1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2015-2016 Intel Corporation 3 */ 4 5 #include <time.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <stdint.h> 10 #include <inttypes.h> 11 #include <sys/types.h> 12 #include <sys/queue.h> 13 #include <netinet/in.h> 14 #include <setjmp.h> 15 #include <stdarg.h> 16 #include <ctype.h> 17 #include <errno.h> 18 #include <getopt.h> 19 #include <fcntl.h> 20 #include <unistd.h> 21 22 #include <rte_atomic.h> 23 #include <rte_branch_prediction.h> 24 #include <rte_common.h> 25 #include <rte_cryptodev.h> 26 #include <rte_cycles.h> 27 #include <rte_debug.h> 28 #include <rte_eal.h> 29 #include <rte_ether.h> 30 #include <rte_ethdev.h> 31 #include <rte_interrupts.h> 32 #include <rte_ip.h> 33 #include <rte_launch.h> 34 #include <rte_lcore.h> 35 #include <rte_log.h> 36 #include <rte_malloc.h> 37 #include <rte_mbuf.h> 38 #include <rte_memcpy.h> 39 #include <rte_memory.h> 40 #include <rte_mempool.h> 41 #include <rte_per_lcore.h> 42 #include <rte_prefetch.h> 43 #include <rte_random.h> 44 #include <rte_hexdump.h> 45 46 enum cdev_type { 47 CDEV_TYPE_ANY, 48 CDEV_TYPE_HW, 49 CDEV_TYPE_SW 50 }; 51 52 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 53 54 #define NB_MBUF 8192 55 56 #define MAX_STR_LEN 32 57 #define MAX_KEY_SIZE 128 58 #define MAX_IV_SIZE 16 59 #define MAX_AAD_SIZE 65535 60 #define MAX_PKT_BURST 32 61 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 62 #define MAX_SESSIONS 32 63 #define SESSION_POOL_CACHE_SIZE 0 64 65 #define MAXIMUM_IV_LENGTH 16 66 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 67 sizeof(struct rte_crypto_sym_op)) 68 69 /* 70 * Configurable number of RX/TX ring descriptors 71 */ 72 #define RTE_TEST_RX_DESC_DEFAULT 1024 73 #define RTE_TEST_TX_DESC_DEFAULT 1024 74 75 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 76 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 77 78 /* ethernet addresses of ports */ 79 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 80 81 /* mask of enabled ports */ 82 static uint64_t l2fwd_enabled_port_mask; 83 static uint64_t l2fwd_enabled_crypto_mask; 84 85 /* list of enabled ports */ 86 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 87 88 89 struct pkt_buffer { 90 unsigned len; 91 struct rte_mbuf *buffer[MAX_PKT_BURST]; 92 }; 93 94 struct op_buffer { 95 unsigned len; 96 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 97 }; 98 99 #define MAX_RX_QUEUE_PER_LCORE 16 100 #define MAX_TX_QUEUE_PER_PORT 16 101 102 enum l2fwd_crypto_xform_chain { 103 L2FWD_CRYPTO_CIPHER_HASH, 104 L2FWD_CRYPTO_HASH_CIPHER, 105 L2FWD_CRYPTO_CIPHER_ONLY, 106 L2FWD_CRYPTO_HASH_ONLY, 107 L2FWD_CRYPTO_AEAD 108 }; 109 110 struct l2fwd_key { 111 uint8_t *data; 112 uint32_t length; 113 rte_iova_t phys_addr; 114 }; 115 116 struct l2fwd_iv { 117 uint8_t *data; 118 uint16_t length; 119 }; 120 121 /** l2fwd crypto application command line options */ 122 struct l2fwd_crypto_options { 123 unsigned portmask; 124 unsigned nb_ports_per_lcore; 125 unsigned refresh_period; 126 unsigned single_lcore:1; 127 128 enum cdev_type type; 129 unsigned sessionless:1; 130 131 enum l2fwd_crypto_xform_chain xform_chain; 132 133 struct rte_crypto_sym_xform cipher_xform; 134 unsigned ckey_param; 135 int ckey_random_size; 136 137 struct l2fwd_iv cipher_iv; 138 unsigned int cipher_iv_param; 139 int cipher_iv_random_size; 140 141 struct rte_crypto_sym_xform auth_xform; 142 uint8_t akey_param; 143 int akey_random_size; 144 145 struct l2fwd_iv auth_iv; 146 unsigned int auth_iv_param; 147 int auth_iv_random_size; 148 149 struct rte_crypto_sym_xform aead_xform; 150 unsigned int aead_key_param; 151 int aead_key_random_size; 152 153 struct l2fwd_iv aead_iv; 154 unsigned int aead_iv_param; 155 int aead_iv_random_size; 156 157 struct l2fwd_key aad; 158 unsigned aad_param; 159 int aad_random_size; 160 161 int digest_size; 162 163 uint16_t block_size; 164 char string_type[MAX_STR_LEN]; 165 166 uint64_t cryptodev_mask; 167 168 unsigned int mac_updating; 169 }; 170 171 /** l2fwd crypto lcore params */ 172 struct l2fwd_crypto_params { 173 uint8_t dev_id; 174 uint8_t qp_id; 175 176 unsigned digest_length; 177 unsigned block_size; 178 179 struct l2fwd_iv cipher_iv; 180 struct l2fwd_iv auth_iv; 181 struct l2fwd_iv aead_iv; 182 struct l2fwd_key aad; 183 struct rte_cryptodev_sym_session *session; 184 185 uint8_t do_cipher; 186 uint8_t do_hash; 187 uint8_t do_aead; 188 uint8_t hash_verify; 189 190 enum rte_crypto_cipher_algorithm cipher_algo; 191 enum rte_crypto_auth_algorithm auth_algo; 192 enum rte_crypto_aead_algorithm aead_algo; 193 }; 194 195 /** lcore configuration */ 196 struct lcore_queue_conf { 197 unsigned nb_rx_ports; 198 uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 199 200 unsigned nb_crypto_devs; 201 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 202 203 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 204 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 205 } __rte_cache_aligned; 206 207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 208 209 static struct rte_eth_conf port_conf = { 210 .rxmode = { 211 .mq_mode = ETH_MQ_RX_NONE, 212 .max_rx_pkt_len = ETHER_MAX_LEN, 213 .split_hdr_size = 0, 214 .offloads = DEV_RX_OFFLOAD_CRC_STRIP, 215 }, 216 .txmode = { 217 .mq_mode = ETH_MQ_TX_NONE, 218 }, 219 }; 220 221 struct rte_mempool *l2fwd_pktmbuf_pool; 222 struct rte_mempool *l2fwd_crypto_op_pool; 223 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 224 225 /* Per-port statistics struct */ 226 struct l2fwd_port_statistics { 227 uint64_t tx; 228 uint64_t rx; 229 230 uint64_t crypto_enqueued; 231 uint64_t crypto_dequeued; 232 233 uint64_t dropped; 234 } __rte_cache_aligned; 235 236 struct l2fwd_crypto_statistics { 237 uint64_t enqueued; 238 uint64_t dequeued; 239 240 uint64_t errors; 241 } __rte_cache_aligned; 242 243 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 244 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 245 246 /* A tsc-based timer responsible for triggering statistics printout */ 247 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 248 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 249 250 /* default period is 10 seconds */ 251 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 252 253 /* Print out statistics on packets dropped */ 254 static void 255 print_stats(void) 256 { 257 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 258 uint64_t total_packets_enqueued, total_packets_dequeued, 259 total_packets_errors; 260 uint16_t portid; 261 uint64_t cdevid; 262 263 total_packets_dropped = 0; 264 total_packets_tx = 0; 265 total_packets_rx = 0; 266 total_packets_enqueued = 0; 267 total_packets_dequeued = 0; 268 total_packets_errors = 0; 269 270 const char clr[] = { 27, '[', '2', 'J', '\0' }; 271 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 272 273 /* Clear screen and move to top left */ 274 printf("%s%s", clr, topLeft); 275 276 printf("\nPort statistics ===================================="); 277 278 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 279 /* skip disabled ports */ 280 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 281 continue; 282 printf("\nStatistics for port %u ------------------------------" 283 "\nPackets sent: %32"PRIu64 284 "\nPackets received: %28"PRIu64 285 "\nPackets dropped: %29"PRIu64, 286 portid, 287 port_statistics[portid].tx, 288 port_statistics[portid].rx, 289 port_statistics[portid].dropped); 290 291 total_packets_dropped += port_statistics[portid].dropped; 292 total_packets_tx += port_statistics[portid].tx; 293 total_packets_rx += port_statistics[portid].rx; 294 } 295 printf("\nCrypto statistics =================================="); 296 297 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 298 /* skip disabled ports */ 299 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 300 continue; 301 printf("\nStatistics for cryptodev %"PRIu64 302 " -------------------------" 303 "\nPackets enqueued: %28"PRIu64 304 "\nPackets dequeued: %28"PRIu64 305 "\nPackets errors: %30"PRIu64, 306 cdevid, 307 crypto_statistics[cdevid].enqueued, 308 crypto_statistics[cdevid].dequeued, 309 crypto_statistics[cdevid].errors); 310 311 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 312 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 313 total_packets_errors += crypto_statistics[cdevid].errors; 314 } 315 printf("\nAggregate statistics ===============================" 316 "\nTotal packets received: %22"PRIu64 317 "\nTotal packets enqueued: %22"PRIu64 318 "\nTotal packets dequeued: %22"PRIu64 319 "\nTotal packets sent: %26"PRIu64 320 "\nTotal packets dropped: %23"PRIu64 321 "\nTotal packets crypto errors: %17"PRIu64, 322 total_packets_rx, 323 total_packets_enqueued, 324 total_packets_dequeued, 325 total_packets_tx, 326 total_packets_dropped, 327 total_packets_errors); 328 printf("\n====================================================\n"); 329 } 330 331 static int 332 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 333 struct l2fwd_crypto_params *cparams) 334 { 335 struct rte_crypto_op **op_buffer; 336 unsigned ret; 337 338 op_buffer = (struct rte_crypto_op **) 339 qconf->op_buf[cparams->dev_id].buffer; 340 341 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 342 cparams->qp_id, op_buffer, (uint16_t) n); 343 344 crypto_statistics[cparams->dev_id].enqueued += ret; 345 if (unlikely(ret < n)) { 346 crypto_statistics[cparams->dev_id].errors += (n - ret); 347 do { 348 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 349 rte_crypto_op_free(op_buffer[ret]); 350 } while (++ret < n); 351 } 