xref: /dpdk/examples/l2fwd-crypto/main.c (revision 2808423a9ce42a748aed77a4b487be27d2b6acfa)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2016 Intel Corporation
3  */
4 
5 #include <time.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <sys/types.h>
12 #include <sys/queue.h>
13 #include <netinet/in.h>
14 #include <setjmp.h>
15 #include <stdarg.h>
16 #include <ctype.h>
17 #include <errno.h>
18 #include <getopt.h>
19 #include <fcntl.h>
20 #include <unistd.h>
21 
22 #include <rte_atomic.h>
23 #include <rte_branch_prediction.h>
24 #include <rte_common.h>
25 #include <rte_cryptodev.h>
26 #include <rte_cycles.h>
27 #include <rte_debug.h>
28 #include <rte_eal.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev.h>
31 #include <rte_interrupts.h>
32 #include <rte_ip.h>
33 #include <rte_launch.h>
34 #include <rte_lcore.h>
35 #include <rte_log.h>
36 #include <rte_malloc.h>
37 #include <rte_mbuf.h>
38 #include <rte_memcpy.h>
39 #include <rte_memory.h>
40 #include <rte_mempool.h>
41 #include <rte_per_lcore.h>
42 #include <rte_prefetch.h>
43 #include <rte_random.h>
44 #include <rte_hexdump.h>
45 
46 enum cdev_type {
47 	CDEV_TYPE_ANY,
48 	CDEV_TYPE_HW,
49 	CDEV_TYPE_SW
50 };
51 
52 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
53 
54 #define NB_MBUF   8192
55 
56 #define MAX_STR_LEN 32
57 #define MAX_KEY_SIZE 128
58 #define MAX_IV_SIZE 16
59 #define MAX_AAD_SIZE 65535
60 #define MAX_PKT_BURST 32
61 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
62 #define MAX_SESSIONS 32
63 #define SESSION_POOL_CACHE_SIZE 0
64 
65 #define MAXIMUM_IV_LENGTH	16
66 #define IV_OFFSET		(sizeof(struct rte_crypto_op) + \
67 				sizeof(struct rte_crypto_sym_op))
68 
69 /*
70  * Configurable number of RX/TX ring descriptors
71  */
72 #define RTE_TEST_RX_DESC_DEFAULT 1024
73 #define RTE_TEST_TX_DESC_DEFAULT 1024
74 
75 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
76 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
77 
78 /* ethernet addresses of ports */
79 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
80 
81 /* mask of enabled ports */
82 static uint64_t l2fwd_enabled_port_mask;
83 static uint64_t l2fwd_enabled_crypto_mask;
84 
85 /* list of enabled ports */
86 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
87 
88 
89 struct pkt_buffer {
90 	unsigned len;
91 	struct rte_mbuf *buffer[MAX_PKT_BURST];
92 };
93 
94 struct op_buffer {
95 	unsigned len;
96 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
97 };
98 
99 #define MAX_RX_QUEUE_PER_LCORE 16
100 #define MAX_TX_QUEUE_PER_PORT 16
101 
102 enum l2fwd_crypto_xform_chain {
103 	L2FWD_CRYPTO_CIPHER_HASH,
104 	L2FWD_CRYPTO_HASH_CIPHER,
105 	L2FWD_CRYPTO_CIPHER_ONLY,
106 	L2FWD_CRYPTO_HASH_ONLY,
107 	L2FWD_CRYPTO_AEAD
108 };
109 
110 struct l2fwd_key {
111 	uint8_t *data;
112 	uint32_t length;
113 	rte_iova_t phys_addr;
114 };
115 
116 struct l2fwd_iv {
117 	uint8_t *data;
118 	uint16_t length;
119 };
120 
121 /** l2fwd crypto application command line options */
122 struct l2fwd_crypto_options {
123 	unsigned portmask;
124 	unsigned nb_ports_per_lcore;
125 	unsigned refresh_period;
126 	unsigned single_lcore:1;
127 
128 	enum cdev_type type;
129 	unsigned sessionless:1;
130 
131 	enum l2fwd_crypto_xform_chain xform_chain;
132 
133 	struct rte_crypto_sym_xform cipher_xform;
134 	unsigned ckey_param;
135 	int ckey_random_size;
136 
137 	struct l2fwd_iv cipher_iv;
138 	unsigned int cipher_iv_param;
139 	int cipher_iv_random_size;
140 
141 	struct rte_crypto_sym_xform auth_xform;
142 	uint8_t akey_param;
143 	int akey_random_size;
144 
145 	struct l2fwd_iv auth_iv;
146 	unsigned int auth_iv_param;
147 	int auth_iv_random_size;
148 
149 	struct rte_crypto_sym_xform aead_xform;
150 	unsigned int aead_key_param;
151 	int aead_key_random_size;
152 
153 	struct l2fwd_iv aead_iv;
154 	unsigned int aead_iv_param;
155 	int aead_iv_random_size;
156 
157 	struct l2fwd_key aad;
158 	unsigned aad_param;
159 	int aad_random_size;
160 
161 	int digest_size;
162 
163 	uint16_t block_size;
164 	char string_type[MAX_STR_LEN];
165 
166 	uint64_t cryptodev_mask;
167 
168 	unsigned int mac_updating;
169 };
170 
171 /** l2fwd crypto lcore params */
172 struct l2fwd_crypto_params {
173 	uint8_t dev_id;
174 	uint8_t qp_id;
175 
176 	unsigned digest_length;
177 	unsigned block_size;
178 
179 	struct l2fwd_iv cipher_iv;
180 	struct l2fwd_iv auth_iv;
181 	struct l2fwd_iv aead_iv;
182 	struct l2fwd_key aad;
183 	struct rte_cryptodev_sym_session *session;
184 
185 	uint8_t do_cipher;
186 	uint8_t do_hash;
187 	uint8_t do_aead;
188 	uint8_t hash_verify;
189 
190 	enum rte_crypto_cipher_algorithm cipher_algo;
191 	enum rte_crypto_auth_algorithm auth_algo;
192 	enum rte_crypto_aead_algorithm aead_algo;
193 };
194 
195 /** lcore configuration */
196 struct lcore_queue_conf {
197 	unsigned nb_rx_ports;
198 	uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE];
199 
200 	unsigned nb_crypto_devs;
201 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
202 
203 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
204 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
205 } __rte_cache_aligned;
206 
207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
208 
209 static struct rte_eth_conf port_conf = {
210 	.rxmode = {
211 		.mq_mode = ETH_MQ_RX_NONE,
212 		.max_rx_pkt_len = ETHER_MAX_LEN,
213 		.split_hdr_size = 0,
214 		.offloads = DEV_RX_OFFLOAD_CRC_STRIP,
215 	},
216 	.txmode = {
217 		.mq_mode = ETH_MQ_TX_NONE,
218 	},
219 };
220 
221 struct rte_mempool *l2fwd_pktmbuf_pool;
222 struct rte_mempool *l2fwd_crypto_op_pool;
223 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 };
224 
225 /* Per-port statistics struct */
226 struct l2fwd_port_statistics {
227 	uint64_t tx;
228 	uint64_t rx;
229 
230 	uint64_t crypto_enqueued;
231 	uint64_t crypto_dequeued;
232 
233 	uint64_t dropped;
234 } __rte_cache_aligned;
235 
236 struct l2fwd_crypto_statistics {
237 	uint64_t enqueued;
238 	uint64_t dequeued;
239 
240 	uint64_t errors;
241 } __rte_cache_aligned;
242 
243 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
244 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
245 
246 /* A tsc-based timer responsible for triggering statistics printout */
247 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
248 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
249 
250 /* default period is 10 seconds */
251 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
252 
253 /* Print out statistics on packets dropped */
254 static void
255 print_stats(void)
256 {
257 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
258 	uint64_t total_packets_enqueued, total_packets_dequeued,
259 		total_packets_errors;
260 	uint16_t portid;
261 	uint64_t cdevid;
262 
263 	total_packets_dropped = 0;
264 	total_packets_tx = 0;
265 	total_packets_rx = 0;
266 	total_packets_enqueued = 0;
267 	total_packets_dequeued = 0;
268 	total_packets_errors = 0;
269 
270 	const char clr[] = { 27, '[', '2', 'J', '\0' };
271 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
272 
273 		/* Clear screen and move to top left */
274 	printf("%s%s", clr, topLeft);
275 
276 	printf("\nPort statistics ====================================");
277 
278 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
279 		/* skip disabled ports */
280 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
281 			continue;
282 		printf("\nStatistics for port %u ------------------------------"
283 			   "\nPackets sent: %32"PRIu64
284 			   "\nPackets received: %28"PRIu64
285 			   "\nPackets dropped: %29"PRIu64,
286 			   portid,
287 			   port_statistics[portid].tx,
288 			   port_statistics[portid].rx,
289 			   port_statistics[portid].dropped);
290 
291 		total_packets_dropped += port_statistics[portid].dropped;
292 		total_packets_tx += port_statistics[portid].tx;
293 		total_packets_rx += port_statistics[portid].rx;
294 	}
295 	printf("\nCrypto statistics ==================================");
296 
297 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
298 		/* skip disabled ports */
299 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
300 			continue;
301 		printf("\nStatistics for cryptodev %"PRIu64
302 				" -------------------------"
303 			   "\nPackets enqueued: %28"PRIu64
304 			   "\nPackets dequeued: %28"PRIu64
305 			   "\nPackets errors: %30"PRIu64,
306 			   cdevid,
307 			   crypto_statistics[cdevid].enqueued,
308 			   crypto_statistics[cdevid].dequeued,
309 			   crypto_statistics[cdevid].errors);
310 
311 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
312 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
313 		total_packets_errors += crypto_statistics[cdevid].errors;
314 	}
315 	printf("\nAggregate statistics ==============================="
316 		   "\nTotal packets received: %22"PRIu64
317 		   "\nTotal packets enqueued: %22"PRIu64
318 		   "\nTotal packets dequeued: %22"PRIu64
319 		   "\nTotal packets sent: %26"PRIu64
320 		   "\nTotal packets dropped: %23"PRIu64
321 		   "\nTotal packets crypto errors: %17"PRIu64,
322 		   total_packets_rx,
323 		   total_packets_enqueued,
324 		   total_packets_dequeued,
325 		   total_packets_tx,
326 		   total_packets_dropped,
327 		   total_packets_errors);
328 	printf("\n====================================================\n");
329 }
330 
331 static int
332 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
333 		struct l2fwd_crypto_params *cparams)
334 {
335 	struct rte_crypto_op **op_buffer;
336 	unsigned ret;
337 
338 	op_buffer = (struct rte_crypto_op **)
339 			qconf->op_buf[cparams->dev_id].buffer;
340 
341 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
342 			cparams->qp_id,	op_buffer, (uint16_t) n);
343 
344 	crypto_statistics[cparams->dev_id].enqueued += ret;
345 	if (unlikely(ret < n)) {
346 		crypto_statistics[cparams->dev_id].errors += (n - ret);
347 		do {
348 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
349 			rte_crypto_op_free(op_buffer[ret]);
350 		} while (++ret < n);
351 	}
352 
353 	return 0;
354 }
355 
356 static int
357 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
358 		struct l2fwd_crypto_params *cparams)
359 {
360 	unsigned lcore_id, len;
361 	struct lcore_queue_conf *qconf;
362 
363 	lcore_id = rte_lcore_id();
364 
365 	qconf = &lcore_queue_conf[lcore_id];
366 	len = qconf->op_buf[cparams->dev_id].len;
367 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
368 	len++;
369 
370 	/* enough ops to be sent */
