0; 608 } 609 610 static void 611 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 612 { 613 struct ether_hdr *eth; 614 void *tmp; 615 unsigned dst_port; 616 617 dst_port = l2fwd_dst_ports[portid]; 618 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 619 620 /* 02:00:00:00:00:xx */ 621 tmp = ð->d_addr.addr_bytes[0]; 622 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); 623 624 /* src addr */ 625 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 626 627 l2fwd_send_packet(m, (uint8_t) dst_port); 628 } 629 630 /** Generate random key */ 631 static void 632 generate_random_key(uint8_t *key, unsigned length) 633 { 634 int fd; 635 int ret; 636 637 fd = open("/dev/urandom", O_RDONLY); 638 if (fd < 0) 639 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 640 641 ret = read(fd, key, length); 642 close(fd); 643 644 if (ret != (signed)length) 645 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 646 } 647 648 static struct rte_cryptodev_sym_session * 649 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 650 { 651 struct rte_crypto_sym_xform *first_xform; 652 653 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 654 first_xform = &options->aead_xform; 655 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 656 first_xform = &options->cipher_xform; 657 first_xform->next = &options->auth_xform; 658 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 659 first_xform = &options->auth_xform; 660 first_xform->next = &options->cipher_xform; 661 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 662 first_xform = &options->cipher_xform; 663 } else { 664 first_xform = &options->auth_xform; 665 } 666 667 return rte_cryptodev_sym_session_create(cdev_id, first_xform); 668 } 669 670 static void 671 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 672 673 /* main processing loop */ 674 static void 675 l2fwd_main_loop(struct l2fwd_crypto_options *options) 676 { 677 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 678 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 679 680 unsigned lcore_id = rte_lcore_id(); 681 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 682 unsigned i, j, portid, nb_rx, len; 683 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 684 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 685 US_PER_S * BURST_TX_DRAIN_US; 686 struct l2fwd_crypto_params *cparams; 687 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 688 struct rte_cryptodev_sym_session *session; 689 690 if (qconf->nb_rx_ports == 0) { 691 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 692 return; 693 } 694 695 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 696 697 for (i = 0; i < qconf->nb_rx_ports; i++) { 698 699 portid = qconf->rx_port_list[i]; 700 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 701 portid); 702 } 703 704 for (i = 0; i < qconf->nb_crypto_devs; i++) { 705 port_cparams[i].do_cipher = 0; 706 port_cparams[i].do_hash = 0; 707 port_cparams[i].do_aead = 0; 708 709 switch (options->xform_chain) { 710 case L2FWD_CRYPTO_AEAD: 711 port_cparams[i].do_aead = 1; 712 break; 713 case L2FWD_CRYPTO_CIPHER_HASH: 714 case L2FWD_CRYPTO_HASH_CIPHER: 715 port_cparams[i].do_cipher = 1; 716 port_cparams[i].do_hash = 1; 717 break; 718 case L2FWD_CRYPTO_HASH_ONLY: 719 port_cparams[i].do_hash = 1; 720 break; 721 case L2FWD_CRYPTO_CIPHER_ONLY: 722 port_cparams[i].do_cipher = 1; 723 break; 724 } 725 726 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 727 port_cparams[i].qp_id = 0; 728 729 port_cparams[i].block_size = options->block_size; 730 731 if (port_cparams[i].do_hash) { 732 port_cparams[i].auth_iv.data = options->auth_iv.data; 733 port_cparams[i].auth_iv.length = options->auth_iv.length; 734 if (!options->auth_iv_param) 735 generate_random_key(port_cparams[i].auth_iv.data, 736 port_cparams[i].auth_iv.length); 737 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 738 port_cparams[i].hash_verify = 1; 739 else 740 port_cparams[i].hash_verify = 0; 741 742 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 743 /* Set IV parameters */ 744 if (options->auth_iv.length) { 745 options->auth_xform.auth.iv.offset = 746 IV_OFFSET + options->cipher_iv.length; 747 options->auth_xform.auth.iv.length = 748 options->auth_iv.length; 749 } 750 } 751 752 if (port_cparams[i].do_aead) { 753 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 754 port_cparams[i].digest_length = 755 options->aead_xform.aead.digest_length; 756 if (options->aead_xform.aead.add_auth_data_length) { 757 port_cparams[i].aad.data = options->aad.data; 758 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 759 port_cparams[i].aad.length = options->aad.length; 760 if (!options->aad_param) 761 generate_random_key(port_cparams[i].aad.data, 762 port_cparams[i].aad.length); 763 764 } else 765 port_cparams[i].aad.length = 0; 766 767 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 768 port_cparams[i].hash_verify = 1; 769 else 770 port_cparams[i].hash_verify = 0; 771 772 /* Set IV parameters */ 773 options->aead_xform.aead.iv.offset = IV_OFFSET; 774 options->aead_xform.aead.iv.length = options->aead_iv.length; 775 } 776 777 if (port_cparams[i].do_cipher) { 778 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 779 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 780 if (!options->cipher_iv_param) 781 generate_random_key(port_cparams[i].cipher_iv.data, 782 port_cparams[i].cipher_iv.length); 783 784 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 785 /* Set IV parameters */ 786 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 787 options->cipher_xform.cipher.iv.length = 788 options->cipher_iv.length; 789 } 790 791 session = initialize_crypto_session(options, 792 port_cparams[i].dev_id); 793 if (session == NULL) 794 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 795 796 port_cparams[i].session = session; 797 798 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 799 port_cparams[i].dev_id); 800 } 801 802 l2fwd_crypto_options_print(options); 803 804 /* 805 * Initialize previous tsc timestamp before the loop, 806 * to avoid showing the port statistics immediately, 807 * so user can see the crypto information. 