352 353 return 0; 354 } 355 356 static int 357 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 358 struct l2fwd_crypto_params *cparams) 359 { 360 unsigned lcore_id, len; 361 struct lcore_queue_conf *qconf; 362 363 lcore_id = rte_lcore_id(); 364 365 qconf = &lcore_queue_conf[lcore_id]; 366 len = qconf->op_buf[cparams->dev_id].len; 367 qconf->op_buf[cparams->dev_id].buffer[len] = op; 368 len++; 369 370 /* enough ops to be sent */ 371 if (len == MAX_PKT_BURST) { 372 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 373 len = 0; 374 } 375 376 qconf->op_buf[cparams->dev_id].len = len; 377 return 0; 378 } 379 380 static int 381 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 382 struct rte_crypto_op *op, 383 struct l2fwd_crypto_params *cparams) 384 { 385 struct ether_hdr *eth_hdr; 386 struct ipv4_hdr *ip_hdr; 387 388 uint32_t ipdata_offset, data_len; 389 uint32_t pad_len = 0; 390 char *padding; 391 392 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 393 394 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 395 return -1; 396 397 ipdata_offset = sizeof(struct ether_hdr); 398 399 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 400 ipdata_offset); 401 402 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 403 * IPV4_IHL_MULTIPLIER; 404 405 406 /* Zero pad data to be crypto'd so it is block aligned */ 407 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 408 409 if (cparams->do_hash && cparams->hash_verify) 410 data_len -= cparams->digest_length; 411 412 if (cparams->do_cipher) { 413 /* 414 * Following algorithms are block cipher algorithms, 415 * and might need padding 416 */ 417 switch (cparams->cipher_algo) { 418 case RTE_CRYPTO_CIPHER_AES_CBC: 419 case RTE_CRYPTO_CIPHER_AES_ECB: 420 case RTE_CRYPTO_CIPHER_DES_CBC: 421 case RTE_CRYPTO_CIPHER_3DES_CBC: 422 case RTE_CRYPTO_CIPHER_3DES_ECB: 423 if (data_len % cparams->block_size) 424 pad_len = cparams->block_size - 425 (data_len % cparams->block_size); 426 break; 427 default: 428 pad_len = 0; 429 } 430 431 if (pad_len) { 432 padding = rte_pktmbuf_append(m, pad_len); 433 if (unlikely(!padding)) 434 return -1; 435 436 data_len += pad_len; 437 memset(padding, 0, pad_len); 438 } 439 } 440 441 /* Set crypto operation data parameters */ 442 rte_crypto_op_attach_sym_session(op, cparams->session); 443 444 if (cparams->do_hash) { 445 if (cparams->auth_iv.length) { 446 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 447 uint8_t *, 448 IV_OFFSET + 449 cparams->cipher_iv.length); 450 /* 451 * Copy IV at the end of the crypto operation, 452 * after the cipher IV, if added 453 */ 454 rte_memcpy(iv_ptr, cparams->auth_iv.data, 455 cparams->auth_iv.length); 456 } 457 if (!cparams->hash_verify) { 458 /* Append space for digest to end of packet */ 459 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 460 cparams->digest_length); 461 } else { 462 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 463 uint8_t *) + ipdata_offset + data_len; 464 } 465 466 op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, 467 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 468 469 /* For wireless algorithms, offset/length must be in bits */ 470 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 471 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 472 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 473 op->sym->auth.data.offset = ipdata_offset << 3; 474 op->sym->auth.data.length = data_len << 3; 475 } else { 476 op->sym->auth.data.offset = ipdata_offset; 477 op->sym->auth.data.length = data_len; 478 } 479 } 480 481 if (cparams->do_cipher) { 482 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 483 IV_OFFSET); 484 /* Copy IV at the end of the crypto operation */ 485 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 486 cparams->cipher_iv.length); 487 488 /* For wireless algorithms, offset/length must be in bits */ 489 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 490 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 491 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 492 op->sym->cipher.data.offset = ipdata_offset << 3; 493 op->sym->cipher.data.length = data_len << 3; 494 } else { 495 op->sym->cipher.data.offset = ipdata_offset; 496 op->sym->cipher.data.length = data_len; 497 } 498 } 499 500 if (cparams->do_aead) { 501 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 502 IV_OFFSET); 503 /* Copy IV at the end of the crypto operation */ 504 /* 505 * If doing AES-CCM, nonce is copied one byte 506 * after the start of IV field 507 */ 508 if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 509 rte_memcpy(iv_ptr + 1, cparams->aead_iv.data, 510 cparams->aead_iv.length); 511 else 512 rte_memcpy(iv_ptr, cparams->aead_iv.data, 513 cparams->aead_iv.length); 514 515 op->sym->aead.data.offset = ipdata_offset; 516 op->sym->aead.data.length = data_len; 517 518 if (!cparams->hash_verify) { 519 /* Append space for digest to end of packet */ 520 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 521 cparams->digest_length); 522 } else { 523 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 524 uint8_t *) + ipdata_offset + data_len; 525 } 526 527 op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, 528 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 529 530 if (cparams->aad.length) { 531 op->sym->aead.aad.data = cparams->aad.data; 532 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 533 } 534 } 535 536 op->sym->m_src = m; 537 538 return l2fwd_crypto_enqueue(op, cparams); 539 } 540 541 542 /* Send the burst of packets on an output interface */ 543 static int 544 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 545 uint16_t port) 546 { 547 struct rte_mbuf **pkt_buffer; 548 unsigned ret; 549 550 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 551 552 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 553 port_statistics[port].tx += ret; 554 if (unlikely(ret < n)) { 555 port_statistics[port].dropped += (n - ret); 556 do { 557 rte_pktmbuf_free(pkt_buffer[ret]); 558 } while (++ret < n); 559 } 560 561 return 0; 562 } 563 564 /* Enqueue packets for TX and prepare them to be sent */ 565 static int 566 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 567 { 568 unsigned lcore_id, len; 569 struct lcore_queue_conf *qconf; 570 571 lcore_id = rte_lcore_id(); 572 573 qconf = &lcore_queue_conf[lcore_id]; 574 len = qconf->pkt_buf[port].len; 575 qconf->pkt_buf[port].buffer[len] = m; 576 len++; 577 578 /* enough pkts to be sent */ 579 if (unlikely(len == MAX_PKT_BURST)) { 580 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 581 len = 0; 582 } 583 584 qconf->pkt_buf[port].len = len; 585 return 0; 586 } 587 588 static void 589 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid) 590 { 591 struct ether_hdr *eth; 592 void *tmp; 593 594 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 595 596 /* 02:00:00:00:00:xx */ 597 tmp = ð->d_addr.addr_bytes[0]; 598 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 599 600 /* src addr */ 601 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 602 } 603 604 static void 605 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid, 606 struct l2fwd_crypto_options *options) 607 { 608 uint16_t dst_port; 609 610 dst_port = l2fwd_dst_ports[portid]; 611 612 if (options->mac_updating) 613 l2fwd_mac_updating(m, dst_port); 614 615 l2fwd_send_packet(m, dst_port); 616 } 617 618 /** Generate random key */ 619 static void 620 generate_random_key(uint8_t *key, unsigned length) 621 { 622 int fd; 623 int ret; 624 625 fd = open("/dev/urandom", O_RDONLY); 626 if (fd < 0) 627 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 628 629 ret = read(fd, key, length); 630 close(fd); 631 632 if (ret != (signed)length) 633 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 634 } 635 636 static struct rte_cryptodev_sym_session * 637 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 638 { 639 struct rte_crypto_sym_xform *first_xform; 640 struct rte_cryptodev_sym_session *session; 641 int retval = rte_cryptodev_socket_id(cdev_id); 642 643 if (retval < 0) 644 return NULL; 645 646 uint8_t socket_id = (uint8_t) retval; 647 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 648 649 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 650 first_xform = &options->aead_xform; 651 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 652 first_xform = &options->cipher_xform; 653 first_xform->next = &options->auth_xform; 654 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 655 first_xform = &options->auth_xform; 656 first_xform->next = &options->cipher_xform; 657 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 658 first_xform = &options->cipher_xform; 659 } else { 660 first_xform = &options->auth_xform; 661 } 662 663 session = rte_cryptodev_sym_session_create(sess_mp); 664 665 if (session == NULL) 666 return NULL; 667 668 if (rte_cryptodev_sym_session_init(cdev_id, session, 669 first_xform, sess_mp) < 0) 670 return NULL; 671 672 return session; 673 } 674 675 static void 676 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 677 678 /* main processing loop */ 679 static void 680 l2fwd_main_loop(struct l2fwd_crypto_options *options) 681 { 682 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 683 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 684 685 unsigned lcore_id = rte_lcore_id(); 686 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 687 unsigned int i, j, nb_rx, len; 688 uint16_t portid; 689 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 690 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 