371 	if (len == MAX_PKT_BURST) {
372 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
373 		len = 0;
374 	}
375 
376 	qconf->op_buf[cparams->dev_id].len = len;
377 	return 0;
378 }
379 
380 static int
381 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
382 		struct rte_crypto_op *op,
383 		struct l2fwd_crypto_params *cparams)
384 {
385 	struct ether_hdr *eth_hdr;
386 	struct ipv4_hdr *ip_hdr;
387 
388 	uint32_t ipdata_offset, data_len;
389 	uint32_t pad_len = 0;
390 	char *padding;
391 
392 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
393 
394 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
395 		return -1;
396 
397 	ipdata_offset = sizeof(struct ether_hdr);
398 
399 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
400 			ipdata_offset);
401 
402 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
403 			* IPV4_IHL_MULTIPLIER;
404 
405 
406 	/* Zero pad data to be crypto'd so it is block aligned */
407 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
408 
409 	if (cparams->do_hash && cparams->hash_verify)
410 		data_len -= cparams->digest_length;
411 
412 	if (cparams->do_cipher) {
413 		/*
414 		 * Following algorithms are block cipher algorithms,
415 		 * and might need padding
416 		 */
417 		switch (cparams->cipher_algo) {
418 		case RTE_CRYPTO_CIPHER_AES_CBC:
419 		case RTE_CRYPTO_CIPHER_AES_ECB:
420 		case RTE_CRYPTO_CIPHER_DES_CBC:
421 		case RTE_CRYPTO_CIPHER_3DES_CBC:
422 		case RTE_CRYPTO_CIPHER_3DES_ECB:
423 			if (data_len % cparams->block_size)
424 				pad_len = cparams->block_size -
425 					(data_len % cparams->block_size);
426 			break;
427 		default:
428 			pad_len = 0;
429 		}
430 
431 		if (pad_len) {
432 			padding = rte_pktmbuf_append(m, pad_len);
433 			if (unlikely(!padding))
434 				return -1;
435 
436 			data_len += pad_len;
437 			memset(padding, 0, pad_len);
438 		}
439 	}
440 
441 	/* Set crypto operation data parameters */
442 	rte_crypto_op_attach_sym_session(op, cparams->session);
443 
444 	if (cparams->do_hash) {
445 		if (cparams->auth_iv.length) {
446 			uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op,
447 						uint8_t *,
448 						IV_OFFSET +
449 						cparams->cipher_iv.length);
450 			/*
451 			 * Copy IV at the end of the crypto operation,
452 			 * after the cipher IV, if added
453 			 */
454 			rte_memcpy(iv_ptr, cparams->auth_iv.data,
455 					cparams->auth_iv.length);
456 		}
457 		if (!cparams->hash_verify) {
458 			/* Append space for digest to end of packet */
459 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
460 				cparams->digest_length);
461 		} else {
462 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
463 				uint8_t *) + ipdata_offset + data_len;
464 		}
465 
466 		op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m,
467 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
468 
469 		/* For wireless algorithms, offset/length must be in bits */
470 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
471 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
472 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
473 			op->sym->auth.data.offset = ipdata_offset << 3;
474 			op->sym->auth.data.length = data_len << 3;
475 		} else {
476 			op->sym->auth.data.offset = ipdata_offset;
477 			op->sym->auth.data.length = data_len;
478 		}
479 	}
480 
481 	if (cparams->do_cipher) {
482 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
483 							IV_OFFSET);
484 		/* Copy IV at the end of the crypto operation */
485 		rte_memcpy(iv_ptr, cparams->cipher_iv.data,
486 				cparams->cipher_iv.length);
487 
488 		/* For wireless algorithms, offset/length must be in bits */
489 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
490 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
491 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
492 			op->sym->cipher.data.offset = ipdata_offset << 3;
493 			op->sym->cipher.data.length = data_len << 3;
494 		} else {
495 			op->sym->cipher.data.offset = ipdata_offset;
496 			op->sym->cipher.data.length = data_len;
497 		}
498 	}
499 
500 	if (cparams->do_aead) {
501 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
502 							IV_OFFSET);
503 		/* Copy IV at the end of the crypto operation */
504 		/*
505 		 * If doing AES-CCM, nonce is copied one byte
506 		 * after the start of IV field
507 		 */
508 		if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
509 			rte_memcpy(iv_ptr + 1, cparams->aead_iv.data,
510 					cparams->aead_iv.length);
511 		else
512 			rte_memcpy(iv_ptr, cparams->aead_iv.data,
513 					cparams->aead_iv.length);
514 
515 		op->sym->aead.data.offset = ipdata_offset;
516 		op->sym->aead.data.length = data_len;
517 
518 		if (!cparams->hash_verify) {
519 			/* Append space for digest to end of packet */
520 			op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m,
521 				cparams->digest_length);
522 		} else {
523 			op->sym->aead.digest.data = rte_pktmbuf_mtod(m,
524 				uint8_t *) + ipdata_offset + data_len;
525 		}
526 
527 		op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m,
528 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
529 
530 		if (cparams->aad.length) {
531 			op->sym->aead.aad.data = cparams->aad.data;
532 			op->sym->aead.aad.phys_addr = cparams->aad.phys_addr;
533 		}
534 	}
535 
536 	op->sym->m_src = m;
537 
538 	return l2fwd_crypto_enqueue(op, cparams);
539 }
540 
541 
542 /* Send the burst of packets on an output interface */
543 static int
544 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
545 		uint16_t port)
546 {
547 	struct rte_mbuf **pkt_buffer;
548 	unsigned ret;
549 
550 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
551 
552 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
553 	port_statistics[port].tx += ret;
554 	if (unlikely(ret < n)) {
555 		port_statistics[port].dropped += (n - ret);
556 		do {
557 			rte_pktmbuf_free(pkt_buffer[ret]);
558 		} while (++ret < n);
559 	}
560 
561 	return 0;
562 }
563 
564 /* Enqueue packets for TX and prepare them to be sent */
565 static int
566 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
567 {
568 	unsigned lcore_id, len;
569 	struct lcore_queue_conf *qconf;
570 
571 	lcore_id = rte_lcore_id();
572 
573 	qconf = &lcore_queue_conf[lcore_id];
574 	len = qconf->pkt_buf[port].len;
575 	qconf->pkt_buf[port].buffer[len] = m;
576 	len++;
577 
578 	/* enough pkts to be sent */
579 	if (unlikely(len == MAX_PKT_BURST)) {
580 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
581 		len = 0;
582 	}
583 
584 	qconf->pkt_buf[port].len = len;
585 	return 0;
586 }
587 
588 static void
589 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid)
590 {
591 	struct ether_hdr *eth;
592 	void *tmp;
593 
594 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
595 
596 	/* 02:00:00:00:00:xx */
597 	tmp = &eth->d_addr.addr_bytes[0];
598 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
599 
600 	/* src addr */
601 	ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], &eth->s_addr);
602 }
603 
604 static void
605 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
606 		struct l2fwd_crypto_options *options)
607 {
608 	uint16_t dst_port;
609 
610 	dst_port = l2fwd_dst_ports[portid];
611 
612 	if (options->mac_updating)
613 		l2fwd_mac_updating(m, dst_port);
614 
615 	l2fwd_send_packet(m, dst_port);
616 }
617 
618 /** Generate random key */
619 static void
620 generate_random_key(uint8_t *key, unsigned length)
621 {
622 	int fd;
623 	int ret;
624 
625 	fd = open("/dev/urandom", O_RDONLY);
626 	if (fd < 0)
627 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
628 
629 	ret = read(fd, key, length);
630 	close(fd);
631 
632 	if (ret != (signed)length)
633 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
634 }
635 
636 static struct rte_cryptodev_sym_session *
637 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
638 {
639 	struct rte_crypto_sym_xform *first_xform;
640 	struct rte_cryptodev_sym_session *session;
641 	int retval = rte_cryptodev_socket_id(cdev_id);
642 
643 	if (retval < 0)
644 		return NULL;
645 
646 	uint8_t socket_id = (uint8_t) retval;
647 	struct rte_mempool *sess_mp = session_pool_socket[socket_id];
648 
649 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
650 		first_xform = &options->aead_xform;
651 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
652 		first_xform = &options->cipher_xform;
653 		first_xform->next = &options->auth_xform;
654 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
655 		first_xform = &options->auth_xform;
656 		first_xform->next = &options->cipher_xform;
657 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
658 		first_xform = &options->cipher_xform;
659 	} else {
660 		first_xform = &options->auth_xform;
661 	}
662 
663 	session = rte_cryptodev_sym_session_create(sess_mp);
664 
665 	if (session == NULL)
666 		return NULL;
667 
668 	if (rte_cryptodev_sym_session_init(cdev_id, session,
669 				first_xform, sess_mp) < 0)
670 		return NULL;
671 
672 	return session;
673 }
674 
675 static void
676 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
677 
678 /* main processing loop */
679 static void
680 l2fwd_main_loop(struct l2fwd_crypto_options *options)
681 {
682 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
683 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
684 
685 	unsigned lcore_id = rte_lcore_id();
686 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
687 	unsigned int i, j, nb_rx, len;
688 	uint16_t portid;
689 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
690 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
691 			US_PER_S * BURST_TX_DRAIN_US;
692 	struct l2fwd_crypto_params *cparams;
693 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
694 	struct rte_cryptodev_sym_session *session;
695 
696 	if (qconf->nb_rx_ports == 0) {
697 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
698 		return;
699 	}
700 
701 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
702 
703 	for (i = 0; i < qconf->nb_rx_ports; i++) {
704 
705 		portid = qconf->rx_port_list[i];
706 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
707 			portid);
708 	}
709 
710 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
711 		port_cparams[i].do_cipher = 0;
712 		port_cparams[i].do_hash = 0;
713 		port_cparams[i].do_aead = 0;
714 
715 		switch (options->xform_chain) {
716 		case L2FWD_CRYPTO_AEAD:
717 			port_cparams[i].do_aead = 1;
