xref: /dpdk/examples/l2fwd-crypto/main.c (revision 2490bb897182f57de80fd924dd3ae48dda819b8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2016 Intel Corporation
3  */
4 
5 #include <time.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <sys/types.h>
12 #include <sys/queue.h>
13 #include <netinet/in.h>
14 #include <setjmp.h>
15 #include <stdarg.h>
16 #include <ctype.h>
17 #include <errno.h>
18 #include <getopt.h>
19 #include <fcntl.h>
20 #include <unistd.h>
21 
22 #include <rte_string_fns.h>
23 #include <rte_branch_prediction.h>
24 #include <rte_common.h>
25 #include <rte_cryptodev.h>
26 #include <rte_cycles.h>
27 #include <rte_debug.h>
28 #include <rte_eal.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev.h>
31 #include <rte_interrupts.h>
32 #include <rte_ip.h>
33 #include <rte_launch.h>
34 #include <rte_lcore.h>
35 #include <rte_log.h>
36 #include <rte_malloc.h>
37 #include <rte_mbuf.h>
38 #include <rte_memcpy.h>
39 #include <rte_memory.h>
40 #include <rte_mempool.h>
41 #include <rte_per_lcore.h>
42 #include <rte_prefetch.h>
43 #include <rte_random.h>
44 #include <rte_hexdump.h>
45 #ifdef RTE_CRYPTO_SCHEDULER
46 #include <rte_cryptodev_scheduler.h>
47 #endif
48 
49 enum cdev_type {
50 	CDEV_TYPE_ANY,
51 	CDEV_TYPE_HW,
52 	CDEV_TYPE_SW
53 };
54 
55 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
56 
57 #define NB_MBUF   8192
58 
59 #define MAX_STR_LEN 32
60 #define MAX_KEY_SIZE 128
61 #define MAX_IV_SIZE 16
62 #define MAX_AAD_SIZE 65535
63 #define MAX_PKT_BURST 32
64 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
65 #define SESSION_POOL_CACHE_SIZE 0
66 
67 #define MAXIMUM_IV_LENGTH	16
68 #define IV_OFFSET		(sizeof(struct rte_crypto_op) + \
69 				sizeof(struct rte_crypto_sym_op))
70 
71 /*
72  * Configurable number of RX/TX ring descriptors
73  */
74 #define RTE_TEST_RX_DESC_DEFAULT 1024
75 #define RTE_TEST_TX_DESC_DEFAULT 1024
76 
77 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
78 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
79 
80 /* ethernet addresses of ports */
81 static struct rte_ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
82 
83 /* mask of enabled ports */
84 static uint64_t l2fwd_enabled_port_mask;
85 static uint64_t l2fwd_enabled_crypto_mask;
86 
87 /* list of enabled ports */
88 static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
89 
90 
91 struct pkt_buffer {
92 	unsigned len;
93 	struct rte_mbuf *buffer[MAX_PKT_BURST];
94 };
95 
96 struct op_buffer {
97 	unsigned len;
98 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
99 };
100 
101 #define MAX_RX_QUEUE_PER_LCORE 16
102 #define MAX_TX_QUEUE_PER_PORT 16
103 
104 enum l2fwd_crypto_xform_chain {
105 	L2FWD_CRYPTO_CIPHER_HASH,
106 	L2FWD_CRYPTO_HASH_CIPHER,
107 	L2FWD_CRYPTO_CIPHER_ONLY,
108 	L2FWD_CRYPTO_HASH_ONLY,
109 	L2FWD_CRYPTO_AEAD
110 };
111 
112 struct l2fwd_key {
113 	uint8_t *data;
114 	uint32_t length;
115 	rte_iova_t phys_addr;
116 };
117 
118 struct l2fwd_iv {
119 	uint8_t *data;
120 	uint16_t length;
121 };
122 
123 /** l2fwd crypto application command line options */
124 struct l2fwd_crypto_options {
125 	unsigned portmask;
126 	unsigned nb_ports_per_lcore;
127 	unsigned refresh_period;
128 	unsigned single_lcore:1;
129 
130 	enum cdev_type type;
131 	unsigned sessionless:1;
132 
133 	enum l2fwd_crypto_xform_chain xform_chain;
134 
135 	struct rte_crypto_sym_xform cipher_xform;
136 	unsigned ckey_param;
137 	int ckey_random_size;
138 	uint8_t cipher_key[MAX_KEY_SIZE];
139 
140 	struct l2fwd_iv cipher_iv;
141 	unsigned int cipher_iv_param;
142 	int cipher_iv_random_size;
143 
144 	struct rte_crypto_sym_xform auth_xform;
145 	uint8_t akey_param;
146 	int akey_random_size;
147 	uint8_t auth_key[MAX_KEY_SIZE];
148 
149 	struct l2fwd_iv auth_iv;
150 	unsigned int auth_iv_param;
151 	int auth_iv_random_size;
152 
153 	struct rte_crypto_sym_xform aead_xform;
154 	unsigned int aead_key_param;
155 	int aead_key_random_size;
156 	uint8_t aead_key[MAX_KEY_SIZE];
157 
158 	struct l2fwd_iv aead_iv;
159 	unsigned int aead_iv_param;
160 	int aead_iv_random_size;
161 
162 	struct l2fwd_key aad;
163 	unsigned aad_param;
164 	int aad_random_size;
165 
166 	int digest_size;
167 
168 	uint16_t block_size;
169 	char string_type[MAX_STR_LEN];
170 
171 	uint64_t cryptodev_mask;
172 
173 	unsigned int mac_updating;
174 };
175 
176 /** l2fwd crypto lcore params */
177 struct l2fwd_crypto_params {
178 	uint8_t dev_id;
179 	uint8_t qp_id;
180 
181 	unsigned digest_length;
182 	unsigned block_size;
183 
184 	uint32_t cipher_dataunit_len;
185 
186 	struct l2fwd_iv cipher_iv;
187 	struct l2fwd_iv auth_iv;
188 	struct l2fwd_iv aead_iv;
189 	struct l2fwd_key aad;
190 	struct rte_cryptodev_sym_session *session;
191 
192 	uint8_t do_cipher;
193 	uint8_t do_hash;
194 	uint8_t do_aead;
195 	uint8_t hash_verify;
196 
197 	enum rte_crypto_cipher_algorithm cipher_algo;
198 	enum rte_crypto_auth_algorithm auth_algo;
199 	enum rte_crypto_aead_algorithm aead_algo;
200 };
201 
202 /** lcore configuration */
203 struct lcore_queue_conf {
204 	unsigned nb_rx_ports;
205 	uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE];
206 
207 	unsigned nb_crypto_devs;
208 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
209 
210 	struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
211 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
212 } __rte_cache_aligned;
213 
214 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
215 
216 static struct rte_eth_conf port_conf = {
217 	.rxmode = {
218 		.mq_mode = RTE_ETH_MQ_RX_NONE,
219 		.split_hdr_size = 0,
220 	},
221 	.txmode = {
222 		.mq_mode = RTE_ETH_MQ_TX_NONE,
223 	},
224 };
225 
226 struct rte_mempool *l2fwd_pktmbuf_pool;
227 struct rte_mempool *l2fwd_crypto_op_pool;
228 static struct {
229 	struct rte_mempool *sess_mp;
230 	struct rte_mempool *priv_mp;
231 } session_pool_socket[RTE_MAX_NUMA_NODES];
232 
233 /* Per-port statistics struct */
234 struct l2fwd_port_statistics {
235 	uint64_t tx;
236 	uint64_t rx;
237 
238 	uint64_t crypto_enqueued;
239 	uint64_t crypto_dequeued;
240 
241 	uint64_t dropped;
242 } __rte_cache_aligned;
243 
244 struct l2fwd_crypto_statistics {
245 	uint64_t enqueued;
246 	uint64_t dequeued;
247 
248 	uint64_t errors;
249 } __rte_cache_aligned;
250 
251 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
252 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
253 
254 /* A tsc-based timer responsible for triggering statistics printout */
255 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
256 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
257 
258 /* default period is 10 seconds */