691 US_PER_S * BURST_TX_DRAIN_US; 692 struct l2fwd_crypto_params *cparams; 693 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 694 struct rte_cryptodev_sym_session *session; 695 696 if (qconf->nb_rx_ports == 0) { 697 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 698 return; 699 } 700 701 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 702 703 for (i = 0; i < qconf->nb_rx_ports; i++) { 704 705 portid = qconf->rx_port_list[i]; 706 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 707 portid); 708 } 709 710 for (i = 0; i < qconf->nb_crypto_devs; i++) { 711 port_cparams[i].do_cipher = 0; 712 port_cparams[i].do_hash = 0; 713 port_cparams[i].do_aead = 0; 714 715 switch (options->xform_chain) { 716 case L2FWD_CRYPTO_AEAD: 717 port_cparams[i].do_aead = 1; 718 break; 719 case L2FWD_CRYPTO_CIPHER_HASH: 720 case L2FWD_CRYPTO_HASH_CIPHER: 721 port_cparams[i].do_cipher = 1; 722 port_cparams[i].do_hash = 1; 723 break; 724 case L2FWD_CRYPTO_HASH_ONLY: 725 port_cparams[i].do_hash = 1; 726 break; 727 case L2FWD_CRYPTO_CIPHER_ONLY: 728 port_cparams[i].do_cipher = 1; 729 break; 730 } 731 732 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 733 port_cparams[i].qp_id = 0; 734 735 port_cparams[i].block_size = options->block_size; 736 737 if (port_cparams[i].do_hash) { 738 port_cparams[i].auth_iv.data = options->auth_iv.data; 739 port_cparams[i].auth_iv.length = options->auth_iv.length; 740 if (!options->auth_iv_param) 741 generate_random_key(port_cparams[i].auth_iv.data, 742 port_cparams[i].auth_iv.length); 743 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 744 port_cparams[i].hash_verify = 1; 745 else 746 port_cparams[i].hash_verify = 0; 747 748 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 749 port_cparams[i].digest_length = 750 options->auth_xform.auth.digest_length; 751 /* Set IV parameters */ 752 if (options->auth_iv.length) { 753 options->auth_xform.auth.iv.offset = 754 IV_OFFSET + options->cipher_iv.length; 755 options->auth_xform.auth.iv.length = 756 options->auth_iv.length; 757 } 758 } 759 760 if (port_cparams[i].do_aead) { 761 port_cparams[i].aead_iv.data = options->aead_iv.data; 762 port_cparams[i].aead_iv.length = options->aead_iv.length; 763 if (!options->aead_iv_param) 764 generate_random_key(port_cparams[i].aead_iv.data, 765 port_cparams[i].aead_iv.length); 766 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 767 port_cparams[i].digest_length = 768 options->aead_xform.aead.digest_length; 769 if (options->aead_xform.aead.aad_length) { 770 port_cparams[i].aad.data = options->aad.data; 771 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 772 port_cparams[i].aad.length = options->aad.length; 773 if (!options->aad_param) 774 generate_random_key(port_cparams[i].aad.data, 775 port_cparams[i].aad.length); 776 /* 777 * If doing AES-CCM, first 18 bytes has to be reserved, 778 * and actual AAD should start from byte 18 779 */ 780 if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM) 781 memmove(port_cparams[i].aad.data + 18, 782 port_cparams[i].aad.data, 783 port_cparams[i].aad.length); 784 785 } else 786 port_cparams[i].aad.length = 0; 787 788 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 789 port_cparams[i].hash_verify = 1; 790 else 791 port_cparams[i].hash_verify = 0; 792 793 /* Set IV parameters */ 794 options->aead_xform.aead.iv.offset = IV_OFFSET; 795 options->aead_xform.aead.iv.length = options->aead_iv.length; 796 } 797 798 if (port_cparams[i].do_cipher) { 799 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 800 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 801 if (!options->cipher_iv_param) 802 generate_random_key(port_cparams[i].cipher_iv.data, 803 port_cparams[i].cipher_iv.length); 804 805 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 806 /* Set IV parameters */ 807 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 808 options->cipher_xform.cipher.iv.length = 809 options->cipher_iv.length; 810 } 811 812 session = initialize_crypto_session(options, 813 port_cparams[i].dev_id); 814 if (session == NULL) 815 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 816 817 port_cparams[i].session = session; 818 819 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 820 port_cparams[i].dev_id); 821 } 822 823 l2fwd_crypto_options_print(options); 824 825 /* 826 * Initialize previous tsc timestamp before the loop, 827 * to avoid showing the port statistics immediately, 828 * so user can see the crypto information. 829 */ 830 prev_tsc = rte_rdtsc(); 831 while (1) { 832 833 cur_tsc = rte_rdtsc(); 834 835 /* 836 * Crypto device/TX burst queue drain 837 */ 838 diff_tsc = cur_tsc - prev_tsc; 839 if (unlikely(diff_tsc > drain_tsc)) { 840 /* Enqueue all crypto ops remaining in buffers */ 841 for (i = 0; i < qconf->nb_crypto_devs; i++) { 842 cparams = &port_cparams[i]; 843 len = qconf->op_buf[cparams->dev_id].len; 844 l2fwd_crypto_send_burst(qconf, len, cparams); 845 qconf->op_buf[cparams->dev_id].len = 0; 846 } 847 /* Transmit all packets remaining in buffers */ 848 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 849 if (qconf->pkt_buf[portid].len == 0) 850 continue; 851 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 852 qconf->pkt_buf[portid].len, 853 portid); 854 qconf->pkt_buf[portid].len = 0; 855 } 856 857 /* if timer is enabled */ 858 if (timer_period > 0) { 859 860 /* advance the timer */ 861 timer_tsc += diff_tsc; 862 863 /* if timer has reached its timeout */ 864 if (unlikely(timer_tsc >= 865 (uint64_t)timer_period)) { 866 867 /* do this only on master core */ 868 if (lcore_id == rte_get_master_lcore() 869 && options->refresh_period) { 870 print_stats(); 871 timer_tsc = 0; 872 } 873 } 874 } 875 876 prev_tsc = cur_tsc; 877 } 878 879 /* 880 * Read packet from RX queues 881 */ 882 for (i = 0; i < qconf->nb_rx_ports; i++) { 883 portid = qconf->rx_port_list[i]; 884 885 cparams = &port_cparams[i]; 886 887 nb_rx = rte_eth_rx_burst(portid, 0, 888 pkts_burst, MAX_PKT_BURST); 889 890 port_statistics[portid].rx += nb_rx; 891 892 if (nb_rx) { 893 /* 894 * If we can't allocate a crypto_ops, then drop 895 * the rest of the burst and dequeue and 896 * process the packets to free offload structs 897 */ 898 if (rte_crypto_op_bulk_alloc( 899 l2fwd_crypto_op_pool, 900 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 901 ops_burst, nb_rx) != 902 nb_rx) { 903 for (j = 0; j < nb_rx; j++) 904 rte_pktmbuf_free(pkts_burst[j]); 905 906 nb_rx = 0; 907 } 908 909 /* Enqueue packets from Crypto device*/ 910 for (j = 0; j < nb_rx; j++) { 911 m = pkts_burst[j]; 912 913 l2fwd_simple_crypto_enqueue(m, 914 ops_burst[j], cparams); 915 } 916 } 917 918 /* Dequeue packets from Crypto device */ 919 do { 920 nb_rx = rte_cryptodev_dequeue_burst( 921 cparams->dev_id, cparams->qp_id, 922 ops_burst, MAX_PKT_BURST); 923 924 crypto_statistics[cparams->dev_id].dequeued += 925 nb_rx; 926 927 /* Forward crypto'd packets */ 928 for (j = 0; j < nb_rx; j++) { 929 m = ops_burst[j]->sym->m_src; 930 931 rte_crypto_op_free(ops_burst[j]); 932 l2fwd_simple_forward(m, portid, 933 options); 934 } 935 } while (nb_rx == MAX_PKT_BURST); 936 } 937 } 938 } 939 940 static int 941 l2fwd_launch_one_lcore(void *arg) 942 { 943 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 944 return 0; 945 } 946 947 /* Display command line arguments usage */ 948 static void 949 l2fwd_crypto_usage(const char *prgname) 950 { 951 printf("%s [EAL options] --\n" 952 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 953 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 954 " -s manage all ports from single lcore\n" 955 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 956 " (0 to disable, 10 default, 86400 maximum)\n" 957 958 " --cdev_type HW / SW / ANY\n" 959 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 960 " HASH_ONLY / AEAD\n" 961 962 " --cipher_algo ALGO\n" 963 " --cipher_op ENCRYPT / DECRYPT\n" 964 " --cipher_key KEY (bytes separated with \":\")\n" 965 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 966 " --cipher_iv IV (bytes separated with \":\")\n" 967 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 968 969 " --auth_algo ALGO\n" 970 " --auth_op GENERATE / VERIFY\n" 971 " --auth_key KEY (bytes separated with \":\")\n" 972 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 973 " --auth_iv IV (bytes separated with \":\")\n" 974 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 975 976 " --aead_algo ALGO\n" 977 " --aead_op ENCRYPT / DECRYPT\n" 978 " --aead_key KEY (bytes separated with \":\")\n" 979 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 980 " --aead_iv IV (bytes separated with \":\")\n" 981 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 982 " --aad AAD (bytes separated with \":\")\n" 983 " --aad_random_size SIZE: size of AAD when generated randomly\n" 984 985 " --digest_size SIZE: size of digest to be generated/verified\n" 986 987 " --sessionless\n" 988 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 989 990 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 991 " When enabled:\n" 992 " - The source MAC address is replaced by the TX port MAC address\n" 993 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 994 prgname); 995 } 996 997 /** Parse crypto device type command line argument */ 998 static int 999 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1000 { 1001 if (strcmp("HW", optarg) == 0) { 1002 *type = CDEV_TYPE_HW; 1003 return 0; 1004 } else if (strcmp("SW", optarg) == 0) { 1005 *type = CDEV_TYPE_SW; 1006 return 0; 1007 } else if (strcmp("ANY", optarg) == 0) { 1008 *type = CDEV_TYPE_ANY; 1009 return 0; 1010 } 1011 1012 return -1; 1013 } 1014 1015 /** Parse crypto chain xform command line argument */ 1016 static int 1017 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1018 { 1019 if (strcmp("CIPHER_HASH", optarg) == 0) { 1020 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1021 return 0; 1022 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1023 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1024 return 0; 1025 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1026 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1027 return 0; 1028 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1029 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1030 return 0; 1031 } else if (strcmp("AEAD", optarg) == 0) { 1032 options->xform_chain = L2FWD_CRYPTO_AEAD; 1033 return 0; 1034 } 1035 1036 return -1; 1037 } 1038 1039 /** Parse crypto cipher algo option command line argument */ 1040 static int 1041 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1042 { 1043 1044 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1045 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1046 "not supported!