718 			break;
719 		case L2FWD_CRYPTO_CIPHER_HASH:
720 		case L2FWD_CRYPTO_HASH_CIPHER:
721 			port_cparams[i].do_cipher = 1;
722 			port_cparams[i].do_hash = 1;
723 			break;
724 		case L2FWD_CRYPTO_HASH_ONLY:
725 			port_cparams[i].do_hash = 1;
726 			break;
727 		case L2FWD_CRYPTO_CIPHER_ONLY:
728 			port_cparams[i].do_cipher = 1;
729 			break;
730 		}
731 
732 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
733 		port_cparams[i].qp_id = 0;
734 
735 		port_cparams[i].block_size = options->block_size;
736 
737 		if (port_cparams[i].do_hash) {
738 			port_cparams[i].auth_iv.data = options->auth_iv.data;
739 			port_cparams[i].auth_iv.length = options->auth_iv.length;
740 			if (!options->auth_iv_param)
741 				generate_random_key(port_cparams[i].auth_iv.data,
742 						port_cparams[i].auth_iv.length);
743 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
744 				port_cparams[i].hash_verify = 1;
745 			else
746 				port_cparams[i].hash_verify = 0;
747 
748 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
749 			port_cparams[i].digest_length =
750 					options->auth_xform.auth.digest_length;
751 			/* Set IV parameters */
752 			if (options->auth_iv.length) {
753 				options->auth_xform.auth.iv.offset =
754 					IV_OFFSET + options->cipher_iv.length;
755 				options->auth_xform.auth.iv.length =
756 					options->auth_iv.length;
757 			}
758 		}
759 
760 		if (port_cparams[i].do_aead) {
761 			port_cparams[i].aead_iv.data = options->aead_iv.data;
762 			port_cparams[i].aead_iv.length = options->aead_iv.length;
763 			if (!options->aead_iv_param)
764 				generate_random_key(port_cparams[i].aead_iv.data,
765 						port_cparams[i].aead_iv.length);
766 			port_cparams[i].aead_algo = options->aead_xform.aead.algo;
767 			port_cparams[i].digest_length =
768 					options->aead_xform.aead.digest_length;
769 			if (options->aead_xform.aead.aad_length) {
770 				port_cparams[i].aad.data = options->aad.data;
771 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
772 				port_cparams[i].aad.length = options->aad.length;
773 				if (!options->aad_param)
774 					generate_random_key(port_cparams[i].aad.data,
775 						port_cparams[i].aad.length);
776 				/*
777 				 * If doing AES-CCM, first 18 bytes has to be reserved,
778 				 * and actual AAD should start from byte 18
779 				 */
780 				if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
781 					memmove(port_cparams[i].aad.data + 18,
782 							port_cparams[i].aad.data,
783 							port_cparams[i].aad.length);
784 
785 			} else
786 				port_cparams[i].aad.length = 0;
787 
788 			if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT)
789 				port_cparams[i].hash_verify = 1;
790 			else
791 				port_cparams[i].hash_verify = 0;
792 
793 			/* Set IV parameters */
794 			options->aead_xform.aead.iv.offset = IV_OFFSET;
795 			options->aead_xform.aead.iv.length = options->aead_iv.length;
796 		}
797 
798 		if (port_cparams[i].do_cipher) {
799 			port_cparams[i].cipher_iv.data = options->cipher_iv.data;
800 			port_cparams[i].cipher_iv.length = options->cipher_iv.length;
801 			if (!options->cipher_iv_param)
802 				generate_random_key(port_cparams[i].cipher_iv.data,
803 						port_cparams[i].cipher_iv.length);
804 
805 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
806 			/* Set IV parameters */
807 			options->cipher_xform.cipher.iv.offset = IV_OFFSET;
808 			options->cipher_xform.cipher.iv.length =
809 						options->cipher_iv.length;
810 		}
811 
812 		session = initialize_crypto_session(options,
813 				port_cparams[i].dev_id);
814 		if (session == NULL)
815 			rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n");
816 
817 		port_cparams[i].session = session;
818 
819 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
820 				port_cparams[i].dev_id);
821 	}
822 
823 	l2fwd_crypto_options_print(options);
824 
825 	/*
826 	 * Initialize previous tsc timestamp before the loop,
827 	 * to avoid showing the port statistics immediately,
828 	 * so user can see the crypto information.
829 	 */
830 	prev_tsc = rte_rdtsc();
831 	while (1) {
832 
833 		cur_tsc = rte_rdtsc();
834 
835 		/*
836 		 * Crypto device/TX burst queue drain
837 		 */
838 		diff_tsc = cur_tsc - prev_tsc;
839 		if (unlikely(diff_tsc > drain_tsc)) {
840 			/* Enqueue all crypto ops remaining in buffers */
841 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
842 				cparams = &port_cparams[i];
843 				len = qconf->op_buf[cparams->dev_id].len;
844 				l2fwd_crypto_send_burst(qconf, len, cparams);
845 				qconf->op_buf[cparams->dev_id].len = 0;
846 			}
847 			/* Transmit all packets remaining in buffers */
848 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
849 				if (qconf->pkt_buf[portid].len == 0)
850 					continue;
851 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
852 						 qconf->pkt_buf[portid].len,
853 						 portid);
854 				qconf->pkt_buf[portid].len = 0;
855 			}
856 
857 			/* if timer is enabled */
858 			if (timer_period > 0) {
859 
860 				/* advance the timer */
861 				timer_tsc += diff_tsc;
862 
863 				/* if timer has reached its timeout */
864 				if (unlikely(timer_tsc >=
865 						(uint64_t)timer_period)) {
866 
867 					/* do this only on master core */
868 					if (lcore_id == rte_get_master_lcore()
869 						&& options->refresh_period) {
870 						print_stats();
871 						timer_tsc = 0;
872 					}
873 				}
874 			}
875 
876 			prev_tsc = cur_tsc;
877 		}
878 
879 		/*
880 		 * Read packet from RX queues
881 		 */
882 		for (i = 0; i < qconf->nb_rx_ports; i++) {
883 			portid = qconf->rx_port_list[i];
884 
885 			cparams = &port_cparams[i];
886 
887 			nb_rx = rte_eth_rx_burst(portid, 0,
888 						 pkts_burst, MAX_PKT_BURST);
889 
890 			port_statistics[portid].rx += nb_rx;
891 
892 			if (nb_rx) {
893 				/*
894 				 * If we can't allocate a crypto_ops, then drop
895 				 * the rest of the burst and dequeue and
896 				 * process the packets to free offload structs
897 				 */
898 				if (rte_crypto_op_bulk_alloc(
899 						l2fwd_crypto_op_pool,
900 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
901 						ops_burst, nb_rx) !=
902 								nb_rx) {
903 					for (j = 0; j < nb_rx; j++)
904 						rte_pktmbuf_free(pkts_burst[j]);
905 
906 					nb_rx = 0;
907 				}
908 
909 				/* Enqueue packets from Crypto device*/
910 				for (j = 0; j < nb_rx; j++) {
911 					m = pkts_burst[j];
912 
913 					l2fwd_simple_crypto_enqueue(m,
914 							ops_burst[j], cparams);
915 				}
916 			}
917 
918 			/* Dequeue packets from Crypto device */
919 			do {
920 				nb_rx = rte_cryptodev_dequeue_burst(
921 						cparams->dev_id, cparams->qp_id,
922 						ops_burst, MAX_PKT_BURST);
923 
924 				crypto_statistics[cparams->dev_id].dequeued +=
925 						nb_rx;
926 
927 				/* Forward crypto'd packets */
928 				for (j = 0; j < nb_rx; j++) {
929 					m = ops_burst[j]->sym->m_src;
930 
931 					rte_crypto_op_free(ops_burst[j]);
932 					l2fwd_simple_forward(m, portid,
933 							options);
934 				}
935 			} while (nb_rx == MAX_PKT_BURST);
936 		}
937 	}
938 }
939 
940 static int
941 l2fwd_launch_one_lcore(void *arg)
942 {
943 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
944 	return 0;
945 }
946 
947 /* Display command line arguments usage */
948 static void
949 l2fwd_crypto_usage(const char *prgname)
950 {
951 	printf("%s [EAL options] --\n"
952 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
953 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
954 		"  -s manage all ports from single lcore\n"
955 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
956 		" (0 to disable, 10 default, 86400 maximum)\n"
957 
958 		"  --cdev_type HW / SW / ANY\n"
959 		"  --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
960 		" HASH_ONLY / AEAD\n"
961 
962 		"  --cipher_algo ALGO\n"
963 		"  --cipher_op ENCRYPT / DECRYPT\n"
964 		"  --cipher_key KEY (bytes separated with \":\")\n"
965 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
966 		"  --cipher_iv IV (bytes separated with \":\")\n"
967 		"  --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
968 
969 		"  --auth_algo ALGO\n"
970 		"  --auth_op GENERATE / VERIFY\n"
971 		"  --auth_key KEY (bytes separated with \":\")\n"
972 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
973 		"  --auth_iv IV (bytes separated with \":\")\n"
974 		"  --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
975 
976 		"  --aead_algo ALGO\n"
977 		"  --aead_op ENCRYPT / DECRYPT\n"
978 		"  --aead_key KEY (bytes separated with \":\")\n"
979 		"  --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
980 		"  --aead_iv IV (bytes separated with \":\")\n"
981 		"  --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
982 		"  --aad AAD (bytes separated with \":\")\n"
983 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
984 
985 		"  --digest_size SIZE: size of digest to be generated/verified\n"
986 
987 		"  --sessionless\n"
988 		"  --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n"
989 
990 		"  --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n"
991 		"      When enabled:\n"
992 		"       - The source MAC address is replaced by the TX port MAC address\n"
993 		"       - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n",
994 	       prgname);
995 }
996 
997 /** Parse crypto device type command line argument */
998 static int
999 parse_cryptodev_type(enum cdev_type *type, char *optarg)
1000 {
1001 	if (strcmp("HW", optarg) == 0) {
1002 		*type = CDEV_TYPE_HW;
1003 		return 0;
1004 	} else if (strcmp("SW", optarg) == 0) {
1005 		*type = CDEV_TYPE_SW;
1006 		return 0;
1007 	} else if (strcmp("ANY", optarg) == 0) {
1008 		*type = CDEV_TYPE_ANY;
1009 		return 0;
1010 	}
1011 
1012 	return -1;
1013 }
1014 
1015 /** Parse crypto chain xform command line argument */
1016 static int
1017 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
1018 {
1019 	if (strcmp("CIPHER_HASH", optarg) == 0) {
1020 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1021 		return 0;
1022 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
1023 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
1024 		return 0;
1025 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
1026 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
1027 		return 0;
1028 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
1029 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
1030 		return 0;