808 */ 809 prev_tsc = rte_rdtsc(); 810 while (1) { 811 812 cur_tsc = rte_rdtsc(); 813 814 /* 815 * Crypto device/TX burst queue drain 816 */ 817 diff_tsc = cur_tsc - prev_tsc; 818 if (unlikely(diff_tsc > drain_tsc)) { 819 /* Enqueue all crypto ops remaining in buffers */ 820 for (i = 0; i < qconf->nb_crypto_devs; i++) { 821 cparams = &port_cparams[i]; 822 len = qconf->op_buf[cparams->dev_id].len; 823 l2fwd_crypto_send_burst(qconf, len, cparams); 824 qconf->op_buf[cparams->dev_id].len = 0; 825 } 826 /* Transmit all packets remaining in buffers */ 827 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 828 if (qconf->pkt_buf[portid].len == 0) 829 continue; 830 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 831 qconf->pkt_buf[portid].len, 832 (uint8_t) portid); 833 qconf->pkt_buf[portid].len = 0; 834 } 835 836 /* if timer is enabled */ 837 if (timer_period > 0) { 838 839 /* advance the timer */ 840 timer_tsc += diff_tsc; 841 842 /* if timer has reached its timeout */ 843 if (unlikely(timer_tsc >= 844 (uint64_t)timer_period)) { 845 846 /* do this only on master core */ 847 if (lcore_id == rte_get_master_lcore() 848 && options->refresh_period) { 849 print_stats(); 850 timer_tsc = 0; 851 } 852 } 853 } 854 855 prev_tsc = cur_tsc; 856 } 857 858 /* 859 * Read packet from RX queues 860 */ 861 for (i = 0; i < qconf->nb_rx_ports; i++) { 862 portid = qconf->rx_port_list[i]; 863 864 cparams = &port_cparams[i]; 865 866 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 867 pkts_burst, MAX_PKT_BURST); 868 869 port_statistics[portid].rx += nb_rx; 870 871 if (nb_rx) { 872 /* 873 * If we can't allocate a crypto_ops, then drop 874 * the rest of the burst and dequeue and 875 * process the packets to free offload structs 876 */ 877 if (rte_crypto_op_bulk_alloc( 878 l2fwd_crypto_op_pool, 879 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 880 ops_burst, nb_rx) != 881 nb_rx) { 882 for (j = 0; j < nb_rx; j++) 883 rte_pktmbuf_free(pkts_burst[j]); 884 885 nb_rx = 0; 886 } 887 888 /* Enqueue packets from Crypto device*/ 889 for (j = 0; j < nb_rx; j++) { 890 m = pkts_burst[j]; 891 892 l2fwd_simple_crypto_enqueue(m, 893 ops_burst[j], cparams); 894 } 895 } 896 897 /* Dequeue packets from Crypto device */ 898 do { 899 nb_rx = rte_cryptodev_dequeue_burst( 900 cparams->dev_id, cparams->qp_id, 901 ops_burst, MAX_PKT_BURST); 902 903 crypto_statistics[cparams->dev_id].dequeued += 904 nb_rx; 905 906 /* Forward crypto'd packets */ 907 for (j = 0; j < nb_rx; j++) { 908 m = ops_burst[j]->sym->m_src; 909 910 rte_crypto_op_free(ops_burst[j]); 911 l2fwd_simple_forward(m, portid); 912 } 913 } while (nb_rx == MAX_PKT_BURST); 914 } 915 } 916 } 917 918 static int 919 l2fwd_launch_one_lcore(void *arg) 920 { 921 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 922 return 0; 923 } 924 925 /* Display command line arguments usage */ 926 static void 927 l2fwd_crypto_usage(const char *prgname) 928 { 929 printf("%s [EAL options] --\n" 930 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 931 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 932 " -s manage all ports from single lcore\n" 933 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 934 " (0 to disable, 10 default, 86400 maximum)\n" 935 936 " --cdev_type HW / SW / ANY\n" 937 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 938 " HASH_ONLY / AEAD\n" 939 940 " --cipher_algo ALGO\n" 941 " --cipher_op ENCRYPT / DECRYPT\n" 942 " --cipher_key KEY (bytes separated with \":\")\n" 943 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 944 " --cipher_iv IV (bytes separated with \":\")\n" 945 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 946 947 " --auth_algo ALGO\n" 948 " --auth_op GENERATE / VERIFY\n" 949 " --auth_key KEY (bytes separated with \":\")\n" 950 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 951 " --auth_iv IV (bytes separated with \":\")\n" 952 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 953 954 " --aead_algo ALGO\n" 955 " --aead_op ENCRYPT / DECRYPT\n" 956 " --aead_key KEY (bytes separated with \":\")\n" 957 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 958 " --aead_iv IV (bytes separated with \":\")\n" 959 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 960 " --aad AAD (bytes separated with \":\")\n" 961 " --aad_random_size SIZE: size of AAD when generated randomly\n" 962 963 " --digest_size SIZE: size of digest to be generated/verified\n" 964 965 " --sessionless\n" 966 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n", 967 prgname); 968 } 969 970 /** Parse crypto device type command line argument */ 971 static int 972 parse_cryptodev_type(enum cdev_type *type, char *optarg) 973 { 974 if (strcmp("HW", optarg) == 0) { 975 *type = CDEV_TYPE_HW; 976 return 0; 977 } else if (strcmp("SW", optarg) == 0) { 978 *type = CDEV_TYPE_SW; 979 return 0; 980 } else if (strcmp("ANY", optarg) == 0) { 981 *type = CDEV_TYPE_ANY; 982 return 0; 983 } 984 985 return -1; 986 } 987 988 /** Parse crypto chain xform command line argument */ 989 static int 990 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 991 { 992 if (strcmp("CIPHER_HASH", optarg) == 0) { 993 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 994 return 0; 995 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 996 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 997 return 0; 998 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 999 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1000 return 0; 1001 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1002 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1003 return 0; 1004 } else if (strcmp("AEAD", optarg) == 0) { 1005 options->xform_chain = L2FWD_CRYPTO_AEAD; 1006 return 0; 1007 } 1008 1009 return -1; 1010 } 1011 1012 /** Parse crypto cipher algo option command line argument */ 1013 static int 1014 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1015 { 1016 1017 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1018 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1019 "not supported!\n"); 1020 return -1; 1021 } 1022 1023 return 0; 1024 } 1025 1026 /** Parse crypto cipher operation command line argument */ 1027 static int 1028 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1029 { 1030 if (strcmp("ENCRYPT", optarg) == 0) { 1031 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1032 return 0; 1033 } else if (strcmp("DECRYPT", optarg) == 0) { 1034 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1035 return 0; 1036 } 1037 1038 printf("Cipher operation not supported!\n"); 1039 return -1; 1040 } 1041 1042 /** Parse crypto key command line argument */ 1043 static int 1044 parse_key(uint8_t *data, char *input_arg) 1045 { 1046 unsigned byte_count; 1047 char *token; 1048 1049 for (byte_count = 0, token = strtok(input_arg, ":"); 1050 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1051 token = strtok(NULL, ":")) { 1052 1053 int number = (int)strtol(token, NULL, 16); 1054 1055 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1056 return -1; 1057 1058 data[byte_count++] = (uint8_t)number; 1059 } 1060 1061 return byte_count; 1062 } 1063 1064 /** Parse size param*/ 1065 static int 1066 parse_size(int *size, const char *q_arg) 1067 { 1068 char *end = NULL; 1069 unsigned long n; 1070 1071 /* parse hexadecimal string */ 1072 n = strtoul(q_arg, &end, 10); 1073 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1074 n = 0; 1075 1076 if (n == 0) { 1077 printf("invalid size\n"); 1078 return -1; 1079 } 1080 1081 *size = n; 1082 return 0; 1083 } 1084 1085 /** Parse crypto cipher operation command line argument */ 1086 static int 1087 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1088 { 1089 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1090 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1091 "not supported!\n"); 1092 return -1; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static int 1099 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1100 { 1101 if (strcmp("VERIFY", optarg) == 0) { 1102 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1103 return 0; 1104 } else if (strcmp("GENERATE", optarg) == 0) { 1105 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1106 return 0; 1107 } 1108 1109 printf("Authentication operation specified not supported!