\n"); 1047 return -1; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /** Parse crypto cipher operation command line argument */ 1054 static int 1055 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1056 { 1057 if (strcmp("ENCRYPT", optarg) == 0) { 1058 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1059 return 0; 1060 } else if (strcmp("DECRYPT", optarg) == 0) { 1061 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1062 return 0; 1063 } 1064 1065 printf("Cipher operation not supported!\n"); 1066 return -1; 1067 } 1068 1069 /** Parse bytes from command line argument */ 1070 static int 1071 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size) 1072 { 1073 unsigned byte_count; 1074 char *token; 1075 1076 errno = 0; 1077 for (byte_count = 0, token = strtok(input_arg, ":"); 1078 (byte_count < max_size) && (token != NULL); 1079 token = strtok(NULL, ":")) { 1080 1081 int number = (int)strtol(token, NULL, 16); 1082 1083 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1084 return -1; 1085 1086 data[byte_count++] = (uint8_t)number; 1087 } 1088 1089 return byte_count; 1090 } 1091 1092 /** Parse size param*/ 1093 static int 1094 parse_size(int *size, const char *q_arg) 1095 { 1096 char *end = NULL; 1097 unsigned long n; 1098 1099 /* parse hexadecimal string */ 1100 n = strtoul(q_arg, &end, 10); 1101 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1102 n = 0; 1103 1104 if (n == 0) { 1105 printf("invalid size\n"); 1106 return -1; 1107 } 1108 1109 *size = n; 1110 return 0; 1111 } 1112 1113 /** Parse crypto cipher operation command line argument */ 1114 static int 1115 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1116 { 1117 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1118 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1119 "not supported!\n"); 1120 return -1; 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int 1127 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1128 { 1129 if (strcmp("VERIFY", optarg) == 0) { 1130 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1131 return 0; 1132 } else if (strcmp("GENERATE", optarg) == 0) { 1133 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1134 return 0; 1135 } 1136 1137 printf("Authentication operation specified not supported!\n"); 1138 return -1; 1139 } 1140 1141 static int 1142 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1143 { 1144 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1145 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1146 "not supported!\n"); 1147 return -1; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int 1154 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1155 { 1156 if (strcmp("ENCRYPT", optarg) == 0) { 1157 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1158 return 0; 1159 } else if (strcmp("DECRYPT", optarg) == 0) { 1160 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1161 return 0; 1162 } 1163 1164 printf("AEAD operation specified not supported!\n"); 1165 return -1; 1166 } 1167 static int 1168 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1169 const char *q_arg) 1170 { 1171 char *end = NULL; 1172 uint64_t pm; 1173 1174 /* parse hexadecimal string */ 1175 pm = strtoul(q_arg, &end, 16); 1176 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1177 pm = 0; 1178 1179 options->cryptodev_mask = pm; 1180 if (options->cryptodev_mask == 0) { 1181 printf("invalid cryptodev_mask specified\n"); 1182 return -1; 1183 } 1184 1185 return 0; 1186 } 1187 1188 /** Parse long options */ 1189 static int 1190 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1191 struct option *lgopts, int option_index) 1192 { 1193 int retval; 1194 1195 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1196 retval = parse_cryptodev_type(&options->type, optarg); 1197 if (retval == 0) 1198 snprintf(options->string_type, MAX_STR_LEN, 1199 "%s", optarg); 1200 return retval; 1201 } 1202 1203 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1204 return parse_crypto_opt_chain(options, optarg); 1205 1206 /* Cipher options */ 1207 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1208 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1209 optarg); 1210 1211 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1212 return parse_cipher_op(&options->cipher_xform.cipher.op, 1213 optarg); 1214 1215 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1216 options->ckey_param = 1; 1217 options->cipher_xform.cipher.key.length = 1218 parse_bytes(options->cipher_xform.cipher.key.data, optarg, 1219 MAX_KEY_SIZE); 1220 if (options->cipher_xform.cipher.key.length > 0) 1221 return 0; 1222 else 1223 return -1; 1224 } 1225 1226 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1227 return parse_size(&options->ckey_random_size, optarg); 1228 1229 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1230 options->cipher_iv_param = 1; 1231 options->cipher_iv.length = 1232 parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE); 1233 if (options->cipher_iv.length > 0) 1234 return 0; 1235 else 1236 return -1; 1237 } 1238 1239 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1240 return parse_size(&options->cipher_iv_random_size, optarg); 1241 1242 /* Authentication options */ 1243 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1244 return parse_auth_algo(&options->auth_xform.auth.algo, 1245 optarg); 1246 } 1247 1248 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1249 return parse_auth_op(&options->auth_xform.auth.op, 1250 optarg); 1251 1252 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1253 options->akey_param = 1; 1254 options->auth_xform.auth.key.length = 1255 parse_bytes(options->auth_xform.auth.key.data, optarg, 1256 MAX_KEY_SIZE); 1257 if (options->auth_xform.auth.key.length > 0) 1258 return 0; 1259 else 1260 return -1; 1261 } 1262 1263 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1264 return parse_size(&options->akey_random_size, optarg); 1265 } 1266 1267 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1268 options->auth_iv_param = 1; 1269 options->auth_iv.length = 1270 parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE); 1271 if (options->auth_iv.length > 0) 1272 return 0; 1273 else 1274 return -1; 1275 } 1276 1277 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1278 return parse_size(&options->auth_iv_random_size, optarg); 1279 1280 /* AEAD options */ 1281 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1282 return parse_aead_algo(&options->aead_xform.aead.algo, 1283 optarg); 1284 } 1285 1286 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1287 return parse_aead_op(&options->aead_xform.aead.op, 1288 optarg); 1289 1290 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1291 options->aead_key_param = 1; 1292 options->aead_xform.aead.key.length = 1293 parse_bytes(options->aead_xform.aead.key.data, optarg, 1294 MAX_KEY_SIZE); 1295 if (options->aead_xform.aead.key.length > 0) 1296 return 0; 1297 else 1298 return -1; 1299 } 1300 1301 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1302 return parse_size(&options->aead_key_random_size, optarg); 1303 1304 1305 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1306 options->aead_iv_param = 1; 1307 options->aead_iv.length = 1308 parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE); 1309 if (options->aead_iv.length > 0) 1310 return 0; 1311 else 1312 return -1; 1313 } 1314 1315 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1316 return parse_size(&options->aead_iv_random_size, optarg); 1317 1318 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1319 options->aad_param = 1; 1320 options->aad.length = 1321 parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE); 1322 if (options->aad.length > 0) 1323 return 0; 1324 else 1325 return -1; 1326 } 1327 1328 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1329 return parse_size(&options->aad_random_size, optarg); 1330 } 1331 1332 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1333 return parse_size(&options->digest_size, optarg); 1334 } 1335 1336 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1337 options->sessionless = 1; 1338 return 0; 1339 } 1340 1341 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1342 return parse_cryptodev_mask(options, optarg); 1343 1344 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1345 options->mac_updating = 1; 1346 return 0; 1347 } 1348 1349 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1350 