1031 	} else if (strcmp("AEAD", optarg) == 0) {
1032 		options->xform_chain = L2FWD_CRYPTO_AEAD;
1033 		return 0;
1034 	}
1035 
1036 	return -1;
1037 }
1038 
1039 /** Parse crypto cipher algo option command line argument */
1040 static int
1041 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
1042 {
1043 
1044 	if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) {
1045 		RTE_LOG(ERR, USER1, "Cipher algorithm specified "
1046 				"not supported!\n");
1047 		return -1;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /** Parse crypto cipher operation command line argument */
1054 static int
1055 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
1056 {
1057 	if (strcmp("ENCRYPT", optarg) == 0) {
1058 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1059 		return 0;
1060 	} else if (strcmp("DECRYPT", optarg) == 0) {
1061 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1062 		return 0;
1063 	}
1064 
1065 	printf("Cipher operation not supported!\n");
1066 	return -1;
1067 }
1068 
1069 /** Parse bytes from command line argument */
1070 static int
1071 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size)
1072 {
1073 	unsigned byte_count;
1074 	char *token;
1075 
1076 	errno = 0;
1077 	for (byte_count = 0, token = strtok(input_arg, ":");
1078 			(byte_count < max_size) && (token != NULL);
1079 			token = strtok(NULL, ":")) {
1080 
1081 		int number = (int)strtol(token, NULL, 16);
1082 
1083 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
1084 			return -1;
1085 
1086 		data[byte_count++] = (uint8_t)number;
1087 	}
1088 
1089 	return byte_count;
1090 }
1091 
1092 /** Parse size param*/
1093 static int
1094 parse_size(int *size, const char *q_arg)
1095 {
1096 	char *end = NULL;
1097 	unsigned long n;
1098 
1099 	/* parse hexadecimal string */
1100 	n = strtoul(q_arg, &end, 10);
1101 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1102 		n = 0;
1103 
1104 	if (n == 0) {
1105 		printf("invalid size\n");
1106 		return -1;
1107 	}
1108 
1109 	*size = n;
1110 	return 0;
1111 }
1112 
1113 /** Parse crypto cipher operation command line argument */
1114 static int
1115 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1116 {
1117 	if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) {
1118 		RTE_LOG(ERR, USER1, "Authentication algorithm specified "
1119 				"not supported!\n");
1120 		return -1;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 static int
1127 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1128 {
1129 	if (strcmp("VERIFY", optarg) == 0) {
1130 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1131 		return 0;
1132 	} else if (strcmp("GENERATE", optarg) == 0) {
1133 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1134 		return 0;
1135 	}
1136 
1137 	printf("Authentication operation specified not supported!\n");
1138 	return -1;
1139 }
1140 
1141 static int
1142 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg)
1143 {
1144 	if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) {
1145 		RTE_LOG(ERR, USER1, "AEAD algorithm specified "
1146 				"not supported!\n");
1147 		return -1;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int
1154 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg)
1155 {
1156 	if (strcmp("ENCRYPT", optarg) == 0) {
1157 		*op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1158 		return 0;
1159 	} else if (strcmp("DECRYPT", optarg) == 0) {
1160 		*op = RTE_CRYPTO_AEAD_OP_DECRYPT;
1161 		return 0;
1162 	}
1163 
1164 	printf("AEAD operation specified not supported!\n");
1165 	return -1;
1166 }
1167 static int
1168 parse_cryptodev_mask(struct l2fwd_crypto_options *options,
1169 		const char *q_arg)
1170 {
1171 	char *end = NULL;
1172 	uint64_t pm;
1173 
1174 	/* parse hexadecimal string */
1175 	pm = strtoul(q_arg, &end, 16);
1176 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1177 		pm = 0;
1178 
1179 	options->cryptodev_mask = pm;
1180 	if (options->cryptodev_mask == 0) {
1181 		printf("invalid cryptodev_mask specified\n");
1182 		return -1;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 /** Parse long options */
1189 static int
1190 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1191 		struct option *lgopts, int option_index)
1192 {
1193 	int retval;
1194 
1195 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1196 		retval = parse_cryptodev_type(&options->type, optarg);
1197 		if (retval == 0)
1198 			snprintf(options->string_type, MAX_STR_LEN,
1199 				"%s", optarg);
1200 		return retval;
1201 	}
1202 
1203 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1204 		return parse_crypto_opt_chain(options, optarg);
1205 
1206 	/* Cipher options */
1207 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1208 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1209 				optarg);
1210 
1211 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1212 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1213 				optarg);
1214 
1215 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1216 		options->ckey_param = 1;
1217 		options->cipher_xform.cipher.key.length =
1218 			parse_bytes(options->cipher_xform.cipher.key.data, optarg,
1219 					MAX_KEY_SIZE);
1220 		if (options->cipher_xform.cipher.key.length > 0)
1221 			return 0;
1222 		else
1223 			return -1;
1224 	}
1225 
1226 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1227 		return parse_size(&options->ckey_random_size, optarg);
1228 
1229 	else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
1230 		options->cipher_iv_param = 1;
1231 		options->cipher_iv.length =
1232 			parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE);
1233 		if (options->cipher_iv.length > 0)
1234 			return 0;
1235 		else
1236 			return -1;
1237 	}
1238 
1239 	else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
1240 		return parse_size(&options->cipher_iv_random_size, optarg);
1241 
1242 	/* Authentication options */
1243 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1244 		return parse_auth_algo(&options->auth_xform.auth.algo,
1245 				optarg);
1246 	}
1247 
1248 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1249 		return parse_auth_op(&options->auth_xform.auth.op,
1250 				optarg);
1251 
1252 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1253 		options->akey_param = 1;
1254 		options->auth_xform.auth.key.length =
1255 			parse_bytes(options->auth_xform.auth.key.data, optarg,
1256 					MAX_KEY_SIZE);
1257 		if (options->auth_xform.auth.key.length > 0)
1258 			return 0;
1259 		else
1260 			return -1;
1261 	}
1262 
1263 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1264 		return parse_size(&options->akey_random_size, optarg);
1265 	}
1266 
1267 	else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
1268 		options->auth_iv_param = 1;
1269 		options->auth_iv.length =
1270 			parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE);
1271 		if (options->auth_iv.length > 0)
1272 			return 0;
1273 		else
1274 			return -1;
1275 	}
1276 
1277 	else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
1278 		return parse_size(&options->auth_iv_random_size, optarg);
1279 
1280 	/* AEAD options */
1281 	else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
1282 		return parse_aead_algo(&options->aead_xform.aead.algo,
1283 				optarg);
1284 	}
1285 
1286 	else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
1287 		return parse_aead_op(&options->aead_xform.aead.op,
1288 				optarg);
1289 
1290 	else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
1291 		options->aead_key_param = 1;
1292 		options->aead_xform.aead.key.length =
1293 			parse_bytes(options->aead_xform.aead.key.data, optarg,
1294 					MAX_KEY_SIZE);
1295 		if (options->aead_xform.aead.key.length > 0)
1296 			return 0;
1297 		else
1298 			return -1;
1299 	}
1300 
1301 	else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
1302 		return parse_size(&options->aead_key_random_size, optarg);
1303 
1304 
1305 	else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
1306 		options->aead_iv_param = 1;
1307 		options->aead_iv.length =
1308 			parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE);
1309 		if (options->aead_iv.length > 0)
1310 			return 0;
1311 		else
1312 			return -1;
1313 	}
1314 
1315 	else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
1316 		return parse_size(&options->aead_iv_random_size, optarg);
1317 
1318 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1319 		options->aad_param = 1;
1320 		options->aad.length =
1321 			parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE);
1322 		if (options->aad.length > 0)
1323 			return 0;
1324 		else
1325 			return -1;
1326 	}
1327 
1328 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1329 		return parse_size(&options->aad_random_size, optarg);
1330 	}
1331 
1332 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1333 		return parse_size(&options->digest_size, optarg);
1334 	}
1335 
1336 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1337 		options->sessionless = 1;
1338 		return 0;
1339 	}
1340 
1341 	else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
1342 		return parse_cryptodev_mask(options, optarg);
1343 
1344 	else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) {
1345 		options->mac_updating = 1;
1346 		return 0;
1347 	}
1348 
1349 	else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) {
1350 		options->mac_updating = 0;
1351 		return 0;
1352 	}
1353 
1354 	return -1;
1355 }
1356 
1357 /** Parse port mask */
1358 static int
1359 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1360 		const char *q_arg)
1361 {
1362 	char *end = NULL;
1363 	unsigned long pm;
1364 
1365 	/* parse hexadecimal string */
1366 	pm = strtoul(q_arg, &end, 16);
1367 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1368 		pm = 0;
1369 
1370 	options->portmask = pm;
1371 	if (options->portmask == 0) {
1372 		printf("invalid portmask specified\n");
1373 		return -1;
1374 	}
1375 
1376 	return pm;
1377 }
1378 
1379 /** Parse number of queues */
1380 static int
1381 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1382 		const char *q_arg)
1383 {
1384 	char *end = NULL;
1385 	unsigned long n;
1386 
1387 	/* parse hexadecimal string */
1388 	n = strtoul(q_arg, &end, 10);
1389 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1390 		n = 0;
1391 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1392 		n = 0;
1393 
1394 	options->nb_ports_per_lcore = n;