259 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
260 
261 /* Print out statistics on packets dropped */
262 static void
263 print_stats(void)
264 {
265 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
266 	uint64_t total_packets_enqueued, total_packets_dequeued,
267 		total_packets_errors;
268 	uint16_t portid;
269 	uint64_t cdevid;
270 
271 	total_packets_dropped = 0;
272 	total_packets_tx = 0;
273 	total_packets_rx = 0;
274 	total_packets_enqueued = 0;
275 	total_packets_dequeued = 0;
276 	total_packets_errors = 0;
277 
278 	const char clr[] = { 27, '[', '2', 'J', '\0' };
279 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
280 
281 		/* Clear screen and move to top left */
282 	printf("%s%s", clr, topLeft);
283 
284 	printf("\nPort statistics ====================================");
285 
286 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
287 		/* skip disabled ports */
288 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
289 			continue;
290 		printf("\nStatistics for port %u ------------------------------"
291 			   "\nPackets sent: %32"PRIu64
292 			   "\nPackets received: %28"PRIu64
293 			   "\nPackets dropped: %29"PRIu64,
294 			   portid,
295 			   port_statistics[portid].tx,
296 			   port_statistics[portid].rx,
297 			   port_statistics[portid].dropped);
298 
299 		total_packets_dropped += port_statistics[portid].dropped;
300 		total_packets_tx += port_statistics[portid].tx;
301 		total_packets_rx += port_statistics[portid].rx;
302 	}
303 	printf("\nCrypto statistics ==================================");
304 
305 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
306 		/* skip disabled ports */
307 		if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
308 			continue;
309 		printf("\nStatistics for cryptodev %"PRIu64
310 				" -------------------------"
311 			   "\nPackets enqueued: %28"PRIu64
312 			   "\nPackets dequeued: %28"PRIu64
313 			   "\nPackets errors: %30"PRIu64,
314 			   cdevid,
315 			   crypto_statistics[cdevid].enqueued,
316 			   crypto_statistics[cdevid].dequeued,
317 			   crypto_statistics[cdevid].errors);
318 
319 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
320 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
321 		total_packets_errors += crypto_statistics[cdevid].errors;
322 	}
323 	printf("\nAggregate statistics ==============================="
324 		   "\nTotal packets received: %22"PRIu64
325 		   "\nTotal packets enqueued: %22"PRIu64
326 		   "\nTotal packets dequeued: %22"PRIu64
327 		   "\nTotal packets sent: %26"PRIu64
328 		   "\nTotal packets dropped: %23"PRIu64
329 		   "\nTotal packets crypto errors: %17"PRIu64,
330 		   total_packets_rx,
331 		   total_packets_enqueued,
332 		   total_packets_dequeued,
333 		   total_packets_tx,
334 		   total_packets_dropped,
335 		   total_packets_errors);
336 	printf("\n====================================================\n");
337 
338 	fflush(stdout);
339 }
340 
341 /* l2fwd_crypto_send_burst 8< */
342 static int
343 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
344 		struct l2fwd_crypto_params *cparams)
345 {
346 	struct rte_crypto_op **op_buffer;
347 	unsigned ret;
348 
349 	op_buffer = (struct rte_crypto_op **)
350 			qconf->op_buf[cparams->dev_id].buffer;
351 
352 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
353 			cparams->qp_id,	op_buffer, (uint16_t) n);
354 
355 	crypto_statistics[cparams->dev_id].enqueued += ret;
356 	if (unlikely(ret < n)) {
357 		crypto_statistics[cparams->dev_id].errors += (n - ret);
358 		do {
359 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
360 			rte_crypto_op_free(op_buffer[ret]);
361 		} while (++ret < n);
362 	}
363 
364 	return 0;
365 }
366 /* >8 End of l2fwd_crypto_send_burst. */
367 
368 /* Crypto enqueue. 8< */
369 static int
370 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
371 		struct l2fwd_crypto_params *cparams)
372 {
373 	unsigned lcore_id, len;
374 	struct lcore_queue_conf *qconf;
375 
376 	lcore_id = rte_lcore_id();
377 
378 	qconf = &lcore_queue_conf[lcore_id];
379 	len = qconf->op_buf[cparams->dev_id].len;
380 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
381 	len++;
382 
383 	/* enough ops to be sent */
384 	if (len == MAX_PKT_BURST) {
385 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
386 		len = 0;
387 	}
388 
389 	qconf->op_buf[cparams->dev_id].len = len;
390 	return 0;
391 }
392 /* >8 End of crypto enqueue. */
393 
394 static int
395 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
396 		struct rte_crypto_op *op,
397 		struct l2fwd_crypto_params *cparams)
398 {
399 	struct rte_ether_hdr *eth_hdr;
400 	struct rte_ipv4_hdr *ip_hdr;
401 
402 	uint32_t ipdata_offset, data_len;
403 	uint32_t pad_len = 0;
404 	char *padding;
405 
406 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
407 
408 	if (eth_hdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
409 		return -1;
410 
411 	ipdata_offset = sizeof(struct rte_ether_hdr);
412 
413 	ip_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
414 			ipdata_offset);
415 
416 	ipdata_offset += (ip_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK)
417 			* RTE_IPV4_IHL_MULTIPLIER;
418 
419 
420 	/* Zero pad data to be crypto'd so it is block aligned */
421 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
422 
423 	if ((cparams->do_hash || cparams->do_aead) && cparams->hash_verify)
424 		data_len -= cparams->digest_length;
425 
426 	if (cparams->do_cipher) {
427 		/*
428 		 * Following algorithms are block cipher algorithms,
429 		 * and might need padding
430 		 */
431 		switch (cparams->cipher_algo) {
432 		case RTE_CRYPTO_CIPHER_AES_CBC:
433 		case RTE_CRYPTO_CIPHER_AES_ECB:
434 		case RTE_CRYPTO_CIPHER_DES_CBC:
435 		case RTE_CRYPTO_CIPHER_3DES_CBC:
436 		case RTE_CRYPTO_CIPHER_3DES_ECB:
437 			if (data_len % cparams->block_size)
438 				pad_len = cparams->block_size -
439 					(data_len % cparams->block_size);
440 			break;
441 		case RTE_CRYPTO_CIPHER_AES_XTS:
442 			if (cparams->cipher_dataunit_len != 0 &&
443 			    (data_len % cparams->cipher_dataunit_len))
444 				pad_len = cparams->cipher_dataunit_len -
445 					(data_len % cparams->cipher_dataunit_len);
446 			break;
447 		default:
448 			pad_len = 0;
449 		}
450 
451 		if (pad_len) {
452 			padding = rte_pktmbuf_append(m, pad_len);
453 			if (unlikely(!padding))
454 				return -1;
455 
456 			data_len += pad_len;
457 			memset(padding, 0, pad_len);
458 		}
459 	}
460 
461 	/* Set crypto operation data parameters */
462 	rte_crypto_op_attach_sym_session(op, cparams->session);
463 
464 	if (cparams->do_hash) {
465 		if (cparams->auth_iv.length) {