\n"); 1110 return -1; 1111 } 1112 1113 static int 1114 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1115 { 1116 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1117 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1118 "not supported!\n"); 1119 return -1; 1120 } 1121 1122 return 0; 1123 } 1124 1125 static int 1126 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1127 { 1128 if (strcmp("ENCRYPT", optarg) == 0) { 1129 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1130 return 0; 1131 } else if (strcmp("DECRYPT", optarg) == 0) { 1132 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1133 return 0; 1134 } 1135 1136 printf("AEAD operation specified not supported!\n"); 1137 return -1; 1138 } 1139 static int 1140 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1141 const char *q_arg) 1142 { 1143 char *end = NULL; 1144 uint64_t pm; 1145 1146 /* parse hexadecimal string */ 1147 pm = strtoul(q_arg, &end, 16); 1148 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1149 pm = 0; 1150 1151 options->cryptodev_mask = pm; 1152 if (options->cryptodev_mask == 0) { 1153 printf("invalid cryptodev_mask specified\n"); 1154 return -1; 1155 } 1156 1157 return 0; 1158 } 1159 1160 /** Parse long options */ 1161 static int 1162 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1163 struct option *lgopts, int option_index) 1164 { 1165 int retval; 1166 1167 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1168 retval = parse_cryptodev_type(&options->type, optarg); 1169 if (retval == 0) 1170 snprintf(options->string_type, MAX_STR_LEN, 1171 "%s", optarg); 1172 return retval; 1173 } 1174 1175 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1176 return parse_crypto_opt_chain(options, optarg); 1177 1178 /* Cipher options */ 1179 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1180 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1181 optarg); 1182 1183 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1184 return parse_cipher_op(&options->cipher_xform.cipher.op, 1185 optarg); 1186 1187 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1188 options->ckey_param = 1; 1189 options->cipher_xform.cipher.key.length = 1190 parse_key(options->cipher_xform.cipher.key.data, optarg); 1191 if (options->cipher_xform.cipher.key.length > 0) 1192 return 0; 1193 else 1194 return -1; 1195 } 1196 1197 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1198 return parse_size(&options->ckey_random_size, optarg); 1199 1200 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1201 options->cipher_iv_param = 1; 1202 options->cipher_iv.length = 1203 parse_key(options->cipher_iv.data, optarg); 1204 if (options->cipher_iv.length > 0) 1205 return 0; 1206 else 1207 return -1; 1208 } 1209 1210 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1211 return parse_size(&options->cipher_iv_random_size, optarg); 1212 1213 /* Authentication options */ 1214 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1215 return parse_auth_algo(&options->auth_xform.auth.algo, 1216 optarg); 1217 } 1218 1219 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1220 return parse_auth_op(&options->auth_xform.auth.op, 1221 optarg); 1222 1223 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1224 options->akey_param = 1; 1225 options->auth_xform.auth.key.length = 1226 parse_key(options->auth_xform.auth.key.data, optarg); 1227 if (options->auth_xform.auth.key.length > 0) 1228 return 0; 1229 else 1230 return -1; 1231 } 1232 1233 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1234 return parse_size(&options->akey_random_size, optarg); 1235 } 1236 1237 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1238 options->auth_iv_param = 1; 1239 options->auth_iv.length = 1240 parse_key(options->auth_iv.data, optarg); 1241 if (options->auth_iv.length > 0) 1242 return 0; 1243 else 1244 return -1; 1245 } 1246 1247 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1248 return parse_size(&options->auth_iv_random_size, optarg); 1249 1250 /* AEAD options */ 1251 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1252 return parse_aead_algo(&options->aead_xform.aead.algo, 1253 optarg); 1254 } 1255 1256 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1257 return parse_aead_op(&options->aead_xform.aead.op, 1258 optarg); 1259 1260 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1261 options->aead_key_param = 1; 1262 options->aead_xform.aead.key.length = 1263 parse_key(options->aead_xform.aead.key.data, optarg); 1264 if (options->aead_xform.aead.key.length > 0) 1265 return 0; 1266 else 1267 return -1; 1268 } 1269 1270 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1271 return parse_size(&options->aead_key_random_size, optarg); 1272 1273 1274 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1275 options->aead_iv_param = 1; 1276 options->aead_iv.length = 1277 parse_key(options->aead_iv.data, optarg); 1278 if (options->aead_iv.length > 0) 1279 return 0; 1280 else 1281 return -1; 1282 } 1283 1284 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1285 return parse_size(&options->aead_iv_random_size, optarg); 1286 1287 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1288 options->aad_param = 1; 1289 options->aad.length = 1290 parse_key(options->aad.data, optarg); 1291 if (options->aad.length > 0) 1292 return 0; 1293 else 1294 return -1; 1295 } 1296 1297 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1298 return parse_size(&options->aad_random_size, optarg); 1299 } 1300 1301 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1302 return parse_size(&options->digest_size, optarg); 1303 } 1304 1305 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1306 options->sessionless = 1; 1307 return 0; 1308 } 1309 1310 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1311 return parse_cryptodev_mask(options, optarg); 1312 1313 return -1; 1314 } 1315 1316 /** Parse port mask */ 1317 static int 1318 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1319 const char *q_arg) 1320 { 1321 char *end = NULL; 1322 unsigned long pm; 1323 1324 /* parse hexadecimal string */ 1325 pm = strtoul(q_arg, &end, 16); 1326 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1327 pm = 0; 1328 1329 options->portmask = pm; 1330 if (options->portmask == 0) { 1331 printf("invalid portmask specified\n"); 1332 return -1; 1333 } 1334 1335 return pm; 1336 } 1337 1338 /** Parse number of queues */ 1339 static int 1340 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1341 const char *q_arg) 1342 { 1343 char *end = NULL; 1344 unsigned long n; 1345 1346 /* parse hexadecimal string */ 1347 n = strtoul(q_arg, &end, 10); 1348 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1349 n = 0; 1350 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1351 n = 0; 1352 1353 options->nb_ports_per_lcore = n; 1354 if (options->nb_ports_per_lcore == 0) { 1355 printf("invalid number of ports selected\n"); 1356 return -1; 1357 } 1358 1359 return 0; 1360 } 1361 1362 /** Parse timer period */ 1363 static int 1364 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1365 const char *q_arg) 1366 { 1367 char *end = NULL; 1368 