1395 	if (options->nb_ports_per_lcore == 0) {
1396 		printf("invalid number of ports selected\n");
1397 		return -1;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 /** Parse timer period */
1404 static int
1405 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1406 		const char *q_arg)
1407 {
1408 	char *end = NULL;
1409 	unsigned long n;
1410 
1411 	/* parse number string */
1412 	n = (unsigned)strtol(q_arg, &end, 10);
1413 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1414 		n = 0;
1415 
1416 	if (n >= MAX_TIMER_PERIOD) {
1417 		printf("Warning refresh period specified %lu is greater than "
1418 				"max value %lu! using max value",
1419 				n, MAX_TIMER_PERIOD);
1420 		n = MAX_TIMER_PERIOD;
1421 	}
1422 
1423 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1424 
1425 	return 0;
1426 }
1427 
1428 /** Generate default options for application */
1429 static void
1430 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1431 {
1432 	options->portmask = 0xffffffff;
1433 	options->nb_ports_per_lcore = 1;
1434 	options->refresh_period = 10000;
1435 	options->single_lcore = 0;
1436 	options->sessionless = 0;
1437 
1438 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1439 
1440 	/* Cipher Data */
1441 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1442 	options->cipher_xform.next = NULL;
1443 	options->ckey_param = 0;
1444 	options->ckey_random_size = -1;
1445 	options->cipher_xform.cipher.key.length = 0;
1446 	options->cipher_iv_param = 0;
1447 	options->cipher_iv_random_size = -1;
1448 	options->cipher_iv.length = 0;
1449 
1450 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1451 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1452 
1453 	/* Authentication Data */
1454 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1455 	options->auth_xform.next = NULL;
1456 	options->akey_param = 0;
1457 	options->akey_random_size = -1;
1458 	options->auth_xform.auth.key.length = 0;
1459 	options->auth_iv_param = 0;
1460 	options->auth_iv_random_size = -1;
1461 	options->auth_iv.length = 0;
1462 
1463 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1464 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1465 
1466 	/* AEAD Data */
1467 	options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD;
1468 	options->aead_xform.next = NULL;
1469 	options->aead_key_param = 0;
1470 	options->aead_key_random_size = -1;
1471 	options->aead_xform.aead.key.length = 0;
1472 	options->aead_iv_param = 0;
1473 	options->aead_iv_random_size = -1;
1474 	options->aead_iv.length = 0;
1475 
1476 	options->aead_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM;
1477 	options->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1478 
1479 	options->aad_param = 0;
1480 	options->aad_random_size = -1;
1481 	options->aad.length = 0;
1482 
1483 	options->digest_size = -1;
1484 
1485 	options->type = CDEV_TYPE_ANY;
1486 	options->cryptodev_mask = UINT64_MAX;
1487 
1488 	options->mac_updating = 1;
1489 }
1490 
1491 static void
1492 display_cipher_info(struct l2fwd_crypto_options *options)
1493 {
1494 	printf("\n---- Cipher information ---\n");
1495 	printf("Algorithm: %s\n",
1496 		rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]);
1497 	rte_hexdump(stdout, "Cipher key:",
1498 			options->cipher_xform.cipher.key.data,
1499 			options->cipher_xform.cipher.key.length);
1500 	rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length);
1501 }
1502 
1503 static void
1504 display_auth_info(struct l2fwd_crypto_options *options)
1505 {
1506 	printf("\n---- Authentication information ---\n");
1507 	printf("Algorithm: %s\n",
1508 		rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]);
1509 	rte_hexdump(stdout, "Auth key:",
1510 			options->auth_xform.auth.key.data,
1511 			options->auth_xform.auth.key.length);
1512 	rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length);
1513 }
1514 
1515 static void
1516 display_aead_info(struct l2fwd_crypto_options *options)
1517 {
1518 	printf("\n---- AEAD information ---\n");
1519 	printf("Algorithm: %s\n",
1520 		rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]);
1521 	rte_hexdump(stdout, "AEAD key:",
1522 			options->aead_xform.aead.key.data,
1523 			options->aead_xform.aead.key.length);
1524 	rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length);
1525 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1526 }
1527 
1528 static void
1529 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1530 {
1531 	char string_cipher_op[MAX_STR_LEN];
1532 	char string_auth_op[MAX_STR_LEN];
1533 	char string_aead_op[MAX_STR_LEN];
1534 
1535 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1536 		strcpy(string_cipher_op, "Encrypt");
1537 	else
1538 		strcpy(string_cipher_op, "Decrypt");
1539 
1540 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1541 		strcpy(string_auth_op, "Auth generate");
1542 	else
1543 		strcpy(string_auth_op, "Auth verify");
1544 
1545 	if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
1546 		strcpy(string_aead_op, "Authenticated encryption");
1547 	else
1548 		strcpy(string_aead_op, "Authenticated decryption");
1549 
1550 
1551 	printf("Options:-\nn");
1552 	printf("portmask: %x\n", options->portmask);
1553 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1554 	printf("refresh period : %u\n", options->refresh_period);
1555 	printf("single lcore mode: %s\n",
1556 			options->single_lcore ? "enabled" : "disabled");
1557 	printf("stats_printing: %s\n",
1558 			options->refresh_period == 0 ? "disabled" : "enabled");
1559 
1560 	printf("sessionless crypto: %s\n",
1561 			options->sessionless ? "enabled" : "disabled");
1562 
1563 	if (options->ckey_param && (options->ckey_random_size != -1))
1564 		printf("Cipher key already parsed, ignoring size of random key\n");
1565 
1566 	if (options->akey_param && (options->akey_random_size != -1))
1567 		printf("Auth key already parsed, ignoring size of random key\n");
1568 
1569 	if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
1570 		printf("Cipher IV already parsed, ignoring size of random IV\n");
1571 
1572 	if (options->auth_iv_param && (options->auth_iv_random_size != -1))
1573 		printf("Auth IV already parsed, ignoring size of random IV\n");
1574 
1575 	if (options->aad_param && (options->aad_random_size != -1))
1576 		printf("AAD already parsed, ignoring size of random AAD\n");
1577 
1578 	printf("\nCrypto chain: ");
1579 	switch (options->xform_chain) {
1580 	case L2FWD_CRYPTO_AEAD:
1581 		printf("Input --> %s --> Output\n", string_aead_op);
1582 		display_aead_info(options);
1583 		break;
1584 	case L2FWD_CRYPTO_CIPHER_HASH:
1585 		printf("Input --> %s --> %s --> Output\n",
1586 			string_cipher_op, string_auth_op);
1587 		display_cipher_info(options);
1588 		display_auth_info(options);
1589 		break;
1590 	case L2FWD_CRYPTO_HASH_CIPHER:
1591 		printf("Input --> %s --> %s --> Output\n",
1592 			string_auth_op, string_cipher_op);
1593 		display_cipher_info(options);
1594 		display_auth_info(options);
1595 		break;
1596 	case L2FWD_CRYPTO_HASH_ONLY:
1597 		printf("Input --> %s --> Output\n", string_auth_op);
1598 		display_auth_info(options);
1599 		break;
1600 	case L2FWD_CRYPTO_CIPHER_ONLY:
1601 		printf("Input --> %s --> Output\n", string_cipher_op);
1602 		display_cipher_info(options);
1603 		break;
1604 	}
1605 }
1606 
1607 /* Parse the argument given in the command line of the application */
1608 static int
1609 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1610 		int argc, char **argv)
1611 {
1612 	int opt, retval, option_index;
1613 	char **argvopt = argv, *prgname = argv[0];
1614 
1615 	static struct option lgopts[] = {
1616 			{ "sessionless", no_argument, 0, 0 },
1617 
1618 			{ "cdev_type", required_argument, 0, 0 },
1619 			{ "chain", required_argument, 0, 0 },
1620 
1621 			{ "cipher_algo", required_argument, 0, 0 },
1622 			{ "cipher_op", required_argument, 0, 0 },
1623 			{ "cipher_key", required_argument, 0, 0 },
1624 			{ "cipher_key_random_size", required_argument, 0, 0 },
1625 			{ "cipher_iv", required_argument, 0, 0 },
1626 			{ "cipher_iv_random_size", required_argument, 0, 0 },
1627 
1628 			{ "auth_algo", required_argument, 0, 0 },
1629 			{ "auth_op", required_argument, 0, 0 },
1630 			{ "auth_key", required_argument, 0, 0 },
1631 			{ "auth_key_random_size", required_argument, 0, 0 },
1632 			{ "auth_iv", required_argument, 0, 0 },
1633 			{ "auth_iv_random_size", required_argument, 0, 0 },
1634 
1635 			{ "aead_algo", required_argument, 0, 0 },
1636 			{ "aead_op", required_argument, 0, 0 },
1637 			{ "aead_key", required_argument, 0, 0 },
1638 			{ "aead_key_random_size", required_argument, 0, 0 },
1639 			{ "aead_iv", required_argument, 0, 0 },
1640 			{ "aead_iv_random_size", required_argument, 0, 0 },
1641 
1642 			{ "aad", required_argument, 0, 0 },
1643 			{ "aad_random_size", required_argument, 0, 0 },
1644 
1645 			{ "digest_size", required_argument, 0, 0 },
1646 
1647 			{ "sessionless", no_argument, 0, 0 },
1648 			{ "cryptodev_mask", required_argument, 0, 0},
1649 
1650 			{ "mac-updating", no_argument, 0, 0},
1651 			{ "no-mac-updating", no_argument, 0, 0},
1652 
1653 			{ NULL, 0, 0, 0 }
1654 	};
1655 
1656 	l2fwd_crypto_default_options(options);
1657 
1658 	while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
1659 			&option_index)) != EOF) {
1660 		switch (opt) {
1661 		/* long options */
1662 		case 0:
1663 			retval = l2fwd_crypto_parse_args_long_options(options,
1664 					lgopts, option_index);
1665 			if (retval < 0) {
1666 				l2fwd_crypto_usage(prgname);
1667 				return -1;
1668 			}
1669 			break;
1670 
1671 		/* portmask */
1672 		case 'p':
1673 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1674 			if (retval < 0) {
1675 				l2fwd_crypto_usage(prgname);
1676 				return -1;
1677 			}
1678 			break;
1679 
1680 		/* nqueue */
1681 		case 'q':
1682 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1683 			if (retval < 0) {
1684 				l2fwd_crypto_usage(prgname);
1685 				return -1;
1686 			}
1687 			break;
1688 
1689 		/* single  */
1690 		case 's':
1691 			options->single_lcore = 1;
1692 
1693 			break;
1694 
1695 		/* timer period */
1696 		case 'T':
1697 			retval = l2fwd_crypto_parse_timer_period(options,
1698 					optarg);
1699 			if (retval < 0) {
1700 				l2fwd_crypto_usage(prgname);
1701 				return -1;
1702 			}
1703 			break;
1704 
1705 		default:
1706 			l2fwd_crypto_usage(prgname);
1707 			return -1;