options->mac_updating = 0; 1351 return 0; 1352 } 1353 1354 return -1; 1355 } 1356 1357 /** Parse port mask */ 1358 static int 1359 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1360 const char *q_arg) 1361 { 1362 char *end = NULL; 1363 unsigned long pm; 1364 1365 /* parse hexadecimal string */ 1366 pm = strtoul(q_arg, &end, 16); 1367 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1368 pm = 0; 1369 1370 options->portmask = pm; 1371 if (options->portmask == 0) { 1372 printf("invalid portmask specified\n"); 1373 return -1; 1374 } 1375 1376 return pm; 1377 } 1378 1379 /** Parse number of queues */ 1380 static int 1381 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1382 const char *q_arg) 1383 { 1384 char *end = NULL; 1385 unsigned long n; 1386 1387 /* parse hexadecimal string */ 1388 n = strtoul(q_arg, &end, 10); 1389 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1390 n = 0; 1391 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1392 n = 0; 1393 1394 options->nb_ports_per_lcore = n; 1395 if (options->nb_ports_per_lcore == 0) { 1396 printf("invalid number of ports selected\n"); 1397 return -1; 1398 } 1399 1400 return 0; 1401 } 1402 1403 /** Parse timer period */ 1404 static int 1405 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1406 const char *q_arg) 1407 { 1408 char *end = NULL; 1409 unsigned long n; 1410 1411 /* parse number string */ 1412 n = (unsigned)strtol(q_arg, &end, 10); 1413 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1414 n = 0; 1415 1416 if (n >= MAX_TIMER_PERIOD) { 1417 printf("Warning refresh period specified %lu is greater than " 1418 "max value %lu! using max value", 1419 n, MAX_TIMER_PERIOD); 1420 n = MAX_TIMER_PERIOD; 1421 } 1422 1423 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1424 1425 return 0; 1426 } 1427 1428 /** Generate default options for application */ 1429 static void 1430 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1431 { 1432 options->portmask = 0xffffffff; 1433 options->nb_ports_per_lcore = 1; 1434 options->refresh_period = 10000; 1435 options->single_lcore = 0; 1436 options->sessionless = 0; 1437 1438 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1439 1440 /* Cipher Data */ 1441 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1442 options->cipher_xform.next = NULL; 1443 options->ckey_param = 0; 1444 options->ckey_random_size = -1; 1445 options->cipher_xform.cipher.key.length = 0; 1446 options->cipher_iv_param = 0; 1447 options->cipher_iv_random_size = -1; 1448 options->cipher_iv.length = 0; 1449 1450 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1451 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1452 1453 /* Authentication Data */ 1454 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1455 options->auth_xform.next = NULL; 1456 options->akey_param = 0; 1457 options->akey_random_size = -1; 1458 options->auth_xform.auth.key.length = 0; 1459 options->auth_iv_param = 0; 1460 options->auth_iv_random_size = -1; 1461 options->auth_iv.length = 0; 1462 1463 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1464 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1465 1466 /* AEAD Data */ 1467 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1468 options->aead_xform.next = NULL; 1469 options->aead_key_param = 0; 1470 options->aead_key_random_size = -1; 1471 options->aead_xform.aead.key.length = 0; 1472 options->aead_iv_param = 0; 1473 options->aead_iv_random_size = -1; 1474 options->aead_iv.length = 0; 1475 1476 options->aead_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1477 options->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1478 1479 options->aad_param = 0; 1480 options->aad_random_size = -1; 1481 options->aad.length = 0; 1482 1483 options->digest_size = -1; 1484 1485 options->type = CDEV_TYPE_ANY; 1486 options->cryptodev_mask = UINT64_MAX; 1487 1488 options->mac_updating = 1; 1489 } 1490 1491 static void 1492 display_cipher_info(struct l2fwd_crypto_options *options) 1493 { 1494 printf("\n---- Cipher information ---\n"); 1495 printf("Algorithm: %s\n", 1496 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1497 rte_hexdump(stdout, "Cipher key:", 1498 options->cipher_xform.cipher.key.data, 1499 options->cipher_xform.cipher.key.length); 1500 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1501 } 1502 1503 static void 1504 display_auth_info(struct l2fwd_crypto_options *options) 1505 { 1506 printf("\n---- Authentication information ---\n"); 1507 printf("Algorithm: %s\n", 1508 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1509 rte_hexdump(stdout, "Auth key:", 1510 options->auth_xform.auth.key.data, 1511 options->auth_xform.auth.key.length); 1512 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1513 } 1514 1515 static void 1516 display_aead_info(struct l2fwd_crypto_options *options) 1517 { 1518 printf("\n---- AEAD information ---\n"); 1519 printf("Algorithm: %s\n", 1520 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1521 rte_hexdump(stdout, "AEAD key:", 1522 options->aead_xform.aead.key.data, 1523 options->aead_xform.aead.key.length); 1524 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1525 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1526 } 1527 1528 static void 1529 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1530 { 1531 char string_cipher_op[MAX_STR_LEN]; 1532 char string_auth_op[MAX_STR_LEN]; 1533 char string_aead_op[MAX_STR_LEN]; 1534 1535 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1536 strcpy(string_cipher_op, "Encrypt"); 1537 else 1538 strcpy(string_cipher_op, "Decrypt"); 1539 1540 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1541 strcpy(string_auth_op, "Auth generate"); 1542 else 1543 strcpy(string_auth_op, "Auth verify"); 1544 1545 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1546 strcpy(string_aead_op, "Authenticated encryption"); 1547 else 1548 strcpy(string_aead_op, "Authenticated decryption"); 1549 1550 1551 printf("Options:-\nn"); 1552 printf("portmask: %x\n", options->portmask); 1553 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1554 printf("refresh period : %u\n", options->refresh_period); 1555 printf("single lcore mode: %s\n", 1556 options->single_lcore ? "enabled" : "disabled"); 1557 printf("stats_printing: %s\n", 1558 options->refresh_period == 0 ? "disabled" : "enabled"); 1559 1560 printf("sessionless crypto: %s\n", 1561 options->sessionless ? "enabled" : "disabled"); 1562 1563 if (options->ckey_param && (options->ckey_random_size != -1)) 1564 printf("Cipher key already parsed, ignoring size of random key\n"); 1565 1566 if (options->akey_param && (options->akey_random_size != -1)) 1567 printf("Auth key already parsed, ignoring size of random key\n"); 1568 1569 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1570 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1571 1572 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1573 printf("Auth IV already parsed, ignoring size of random IV\n"); 1574 1575 if (options->aad_param && (options->aad_random_size != -1)) 1576 printf("AAD already parsed, ignoring size of random AAD\n"); 1577 1578 printf("\nCrypto chain: "); 1579 switch (options->xform_chain) { 1580 case L2FWD_CRYPTO_AEAD: 1581 printf("Input --> %s --> Output\n", string_aead_op); 1582 display_aead_info(options); 1583 break; 1584 case L2FWD_CRYPTO_CIPHER_HASH: 1585 printf("Input --> %s --> %s --> Output\n", 1586 string_cipher_op, string_auth_op); 1587 display_cipher_info(options); 1588 display_auth_info(options); 1589 break; 1590 case L2FWD_CRYPTO_HASH_CIPHER: 1591 printf("Input --> %s --> %s --> Output\n", 1592 string_auth_op, string_cipher_op); 1593 display_cipher_info(options); 1594 display_auth_info(options); 1595 break; 1596 case L2FWD_CRYPTO_HASH_ONLY: 1597 printf("Input --> %s --> Output\n", string_auth_op); 1598 display_auth_info(options); 1599 break; 1600 case L2FWD_CRYPTO_CIPHER_ONLY: 1601 printf("Input --> %s --> Output\n", string_cipher_op); 1602 display_cipher_info(options); 1603 break; 1604 } 1605 } 1606 1607 /* Parse the argument given in the command line of the application */ 1608 static int 1609 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1610 int argc, char **argv) 1611 { 1612 int opt, retval, option_index; 1613 char **argvopt = argv, *prgname = argv[0]; 1614 1615 static struct option lgopts[] = { 1616 { "sessionless", no_argument, 0, 0 }, 1617 1618 { "cdev_type", required_argument, 0, 0 }, 1619 { "chain", required_argument, 0, 0 }, 1620 1621 { "cipher_algo", required_argument, 0, 0 }, 1622 { "cipher_op", required_argument, 0, 0 }, 1623 { "cipher_key", required_argument, 0, 0 }, 1624 { "cipher_key_random_size", required_argument, 0, 0 }, 1625 { "cipher_iv", required_argument, 0, 0 }, 1626 { "cipher_iv_random_size", required_argument, 0, 0 }, 1627 1628 { "auth_algo", required_argument, 0, 0 }, 1629 { "auth_op", required_argument, 0, 0 }, 1630 { "auth_key", required_argument, 0, 0 }, 1631 { "auth_key_random_size", required_argument, 0, 0 }, 1632 { "auth_iv", required_argument, 0, 0 }, 1633 { "auth_iv_random_size", required_argument, 0, 0 }, 1634 1635 { "aead_algo", required_argument, 0, 0 }, 1636 { "aead_op", required_argument, 0, 0 }, 1637 { "aead_key", required_argument, 0, 0 }, 1638 { "aead_key_random_size", required_argument, 0, 0 }, 1639 { "aead_iv", required_argument, 0, 0 }, 1640 { "aead_iv_random_size", required_argument, 0, 0 }, 1641 1642 { "aad", required_argument, 0, 0 }, 1643 { "aad_random_size", required_argument, 0, 0 }, 1644 1645 { "digest_size", required_argument, 0, 0 }, 1646 1647 { "sessionless", no_argument, 0, 0 }, 1648 { "cryptodev_mask", required_argument, 0, 0}, 1649 1650 { "mac-updating", no_argument, 0, 0}, 1651 { "no-mac-updating", no_argument, 0, 0}, 1652 1653 { NULL, 0, 0, 0 } 1654 }; 1655 1656 l2fwd_crypto_default_options(options); 1657 1658 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1659 &option_index)) != EOF) { 1660 switch (opt) { 1661 /* long options */ 1662 case 0: 1663 retval = l2fwd_crypto_parse_args_long_options(options, 1664 lgopts, option_index); 1665 if (retval < 0) { 1666 l2fwd_crypto_usage(prgname); 1667 return -1; 1668 } 1669 break; 1670 1671 /* portmask */ 1672 case 'p': 1673 retval = l2fwd_crypto_parse_portmask(options, optarg); 1674 if (retval < 0) { 1675 l2fwd_crypto_usage(prgname); 1676 return -1; 1677 } 1678 break; 1679 1680 /* nqueue */ 1681 case 'q': 1682 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1683 if (retval < 0) { 1684 l2fwd_crypto_usage(prgname); 1685 return -1; 1686 } 1687 break; 1688 1689 /* single */ 1690 case 's': 1691 options->single_lcore = 1; 1692 1693 break; 1694 1695 /* timer period */ 1696 case 'T': 1697 retval = l2fwd_crypto_parse_timer_period(options, 1698 optarg); 1699 if (retval < 0) { 1700 l2fwd_crypto_usage(prgname); 1701 return -1; 1702 } 1703 break; 1704 1705 default: 1706 l2fwd_crypto_usage(prgname); 1707 return -1; 1708 } 1709 } 1710 1711 1712 if (optind >= 0) 1713 argv[optind-1] = prgname; 1714 1715 retval = optind-1; 1716 optind = 1; /* reset getopt lib */ 1717 1718 return retval; 1719 } 1720 1721 /* Check the link status of all ports in up to 9s, and print them finally */ 1722 static void 1723 check_all_ports_link_status(uint32_t port_mask) 1724 { 1725 #define CHECK_INTERVAL 100 /* 100ms */ 1726 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1727 uint16_t portid; 1728 uint8_t count, all_ports_up, print_flag = 0; 1729 struct rte_eth_link link; 1730 1731 printf("\nChecking link status"); 1732 fflush(stdout); 1733 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1734 all_ports_up = 1; 1735 RTE_ETH_FOREACH_DEV(portid) { 1736 if ((port_mask & (1 << portid)) == 0) 1737 continue; 1738 memset(&link, 0, sizeof(link)); 1739 rte_eth_link_get_nowait(portid, &link); 1740 /* print link status if flag set */ 1741 if (print_flag == 1) { 1742 if (link.link_status) 1743 printf( 1744 "Port%d Link Up. Speed %u Mbps - %s\n", 1745 portid, link.link_speed, 1746 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1747 ("full-duplex") : ("half-duplex\n")); 1748 else 1749 printf("Port %d Link Down\n", portid); 1750 continue; 1751 } 1752 /* clear all_ports_up flag if any link down */ 1753 if (link.link_status == ETH_LINK_DOWN) { 1754 all_ports_up = 0; 1755 break; 1756 } 1757 } 1758 /* after finally printing all link status, get out */ 1759 if (print_flag == 1) 1760 break; 1761 1762 if (all_ports_up == 0) { 1763 printf("."); 1764 fflush(stdout); 1765 rte_delay_ms(CHECK_INTERVAL); 1766 } 1767 1768 /* set the print_flag if all ports up or timeout */ 1769 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1770 print_flag = 1; 1771 printf("done\n"); 1772 } 1773 } 1774 } 1775 1776 /* Check if device has to be HW/SW or any */ 1777 static int 1778 check_type(const struct l2fwd_crypto_options *options, 1779 const struct rte_cryptodev_info *dev_info) 1780 { 1781 if (options->type == CDEV_TYPE_HW && 1782 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1783 return 0; 1784 if (options->type == CDEV_TYPE_SW && 1785 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1786 return 0; 1787 if (options->type == CDEV_TYPE_ANY) 1788 return 0; 1789 1790 return -1; 1791 } 1792 1793 static const struct rte_cryptodev_capabilities * 1794 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1795 const struct rte_cryptodev_info *dev_info, 1796 uint8_t cdev_id) 1797 { 1798 unsigned int i = 0; 1799 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1800 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1801 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1802 options->cipher_xform.cipher.algo; 1803 1804 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1805 cap_cipher_algo = cap->sym.cipher.algo; 1806 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1807 if (cap_cipher_algo == opt_cipher_algo) { 1808 if (check_type(options, dev_info) == 0) 1809 break; 1810 } 1811 } 1812 cap = &dev_info->capabilities[++i]; 1813 } 1814 1815 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1816 printf("Algorithm %s not supported by cryptodev %u" 1817 " or device not of preferred type (%s)\n", 1818 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1819 cdev_id, 1820 options->string_type); 1821 return NULL; 1822 } 1823 1824 return cap; 1825 } 1826 1827 static const struct rte_cryptodev_capabilities * 1828 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1829 const struct rte_cryptodev_info *dev_info, 1830 uint8_t cdev_id) 1831 { 1832 unsigned int i = 0; 1833 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1834 enum rte_crypto_auth_algorithm cap_auth_algo; 1835 enum rte_crypto_auth_algorithm opt_auth_algo = 1836 options->auth_xform.auth.algo; 1837 1838 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1839 cap_auth_algo = cap->sym.auth.algo; 1840 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1841 if (cap_auth_algo == opt_auth_algo) { 1842 if (check_type(options, dev_info) == 0) 1843 break; 1844 } 1845 } 1846 cap = &dev_info->capabilities[++i]; 1847 } 1848 1849 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1850 printf("Algorithm %s not supported by cryptodev %u" 1851 " or device not of preferred type (%s)\n", 1852 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1853 cdev_id, 1854 options->string_type); 1855 return NULL; 1856 } 1857 1858 return cap; 1859 } 1860 1861 static const struct rte_cryptodev_capabilities * 1862 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1863 const struct rte_cryptodev_info *dev_info, 1864 uint8_t cdev_id) 1865 { 1866 unsigned int i = 0; 1867 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1868 enum rte_crypto_aead_algorithm cap_aead_algo; 1869 enum rte_crypto_aead_algorithm opt_aead_algo = 1870 options->aead_xform.aead.algo; 1871 1872 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1873 cap_aead_algo = cap->sym.aead.algo; 1874 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1875 if (cap_aead_algo == opt_aead_algo) { 1876 if (check_type(options, dev_info) == 0) 1877 break; 1878 } 1879 } 1880 cap = &dev_info->capabilities[++i]; 1881 } 1882 1883 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1884 printf("Algorithm %s not supported by cryptodev %u" 1885 " or device not of preferred type (%s)\n", 1886 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1887 cdev_id, 1888 options->string_type); 1889 return NULL; 1890 } 1891 1892 return cap; 1893 } 1894 1895 /* Check if the device is enabled by cryptodev_mask */ 1896 static int 1897 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1898 uint8_t cdev_id) 1899 { 1900 if (options->cryptodev_mask & (1 << cdev_id)) 1901 return 0; 1902 1903 return -1; 1904 } 1905 1906 static inline int 1907 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1908 uint16_t increment) 1909 { 1910 uint16_t supp_size; 1911 1912 /* Single value */ 1913 if (increment == 0) { 1914 if (length == min) 1915 return 0; 1916 else 1917 return -1; 1918 } 1919 1920 /* Range of values */ 1921 for (supp_size = min; supp_size <= max; supp_size += increment) { 1922 if (length == supp_size) 1923 return 0; 1924 } 1925 1926 return -1; 1927 } 1928 1929 static int 1930 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1931 unsigned int iv_param, int iv_random_size, 1932 uint16_t *iv_length) 1933 { 1934 /* 1935 * Check if length of provided IV is supported 1936 * by the algorithm chosen. 1937 */ 1938 if (iv_param) { 1939 if (check_supported_size(*iv_length, 1940 iv_range_size->min, 1941 iv_range_size->max, 1942 iv_range_size->increment) 1943 != 0) { 1944 printf("Unsupported IV length\n"); 1945 return -1; 1946 } 1947 /* 1948 * Check if length of IV to be randomly generated 1949 * is supported by the algorithm chosen. 