466 			uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op,
467 						uint8_t *,
468 						IV_OFFSET +
469 						cparams->cipher_iv.length);
470 			/*
471 			 * Copy IV at the end of the crypto operation,
472 			 * after the cipher IV, if added
473 			 */
474 			rte_memcpy(iv_ptr, cparams->auth_iv.data,
475 					cparams->auth_iv.length);
476 		}
477 		if (!cparams->hash_verify) {
478 			/* Append space for digest to end of packet */
479 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
480 				cparams->digest_length);
481 		} else {
482 			op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
483 				uint8_t *) + ipdata_offset + data_len;
484 		}
485 
486 		op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m,
487 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
488 
489 		/* For wireless algorithms, offset/length must be in bits */
490 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
491 				cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
492 				cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
493 			op->sym->auth.data.offset = ipdata_offset << 3;
494 			op->sym->auth.data.length = data_len << 3;
495 		} else {
496 			op->sym->auth.data.offset = ipdata_offset;
497 			op->sym->auth.data.length = data_len;
498 		}
499 	}
500 
501 	if (cparams->do_cipher) {
502 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
503 							IV_OFFSET);
504 		/* Copy IV at the end of the crypto operation */
505 		rte_memcpy(iv_ptr, cparams->cipher_iv.data,
506 				cparams->cipher_iv.length);
507 
508 		/* For wireless algorithms, offset/length must be in bits */
509 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
510 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
511 				cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
512 			op->sym->cipher.data.offset = ipdata_offset << 3;
513 			op->sym->cipher.data.length = data_len << 3;
514 		} else {
515 			op->sym->cipher.data.offset = ipdata_offset;
516 			op->sym->cipher.data.length = data_len;
517 		}
518 	}
519 
520 	if (cparams->do_aead) {
521 		uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
522 							IV_OFFSET);
523 		/* Copy IV at the end of the crypto operation */
524 		/*
525 		 * If doing AES-CCM, nonce is copied one byte
526 		 * after the start of IV field
527 		 */
528 		if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
529 			rte_memcpy(iv_ptr + 1, cparams->aead_iv.data,
530 					cparams->aead_iv.length);
531 		else
532 			rte_memcpy(iv_ptr, cparams->aead_iv.data,
533 					cparams->aead_iv.length);
534 
535 		op->sym->aead.data.offset = ipdata_offset;
536 		op->sym->aead.data.length = data_len;
537 
538 		if (!cparams->hash_verify) {
539 			/* Append space for digest to end of packet */
540 			op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m,
541 				cparams->digest_length);
542 		} else {
543 			op->sym->aead.digest.data = rte_pktmbuf_mtod(m,
544 				uint8_t *) + ipdata_offset + data_len;
545 		}
546 
547 		op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m,
548 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
549 
550 		if (cparams->aad.length) {
551 			op->sym->aead.aad.data = cparams->aad.data;
552 			op->sym->aead.aad.phys_addr = cparams->aad.phys_addr;
553 		}
554 	}
555 
556 	op->sym->m_src = m;
557 
558 	return l2fwd_crypto_enqueue(op, cparams);
559 }
560 
561 
562 /* Send the burst of packets on an output interface */
563 static int
564 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
565 		uint16_t port)
566 {
567 	struct rte_mbuf **pkt_buffer;
568 	unsigned ret;
569 
570 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
571 
572 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
573 	port_statistics[port].tx += ret;
574 	if (unlikely(ret < n)) {
575 		port_statistics[port].dropped += (n - ret);
576 		do {
577 			rte_pktmbuf_free(pkt_buffer[ret]);
578 		} while (++ret < n);
579 	}
580 
581 	return 0;
582 }
583 
584 /* Enqueue packets for TX and prepare them to be sent. 8< */
585 static int
586 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
587 {
588 	unsigned lcore_id, len;
589 	struct lcore_queue_conf *qconf;
590 
591 	lcore_id = rte_lcore_id();
592 
593 	qconf = &lcore_queue_conf[lcore_id];
594 	len = qconf->pkt_buf[port].len;
595 	qconf->pkt_buf[port].buffer[len] = m;
596 	len++;
597 
598 	/* enough pkts to be sent */
599 	if (unlikely(len == MAX_PKT_BURST)) {
600 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
601 		len = 0;
602 	}
603 
604 	qconf->pkt_buf[port].len = len;
605 	return 0;
606 }
607 /* >8 End of Enqueuing packets for TX. */
608 
609 static void
610 l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid)
611 {
612 	struct rte_ether_hdr *eth;
613 	void *tmp;
614 
615 	eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
616 
617 	/* 02:00:00:00:00:xx */
618 	tmp = &eth->dst_addr.addr_bytes[0];
619 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
620 
621 	/* src addr */
622 	rte_ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], &eth->src_addr);
623 }
624 
625 static void
626 l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
627 		struct l2fwd_crypto_options *options)
628 {
629 	uint16_t dst_port;
630 	uint32_t pad_len;
631 	struct rte_ipv4_hdr *ip_hdr;
632 	uint32_t ipdata_offset = sizeof(struct rte_ether_hdr);
633 
634 	ip_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
635 					 ipdata_offset);
636 	dst_port = l2fwd_dst_ports[portid];
637 
638 	if (options->mac_updating)
639 		l2fwd_mac_updating(m, dst_port);
640 
641 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
642 		rte_pktmbuf_trim(m, options->auth_xform.auth.digest_length);
643 
644 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
645 		pad_len = m->pkt_len - rte_be_to_cpu_16(ip_hdr->total_length) -
646 			  ipdata_offset;
647 		rte_pktmbuf_trim(m, pad_len);
648 	}
649 
650 	l2fwd_send_packet(m, dst_port);
651 }
652 
653 /** Generate random key */
654 static void
655 generate_random_key(uint8_t *key, unsigned length)
656 {
657 	int fd;
658 	int ret;
659 
660 	fd = open("/dev/urandom", O_RDONLY);
661 	if (fd < 0)
662 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
663 
664 	ret = read(fd, key, length);
665 	close(fd);
666 
667 	if (ret != (signed)length)
668 		rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
669 }
670 
671 /* Session is created and is later attached to the crypto operation. 8< */
672 static struct rte_cryptodev_sym_session *
673 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
674 {
675 	struct rte_crypto_sym_xform *first_xform;
676 	struct rte_cryptodev_sym_session *session;