1708 		}
1709 	}
1710 
1711 
1712 	if (optind >= 0)
1713 		argv[optind-1] = prgname;
1714 
1715 	retval = optind-1;
1716 	optind = 1; /* reset getopt lib */
1717 
1718 	return retval;
1719 }
1720 
1721 /* Check the link status of all ports in up to 9s, and print them finally */
1722 static void
1723 check_all_ports_link_status(uint32_t port_mask)
1724 {
1725 #define CHECK_INTERVAL 100 /* 100ms */
1726 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1727 	uint16_t portid;
1728 	uint8_t count, all_ports_up, print_flag = 0;
1729 	struct rte_eth_link link;
1730 
1731 	printf("\nChecking link status");
1732 	fflush(stdout);
1733 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1734 		all_ports_up = 1;
1735 		RTE_ETH_FOREACH_DEV(portid) {
1736 			if ((port_mask & (1 << portid)) == 0)
1737 				continue;
1738 			memset(&link, 0, sizeof(link));
1739 			rte_eth_link_get_nowait(portid, &link);
1740 			/* print link status if flag set */
1741 			if (print_flag == 1) {
1742 				if (link.link_status)
1743 					printf(
1744 					"Port%d Link Up. Speed %u Mbps - %s\n",
1745 						portid, link.link_speed,
1746 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1747 					("full-duplex") : ("half-duplex\n"));
1748 				else
1749 					printf("Port %d Link Down\n", portid);
1750 				continue;
1751 			}
1752 			/* clear all_ports_up flag if any link down */
1753 			if (link.link_status == ETH_LINK_DOWN) {
1754 				all_ports_up = 0;
1755 				break;
1756 			}
1757 		}
1758 		/* after finally printing all link status, get out */
1759 		if (print_flag == 1)
1760 			break;
1761 
1762 		if (all_ports_up == 0) {
1763 			printf(".");
1764 			fflush(stdout);
1765 			rte_delay_ms(CHECK_INTERVAL);
1766 		}
1767 
1768 		/* set the print_flag if all ports up or timeout */
1769 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1770 			print_flag = 1;
1771 			printf("done\n");
1772 		}
1773 	}
1774 }
1775 
1776 /* Check if device has to be HW/SW or any */
1777 static int
1778 check_type(const struct l2fwd_crypto_options *options,
1779 		const struct rte_cryptodev_info *dev_info)
1780 {
1781 	if (options->type == CDEV_TYPE_HW &&
1782 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1783 		return 0;
1784 	if (options->type == CDEV_TYPE_SW &&
1785 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1786 		return 0;
1787 	if (options->type == CDEV_TYPE_ANY)
1788 		return 0;
1789 
1790 	return -1;
1791 }
1792 
1793 static const struct rte_cryptodev_capabilities *
1794 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
1795 		const struct rte_cryptodev_info *dev_info,
1796 		uint8_t cdev_id)
1797 {
1798 	unsigned int i = 0;
1799 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1800 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1801 	enum rte_crypto_cipher_algorithm opt_cipher_algo =
1802 					options->cipher_xform.cipher.algo;
1803 
1804 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1805 		cap_cipher_algo = cap->sym.cipher.algo;
1806 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1807 			if (cap_cipher_algo == opt_cipher_algo) {
1808 				if (check_type(options, dev_info) == 0)
1809 					break;
1810 			}
1811 		}
1812 		cap = &dev_info->capabilities[++i];
1813 	}
1814 
1815 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1816 		printf("Algorithm %s not supported by cryptodev %u"
1817 			" or device not of preferred type (%s)\n",
1818 			rte_crypto_cipher_algorithm_strings[opt_cipher_algo],
1819 			cdev_id,
1820 			options->string_type);
1821 		return NULL;
1822 	}
1823 
1824 	return cap;
1825 }
1826 
1827 static const struct rte_cryptodev_capabilities *
1828 check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
1829 		const struct rte_cryptodev_info *dev_info,
1830 		uint8_t cdev_id)
1831 {
1832 	unsigned int i = 0;
1833 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1834 	enum rte_crypto_auth_algorithm cap_auth_algo;
1835 	enum rte_crypto_auth_algorithm opt_auth_algo =
1836 					options->auth_xform.auth.algo;
1837 
1838 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1839 		cap_auth_algo = cap->sym.auth.algo;
1840 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1841 			if (cap_auth_algo == opt_auth_algo) {
1842 				if (check_type(options, dev_info) == 0)
1843 					break;
1844 			}
1845 		}
1846 		cap = &dev_info->capabilities[++i];
1847 	}
1848 
1849 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1850 		printf("Algorithm %s not supported by cryptodev %u"
1851 			" or device not of preferred type (%s)\n",
1852 			rte_crypto_auth_algorithm_strings[opt_auth_algo],
1853 			cdev_id,
1854 			options->string_type);
1855 		return NULL;
1856 	}
1857 
1858 	return cap;
1859 }
1860 
1861 static const struct rte_cryptodev_capabilities *
1862 check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
1863 		const struct rte_cryptodev_info *dev_info,
1864 		uint8_t cdev_id)
1865 {
1866 	unsigned int i = 0;
1867 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1868 	enum rte_crypto_aead_algorithm cap_aead_algo;
1869 	enum rte_crypto_aead_algorithm opt_aead_algo =
1870 					options->aead_xform.aead.algo;
1871 
1872 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1873 		cap_aead_algo = cap->sym.aead.algo;
1874 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1875 			if (cap_aead_algo == opt_aead_algo) {
1876 				if (check_type(options, dev_info) == 0)
1877 					break;
1878 			}
1879 		}
1880 		cap = &dev_info->capabilities[++i];
1881 	}
1882 
1883 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1884 		printf("Algorithm %s not supported by cryptodev %u"
1885 			" or device not of preferred type (%s)\n",
1886 			rte_crypto_aead_algorithm_strings[opt_aead_algo],
1887 			cdev_id,
1888 			options->string_type);
1889 		return NULL;
1890 	}
1891 
1892 	return cap;
1893 }
1894 
1895 /* Check if the device is enabled by cryptodev_mask */
1896 static int
1897 check_cryptodev_mask(struct l2fwd_crypto_options *options,
1898 		uint8_t cdev_id)
1899 {
1900 	if (options->cryptodev_mask & (1 << cdev_id))
1901 		return 0;
1902 
1903 	return -1;
1904 }
1905 
1906 static inline int
1907 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1908 		uint16_t increment)
1909 {
1910 	uint16_t supp_size;
1911 
1912 	/* Single value */
1913 	if (increment == 0) {
1914 		if (length == min)
1915 			return 0;
1916 		else
1917 			return -1;
1918 	}
1919 
1920 	/* Range of values */
1921 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1922 		if (length == supp_size)
1923 			return 0;
1924 	}
1925 
1926 	return -1;
1927 }
1928 
1929 static int
1930 check_iv_param(const struct rte_crypto_param_range *iv_range_size,
1931 		unsigned int iv_param, int iv_random_size,
1932 		uint16_t *iv_length)
1933 {
1934 	/*
1935 	 * Check if length of provided IV is supported
1936 	 * by the algorithm chosen.
1937 	 */
1938 	if (iv_param) {
1939 		if (check_supported_size(*iv_length,
1940 				iv_range_size->min,
1941 				iv_range_size->max,
1942 				iv_range_size->increment)
1943 					!= 0) {
1944 			printf("Unsupported IV length\n");
1945 			return -1;
1946 		}
1947 	/*
1948 	 * Check if length of IV to be randomly generated
1949 	 * is supported by the algorithm chosen.
1950 	 */
1951 	} else if (iv_random_size != -1) {
1952 		if (check_supported_size(iv_random_size,
1953 				iv_range_size->min,
1954 				iv_range_size->max,
1955 				iv_range_size->increment)
1956 					!= 0) {
1957 			printf("Unsupported IV length\n");
1958 			return -1;
1959 		}
1960 		*iv_length = iv_random_size;
1961 	/* No size provided, use minimum size. */
1962 	} else
1963 		*iv_length = iv_range_size->min;
1964 
1965 	return 0;
1966 }
1967 
1968 static int
1969 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1970 		uint8_t *enabled_cdevs)
1971 {
1972 	unsigned int cdev_id, cdev_count, enabled_cdev_count = 0;
1973 	const struct rte_cryptodev_capabilities *cap;
1974 	unsigned int sess_sz, max_sess_sz = 0;
1975 	int retval;
1976 
1977 	cdev_count = rte_cryptodev_count();
1978 	if (cdev_count == 0) {
1979 		printf("No crypto devices available\n");
1980 		return -1;
1981 	}
1982 
1983 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1984 		sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1985 		if (sess_sz > max_sess_sz)
1986 			max_sess_sz = sess_sz;
1987 	}
1988 
1989 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1990 			cdev_id++) {
1991 		struct rte_cryptodev_qp_conf qp_conf;
1992 		struct rte_cryptodev_info dev_info;
1993 		retval = rte_cryptodev_socket_id(cdev_id);
1994 
1995 		if (retval < 0) {
1996 			printf("Invalid crypto device id used\n");
1997 			return -1;
1998 		}
1999 
2000 		uint8_t socket_id = (uint8_t) retval;
2001 
2002 		struct rte_cryptodev_config conf = {
2003 			.nb_queue_pairs = 1,
2004 			.socket_id = socket_id,
2005 		};
2006 
2007 		if (check_cryptodev_mask(options, (uint8_t)cdev_id))
2008 			continue;
2009 
2010 		rte_cryptodev_info_get(cdev_id, &dev_info);
2011 
2012 		if (session_pool_socket[socket_id] == NULL) {
2013 			char mp_name[RTE_MEMPOOL_NAMESIZE];
2014 			struct rte_mempool *sess_mp;
2015 
2016 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2017 				"sess_mp_%u", socket_id);
2018 
2019 			/*
2020 			 * Create enough objects for session headers and
2021 			 * device private data
2022 			 */
2023 			sess_mp = rte_mempool_create(mp_name,
2024 						MAX_SESSIONS * 2,
2025 						max_sess_sz,
2026 						SESSION_POOL_CACHE_SIZE,
2027 						0, NULL, NULL, NULL,
2028 						NULL, socket_id,
2029 						0);
2030 
2031 			if (sess_mp == NULL) {
2032 				printf("Cannot create session pool on socket %d\n",
2033 					socket_id);
2034 				return -ENOMEM;
2035 			}
2036 
2037 			printf("Allocated session pool on socket %d\n", socket_id);
2038 			session_pool_socket[socket_id] = sess_mp;
2039 		}
2040 
2041 		/* Set AEAD parameters */
2042 		if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
2043 			/* Check if device supports AEAD algo */
2044 			cap = check_device_support_aead_algo(options, &dev_info,
2045 							cdev_id);
2046 			if (cap == NULL)
2047 				continue;
2048 
2049 			options->block_size = cap->sym.aead.block_size;
2050 
2051 			check_iv_param(&cap->sym.aead.iv_size,
2052 					options->aead_iv_param,
2053 					options->aead_iv_random_size,
2054 					&options->aead_iv.length);
2055 
2056 			/*
2057 			 * Check if length of provided AEAD key is supported
2058 			 * by the algorithm chosen.