unsigned long n; 1369 1370 /* parse number string */ 1371 n = (unsigned)strtol(q_arg, &end, 10); 1372 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1373 n = 0; 1374 1375 if (n >= MAX_TIMER_PERIOD) { 1376 printf("Warning refresh period specified %lu is greater than " 1377 "max value %lu! using max value", 1378 n, MAX_TIMER_PERIOD); 1379 n = MAX_TIMER_PERIOD; 1380 } 1381 1382 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1383 1384 return 0; 1385 } 1386 1387 /** Generate default options for application */ 1388 static void 1389 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1390 { 1391 options->portmask = 0xffffffff; 1392 options->nb_ports_per_lcore = 1; 1393 options->refresh_period = 10000; 1394 options->single_lcore = 0; 1395 options->sessionless = 0; 1396 1397 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1398 1399 /* Cipher Data */ 1400 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1401 options->cipher_xform.next = NULL; 1402 options->ckey_param = 0; 1403 options->ckey_random_size = -1; 1404 options->cipher_xform.cipher.key.length = 0; 1405 options->cipher_iv_param = 0; 1406 options->cipher_iv_random_size = -1; 1407 options->cipher_iv.length = 0; 1408 1409 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1410 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1411 1412 /* Authentication Data */ 1413 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1414 options->auth_xform.next = NULL; 1415 options->akey_param = 0; 1416 options->akey_random_size = -1; 1417 options->auth_xform.auth.key.length = 0; 1418 options->auth_iv_param = 0; 1419 options->auth_iv_random_size = -1; 1420 options->auth_iv.length = 0; 1421 1422 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1423 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1424 1425 /* AEAD Data */ 1426 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1427 options->aead_xform.next = NULL; 1428 options->aead_key_param = 0; 1429 options->aead_key_random_size = -1; 1430 options->aead_xform.aead.key.length = 0; 1431 options->aead_iv_param = 0; 1432 options->aead_iv_random_size = -1; 1433 options->aead_iv.length = 0; 1434 1435 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1436 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1437 1438 options->aad_param = 0; 1439 options->aad_random_size = -1; 1440 options->aad.length = 0; 1441 1442 options->digest_size = -1; 1443 1444 options->type = CDEV_TYPE_ANY; 1445 options->cryptodev_mask = UINT64_MAX; 1446 } 1447 1448 static void 1449 display_cipher_info(struct l2fwd_crypto_options *options) 1450 { 1451 printf("\n---- Cipher information ---\n"); 1452 printf("Algorithm: %s\n", 1453 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1454 rte_hexdump(stdout, "Cipher key:", 1455 options->cipher_xform.cipher.key.data, 1456 options->cipher_xform.cipher.key.length); 1457 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1458 } 1459 1460 static void 1461 display_auth_info(struct l2fwd_crypto_options *options) 1462 { 1463 printf("\n---- Authentication information ---\n"); 1464 printf("Algorithm: %s\n", 1465 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1466 rte_hexdump(stdout, "Auth key:", 1467 options->auth_xform.auth.key.data, 1468 options->auth_xform.auth.key.length); 1469 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1470 } 1471 1472 static void 1473 display_aead_info(struct l2fwd_crypto_options *options) 1474 { 1475 printf("\n---- AEAD information ---\n"); 1476 printf("Algorithm: %s\n", 1477 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1478 rte_hexdump(stdout, "AEAD key:", 1479 options->aead_xform.aead.key.data, 1480 options->aead_xform.aead.key.length); 1481 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1482 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1483 } 1484 1485 static void 1486 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1487 { 1488 char string_cipher_op[MAX_STR_LEN]; 1489 char string_auth_op[MAX_STR_LEN]; 1490 char string_aead_op[MAX_STR_LEN]; 1491 1492 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1493 strcpy(string_cipher_op, "Encrypt"); 1494 else 1495 strcpy(string_cipher_op, "Decrypt"); 1496 1497 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1498 strcpy(string_auth_op, "Auth generate"); 1499 else 1500 strcpy(string_auth_op, "Auth verify"); 1501 1502 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1503 strcpy(string_aead_op, "Authenticated encryption"); 1504 else 1505 strcpy(string_aead_op, "Authenticated decryption"); 1506 1507 1508 printf("Options:-\nn"); 1509 printf("portmask: %x\n", options->portmask); 1510 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1511 printf("refresh period : %u\n", options->refresh_period); 1512 printf("single lcore mode: %s\n", 1513 options->single_lcore ? "enabled" : "disabled"); 1514 printf("stats_printing: %s\n", 1515 options->refresh_period == 0 ? "disabled" : "enabled"); 1516 1517 printf("sessionless crypto: %s\n", 1518 options->sessionless ? "enabled" : "disabled"); 1519 1520 if (options->ckey_param && (options->ckey_random_size != -1)) 1521 printf("Cipher key already parsed, ignoring size of random key\n"); 1522 1523 if (options->akey_param && (options->akey_random_size != -1)) 1524 printf("Auth key already parsed, ignoring size of random key\n"); 1525 1526 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1527 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1528 1529 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1530 printf("Auth IV already parsed, ignoring size of random IV\n"); 1531 1532 if (options->aad_param && (options->aad_random_size != -1)) 1533 printf("AAD already parsed, ignoring size of random AAD\n"); 1534 1535 printf("\nCrypto chain: "); 1536 switch (options->xform_chain) { 1537 case L2FWD_CRYPTO_AEAD: 1538 printf("Input --> %s --> Output\n", string_aead_op); 1539 display_aead_info(options); 1540 break; 1541 case L2FWD_CRYPTO_CIPHER_HASH: 1542 printf("Input --> %s --> %s --> Output\n", 1543 string_cipher_op, string_auth_op); 1544 display_cipher_info(options); 1545 display_auth_info(options); 1546 break; 1547 case L2FWD_CRYPTO_HASH_CIPHER: 1548 printf("Input --> %s --> %s --> Output\n", 1549 string_auth_op, string_cipher_op); 1550 display_cipher_info(options); 1551 display_auth_info(options); 1552 break; 1553 case L2FWD_CRYPTO_HASH_ONLY: 1554 printf("Input --> %s --> Output\n", string_auth_op); 1555 display_auth_info(options); 1556 break; 1557 case L2FWD_CRYPTO_CIPHER_ONLY: 1558 printf("Input --> %s --> Output\n", string_cipher_op); 1559 display_cipher_info(options); 1560 break; 1561 } 1562 } 1563 1564 /* Parse the argument given in the command line of the application */ 1565 static int 1566 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1567 int argc, char **argv) 1568 { 1569 int opt, retval, option_index; 1570 char **argvopt = argv, *prgname = argv[0]; 1571 1572 static struct option lgopts[] = { 1573 { "sessionless", no_argument, 0, 0 }, 1574 1575 { "cdev_type", required_argument, 0, 0 }, 1576 { "chain", required_argument, 0, 0 }, 1577 1578 { "cipher_algo", required_argument, 0, 0 }, 1579 { "cipher_op", required_argument, 0, 0 }, 1580 { "cipher_key", required_argument, 0, 0 }, 1581 { "cipher_key_random_size", required_argument, 0, 0 }, 1582 { "cipher_iv", required_argument, 0, 0 }, 1583 { "cipher_iv_random_size", required_argument, 0, 0 }, 1584 1585 { "auth_algo", required_argument, 0, 0 }, 1586 { "auth_op", required_argument, 0, 0 }, 1587 { "auth_key", required_argument, 0, 0 }, 1588 { "auth_key_random_size", required_argument, 0, 0 }, 1589 { "auth_iv", required_argument, 0, 0 }, 1590 { "auth_iv_random_size", required_argument, 0, 0 }, 1591 1592 { "aead_algo", required_argument, 0, 0 }, 1593 { "aead_op", required_argument, 0, 0 }, 1594 { "aead_key", required_argument, 0, 0 }, 1595 { "aead_key_random_size", required_argument, 0, 0 }, 1596 { "aead_iv", required_argument, 0, 0 }, 1597 { "aead_iv_random_size", required_argument, 0, 0 }, 1598 1599 { "aad", required_argument, 0, 0 }, 1600 { "aad_random_size", required_argument, 0, 0 }, 1601 1602 { "digest_size", required_argument, 0, 0 }, 1603 1604 { "sessionless", no_argument, 0, 0 }, 1605 { "cryptodev_mask", required_argument, 0, 0}, 1606 1607 { NULL, 0, 0, 0 } 1608 }; 1609 1610 l2fwd_crypto_default_options(options); 1611 1612 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1613 &option_index)) != EOF) { 1614 switch (opt) { 1615 /* long options */ 1616 case 0: 1617 retval = l2fwd_crypto_parse_args_long_options(options, 1618 lgopts, option_index); 1619 if (retval < 0) { 1620 l2fwd_crypto_usage(prgname); 1621 return -1; 1622 } 1623 break; 1624 1625 /* portmask */ 1626 case 'p': 1627 retval = l2fwd_crypto_parse_portmask(options, optarg); 1628 if (retval < 0) { 1629 l2fwd_crypto_usage(prgname); 1630 return -1; 1631 } 1632 break; 1633 1634 /* nqueue */ 1635 case 'q': 1636 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1637 if (retval < 0) { 1638 l2fwd_crypto_usage(prgname); 1639 return -1; 1640 } 1641 break; 1642 1643 /* single */ 1644 case 's': 1645 options->single_lcore = 1; 1646 1647 break; 1648 1649 /* timer period */ 1650 case 'T': 1651 retval = l2fwd_crypto_parse_timer_period(options, 1652 optarg); 1653 if (retval < 0) { 1654 l2fwd_crypto_usage(prgname); 1655 return -1; 1656 } 1657 break; 1658 1659 default: 1660 l2fwd_crypto_usage(prgname); 1661 return -1; 1662 } 1663 } 1664 1665 1666 if (optind >= 0) 1667 argv[optind-1] = prgname; 1668 1669 retval = optind-1; 1670 optind = 1; /* reset getopt lib */ 1671 1672 return retval; 1673 } 1674 1675 /* Check the link status of all ports in up to 9s, and print them finally */ 1676 static void 1677 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1678 { 1679 #define CHECK_INTERVAL 100 /* 100ms */ 1680 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1681 uint8_t portid, count, all_ports_up, print_flag = 0; 1682 struct rte_eth_link link; 1683 1684 printf("\nChecking link status"); 1685 fflush(stdout); 1686 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1687 all_ports_up = 1; 1688 for (portid = 0; portid < port_num; portid++) { 1689 if ((port_mask & (1 << portid)) == 0) 1690 continue; 1691 memset(&link, 0, sizeof(link)); 1692 rte_eth_link_get_nowait(portid, &link); 1693 /* print link status if flag set */ 1694 if (print_flag == 1) { 1695 if (link.link_status) 1696 printf("Port %d Link Up - speed %u " 1697 "Mbps - %s\n", (uint8_t)portid, 1698 (unsigned)link.link_speed, 1699 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1700 ("full-duplex") : ("half-duplex\n")); 1701 else 1702 printf("Port %d Link Down\n", 1703 (uint8_t)portid); 1704 continue; 1705 } 1706 /* clear all_ports_up flag if any link down */ 1707 if (link.link_status == ETH_LINK_DOWN) { 1708 all_ports_up = 0; 1709 break; 1710 } 1711 } 1712 /* after finally printing all link status, get out */ 1713 if (print_flag == 1) 1714 break; 1715 1716 if (all_ports_up == 0) { 1717 printf("."); 1718 fflush(stdout); 1719 rte_delay_ms(CHECK_INTERVAL); 1720 } 1721 1722 /* set the print_flag if all ports up or timeout */ 1723 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1724 print_flag = 1; 1725 printf("done\n"); 1726 } 1727 } 1728 } 1729 1730 /* Check if device has to be HW/SW or any */ 1731 static int 1732 check_type(const struct l2fwd_crypto_options *options, 1733 const struct rte_cryptodev_info *dev_info) 1734 { 1735 if (options->type == CDEV_TYPE_HW && 1736 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1737 return 0; 1738 if (options->type == CDEV_TYPE_SW && 1739 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1740 return 0; 1741 if (options->type == CDEV_TYPE_ANY) 1742 return 0; 1743 1744 return -1; 1745 } 1746 1747 static const struct rte_cryptodev_capabilities * 1748 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1749 const struct rte_cryptodev_info *dev_info, 1750 uint8_t cdev_id) 1751 { 1752 unsigned int i = 0; 1753 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1754 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1755 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1756 options->cipher_xform.cipher.algo; 1757 1758 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1759 cap_cipher_algo = cap->sym.cipher.algo; 1760 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1761 if (cap_cipher_algo == opt_cipher_algo) { 1762 if (check_type(options, dev_info) == 0) 1763 break; 1764 } 1765 } 1766 cap = &dev_info->capabilities[++i]; 1767 } 1768 1769 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1770 printf("Algorithm %s not supported by cryptodev %u" 1771 " or device not of preferred type (%s)\n", 1772 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1773 cdev_id, 1774 options->string_type); 1775 return NULL; 1776 } 1777 1778 return cap; 1779 } 1780 1781 static const struct rte_cryptodev_capabilities * 1782 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1783 const struct rte_cryptodev_info *dev_info, 1784 uint8_t cdev_id) 1785 { 1786 unsigned int i = 0; 1787 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1788 enum rte_crypto_auth_algorithm cap_auth_algo; 1789 enum rte_crypto_auth_algorithm opt_auth_algo = 1790 options->auth_xform.auth.algo; 1791 1792 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1793 cap_auth_algo = cap->sym.auth.algo; 1794 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1795 if (cap_auth_algo == opt_auth_algo) { 1796 if (check_type(options, dev_info) == 0) 1797 break; 1798 } 1799 } 1800 cap = &dev_info->capabilities[++i]; 1801 } 1802 1803 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1804 printf("Algorithm %s not supported by cryptodev %u" 1805 " or device not of preferred type (%s)\n", 1806 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1807 cdev_id, 1808 options->string_type); 1809 return NULL; 1810 } 1811 1812 return cap; 1813 } 1814 1815 static const struct rte_cryptodev_capabilities * 1816 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1817 const struct rte_cryptodev_info *dev_info, 1818 uint8_t cdev_id) 1819 { 1820 unsigned int i = 0; 1821 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1822 enum rte_crypto_aead_algorithm cap_aead_algo; 1823 enum rte_crypto_aead_algorithm opt_aead_algo = 1824 options->aead_xform.aead.algo; 1825 1826 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1827 cap_aead_algo = cap->sym.aead.algo; 1828 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1829 if (cap_aead_algo == opt_aead_algo) { 1830 if (check_type(options, dev_info) == 0) 1831 break; 1832 } 1833 } 1834 cap = &dev_info->capabilities[++i]; 1835 } 1836 1837 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1838 printf("Algorithm %s not supported by cryptodev %u" 1839 " or device not of preferred type (%s)\n", 1840 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1841 cdev_id, 1842 options->string_type); 1843 return NULL; 1844 } 1845 1846 return cap; 1847 } 1848 1849 /* Check if the device is enabled by cryptodev_mask */ 1850 static int 1851 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1852 uint8_t cdev_id) 1853 { 1854 if (options->cryptodev_mask & (1 << cdev_id)) 1855 return 0; 1856 1857 return -1; 1858 } 1859 1860 static inline int 1861 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1862 uint16_t increment) 1863 { 1864 uint16_t supp_size; 1865 1866 /* Single value */ 1867 if (increment == 0) { 1868 if (length == min) 1869 return 0; 1870 else 1871 return -1; 1872 } 1873 1874 /* Range of values */ 1875 for (supp_size = min; supp_size <= max; supp_size += increment) { 1876 if (length == supp_size) 1877 return 0; 1878 } 1879 1880 return -1; 1881 } 1882 1883 static int 1884 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1885 unsigned int iv_param, int iv_random_size, 1886 uint16_t *iv_length) 1887 { 1888 /* 1889 * Check if length of provided IV is supported 1890 * by the algorithm chosen. 1891 */ 1892 if (iv_param) { 1893 if (check_supported_size(*iv_length, 1894 iv_range_size->min, 1895 iv_range_size->max, 1896 iv_range_size->increment) 1897 != 0) { 1898 printf("Unsupported IV length\n"); 1899 return -1; 1900 } 1901 /* 1902 * Check if length of IV to be randomly generated 1903 * is supported by the algorithm chosen. 1904 */ 1905 } else if (iv_random_size != -1) { 1906 if (check_supported_size(iv_random_size, 1907 iv_range_size->min, 1908 iv_range_size->max, 1909 iv_range_size->increment) 1910 != 0) { 1911 printf("Unsupported IV length\n"); 1912 return -1; 1913 } 1914 *iv_length = iv_random_size; 1915 /* No size provided, use minimum size. */ 1916 } else 1917 *iv_length = iv_range_size->min; 1918 1919 return 0; 1920 } 1921 1922 static int 1923 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1924 uint8_t *enabled_cdevs) 1925 { 1926 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1927 const struct rte_cryptodev_capabilities *cap; 1928 unsigned int sess_sz, max_sess_sz = 0; 1929 int retval; 1930 1931 cdev_count = rte_cryptodev_count(); 1932 if (cdev_count == 0) { 1933 printf("No crypto devices available\n"); 1934 return -1; 1935 } 1936 1937 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1938 sess_sz = sizeof(struct rte_cryptodev_sym_session) + 1939 rte_cryptodev_get_private_session_size(cdev_id); 1940 if (sess_sz > max_sess_sz) 1941 max_sess_sz = sess_sz; 1942 } 1943 1944 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1945 cdev_id++) { 1946 struct rte_cryptodev_qp_conf qp_conf; 1947 struct rte_cryptodev_info dev_info; 1948 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); 1949 1950 struct rte_cryptodev_config conf = { 1951 .nb_queue_pairs = 1, 1952 .socket_id = socket_id, 1953 }; 1954 1955 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 1956 continue; 1957 1958 rte_cryptodev_info_get(cdev_id, &dev_info); 1959 1960 if (session_pool_socket[socket_id] == NULL) { 1961 char mp_name[RTE_MEMPOOL_NAMESIZE]; 1962 struct rte_mempool *sess_mp; 1963 1964 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 1965 "sess_mp_%u", socket_id); 1966 1967 /* 1968 * Create enough objects for session headers and 1969 * device private data 1970 */ 1971 sess_mp = rte_mempool_create(mp_name, 1972 MAX_SESSIONS * 2, 1973 max_sess_sz, 1974 SESSION_POOL_CACHE_SIZE, 1975 0, NULL, NULL, NULL, 1976 NULL, socket_id, 1977 0); 1978 1979 if (sess_mp == NULL) { 1980 printf("Cannot create session pool on socket %d\n", 1981 socket_id); 1982 return -ENOMEM; 1983 } 1984 1985 printf("Allocated session pool on socket %d\n", socket_id); 1986 session_pool_socket[socket_id] = sess_mp; 1987 } 1988 1989 /* Set AEAD parameters */ 1990 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 1991 /* Check if device supports AEAD algo */ 1992 cap = check_device_support_aead_algo(options, &dev_info, 1993 cdev_id); 1994 if (cap == NULL) 1995 continue; 1996 1997 options->block_size = cap->sym.aead.block_size; 1998 1999 check_iv_param(&cap->sym.aead.iv_size, 2000 options->aead_iv_param, 2001 options->aead_iv_random_size, 2002 &options->aead_iv.length); 2003 2004 /* 2005 * Check if length of provided AEAD key is supported 2006 * by the algorithm chosen. 2007 */ 2008 if (options->aead_key_param) { 2009 if (check_supported_size( 2010 options->aead_xform.aead.key.length, 2011 cap->sym.aead.key_size.min, 2012 cap->sym.aead.key_size.max, 2013 cap->sym.aead.key_size.increment) 2014 != 0) { 2015 printf("Unsupported aead key length\n"); 2016 return -1; 2017 } 2018 /* 2019 * Check if length of the aead key to be randomly generated 2020 * is supported by the algorithm chosen. 2021 */ 2022 } else if (options->aead_key_random_size != -1) { 2023 if (check_supported_size(options->ckey_random_size, 2024 cap->sym.aead.key_size.min, 2025 cap->sym.aead.key_size.max, 2026 cap->sym.aead.key_size.increment) 2027 != 0) { 2028 printf("Unsupported aead key length\n"); 2029 return -1; 2030 } 2031 options->aead_xform.aead.key.length = 2032 options->ckey_random_size; 2033 /* No size provided, use minimum size. */ 2034 } else 2035 options->aead_xform.aead.key.length = 2036 cap->sym.aead.key_size.min; 2037 2038 if (!options->aead_key_param) 2039 generate_random_key( 2040 options->aead_xform.aead.key.data, 2041 options->aead_xform.aead.key.length); 2042 2043 /* 2044 * Check if length of provided AAD is supported 2045 * by the algorithm chosen. 2046 */ 2047 if (options->aad_param) { 2048 if (check_supported_size(options->aad.length, 2049 cap->sym.aead.aad_size.min, 2050 cap->sym.aead.aad_size.max, 2051 cap->sym.aead.aad_size.increment) 2052 != 0) { 2053 printf("Unsupported AAD length\n"); 2054 return -1; 2055 } 2056 /* 2057 * Check if length of AAD to be randomly generated 2058 * is supported by the algorithm chosen. 