677 	int retval = rte_cryptodev_socket_id(cdev_id);
678 
679 	if (retval < 0)
680 		return NULL;
681 
682 	uint8_t socket_id = (uint8_t) retval;
683 
684 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
685 		first_xform = &options->aead_xform;
686 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
687 		first_xform = &options->cipher_xform;
688 		first_xform->next = &options->auth_xform;
689 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
690 		first_xform = &options->auth_xform;
691 		first_xform->next = &options->cipher_xform;
692 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
693 		first_xform = &options->cipher_xform;
694 	} else {
695 		first_xform = &options->auth_xform;
696 	}
697 
698 	session = rte_cryptodev_sym_session_create(
699 			session_pool_socket[socket_id].sess_mp);
700 	if (session == NULL)
701 		return NULL;
702 
703 	if (rte_cryptodev_sym_session_init(cdev_id, session,
704 				first_xform,
705 				session_pool_socket[socket_id].priv_mp) < 0)
706 		return NULL;
707 
708 	return session;
709 }
710 /* >8 End of creation of session. */
711 
712 static void
713 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
714 
715 /* main processing loop */
716 static void
717 l2fwd_main_loop(struct l2fwd_crypto_options *options)
718 {
719 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
720 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
721 
722 	unsigned lcore_id = rte_lcore_id();
723 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
724 	unsigned int i, j, nb_rx, len;
725 	uint16_t portid;
726 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
727 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
728 			US_PER_S * BURST_TX_DRAIN_US;
729 	struct l2fwd_crypto_params *cparams;
730 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
731 	struct rte_cryptodev_sym_session *session;
732 
733 	if (qconf->nb_rx_ports == 0) {
734 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
735 		return;
736 	}
737 
738 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
739 
740 	for (i = 0; i < qconf->nb_rx_ports; i++) {
741 
742 		portid = qconf->rx_port_list[i];
743 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
744 			portid);
745 	}
746 
747 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
748 		port_cparams[i].do_cipher = 0;
749 		port_cparams[i].do_hash = 0;
750 		port_cparams[i].do_aead = 0;
751 
752 		switch (options->xform_chain) {
753 		case L2FWD_CRYPTO_AEAD:
754 			port_cparams[i].do_aead = 1;
755 			break;
756 		case L2FWD_CRYPTO_CIPHER_HASH:
757 		case L2FWD_CRYPTO_HASH_CIPHER:
758 			port_cparams[i].do_cipher = 1;
759 			port_cparams[i].do_hash = 1;
760 			break;
761 		case L2FWD_CRYPTO_HASH_ONLY:
762 			port_cparams[i].do_hash = 1;
763 			break;
764 		case L2FWD_CRYPTO_CIPHER_ONLY:
765 			port_cparams[i].do_cipher = 1;
766 			break;
767 		}
768 
769 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
770 		port_cparams[i].qp_id = 0;
771 
772 		port_cparams[i].block_size = options->block_size;
773 
774 		if (port_cparams[i].do_hash) {
775 			port_cparams[i].auth_iv.data = options->auth_iv.data;
776 			port_cparams[i].auth_iv.length = options->auth_iv.length;
777 			if (!options->auth_iv_param)
778 				generate_random_key(port_cparams[i].auth_iv.data,
779 						port_cparams[i].auth_iv.length);
780 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
781 				port_cparams[i].hash_verify = 1;
782 			else
783 				port_cparams[i].hash_verify = 0;
784 
785 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
786 			port_cparams[i].digest_length =
787 					options->auth_xform.auth.digest_length;
788 			/* Set IV parameters */
789 			if (options->auth_iv.length) {
790 				options->auth_xform.auth.iv.offset =
791 					IV_OFFSET + options->cipher_iv.length;
792 				options->auth_xform.auth.iv.length =
793 					options->auth_iv.length;
794 			}
795 		}
796 
797 		if (port_cparams[i].do_aead) {
798 			port_cparams[i].aead_iv.data = options->aead_iv.data;
799 			port_cparams[i].aead_iv.length = options->aead_iv.length;
800 			if (!options->aead_iv_param)
801 				generate_random_key(port_cparams[i].aead_iv.data,
802 						port_cparams[i].aead_iv.length);
803 			port_cparams[i].aead_algo = options->aead_xform.aead.algo;
804 			port_cparams[i].digest_length =
805 					options->aead_xform.aead.digest_length;
806 			if (options->aead_xform.aead.aad_length) {
807 				port_cparams[i].aad.data = options->aad.data;
808 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
809 				port_cparams[i].aad.length = options->aad.length;
810 				if (!options->aad_param)
811 					generate_random_key(port_cparams[i].aad.data,
812 						port_cparams[i].aad.length);
813 				/*
814 				 * If doing AES-CCM, first 18 bytes has to be reserved,
815 				 * and actual AAD should start from byte 18
816 				 */
817 				if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM)
818 					memmove(port_cparams[i].aad.data + 18,
819 							port_cparams[i].aad.data,
820 							port_cparams[i].aad.length);
821 
822 			} else
823 				port_cparams[i].aad.length = 0;
824 
825 			if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT)
826 				port_cparams[i].hash_verify = 1;
827 			else
828 				port_cparams[i].hash_verify = 0;
829 
830 			/* Set IV parameters */
831 			options->aead_xform.aead.iv.offset = IV_OFFSET;
832 			options->aead_xform.aead.iv.length = options->aead_iv.length;
833 		}
834 
835 		if (port_cparams[i].do_cipher) {
836 			port_cparams[i].cipher_iv.data = options->cipher_iv.data;
837 			port_cparams[i].cipher_iv.length = options->cipher_iv.length;
838 			if (!options->cipher_iv_param)
839 				generate_random_key(port_cparams[i].cipher_iv.data,
840 						port_cparams[i].cipher_iv.length);
841 
842 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
843 			port_cparams[i].cipher_dataunit_len =
844 				options->cipher_xform.cipher.dataunit_len;
845 			/* Set IV parameters */
846 			options->cipher_xform.cipher.iv.offset = IV_OFFSET;
847 			options->cipher_xform.cipher.iv.length =
848 						options->cipher_iv.length;
849 		}
850 
851 		session = initialize_crypto_session(options,
852 				port_cparams[i].dev_id);
853 		if (session == NULL)
854 			rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n");
855 
856 		port_cparams[i].session = session;
857 
858 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
859 				port_cparams[i].dev_id);
860 	}
861 
862 	l2fwd_crypto_options_print(options);
863 
864 	/*
865 	 * Initialize previous tsc timestamp before the loop,
866 	 * to avoid showing the port statistics immediately,
867 	 * so user can see the crypto information.