1950 */ 1951 } else if (iv_random_size != -1) { 1952 if (check_supported_size(iv_random_size, 1953 iv_range_size->min, 1954 iv_range_size->max, 1955 iv_range_size->increment) 1956 != 0) { 1957 printf("Unsupported IV length\n"); 1958 return -1; 1959 } 1960 *iv_length = iv_random_size; 1961 /* No size provided, use minimum size. */ 1962 } else 1963 *iv_length = iv_range_size->min; 1964 1965 return 0; 1966 } 1967 1968 static int 1969 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1970 uint8_t *enabled_cdevs) 1971 { 1972 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1973 const struct rte_cryptodev_capabilities *cap; 1974 unsigned int sess_sz, max_sess_sz = 0; 1975 int retval; 1976 1977 cdev_count = rte_cryptodev_count(); 1978 if (cdev_count == 0) { 1979 printf("No crypto devices available\n"); 1980 return -1; 1981 } 1982 1983 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1984 sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id); 1985 if (sess_sz > max_sess_sz) 1986 max_sess_sz = sess_sz; 1987 } 1988 1989 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 1990 cdev_id++) { 1991 struct rte_cryptodev_qp_conf qp_conf; 1992 struct rte_cryptodev_info dev_info; 1993 retval = rte_cryptodev_socket_id(cdev_id); 1994 1995 if (retval < 0) { 1996 printf("Invalid crypto device id used\n"); 1997 return -1; 1998 } 1999 2000 uint8_t socket_id = (uint8_t) retval; 2001 2002 struct rte_cryptodev_config conf = { 2003 .nb_queue_pairs = 1, 2004 .socket_id = socket_id, 2005 }; 2006 2007 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2008 continue; 2009 2010 rte_cryptodev_info_get(cdev_id, &dev_info); 2011 2012 if (session_pool_socket[socket_id] == NULL) { 2013 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2014 struct rte_mempool *sess_mp; 2015 2016 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2017 "sess_mp_%u", socket_id); 2018 2019 /* 2020 * Create enough objects for session headers and 2021 * device private data 2022 */ 2023 sess_mp = rte_mempool_create(mp_name, 2024 MAX_SESSIONS * 2, 2025 max_sess_sz, 2026 SESSION_POOL_CACHE_SIZE, 2027 0, NULL, NULL, NULL, 2028 NULL, socket_id, 2029 0); 2030 2031 if (sess_mp == NULL) { 2032 printf("Cannot create session pool on socket %d\n", 2033 socket_id); 2034 return -ENOMEM; 2035 } 2036 2037 printf("Allocated session pool on socket %d\n", socket_id); 2038 session_pool_socket[socket_id] = sess_mp; 2039 } 2040 2041 /* Set AEAD parameters */ 2042 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2043 /* Check if device supports AEAD algo */ 2044 cap = check_device_support_aead_algo(options, &dev_info, 2045 cdev_id); 2046 if (cap == NULL) 2047 continue; 2048 2049 options->block_size = cap->sym.aead.block_size; 2050 2051 check_iv_param(&cap->sym.aead.iv_size, 2052 options->aead_iv_param, 2053 options->aead_iv_random_size, 2054 &options->aead_iv.length); 2055 2056 /* 2057 * Check if length of provided AEAD key is supported 2058 * by the algorithm chosen. 2059 */ 2060 if (options->aead_key_param) { 2061 if (check_supported_size( 2062 options->aead_xform.aead.key.length, 2063 cap->sym.aead.key_size.min, 2064 cap->sym.aead.key_size.max, 2065 cap->sym.aead.key_size.increment) 2066 != 0) { 2067 printf("Unsupported aead key length\n"); 2068 return -1; 2069 } 2070 /* 2071 * Check if length of the aead key to be randomly generated 2072 * is supported by the algorithm chosen. 2073 */ 2074 } else if (options->aead_key_random_size != -1) { 2075 if (check_supported_size(options->aead_key_random_size, 2076 cap->sym.aead.key_size.min, 2077 cap->sym.aead.key_size.max, 2078 cap->sym.aead.key_size.increment) 2079 != 0) { 2080 printf("Unsupported aead key length\n"); 2081 return -1; 2082 } 2083 options->aead_xform.aead.key.length = 2084 options->aead_key_random_size; 2085 /* No size provided, use minimum size. */ 2086 } else 2087 options->aead_xform.aead.key.length = 2088 cap->sym.aead.key_size.min; 2089 2090 if (!options->aead_key_param) 2091 generate_random_key( 2092 options->aead_xform.aead.key.data, 2093 options->aead_xform.aead.key.length); 2094 2095 /* 2096 * Check if length of provided AAD is supported 2097 * by the algorithm chosen. 2098 */ 2099 if (options->aad_param) { 2100 if (check_supported_size(options->aad.length, 2101 cap->sym.aead.aad_size.min, 2102 cap->sym.aead.aad_size.max, 2103 cap->sym.aead.aad_size.increment) 2104 != 0) { 2105 printf("Unsupported AAD length\n"); 2106 return -1; 2107 } 2108 /* 2109 * Check if length of AAD to be randomly generated 2110 * is supported by the algorithm chosen. 2111 */ 2112 } else if (options->aad_random_size != -1) { 2113 if (check_supported_size(options->aad_random_size, 2114 cap->sym.aead.aad_size.min, 2115 cap->sym.aead.aad_size.max, 2116 cap->sym.aead.aad_size.increment) 2117 != 0) { 2118 printf("Unsupported AAD length\n"); 2119 return -1; 2120 } 2121 options->aad.length = options->aad_random_size; 2122 /* No size provided, use minimum size. */ 2123 } else 2124 options->aad.length = cap->sym.auth.aad_size.min; 2125 2126 options->aead_xform.aead.aad_length = 2127 options->aad.length; 2128 2129 /* Check if digest size is supported by the algorithm. */ 2130 if (options->digest_size != -1) { 2131 if (check_supported_size(options->digest_size, 2132 cap->sym.aead.digest_size.min, 2133 cap->sym.aead.digest_size.max, 2134 cap->sym.aead.digest_size.increment) 2135 != 0) { 2136 printf("Unsupported digest length\n"); 2137 return -1; 2138 } 2139 options->aead_xform.aead.digest_length = 2140 options->digest_size; 2141 /* No size provided, use minimum size. */ 2142 } else 2143 options->aead_xform.aead.digest_length = 2144 cap->sym.aead.digest_size.min; 2145 } 2146 2147 /* Set cipher parameters */ 2148 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2149 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2150 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2151 /* Check if device supports cipher algo */ 2152 cap = check_device_support_cipher_algo(options, &dev_info, 2153 cdev_id); 2154 if (cap == NULL) 2155 continue; 2156 2157 options->block_size = cap->sym.cipher.block_size; 2158 2159 check_iv_param(&cap->sym.cipher.iv_size, 2160 options->cipher_iv_param, 2161 options->cipher_iv_random_size, 2162 &options->cipher_iv.length); 2163 2164 /* 2165 * Check if length of provided cipher key is supported 2166 * by the algorithm chosen. 2167 */ 2168 if (options->ckey_param) { 2169 if (check_supported_size( 2170 options->cipher_xform.cipher.key.length, 2171 cap->sym.cipher.key_size.min, 2172 cap->sym.cipher.key_size.max, 2173 cap->sym.cipher.key_size.increment) 2174 != 0) { 2175 printf("Unsupported cipher key length\n"); 2176 return -1; 2177 } 2178 /* 2179 * Check if length of the cipher key to be randomly generated 2180 * is supported by the algorithm chosen. 2181 */ 2182 } else if (options->ckey_random_size != -1) { 2183 if (check_supported_size(options->ckey_random_size, 2184 cap->sym.cipher.key_size.min, 2185 cap->sym.cipher.key_size.max, 2186 cap->sym.cipher.key_size.increment) 2187 != 0) { 2188 printf("Unsupported cipher key length\n"); 2189 return -1; 2190 } 2191 options->cipher_xform.cipher.key.length = 2192 options->ckey_random_size; 2193 /* No size provided, use minimum size. */ 2194 } else 2195 options->cipher_xform.cipher.key.length = 2196 cap->sym.cipher.key_size.min; 2197 2198 if (!options->ckey_param) 2199 generate_random_key( 2200 options->cipher_xform.cipher.key.data, 2201 options->cipher_xform.cipher.key.length); 2202 2203 } 2204 2205 /* Set auth parameters */ 2206 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2207 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2208 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2209 /* Check if device supports auth algo */ 2210 cap = check_device_support_auth_algo(options, &dev_info, 2211 cdev_id); 2212 if (cap == NULL) 2213 continue; 2214 2215 check_iv_param(&cap->sym.auth.iv_size, 2216 options->auth_iv_param, 2217 options->auth_iv_random_size, 2218 &options->auth_iv.length); 2219 /* 2220 * Check if length of provided auth key is supported 2221 * by the algorithm chosen. 2222 */ 2223 if (options->akey_param) { 2224 if (check_supported_size( 2225 options->auth_xform.auth.key.length, 2226 cap->sym.auth.key_size.min, 2227 cap->sym.auth.key_size.max, 2228 cap->sym.auth.key_size.increment) 2229 != 0) { 2230 printf("Unsupported auth key length\n"); 2231 return -1; 2232 } 2233 /* 2234 * Check if length of the auth key to be randomly generated 2235 * is supported by the algorithm chosen. 2236 */ 2237 } else if (options->akey_random_size != -1) { 2238 if (check_supported_size(options->akey_random_size, 2239 cap->sym.auth.key_size.min, 2240 cap->sym.auth.key_size.max, 2241 cap->sym.auth.key_size.increment) 2242 != 0) { 2243 printf("Unsupported auth key length\n"); 2244 return -1; 2245 } 2246 options->auth_xform.auth.key.length = 2247 options->akey_random_size; 2248 /* No size provided, use minimum size. */ 2249 } else 2250 options->auth_xform.auth.key.length = 2251 cap->sym.auth.key_size.min; 2252 2253 if (!options->akey_param) 2254 generate_random_key( 2255 options->auth_xform.auth.key.data, 2256 options->auth_xform.auth.key.length); 2257 2258 /* Check if digest size is supported by the algorithm. */ 2259 if (options->digest_size != -1) { 2260 if (check_supported_size(options->digest_size, 2261 cap->sym.auth.digest_size.min, 2262 cap->sym.auth.digest_size.max, 2263 cap->sym.auth.digest_size.increment) 2264 != 0) { 2265 printf("Unsupported digest length\n"); 2266 return -1; 2267 } 2268 options->auth_xform.auth.digest_length = 2269 options->digest_size; 2270 /* No size provided, use minimum size. */ 2271 } else 2272 options->auth_xform.auth.digest_length = 2273 cap->sym.auth.digest_size.min; 2274 } 2275 2276 retval = rte_cryptodev_configure(cdev_id, &conf); 2277 if (retval < 0) { 2278 printf("Failed to configure cryptodev %u", cdev_id); 2279 return -1; 2280 } 2281 2282 qp_conf.nb_descriptors = 2048; 2283 2284 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2285 socket_id, session_pool_socket[socket_id]); 2286 if (retval < 0) { 2287 printf("Failed to setup queue pair %u on cryptodev %u", 2288 0, cdev_id); 2289 return -1; 2290 } 2291 2292 retval = rte_cryptodev_start(cdev_id); 2293 if (retval < 0) { 2294 printf("Failed to start device %u: error %d\n", 2295 cdev_id, retval); 2296 return -1; 2297 } 2298 2299 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2300 2301 enabled_cdevs[cdev_id] = 1; 2302 enabled_cdev_count++; 2303 } 2304 2305 return enabled_cdev_count; 2306 } 2307 2308 static int 2309 initialize_ports(struct l2fwd_crypto_options *options) 2310 { 2311 uint16_t last_portid = 0, portid; 2312 unsigned enabled_portcount = 0; 2313 unsigned nb_ports = rte_eth_dev_count_avail(); 2314 2315 if (nb_ports == 0) { 2316 printf("No Ethernet ports - bye\n"); 2317 return -1; 2318 } 2319 2320 /* Reset l2fwd_dst_ports */ 2321 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2322 l2fwd_dst_ports[portid] = 0; 