2059 */ 2060 } else if (options->aad_random_size != -1) { 2061 if (check_supported_size(options->aad_random_size, 2062 cap->sym.aead.aad_size.min, 2063 cap->sym.aead.aad_size.max, 2064 cap->sym.aead.aad_size.increment) 2065 != 0) { 2066 printf("Unsupported AAD length\n"); 2067 return -1; 2068 } 2069 options->aad.length = options->aad_random_size; 2070 /* No size provided, use minimum size. */ 2071 } else 2072 options->aad.length = cap->sym.auth.aad_size.min; 2073 2074 options->aead_xform.aead.add_auth_data_length = 2075 options->aad.length; 2076 2077 /* Check if digest size is supported by the algorithm. */ 2078 if (options->digest_size != -1) { 2079 if (check_supported_size(options->digest_size, 2080 cap->sym.aead.digest_size.min, 2081 cap->sym.aead.digest_size.max, 2082 cap->sym.aead.digest_size.increment) 2083 != 0) { 2084 printf("Unsupported digest length\n"); 2085 return -1; 2086 } 2087 options->aead_xform.aead.digest_length = 2088 options->digest_size; 2089 /* No size provided, use minimum size. */ 2090 } else 2091 options->aead_xform.aead.digest_length = 2092 cap->sym.aead.digest_size.min; 2093 } 2094 2095 /* Set cipher parameters */ 2096 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2097 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2098 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2099 /* Check if device supports cipher algo */ 2100 cap = check_device_support_cipher_algo(options, &dev_info, 2101 cdev_id); 2102 if (cap == NULL) 2103 continue; 2104 2105 options->block_size = cap->sym.cipher.block_size; 2106 2107 check_iv_param(&cap->sym.cipher.iv_size, 2108 options->cipher_iv_param, 2109 options->cipher_iv_random_size, 2110 &options->cipher_iv.length); 2111 2112 /* 2113 * Check if length of provided cipher key is supported 2114 * by the algorithm chosen. 2115 */ 2116 if (options->ckey_param) { 2117 if (check_supported_size( 2118 options->cipher_xform.cipher.key.length, 2119 cap->sym.cipher.key_size.min, 2120 cap->sym.cipher.key_size.max, 2121 cap->sym.cipher.key_size.increment) 2122 != 0) { 2123 printf("Unsupported cipher key length\n"); 2124 return -1; 2125 } 2126 /* 2127 * Check if length of the cipher key to be randomly generated 2128 * is supported by the algorithm chosen. 2129 */ 2130 } else if (options->ckey_random_size != -1) { 2131 if (check_supported_size(options->ckey_random_size, 2132 cap->sym.cipher.key_size.min, 2133 cap->sym.cipher.key_size.max, 2134 cap->sym.cipher.key_size.increment) 2135 != 0) { 2136 printf("Unsupported cipher key length\n"); 2137 return -1; 2138 } 2139 options->cipher_xform.cipher.key.length = 2140 options->ckey_random_size; 2141 /* No size provided, use minimum size. */ 2142 } else 2143 options->cipher_xform.cipher.key.length = 2144 cap->sym.cipher.key_size.min; 2145 2146 if (!options->ckey_param) 2147 generate_random_key( 2148 options->cipher_xform.cipher.key.data, 2149 options->cipher_xform.cipher.key.length); 2150 2151 } 2152 2153 /* Set auth parameters */ 2154 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2155 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2156 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2157 /* Check if device supports auth algo */ 2158 cap = check_device_support_auth_algo(options, &dev_info, 2159 cdev_id); 2160 if (cap == NULL) 2161 continue; 2162 2163 check_iv_param(&cap->sym.auth.iv_size, 2164 options->auth_iv_param, 2165 options->auth_iv_random_size, 2166 &options->auth_iv.length); 2167 /* 2168 * Check if length of provided auth key is supported 2169 * by the algorithm chosen. 2170 */ 2171 if (options->akey_param) { 2172 if (check_supported_size( 2173 options->auth_xform.auth.key.length, 2174 cap->sym.auth.key_size.min, 2175 cap->sym.auth.key_size.max, 2176 cap->sym.auth.key_size.increment) 2177 != 0) { 2178 printf("Unsupported auth key length\n"); 2179 return -1; 2180 } 2181 /* 2182 * Check if length of the auth key to be randomly generated 2183 * is supported by the algorithm chosen. 2184 */ 2185 } else if (options->akey_random_size != -1) { 2186 if (check_supported_size(options->akey_random_size, 2187 cap->sym.auth.key_size.min, 2188 cap->sym.auth.key_size.max, 2189 cap->sym.auth.key_size.increment) 2190 != 0) { 2191 printf("Unsupported auth key length\n"); 2192 return -1; 2193 } 2194 options->auth_xform.auth.key.length = 2195 options->akey_random_size; 2196 /* No size provided, use minimum size. */ 2197 } else 2198 options->auth_xform.auth.key.length = 2199 cap->sym.auth.key_size.min; 2200 2201 if (!options->akey_param) 2202 generate_random_key( 2203 options->auth_xform.auth.key.data, 2204 options->auth_xform.auth.key.length); 2205 2206 /* Check if digest size is supported by the algorithm. */ 2207 if (options->digest_size != -1) { 2208 if (check_supported_size(options->digest_size, 2209 cap->sym.auth.digest_size.min, 2210 cap->sym.auth.digest_size.max, 2211 cap->sym.auth.digest_size.increment) 2212 != 0) { 2213 printf("Unsupported digest length\n"); 2214 return -1; 2215 } 2216 options->auth_xform.auth.digest_length = 2217 options->digest_size; 2218 /* No size provided, use minimum size. */ 2219 } else 2220 options->auth_xform.auth.digest_length = 2221 cap->sym.auth.digest_size.min; 2222 } 2223 2224 retval = rte_cryptodev_configure(cdev_id, &conf, 2225 session_pool_socket[socket_id]); 2226 if (retval < 0) { 2227 printf("Failed to configure cryptodev %u", cdev_id); 2228 return -1; 2229 } 2230 2231 qp_conf.nb_descriptors = 2048; 2232 2233 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2234 socket_id); 2235 if (retval < 0) { 2236 printf("Failed to setup queue pair %u on cryptodev %u", 2237 0, cdev_id); 2238 return -1; 2239 } 2240 2241 retval = rte_cryptodev_start(cdev_id); 2242 if (retval < 0) { 2243 printf("Failed to start device %u: error %d\n", 2244 cdev_id, retval); 2245 return -1; 2246 } 2247 2248 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2249 2250 enabled_cdevs[cdev_id] = 1; 2251 enabled_cdev_count++; 2252 } 2253 2254 return enabled_cdev_count; 2255 } 2256 2257 static int 2258 initialize_ports(struct l2fwd_crypto_options *options) 2259 { 2260 uint8_t last_portid, portid; 2261 unsigned enabled_portcount = 0; 2262 unsigned nb_ports = rte_eth_dev_count(); 2263 2264 if (nb_ports == 0) { 2265 printf("No Ethernet ports - bye\n"); 2266 return -1; 2267 } 2268 2269 /* Reset l2fwd_dst_ports */ 2270 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2271 l2fwd_dst_ports[portid] = 0; 2272 2273 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2274 int retval; 2275 2276 /* Skip ports that are not enabled */ 2277 if ((options->portmask & (1 << portid)) == 0) 2278 continue; 2279 2280 /* init port */ 2281 printf("Initializing port %u... ", (unsigned) portid); 2282 fflush(stdout); 2283 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2284 if (retval < 0) { 2285 printf("Cannot configure device: err=%d, port=%u\n", 2286 retval, (unsigned) portid); 2287 return -1; 2288 } 2289 2290 /* init one RX queue */ 2291 fflush(stdout); 2292 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2293 rte_eth_dev_socket_id(portid), 2294 NULL, l2fwd_pktmbuf_pool); 2295 if (retval < 0) { 2296 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2297 retval, (unsigned) portid); 2298 return -1; 2299 } 2300 2301 /* init one TX queue on each port */ 2302 fflush(stdout); 2303 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2304 rte_eth_dev_socket_id(portid), 2305 NULL); 2306 if (retval < 0) { 2307 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2308 retval, (unsigned) portid); 2309 2310 return -1; 2311 } 2312 2313 /* Start device */ 2314 retval = rte_eth_dev_start(portid); 2315 if (retval < 0) { 2316 printf("rte_eth_dev_start:err=%d, port=%u\n", 2317 retval, (unsigned) portid); 2318 return -1; 2319 } 2320 2321 rte_eth_promiscuous_enable(portid); 2322 2323 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2324 2325 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2326 (unsigned) portid, 2327 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2328 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2329 