868 	 */
869 	prev_tsc = rte_rdtsc();
870 	while (1) {
871 
872 		cur_tsc = rte_rdtsc();
873 
874 		/*
875 		 * Crypto device/TX burst queue drain
876 		 */
877 		diff_tsc = cur_tsc - prev_tsc;
878 		if (unlikely(diff_tsc > drain_tsc)) {
879 			/* Enqueue all crypto ops remaining in buffers */
880 			for (i = 0; i < qconf->nb_crypto_devs; i++) {
881 				cparams = &port_cparams[i];
882 				len = qconf->op_buf[cparams->dev_id].len;
883 				l2fwd_crypto_send_burst(qconf, len, cparams);
884 				qconf->op_buf[cparams->dev_id].len = 0;
885 			}
886 			/* Transmit all packets remaining in buffers */
887 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
888 				if (qconf->pkt_buf[portid].len == 0)
889 					continue;
890 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
891 						 qconf->pkt_buf[portid].len,
892 						 portid);
893 				qconf->pkt_buf[portid].len = 0;
894 			}
895 
896 			/* if timer is enabled */
897 			if (timer_period > 0) {
898 
899 				/* advance the timer */
900 				timer_tsc += diff_tsc;
901 
902 				/* if timer has reached its timeout */
903 				if (unlikely(timer_tsc >=
904 						(uint64_t)timer_period)) {
905 
906 					/* do this only on main core */
907 					if (lcore_id == rte_get_main_lcore()
908 						&& options->refresh_period) {
909 						print_stats();
910 						timer_tsc = 0;
911 					}
912 				}
913 			}
914 
915 			prev_tsc = cur_tsc;
916 		}
917 
918 		/*
919 		 * Read packet from RX queues
920 		 */
921 		for (i = 0; i < qconf->nb_rx_ports; i++) {
922 			portid = qconf->rx_port_list[i];
923 
924 			cparams = &port_cparams[i];
925 
926 			nb_rx = rte_eth_rx_burst(portid, 0,
927 						 pkts_burst, MAX_PKT_BURST);
928 
929 			port_statistics[portid].rx += nb_rx;
930 
931 			/* Allocate and fillcrypto operations. 8< */
932 			if (nb_rx) {
933 				/*
934 				 * If we can't allocate a crypto_ops, then drop
935 				 * the rest of the burst and dequeue and
936 				 * process the packets to free offload structs
937 				 */
938 				if (rte_crypto_op_bulk_alloc(
939 						l2fwd_crypto_op_pool,
940 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
941 						ops_burst, nb_rx) !=
942 								nb_rx) {
943 					for (j = 0; j < nb_rx; j++)
944 						rte_pktmbuf_free(pkts_burst[j]);
945 
946 					nb_rx = 0;
947 				}
948 				/* >8 End of crypto operation allocated and filled. */
949 
950 				/* Enqueue packets from Crypto device*/
951 				for (j = 0; j < nb_rx; j++) {
952 					m = pkts_burst[j];
953 
954 					l2fwd_simple_crypto_enqueue(m,
955 							ops_burst[j], cparams);
956 				}
957 			}
958 
959 			/* Dequeue packets from Crypto device. 8< */
960 			do {
961 				nb_rx = rte_cryptodev_dequeue_burst(
962 						cparams->dev_id, cparams->qp_id,
963 						ops_burst, MAX_PKT_BURST);
964 
965 				crypto_statistics[cparams->dev_id].dequeued +=
966 						nb_rx;
967 
968 				/* Forward crypto'd packets */
969 				for (j = 0; j < nb_rx; j++) {
970 					m = ops_burst[j]->sym->m_src;
971 
972 					rte_crypto_op_free(ops_burst[j]);
973 					l2fwd_simple_forward(m, portid,
974 							options);
975 				}
976 			} while (nb_rx == MAX_PKT_BURST);
977 			/* >8 End of dequeue packets from crypto device. */
978 		}
979 	}
980 }
981 
982 static int
983 l2fwd_launch_one_lcore(void *arg)
984 {
985 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
986 	return 0;
987 }
988 
989 /* Display command line arguments usage */
990 static void
991 l2fwd_crypto_usage(const char *prgname)
992 {
993 	printf("%s [EAL options] --\n"
994 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
995 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
996 		"  -s manage all ports from single lcore\n"
997 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
998 		" (0 to disable, 10 default, 86400 maximum)\n"
999 
1000 		"  --cdev_type HW / SW / ANY\n"
1001 		"  --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
1002 		" HASH_ONLY / AEAD\n"
1003 
1004 		"  --cipher_algo ALGO\n"
1005 		"  --cipher_op ENCRYPT / DECRYPT\n"
1006 		"  --cipher_key KEY (bytes separated with \":\")\n"
1007 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
1008 		"  --cipher_iv IV (bytes separated with \":\")\n"
1009 		"  --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
1010 		"  --cipher_dataunit_len SIZE: length of the algorithm data-unit\n"
1011 
1012 		"  --auth_algo ALGO\n"
1013 		"  --auth_op GENERATE / VERIFY\n"
1014 		"  --auth_key KEY (bytes separated with \":\")\n"
1015 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
1016 		"  --auth_iv IV (bytes separated with \":\")\n"
1017 		"  --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
1018 
1019 		"  --aead_algo ALGO\n"
1020 		"  --aead_op ENCRYPT / DECRYPT\n"
1021 		"  --aead_key KEY (bytes separated with \":\")\n"
1022 		"  --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
1023 		"  --aead_iv IV (bytes separated with \":\")\n"
1024 		"  --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
1025 		"  --aad AAD (bytes separated with \":\")\n"
1026 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
1027 
1028 		"  --digest_size SIZE: size of digest to be generated/verified\n"
1029 
1030 		"  --sessionless\n"
1031 		"  --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n"
1032 
1033 		"  --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n"
1034 		"      When enabled:\n"
1035 		"       - The source MAC address is replaced by the TX port MAC address\n"
1036 		"       - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n",
1037 	       prgname);
1038 }
1039 
1040 /** Parse crypto device type command line argument */
1041 static int
1042 parse_cryptodev_type(enum cdev_type *type, char *optarg)
1043 {
1044 	if (strcmp("HW", optarg) == 0) {
1045 		*type = CDEV_TYPE_HW;
1046 		return 0;
1047 	} else if (strcmp("SW", optarg) == 0) {
1048 		*type = CDEV_TYPE_SW;
1049 		return 0;
1050 	} else if (strcmp("ANY", optarg) == 0) {
1051 		*type = CDEV_TYPE_ANY;
1052 		return 0;
1053 	}
1054 
1055 	return -1;
1056 }
1057 
1058 /** Parse crypto chain xform command line argument */
1059 static int
1060 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
1061 {
1062 	if (strcmp("CIPHER_HASH", optarg) == 0) {
1063 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1064 		return 0;
1065 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
1066 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
1067 		return 0;
1068 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
1069 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
1070 		return 0;
1071 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
1072 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
1073 		return 0;
1074 	} else if (strcmp("AEAD", optarg) == 0) {
1075 		options->xform_chain = L2FWD_CRYPTO_AEAD;
1076 		return 0;
1077 	}
1078 
1079 	return -1;
1080 }
1081 
1082 /** Parse crypto cipher algo option command line argument */
1083 static int
1084 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
1085 {