2059 			 */
2060 			if (options->aead_key_param) {
2061 				if (check_supported_size(
2062 						options->aead_xform.aead.key.length,
2063 						cap->sym.aead.key_size.min,
2064 						cap->sym.aead.key_size.max,
2065 						cap->sym.aead.key_size.increment)
2066 							!= 0) {
2067 					printf("Unsupported aead key length\n");
2068 					return -1;
2069 				}
2070 			/*
2071 			 * Check if length of the aead key to be randomly generated
2072 			 * is supported by the algorithm chosen.
2073 			 */
2074 			} else if (options->aead_key_random_size != -1) {
2075 				if (check_supported_size(options->aead_key_random_size,
2076 						cap->sym.aead.key_size.min,
2077 						cap->sym.aead.key_size.max,
2078 						cap->sym.aead.key_size.increment)
2079 							!= 0) {
2080 					printf("Unsupported aead key length\n");
2081 					return -1;
2082 				}
2083 				options->aead_xform.aead.key.length =
2084 							options->aead_key_random_size;
2085 			/* No size provided, use minimum size. */
2086 			} else
2087 				options->aead_xform.aead.key.length =
2088 						cap->sym.aead.key_size.min;
2089 
2090 			if (!options->aead_key_param)
2091 				generate_random_key(
2092 					options->aead_xform.aead.key.data,
2093 					options->aead_xform.aead.key.length);
2094 
2095 			/*
2096 			 * Check if length of provided AAD is supported
2097 			 * by the algorithm chosen.
2098 			 */
2099 			if (options->aad_param) {
2100 				if (check_supported_size(options->aad.length,
2101 						cap->sym.aead.aad_size.min,
2102 						cap->sym.aead.aad_size.max,
2103 						cap->sym.aead.aad_size.increment)
2104 							!= 0) {
2105 					printf("Unsupported AAD length\n");
2106 					return -1;
2107 				}
2108 			/*
2109 			 * Check if length of AAD to be randomly generated
2110 			 * is supported by the algorithm chosen.
2111 			 */
2112 			} else if (options->aad_random_size != -1) {
2113 				if (check_supported_size(options->aad_random_size,
2114 						cap->sym.aead.aad_size.min,
2115 						cap->sym.aead.aad_size.max,
2116 						cap->sym.aead.aad_size.increment)
2117 							!= 0) {
2118 					printf("Unsupported AAD length\n");
2119 					return -1;
2120 				}
2121 				options->aad.length = options->aad_random_size;
2122 			/* No size provided, use minimum size. */
2123 			} else
2124 				options->aad.length = cap->sym.auth.aad_size.min;
2125 
2126 			options->aead_xform.aead.aad_length =
2127 						options->aad.length;
2128 
2129 			/* Check if digest size is supported by the algorithm. */
2130 			if (options->digest_size != -1) {
2131 				if (check_supported_size(options->digest_size,
2132 						cap->sym.aead.digest_size.min,
2133 						cap->sym.aead.digest_size.max,
2134 						cap->sym.aead.digest_size.increment)
2135 							!= 0) {
2136 					printf("Unsupported digest length\n");
2137 					return -1;
2138 				}
2139 				options->aead_xform.aead.digest_length =
2140 							options->digest_size;
2141 			/* No size provided, use minimum size. */
2142 			} else
2143 				options->aead_xform.aead.digest_length =
2144 						cap->sym.aead.digest_size.min;
2145 		}
2146 
2147 		/* Set cipher parameters */
2148 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2149 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2150 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2151 			/* Check if device supports cipher algo */
2152 			cap = check_device_support_cipher_algo(options, &dev_info,
2153 							cdev_id);
2154 			if (cap == NULL)
2155 				continue;
2156 
2157 			options->block_size = cap->sym.cipher.block_size;
2158 
2159 			check_iv_param(&cap->sym.cipher.iv_size,
2160 					options->cipher_iv_param,
2161 					options->cipher_iv_random_size,
2162 					&options->cipher_iv.length);
2163 
2164 			/*
2165 			 * Check if length of provided cipher key is supported
2166 			 * by the algorithm chosen.
2167 			 */
2168 			if (options->ckey_param) {
2169 				if (check_supported_size(
2170 						options->cipher_xform.cipher.key.length,
2171 						cap->sym.cipher.key_size.min,
2172 						cap->sym.cipher.key_size.max,
2173 						cap->sym.cipher.key_size.increment)
2174 							!= 0) {
2175 					printf("Unsupported cipher key length\n");
2176 					return -1;
2177 				}
2178 			/*
2179 			 * Check if length of the cipher key to be randomly generated
2180 			 * is supported by the algorithm chosen.
2181 			 */
2182 			} else if (options->ckey_random_size != -1) {
2183 				if (check_supported_size(options->ckey_random_size,
2184 						cap->sym.cipher.key_size.min,
2185 						cap->sym.cipher.key_size.max,
2186 						cap->sym.cipher.key_size.increment)
2187 							!= 0) {
2188 					printf("Unsupported cipher key length\n");
2189 					return -1;
2190 				}
2191 				options->cipher_xform.cipher.key.length =
2192 							options->ckey_random_size;
2193 			/* No size provided, use minimum size. */
2194 			} else
2195 				options->cipher_xform.cipher.key.length =
2196 						cap->sym.cipher.key_size.min;
2197 
2198 			if (!options->ckey_param)
2199 				generate_random_key(
2200 					options->cipher_xform.cipher.key.data,
2201 					options->cipher_xform.cipher.key.length);
2202 
2203 		}
2204 
2205 		/* Set auth parameters */
2206 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2207 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2208 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2209 			/* Check if device supports auth algo */
2210 			cap = check_device_support_auth_algo(options, &dev_info,
2211 							cdev_id);
2212 			if (cap == NULL)
2213 				continue;
2214 
2215 			check_iv_param(&cap->sym.auth.iv_size,
2216 					options->auth_iv_param,
2217 					options->auth_iv_random_size,
2218 					&options->auth_iv.length);
2219 			/*
2220 			 * Check if length of provided auth key is supported
2221 			 * by the algorithm chosen.
2222 			 */
2223 			if (options->akey_param) {
2224 				if (check_supported_size(
2225 						options->auth_xform.auth.key.length,
2226 						cap->sym.auth.key_size.min,
2227 						cap->sym.auth.key_size.max,
2228 						cap->sym.auth.key_size.increment)
2229 							!= 0) {
2230 					printf("Unsupported auth key length\n");
2231 					return -1;
2232 				}
2233 			/*
2234 			 * Check if length of the auth key to be randomly generated
2235 			 * is supported by the algorithm chosen.