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2330 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2331 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2332 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2333 2334 /* initialize port stats */ 2335 memset(&port_statistics, 0, sizeof(port_statistics)); 2336 2337 /* Setup port forwarding table */ 2338 if (enabled_portcount % 2) { 2339 l2fwd_dst_ports[portid] = last_portid; 2340 l2fwd_dst_ports[last_portid] = portid; 2341 } else { 2342 last_portid = portid; 2343 } 2344 2345 l2fwd_enabled_port_mask |= (1 << portid); 2346 enabled_portcount++; 2347 } 2348 2349 if (enabled_portcount == 1) { 2350 l2fwd_dst_ports[last_portid] = last_portid; 2351 } else if (enabled_portcount % 2) { 2352 printf("odd number of ports in portmask- bye\n"); 2353 return -1; 2354 } 2355 2356 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2357 2358 return enabled_portcount; 2359 } 2360 2361 static void 2362 reserve_key_memory(struct l2fwd_crypto_options *options) 2363 { 2364 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2365 MAX_KEY_SIZE, 0); 2366 if (options->cipher_xform.cipher.key.data == NULL) 2367 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2368 2369 options->auth_xform.auth.key.data = rte_malloc("auth key", 2370 MAX_KEY_SIZE, 0); 2371 if (options->auth_xform.auth.key.data == NULL) 2372 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2373 2374 options->aead_xform.aead.key.data = rte_malloc("aead key", 2375 MAX_KEY_SIZE, 0); 2376 if (options->aead_xform.aead.key.data == NULL) 2377 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2378 2379 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2380 if (options->cipher_iv.data == NULL) 2381 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2382 2383 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2384 if (options->auth_iv.data == NULL) 2385 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2386 2387 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2388 if (options->aead_iv.data == NULL) 2389 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2390 2391 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2392 if (options->aad.data == NULL) 2393 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2394 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2395 } 2396 2397 int 2398 main(int argc, char **argv) 2399 { 2400 struct lcore_queue_conf *qconf; 2401 struct l2fwd_crypto_options options; 2402 2403 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2404 unsigned lcore_id, rx_lcore_id; 2405 int ret, enabled_cdevcount, enabled_portcount; 2406 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2407 2408 /* init EAL */ 2409 ret = rte_eal_init(argc, argv); 2410 if (ret < 0) 2411 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2412 argc -= ret; 2413 argv += ret; 2414 2415 /* reserve memory for Cipher/Auth key and IV */ 2416 reserve_key_memory(&options); 2417 2418 /* parse application arguments (after the EAL ones) */ 2419 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2420 if (ret < 0) 2421 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2422 2423 /* create the mbuf pool */ 2424 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2425 sizeof(struct rte_crypto_op), 2426 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2427 if (l2fwd_pktmbuf_pool == NULL) 2428 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2429 2430 /* create crypto op pool */ 2431 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2432 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2433 rte_socket_id()); 2434 if (l2fwd_crypto_op_pool == NULL) 2435 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2436 2437 /* Enable Ethernet ports */ 2438 enabled_portcount = initialize_ports(&options); 2439 if (enabled_portcount < 1) 2440 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2441 2442 nb_ports = rte_eth_dev_count(); 2443 /* Initialize the port/queue configuration of each logical core */ 2444 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2445 portid < nb_ports; portid++) { 2446 2447 /* skip ports that are not enabled */ 2448 if ((options.portmask & (1 << portid)) == 0) 2449 continue; 2450 2451 if (options.single_lcore && qconf == NULL) { 2452 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2453 rx_lcore_id++; 2454 if (rx_lcore_id >= RTE_MAX_LCORE) 2455 rte_exit(EXIT_FAILURE, 2456 "Not enough cores\n"); 2457 } 2458 } else if (!options.single_lcore) { 2459 /* get the lcore_id for this port */ 2460 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2461 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2462 options.nb_ports_per_lcore) { 2463 rx_lcore_id++; 2464 if (rx_lcore_id >= RTE_MAX_LCORE) 2465 rte_exit(EXIT_FAILURE, 2466 "Not enough cores\n"); 2467 } 2468 } 2469 2470 /* Assigned a new logical core in the loop above. */ 2471 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2472 qconf = &lcore_queue_conf[rx_lcore_id]; 2473 2474 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2475 qconf->nb_rx_ports++; 2476 2477 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2478 } 2479 2480 /* Enable Crypto devices */ 2481 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2482 enabled_cdevs); 2483 if (enabled_cdevcount < 0) 2484 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2485 2486 if (enabled_cdevcount < enabled_portcount) 2487 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2488 "has to be more or equal to number of ports (%d)\n", 2489 enabled_cdevcount, enabled_portcount); 2490 2491 nb_cryptodevs = rte_cryptodev_count(); 2492 2493 /* Initialize the port/cryptodev configuration of each logical core */ 2494 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2495 cdev_id < nb_cryptodevs && enabled_cdevcount; 2496 cdev_id++) { 2497 /* Crypto op not supported by crypto device */ 2498 if (!enabled_cdevs[cdev_id]) 2499 continue; 2500 2501 if (options.single_lcore && qconf == NULL) { 2502 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2503 rx_lcore_id++; 2504 if (rx_lcore_id >= RTE_MAX_LCORE) 2505 rte_exit(EXIT_FAILURE, 2506 "Not enough cores\n"); 2507 } 2508 } else if (!options.single_lcore) { 2509 /* get the lcore_id for this port */ 2510 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2511 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2512 options.nb_ports_per_lcore) { 2513 rx_lcore_id++; 2514 if (rx_lcore_id >= RTE_MAX_LCORE) 2515 rte_exit(EXIT_FAILURE, 2516 "Not enough cores\n"); 2517 } 2518 } 2519 2520 /* Assigned a new logical core in the loop above. */ 2521 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2522 qconf = &lcore_queue_conf[rx_lcore_id]; 2523 2524 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2525 qconf->nb_crypto_devs++; 2526 2527 enabled_cdevcount--; 2528 2529 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2530 (unsigned)cdev_id); 2531 } 2532 2533 /* launch per-lcore init on every lcore */ 2534 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2535 CALL_MASTER); 2536 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2537 if (rte_eal_wait_lcore(lcore_id) < 0) 2538 return -1; 2539 } 2540 2541 return 0; 2542 } 2543