1086 
1087 	if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) {
1088 		RTE_LOG(ERR, USER1, "Cipher algorithm specified "
1089 				"not supported!\n");
1090 		return -1;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /** Parse crypto cipher operation command line argument */
1097 static int
1098 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
1099 {
1100 	if (strcmp("ENCRYPT", optarg) == 0) {
1101 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1102 		return 0;
1103 	} else if (strcmp("DECRYPT", optarg) == 0) {
1104 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1105 		return 0;
1106 	}
1107 
1108 	printf("Cipher operation not supported!\n");
1109 	return -1;
1110 }
1111 
1112 /** Parse bytes from command line argument */
1113 static int
1114 parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size)
1115 {
1116 	unsigned byte_count;
1117 	char *token;
1118 
1119 	errno = 0;
1120 	for (byte_count = 0, token = strtok(input_arg, ":");
1121 			(byte_count < max_size) && (token != NULL);
1122 			token = strtok(NULL, ":")) {
1123 
1124 		int number = (int)strtol(token, NULL, 16);
1125 
1126 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
1127 			return -1;
1128 
1129 		data[byte_count++] = (uint8_t)number;
1130 	}
1131 
1132 	return byte_count;
1133 }
1134 
1135 /** Parse size param*/
1136 static int
1137 parse_size(int *size, const char *q_arg)
1138 {
1139 	char *end = NULL;
1140 	unsigned long n;
1141 
1142 	/* parse hexadecimal string */
1143 	n = strtoul(q_arg, &end, 10);
1144 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1145 		n = 0;
1146 
1147 	if (n == 0) {
1148 		printf("invalid size\n");
1149 		return -1;
1150 	}
1151 
1152 	*size = n;
1153 	return 0;
1154 }
1155 
1156 /** Parse crypto cipher operation command line argument */
1157 static int
1158 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1159 {
1160 	if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) {
1161 		RTE_LOG(ERR, USER1, "Authentication algorithm specified "
1162 				"not supported!\n");
1163 		return -1;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int
1170 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1171 {
1172 	if (strcmp("VERIFY", optarg) == 0) {
1173 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
1174 		return 0;
1175 	} else if (strcmp("GENERATE", optarg) == 0) {
1176 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1177 		return 0;
1178 	}
1179 
1180 	printf("Authentication operation specified not supported!\n");
1181 	return -1;
1182 }
1183 
1184 static int
1185 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg)
1186 {
1187 	if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) {
1188 		RTE_LOG(ERR, USER1, "AEAD algorithm specified "
1189 				"not supported!\n");
1190 		return -1;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg)
1198 {
1199 	if (strcmp("ENCRYPT", optarg) == 0) {
1200 		*op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1201 		return 0;
1202 	} else if (strcmp("DECRYPT", optarg) == 0) {
1203 		*op = RTE_CRYPTO_AEAD_OP_DECRYPT;
1204 		return 0;
1205 	}
1206 
1207 	printf("AEAD operation specified not supported!\n");
1208 	return -1;
1209 }
1210 static int
1211 parse_cryptodev_mask(struct l2fwd_crypto_options *options,
1212 		const char *q_arg)
1213 {
1214 	char *end = NULL;
1215 	uint64_t pm;
1216 
1217 	/* parse hexadecimal string */
1218 	pm = strtoul(q_arg, &end, 16);
1219 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1220 		pm = 0;
1221 
1222 	options->cryptodev_mask = pm;
1223 	if (options->cryptodev_mask == 0) {
1224 		printf("invalid cryptodev_mask specified\n");
1225 		return -1;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /** Parse long options */
1232 static int
1233 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1234 		struct option *lgopts, int option_index)
1235 {
1236 	int retval;
1237 	int val;
1238 
1239 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1240 		retval = parse_cryptodev_type(&options->type, optarg);
1241 		if (retval == 0)
1242 			strlcpy(options->string_type, optarg, MAX_STR_LEN);
1243 		return retval;
1244 	}
1245 
1246 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1247 		return parse_crypto_opt_chain(options, optarg);
1248 
1249 	/* Cipher options */
1250 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1251 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1252 				optarg);
1253 
1254 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1255 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1256 				optarg);
1257 
1258 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1259 		options->ckey_param = 1;
1260 		options->cipher_xform.cipher.key.length =
1261 			parse_bytes(options->cipher_key, optarg, MAX_KEY_SIZE);
1262 		if (options->cipher_xform.cipher.key.length > 0)
1263 			return 0;
1264 		else
1265 			return -1;
1266 	}
1267 
1268 	else if (strcmp(lgopts[option_index].name, "cipher_dataunit_len") == 0) {
1269 		retval = parse_size(&val, optarg);
1270 		if (retval == 0 && val >= 0) {
1271 			options->cipher_xform.cipher.dataunit_len =
1272 								(uint32_t)val;
1273 			return 0;
1274 		} else
1275 			return -1;
1276 	}
1277 
1278 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1279 		return parse_size(&options->ckey_random_size, optarg);
1280 
1281 	else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
1282 		options->cipher_iv_param = 1;
1283 		options->cipher_iv.length =
1284 			parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE);
1285 		if (options->cipher_iv.length > 0)
1286 			return 0;
1287 		else
1288 			return -1;
1289 	}
1290 
1291 	else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
1292 		return parse_size(&options->cipher_iv_random_size, optarg);
1293 
1294 	/* Authentication options */
1295 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1296 		return parse_auth_algo(&options->auth_xform.auth.algo,
1297 				optarg);
1298 	}
1299 
1300 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1301 		return parse_auth_op(&options->auth_xform.auth.op,
1302 				optarg);
1303 
1304 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1305 		options->akey_param = 1;
1306 		options->auth_xform.auth.key.length =
1307 			parse_bytes(options->auth_key, optarg, MAX_KEY_SIZE);
1308 		if (options->auth_xform.auth.key.length > 0)
1309 			return 0;
1310 		else
1311 			return -1;
1312 	}
1313 
1314 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1315 		return parse_size(&options->akey_random_size, optarg);
1316 	}
1317 
1318 	else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
1319 		options->auth_iv_param = 1;
1320 		options->auth_iv.length =
1321 			parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE);
1322 		if (options->auth_iv.length > 0)
1323 			return 0;
1324 		else
1325 			return -1;
1326 	}
1327 
1328 	else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
1329 		return parse_size(&options->auth_iv_random_size, optarg);