2236 			 */
2237 			} else if (options->akey_random_size != -1) {
2238 				if (check_supported_size(options->akey_random_size,
2239 						cap->sym.auth.key_size.min,
2240 						cap->sym.auth.key_size.max,
2241 						cap->sym.auth.key_size.increment)
2242 							!= 0) {
2243 					printf("Unsupported auth key length\n");
2244 					return -1;
2245 				}
2246 				options->auth_xform.auth.key.length =
2247 							options->akey_random_size;
2248 			/* No size provided, use minimum size. */
2249 			} else
2250 				options->auth_xform.auth.key.length =
2251 						cap->sym.auth.key_size.min;
2252 
2253 			if (!options->akey_param)
2254 				generate_random_key(
2255 					options->auth_xform.auth.key.data,
2256 					options->auth_xform.auth.key.length);
2257 
2258 			/* Check if digest size is supported by the algorithm. */
2259 			if (options->digest_size != -1) {
2260 				if (check_supported_size(options->digest_size,
2261 						cap->sym.auth.digest_size.min,
2262 						cap->sym.auth.digest_size.max,
2263 						cap->sym.auth.digest_size.increment)
2264 							!= 0) {
2265 					printf("Unsupported digest length\n");
2266 					return -1;
2267 				}
2268 				options->auth_xform.auth.digest_length =
2269 							options->digest_size;
2270 			/* No size provided, use minimum size. */
2271 			} else
2272 				options->auth_xform.auth.digest_length =
2273 						cap->sym.auth.digest_size.min;
2274 		}
2275 
2276 		retval = rte_cryptodev_configure(cdev_id, &conf);
2277 		if (retval < 0) {
2278 			printf("Failed to configure cryptodev %u", cdev_id);
2279 			return -1;
2280 		}
2281 
2282 		qp_conf.nb_descriptors = 2048;
2283 
2284 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
2285 				socket_id, session_pool_socket[socket_id]);
2286 		if (retval < 0) {
2287 			printf("Failed to setup queue pair %u on cryptodev %u",
2288 					0, cdev_id);
2289 			return -1;
2290 		}
2291 
2292 		retval = rte_cryptodev_start(cdev_id);
2293 		if (retval < 0) {
2294 			printf("Failed to start device %u: error %d\n",
2295 					cdev_id, retval);
2296 			return -1;
2297 		}
2298 
2299 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
2300 
2301 		enabled_cdevs[cdev_id] = 1;
2302 		enabled_cdev_count++;
2303 	}
2304 
2305 	return enabled_cdev_count;
2306 }
2307 
2308 static int
2309 initialize_ports(struct l2fwd_crypto_options *options)
2310 {
2311 	uint16_t last_portid = 0, portid;
2312 	unsigned enabled_portcount = 0;
2313 	unsigned nb_ports = rte_eth_dev_count_avail();
2314 
2315 	if (nb_ports == 0) {
2316 		printf("No Ethernet ports - bye\n");
2317 		return -1;
2318 	}
2319 
2320 	/* Reset l2fwd_dst_ports */
2321 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
2322 		l2fwd_dst_ports[portid] = 0;
2323 
2324 	RTE_ETH_FOREACH_DEV(portid) {
2325 		int retval;
2326 		struct rte_eth_dev_info dev_info;
2327 		struct rte_eth_rxconf rxq_conf;
2328 		struct rte_eth_txconf txq_conf;
2329 		struct rte_eth_conf local_port_conf = port_conf;
2330 
2331 		/* Skip ports that are not enabled */
2332 		if ((options->portmask & (1 << portid)) == 0)
2333 			continue;
2334 
2335 		/* init port */
2336 		printf("Initializing port %u... ", portid);
2337 		fflush(stdout);
2338 		rte_eth_dev_info_get(portid, &dev_info);
2339 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2340 			local_port_conf.txmode.offloads |=
2341 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2342 		retval = rte_eth_dev_configure(portid, 1, 1, &local_port_conf);
2343 		if (retval < 0) {
2344 			printf("Cannot configure device: err=%d, port=%u\n",
2345 				  retval, portid);
2346 			return -1;
2347 		}
2348 
2349 		retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2350 							  &nb_txd);
2351 		if (retval < 0) {
2352 			printf("Cannot adjust number of descriptors: err=%d, port=%u\n",
2353 				retval, portid);
2354 			return -1;
2355 		}
2356 
2357 		/* init one RX queue */
2358 		fflush(stdout);
2359 		rxq_conf = dev_info.default_rxconf;
2360 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
2361 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
2362 					     rte_eth_dev_socket_id(portid),
2363 					     &rxq_conf, l2fwd_pktmbuf_pool);
2364 		if (retval < 0) {
2365 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
2366 					retval, portid);
2367 			return -1;
2368 		}
2369 
2370 		/* init one TX queue on each port */
2371 		fflush(stdout);
2372 		txq_conf = dev_info.default_txconf;
2373 		txq_conf.offloads = local_port_conf.txmode.offloads;
2374 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
2375 				rte_eth_dev_socket_id(portid),
2376 				&txq_conf);
2377 		if (retval < 0) {
2378 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
2379 				retval, portid);
2380 
2381 			return -1;
2382 		}
2383 
2384 		/* Start device */
2385 		retval = rte_eth_dev_start(portid);
2386 		if (retval < 0) {
2387 			printf("rte_eth_dev_start:err=%d, port=%u\n",
2388 					retval, portid);
2389 			return -1;
2390 		}
2391 
2392 		rte_eth_promiscuous_enable(portid);
2393 
2394 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
2395 
2396 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
2397 				portid,
2398 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
2399 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
2400 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
2401 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
2402 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
2403 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
2404 
2405 		/* initialize port stats */
2406 		memset(&port_statistics, 0, sizeof(port_statistics));
2407 
2408 		/* Setup port forwarding table */
2409 		if (enabled_portcount % 2) {
2410 			l2fwd_dst_ports[portid] = last_portid;
2411 			l2fwd_dst_ports[last_portid] = portid;
2412 		} else {
2413 			last_portid = portid;
2414 		}
2415 
2416 		l2fwd_enabled_port_mask |= (1 << portid);
2417 		enabled_portcount++;
2418 	}
2419 
2420 	if (enabled_portcount == 1) {
2421 		l2fwd_dst_ports[last_portid] = last_portid;
2422 	} else if (enabled_portcount % 2) {
2423 		printf("odd number of ports in portmask- bye\n");
2424 		return -1;
2425 	}
2426 
2427 	check_all_ports_link_status(l2fwd_enabled_port_mask);
2428 
2429 	return enabled_portcount;
2430 }
2431 
2432 static void
2433 reserve_key_memory(struct l2fwd_crypto_options *options)
2434 {
2435 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
2436 						MAX_KEY_SIZE, 0);
2437 	if (options->cipher_xform.cipher.key.data == NULL)
2438 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
2439 
2440 	options->auth_xform.auth.key.data = rte_malloc("auth key",
2441 						MAX_KEY_SIZE, 0);
2442 	if (options->auth_xform.auth.key.data == NULL)
2443 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
2444 
2445 	options->aead_xform.aead.key.data = rte_malloc("aead key",
2446 						MAX_KEY_SIZE, 0);
2447 	if (options->aead_xform.aead.key.data == NULL)
2448 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key");
2449 
2450 	options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0);
2451 	if (options->cipher_iv.data == NULL)
2452 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV");
2453 
2454 	options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0);
2455 	if (options->auth_iv.data == NULL)
2456 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV");
2457 
2458 	options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0);
2459 	if (options->aead_iv.data == NULL)
2460 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv");
2461 
2462 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
2463 	if (options->aad.data == NULL)
2464 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
2465 	options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data);
2466 }
2467 
2468 int
2469 main(int argc, char **argv)
2470 {
2471 	struct lcore_queue_conf *qconf = NULL;
2472 	struct l2fwd_crypto_options options;
2473 
2474 	uint8_t nb_cryptodevs, cdev_id;
2475 	uint16_t portid;
2476 	unsigned lcore_id, rx_lcore_id = 0;
2477 	int ret, enabled_cdevcount, enabled_portcount;
2478 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
2479 
2480 	/* init EAL */
2481 	ret = rte_eal_init(argc, argv);
2482 	if (ret < 0)
2483 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
2484 	argc -= ret;
2485 	argv += ret;
2486 
2487 	/* reserve memory for Cipher/Auth key and IV */
2488 	reserve_key_memory(&options);
2489 
2490 	/* parse application arguments (after the EAL ones) */
2491 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
2492 	if (ret < 0)
2493 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
2494 
2495 	printf("MAC updating %s\n",
2496 			options.mac_updating ? "enabled" : "disabled");
2497 
2498 	/* create the mbuf pool */
2499 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
2500 			sizeof(struct rte_crypto_op),
2501 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2502 	if (l2fwd_pktmbuf_pool == NULL)
2503 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2504 
2505 	/* create crypto op pool */
2506 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2507 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH,
2508 			rte_socket_id());
2509 	if (l2fwd_crypto_op_pool == NULL)
2510 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2511 
2512 	/* Enable Ethernet ports */
2513 	enabled_portcount = initialize_ports(&options);
2514 	if (enabled_portcount < 1)
2515 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2516 
2517 	/* Initialize the port/queue configuration of each logical core */
2518 	RTE_ETH_FOREACH_DEV(portid) {
2519 
2520 		/* skip ports that are not enabled */
2521 		if ((options.portmask & (1 << portid)) == 0)
2522 			continue;
2523 
2524 		if (options.single_lcore && qconf == NULL) {
2525 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2526 				rx_lcore_id++;
2527 				if (rx_lcore_id >= RTE_MAX_LCORE)
2528 					rte_exit(EXIT_FAILURE,
2529 							"Not enough cores\n");
2530 			}
2531 		} else if (!options.single_lcore) {
2532 			/* get the lcore_id for this port */
2533 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2534 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2535 			       options.nb_ports_per_lcore) {
2536 				rx_lcore_id++;
2537 				if (rx_lcore_id >= RTE_MAX_LCORE)
2538 					rte_exit(EXIT_FAILURE,
2539 							"Not enough cores\n");
2540 			}
2541 		}
2542 
2543 		/* Assigned a new logical core in the loop above. */
2544 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2545 			qconf = &lcore_queue_conf[rx_lcore_id];
2546 
2547 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2548 		qconf->nb_rx_ports++;
2549 
2550 		printf("Lcore %u: RX port %u\n", rx_lcore_id, portid);
2551 	}
2552 
2553 	/* Enable Crypto devices */
2554 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2555 			enabled_cdevs);
2556 	if (enabled_cdevcount < 0)
2557 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2558 
2559 	if (enabled_cdevcount < enabled_portcount)
2560 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2561 				"has to be more or equal to number of ports (%d)\n",
2562 				enabled_cdevcount, enabled_portcount);
2563 
2564 	nb_cryptodevs = rte_cryptodev_count();
2565 
2566 	/* Initialize the port/cryptodev configuration of each logical core */
2567 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2568 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2569 			cdev_id++) {
2570 		/* Crypto op not supported by crypto device */
2571 		if (!enabled_cdevs[cdev_id])
2572 			continue;
2573 
2574 		if (options.single_lcore && qconf == NULL) {
2575 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2576 				rx_lcore_id++;
2577 				if (rx_lcore_id >= RTE_MAX_LCORE)
2578 					rte_exit(EXIT_FAILURE,
2579 							"Not enough cores\n");
2580 			}
2581 		} else if (!options.single_lcore) {
2582 			/* get the lcore_id for this port */
2583 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2584 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2585 			       options.nb_ports_per_lcore) {
2586 				rx_lcore_id++;
2587 				if (rx_lcore_id >= RTE_MAX_LCORE)
2588 					rte_exit(EXIT_FAILURE,
2589 							"Not enough cores\n");
2590 			}
2591 		}
2592 
2593 		/* Assigned a new logical core in the loop above. */
2594 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2595 			qconf = &lcore_queue_conf[rx_lcore_id];
2596 
2597 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2598 		qconf->nb_crypto_devs++;
2599 
2600 		enabled_cdevcount--;
2601 
2602 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2603 				(unsigned)cdev_id);
2604 	}
2605 
2606 	/* launch per-lcore init on every lcore */
2607 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2608 			CALL_MASTER);
2609 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2610 		if (rte_eal_wait_lcore(lcore_id) < 0)
2611 			return -1;
2612 	}
2613 
2614 	return 0;
2615 }
2616