2323 2324 RTE_ETH_FOREACH_DEV(portid) { 2325 int retval; 2326 struct rte_eth_dev_info dev_info; 2327 struct rte_eth_rxconf rxq_conf; 2328 struct rte_eth_txconf txq_conf; 2329 struct rte_eth_conf local_port_conf = port_conf; 2330 2331 /* Skip ports that are not enabled */ 2332 if ((options->portmask & (1 << portid)) == 0) 2333 continue; 2334 2335 /* init port */ 2336 printf("Initializing port %u... ", portid); 2337 fflush(stdout); 2338 rte_eth_dev_info_get(portid, &dev_info); 2339 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 2340 local_port_conf.txmode.offloads |= 2341 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 2342 retval = rte_eth_dev_configure(portid, 1, 1, &local_port_conf); 2343 if (retval < 0) { 2344 printf("Cannot configure device: err=%d, port=%u\n", 2345 retval, portid); 2346 return -1; 2347 } 2348 2349 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2350 &nb_txd); 2351 if (retval < 0) { 2352 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2353 retval, portid); 2354 return -1; 2355 } 2356 2357 /* init one RX queue */ 2358 fflush(stdout); 2359 rxq_conf = dev_info.default_rxconf; 2360 rxq_conf.offloads = local_port_conf.rxmode.offloads; 2361 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2362 rte_eth_dev_socket_id(portid), 2363 &rxq_conf, l2fwd_pktmbuf_pool); 2364 if (retval < 0) { 2365 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2366 retval, portid); 2367 return -1; 2368 } 2369 2370 /* init one TX queue on each port */ 2371 fflush(stdout); 2372 txq_conf = dev_info.default_txconf; 2373 txq_conf.offloads = local_port_conf.txmode.offloads; 2374 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2375 rte_eth_dev_socket_id(portid), 2376 &txq_conf); 2377 if (retval < 0) { 2378 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2379 retval, portid); 2380 2381 return -1; 2382 } 2383 2384 /* Start device */ 2385 retval = rte_eth_dev_start(portid); 2386 if (retval < 0) { 2387 printf("rte_eth_dev_start:err=%d, port=%u\n", 2388 retval, portid); 2389 return -1; 2390 } 2391 2392 rte_eth_promiscuous_enable(portid); 2393 2394 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2395 2396 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2397 portid, 2398 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2399 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2400 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2401 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2402 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2403 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2404 2405 /* initialize port stats */ 2406 memset(&port_statistics, 0, sizeof(port_statistics)); 2407 2408 /* Setup port forwarding table */ 2409 if (enabled_portcount % 2) { 2410 l2fwd_dst_ports[portid] = last_portid; 2411 l2fwd_dst_ports[last_portid] = portid; 2412 } else { 2413 last_portid = portid; 2414 } 2415 2416 l2fwd_enabled_port_mask |= (1 << portid); 2417 enabled_portcount++; 2418 } 2419 2420 if (enabled_portcount == 1) { 2421 l2fwd_dst_ports[last_portid] = last_portid; 2422 } else if (enabled_portcount % 2) { 2423 printf("odd number of ports in portmask- bye\n"); 2424 return -1; 2425 } 2426 2427 check_all_ports_link_status(l2fwd_enabled_port_mask); 2428 2429 return enabled_portcount; 2430 } 2431 2432 static void 2433 reserve_key_memory(struct l2fwd_crypto_options *options) 2434 { 2435 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2436 MAX_KEY_SIZE, 0); 2437 if (options->cipher_xform.cipher.key.data == NULL) 2438 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2439 2440 options->auth_xform.auth.key.data = rte_malloc("auth key", 2441 MAX_KEY_SIZE, 0); 2442 if (options->auth_xform.auth.key.data == NULL) 2443 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2444 2445 options->aead_xform.aead.key.data = rte_malloc("aead key", 2446 MAX_KEY_SIZE, 0); 2447 if (options->aead_xform.aead.key.data == NULL) 2448 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2449 2450 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2451 if (options->cipher_iv.data == NULL) 2452 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2453 2454 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2455 if (options->auth_iv.data == NULL) 2456 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2457 2458 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2459 if (options->aead_iv.data == NULL) 2460 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2461 2462 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2463 if (options->aad.data == NULL) 2464 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2465 options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data); 2466 } 2467 2468 int 2469 main(int argc, char **argv) 2470 { 2471 struct lcore_queue_conf *qconf = NULL; 2472 struct l2fwd_crypto_options options; 2473 2474 uint8_t nb_cryptodevs, cdev_id; 2475 uint16_t portid; 2476 unsigned lcore_id, rx_lcore_id = 0; 2477 int ret, enabled_cdevcount, enabled_portcount; 2478 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2479 2480 /* init EAL */ 2481 ret = rte_eal_init(argc, argv); 2482 if (ret < 0) 2483 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2484 argc -= ret; 2485 argv += ret; 2486 2487 /* reserve memory for Cipher/Auth key and IV */ 2488 reserve_key_memory(&options); 2489 2490 /* parse application arguments (after the EAL ones) */ 2491 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2492 if (ret < 0) 2493 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2494 2495 printf("MAC updating %s\n", 2496 options.mac_updating ? "enabled" : "disabled"); 2497 2498 /* create the mbuf pool */ 2499 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2500 sizeof(struct rte_crypto_op), 2501 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2502 if (l2fwd_pktmbuf_pool == NULL) 2503 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2504 2505 /* create crypto op pool */ 2506 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2507 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2508 rte_socket_id()); 2509 if (l2fwd_crypto_op_pool == NULL) 2510 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2511 2512 /* Enable Ethernet ports */ 2513 enabled_portcount = initialize_ports(&options); 2514 if (enabled_portcount < 1) 2515 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2516 2517 /* Initialize the port/queue configuration of each logical core */ 2518 RTE_ETH_FOREACH_DEV(portid) { 2519 2520 /* skip ports that are not enabled */ 2521 if ((options.portmask & (1 << portid)) == 0) 2522 continue; 2523 2524 if (options.single_lcore && qconf == NULL) { 2525 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2526 rx_lcore_id++; 2527 if (rx_lcore_id >= RTE_MAX_LCORE) 2528 rte_exit(EXIT_FAILURE, 2529 "Not enough cores\n"); 2530 } 2531 } else if (!options.single_lcore) { 2532 /* get the lcore_id for this port */ 2533 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2534 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2535 options.nb_ports_per_lcore) { 2536 rx_lcore_id++; 2537 if (rx_lcore_id >= RTE_MAX_LCORE) 2538 rte_exit(EXIT_FAILURE, 2539 "Not enough cores\n"); 2540 } 2541 } 2542 2543 /* Assigned a new logical core in the loop above. */ 2544 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2545 qconf = &lcore_queue_conf[rx_lcore_id]; 2546 2547 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2548 qconf->nb_rx_ports++; 2549 2550 printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); 2551 } 2552 2553 /* Enable Crypto devices */ 2554 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2555 enabled_cdevs); 2556 if (enabled_cdevcount < 0) 2557 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2558 2559 if (enabled_cdevcount < enabled_portcount) 2560 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2561 "has to be more or equal to number of ports (%d)\n", 2562 enabled_cdevcount, enabled_portcount); 2563 2564 nb_cryptodevs = rte_cryptodev_count(); 2565 2566 /* Initialize the port/cryptodev configuration of each logical core */ 2567 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2568 cdev_id < nb_cryptodevs && enabled_cdevcount; 2569 cdev_id++) { 2570 /* Crypto op not supported by crypto device */ 2571 if (!enabled_cdevs[cdev_id]) 2572 continue; 2573 2574 if (options.single_lcore && qconf == NULL) { 2575 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2576 rx_lcore_id++; 2577 if (rx_lcore_id >= RTE_MAX_LCORE) 2578 rte_exit(EXIT_FAILURE, 2579 "Not enough cores\n"); 2580 } 2581 } else if (!options.single_lcore) { 2582 /* get the lcore_id for this port */ 2583 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2584 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2585 options.nb_ports_per_lcore) { 2586 rx_lcore_id++; 2587 if (rx_lcore_id >= RTE_MAX_LCORE) 2588 rte_exit(EXIT_FAILURE, 2589 "Not enough cores\n"); 2590 } 2591 } 2592 2593 /* Assigned a new logical core in the loop above. */ 2594 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2595 qconf = &lcore_queue_conf[rx_lcore_id]; 2596 2597 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2598 qconf->nb_crypto_devs++; 2599 2600 enabled_cdevcount--; 2601 2602 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2603 (unsigned)cdev_id); 2604 } 2605 2606 /* launch per-lcore init on every lcore */ 2607 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2608 CALL_MASTER); 2609 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2610 if (rte_eal_wait_lcore(lcore_id) < 0) 2611 return -1; 2612 } 2613 2614 return 0; 2615 } 2616