1330 
1331 	/* AEAD options */
1332 	else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
1333 		return parse_aead_algo(&options->aead_xform.aead.algo,
1334 				optarg);
1335 	}
1336 
1337 	else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
1338 		return parse_aead_op(&options->aead_xform.aead.op,
1339 				optarg);
1340 
1341 	else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
1342 		options->aead_key_param = 1;
1343 		options->aead_xform.aead.key.length =
1344 			parse_bytes(options->aead_key, optarg, MAX_KEY_SIZE);
1345 		if (options->aead_xform.aead.key.length > 0)
1346 			return 0;
1347 		else
1348 			return -1;
1349 	}
1350 
1351 	else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
1352 		return parse_size(&options->aead_key_random_size, optarg);
1353 
1354 
1355 	else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
1356 		options->aead_iv_param = 1;
1357 		options->aead_iv.length =
1358 			parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE);
1359 		if (options->aead_iv.length > 0)
1360 			return 0;
1361 		else
1362 			return -1;
1363 	}
1364 
1365 	else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
1366 		return parse_size(&options->aead_iv_random_size, optarg);
1367 
1368 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1369 		options->aad_param = 1;
1370 		options->aad.length =
1371 			parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE);
1372 		if (options->aad.length > 0)
1373 			return 0;
1374 		else
1375 			return -1;
1376 	}
1377 
1378 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1379 		return parse_size(&options->aad_random_size, optarg);
1380 	}
1381 
1382 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1383 		return parse_size(&options->digest_size, optarg);
1384 	}
1385 
1386 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1387 		options->sessionless = 1;
1388 		return 0;
1389 	}
1390 
1391 	else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
1392 		return parse_cryptodev_mask(options, optarg);
1393 
1394 	else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) {
1395 		options->mac_updating = 1;
1396 		return 0;
1397 	}
1398 
1399 	else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) {
1400 		options->mac_updating = 0;
1401 		return 0;
1402 	}
1403 
1404 	return -1;
1405 }
1406 
1407 /** Parse port mask */
1408 static int
1409 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1410 		const char *q_arg)
1411 {
1412 	char *end = NULL;
1413 	unsigned long pm;
1414 
1415 	/* parse hexadecimal string */
1416 	pm = strtoul(q_arg, &end, 16);
1417 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1418 		pm = 0;
1419 
1420 	options->portmask = pm;
1421 	if (options->portmask == 0) {
1422 		printf("invalid portmask specified\n");
1423 		return -1;
1424 	}
1425 
1426 	return pm;
1427 }
1428 
1429 /** Parse number of queues */
1430 static int
1431 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1432 		const char *q_arg)
1433 {
1434 	char *end = NULL;
1435 	unsigned long n;
1436 
1437 	/* parse hexadecimal string */
1438 	n = strtoul(q_arg, &end, 10);
1439 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1440 		n = 0;
1441 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1442 		n = 0;
1443 
1444 	options->nb_ports_per_lcore = n;
1445 	if (options->nb_ports_per_lcore == 0) {
1446 		printf("invalid number of ports selected\n");
1447 		return -1;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 /** Parse timer period */
1454 static int
1455 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1456 		const char *q_arg)
1457 {
1458 	char *end = NULL;
1459 	unsigned long n;
1460 
1461 	/* parse number string */
1462 	n = (unsigned)strtol(q_arg, &end, 10);
1463 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1464 		n = 0;
1465 
1466 	if (n >= MAX_TIMER_PERIOD) {
1467 		printf("Warning refresh period specified %lu is greater than "
1468 				"max value %lu! using max value",
1469 				n, MAX_TIMER_PERIOD);
1470 		n = MAX_TIMER_PERIOD;
1471 	}
1472 
1473 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1474 
1475 	return 0;
1476 }
1477 
1478 /** Generate default options for application */
1479 static void
1480 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1481 {
1482 	options->portmask = 0xffffffff;
1483 	options->nb_ports_per_lcore = 1;
1484 	options->refresh_period = 10000;
1485 	options->single_lcore = 0;
1486 	options->sessionless = 0;
1487 
1488 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1489 
1490 	/* Cipher Data */
1491 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1492 	options->cipher_xform.next = NULL;
1493 	options->ckey_param = 0;
1494 	options->ckey_random_size = -1;
1495 	options->cipher_xform.cipher.key.length = 0;
1496 	options->cipher_iv_param = 0;
1497 	options->cipher_iv_random_size = -1;
1498 	options->cipher_iv.length = 0;
1499 
1500 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1501 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1502 	options->cipher_xform.cipher.dataunit_len = 0;
1503 
1504 	/* Authentication Data */
1505 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1506 	options->auth_xform.next = NULL;
1507 	options->akey_param = 0;
1508 	options->akey_random_size = -1;
1509 	options->auth_xform.auth.key.length = 0;
1510 	options->auth_iv_param = 0;
1511 	options->auth_iv_random_size = -1;
1512 	options->auth_iv.length = 0;
1513 
1514 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1515 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1516 
1517 	/* AEAD Data */
1518 	options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD;
1519 	options->aead_xform.next = NULL;
1520 	options->aead_key_param = 0;
1521 	options->aead_key_random_size = -1;
1522 	options->aead_xform.aead.key.length = 0;
1523 	options->aead_iv_param = 0;
1524 	options->aead_iv_random_size = -1;
1525 	options->aead_iv.length = 0;
1526 
1527 	options->aead_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM;
1528 	options->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
1529 
1530 	options->aad_param = 0;
1531 	options->aad_random_size = -1;
1532 	options->aad.length = 0;
1533 
1534 	options->digest_size = -1;
1535 
1536 	options->type = CDEV_TYPE_ANY;
1537 	options->cryptodev_mask = UINT64_MAX;
1538 
1539 	options->mac_updating = 1;
1540 }
1541 
1542 static void
1543 display_cipher_info(struct l2fwd_crypto_options *options)
1544 {
1545 	printf("\n---- Cipher information ---\n");
1546 	printf("Algorithm: %s\n",
1547 		rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]);
1548 	rte_hexdump(stdout, "Cipher key:",
1549 			options->cipher_xform.cipher.key.data,
1550 			options->cipher_xform.cipher.key.length);
1551 	rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length);
1552 }
1553 
1554 static void
1555 display_auth_info(struct l2fwd_crypto_options *options)
1556 {
1557 	printf("\n---- Authentication information ---\n");
1558 	printf("Algorithm: %s\n",
1559 		rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]);
1560 	rte_hexdump(stdout, "Auth key:",
1561 			options->auth_xform.auth.key.data,
1562 			options->auth_xform.auth.key.length);
1563 	rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length);
1564 }
1565 
1566 static void
1567 display_aead_info(struct l2fwd_crypto_options *options)
1568 {
1569 	printf("\n---- AEAD information ---\n");
1570 	printf("Algorithm: %s\n",
1571 		rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]);
1572 	rte_hexdump(stdout, "AEAD key:",
1573 			options->aead_xform.aead.key.data,
1574 			options->aead_xform.aead.key.length);
1575 	rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length);
1576 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1577 }
1578 
1579 static void
1580 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1581 {
1582 	char string_cipher_op[MAX_STR_LEN];
1583 	char string_auth_op[MAX_STR_LEN];
1584 	char string_aead_op[MAX_STR_LEN];
1585 
1586 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1587 		strcpy(string_cipher_op, "Encrypt");
1588 	else
1589 		strcpy(string_cipher_op, "Decrypt");
1590 
1591 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1592 		strcpy(string_auth_op, "Auth generate");
1593 	else
1594 		strcpy(string_auth_op, "Auth verify");
1595 
1596 	if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
1597 		strcpy(string_aead_op, "Authenticated encryption");
1598 	else
1599 		strcpy(string_aead_op, "Authenticated decryption");
1600 
1601 
1602 	printf("Options:-\nn");
1603 	printf("portmask: %x\n", options->portmask);
1604 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1605 	printf("refresh period : %u\n", options->refresh_period);
1606 	printf("single lcore mode: %s\n",
1607 			options->single_lcore ? "enabled" : "disabled");
1608 	printf("stats_printing: %s\n",
1609 			options->refresh_period == 0 ? "disabled" : "enabled");
1610 
1611 	printf("sessionless crypto: %s\n",
1612 			options->sessionless ? "enabled" : "disabled");
1613 
1614 	if (options->ckey_param && (options->ckey_random_size != -1))
1615 		printf("Cipher key already parsed, ignoring size of random key\n");
1616 
1617 	if (options->akey_param && (options->akey_random_size != -1))
1618 		printf("Auth key already parsed, ignoring size of random key\n");
1619 
1620 	if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
1621 		printf("Cipher IV already parsed, ignoring size of random IV\n");
1622 
1623 	if (options->auth_iv_param && (options->auth_iv_random_size != -1))
1624 		printf("Auth IV already parsed, ignoring size of random IV\n");
1625 
1626 	if (options->aad_param && (options->aad_random_size != -1))
1627 		printf("AAD already parsed, ignoring size of random AAD\n");
1628 
1629 	printf("\nCrypto chain: ");
1630 	switch (options->xform_chain) {
1631 	case L2FWD_CRYPTO_AEAD:
1632 		printf("Input --> %s --> Output\n", string_aead_op);
1633 		display_aead_info(options);
1634 		break;
1635 	case L2FWD_CRYPTO_CIPHER_HASH:
1636 		printf("Input --> %s --> %s --> Output\n",
1637 			string_cipher_op, string_auth_op);
1638 		display_cipher_info(options);
1639 		display_auth_info(options);
1640 		break;
1641 	case L2FWD_CRYPTO_HASH_CIPHER:
1642 		printf("Input --> %s --> %s --> Output\n",
1643 			string_auth_op, string_cipher_op);
1644 		display_cipher_info(options);
1645 		display_auth_info(options);
1646 		break;
1647 	case L2FWD_CRYPTO_HASH_ONLY:
1648 		printf("Input --> %s --> Output\n", string_auth_op);
1649 		display_auth_info(options);
1650 		break;
1651 	case L2FWD_CRYPTO_CIPHER_ONLY:
1652 		printf("Input --> %s --> Output\n", string_cipher_op);
1653 		display_cipher_info(options);
1654 		break;
1655 	}
1656 }
1657 
1658 /* Parse the argument given in the command line of the application */
1659 static int
1660 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1661 		int argc, char **argv)
1662 {
1663 	int opt, retval, option_index;
1664 	char **argvopt = argv, *prgname = argv[0];
1665 
1666 	static struct option lgopts[] = {
1667 			{ "sessionless", no_argument, 0, 0 },
1668 
1669 			{ "cdev_type", required_argument, 0, 0 },
1670 			{ "chain", required_argument, 0, 0 },
1671 
1672 			{ "cipher_algo", required_argument, 0, 0 },
1673 			{ "cipher_op", required_argument, 0, 0 },
1674 			{ "cipher_key", required_argument, 0, 0 },
1675 			{ "cipher_key_random_size", required_argument, 0, 0 },
1676 			{ "cipher_iv", required_argument, 0, 0 },
1677 			{ "cipher_iv_random_size", required_argument, 0, 0 },
1678 			{ "cipher_dataunit_len", required_argument, 0, 0},
1679 
1680 			{ "auth_algo", required_argument, 0, 0 },
1681 			{ "auth_op", required_argument, 0, 0 },
1682 			{ "auth_key", required_argument, 0, 0 },
1683 			{ "auth_key_random_size", required_argument, 0, 0 },
1684 			{ "auth_iv", required_argument, 0, 0 },
1685 			{ "auth_iv_random_size", required_argument, 0, 0 },
1686 
1687 			{ "aead_algo", required_argument, 0, 0 },
1688 			{ "aead_op", required_argument, 0, 0 },
1689 			{ "aead_key", required_argument, 0, 0 },
1690 			{ "aead_key_random_size", required_argument, 0, 0 },
1691 			{ "aead_iv", required_argument, 0, 0 },
1692 			{ "aead_iv_random_size", required_argument, 0, 0 },
1693 
1694 			{ "aad", required_argument, 0, 0 },
1695 			{ "aad_random_size", required_argument, 0, 0 },
1696 
1697 			{ "digest_size", required_argument, 0, 0 },
1698 
1699 			{ "sessionless", no_argument, 0, 0 },
1700 			{ "cryptodev_mask", required_argument, 0, 0},
1701 
1702 			{ "mac-updating", no_argument, 0, 0},
1703 			{ "no-mac-updating", no_argument, 0, 0},
1704 
1705 			{ NULL, 0, 0, 0 }
1706 	};
1707 
1708 	l2fwd_crypto_default_options(options);
1709 
1710 	while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
1711 			&option_index)) != EOF) {
1712 		switch (opt) {
1713 		/* long options */
1714 		case 0:
1715 			retval = l2fwd_crypto_parse_args_long_options(options,
1716 					lgopts, option_index);
1717 			if (retval < 0) {
1718 				l2fwd_crypto_usage(prgname);
1719 				return -1;
1720 			}
1721 			break;
1722 
1723 		/* portmask */
1724 		case 'p':
1725 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1726 			if (retval < 0) {
1727 				l2fwd_crypto_usage(prgname);
1728 				return -1;
1729 			}
1730 			break;
1731 
1732 		/* nqueue */
1733 		case 'q':
1734 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1735 			if (retval < 0) {
1736 				l2fwd_crypto_usage(prgname);
1737 				return -1;
1738 			}
1739 			break;
1740 
1741 		/* single  */
1742 		case 's':
1743 			options->single_lcore = 1;
1744 
1745 			break;
1746 
1747 		/* timer period */
1748 		case 'T':
1749 			retval = l2fwd_crypto_parse_timer_period(options,
1750 					optarg);
1751 			if (retval < 0) {
1752 				l2fwd_crypto_usage(prgname);
1753 				return -1;
1754 			}
1755 			break;
1756 
1757 		default:
1758 			l2fwd_crypto_usage(prgname);
1759 			return -1;
1760 		}
1761 	}
1762 
1763 
1764 	if (optind >= 0)
1765 		argv[optind-1] = prgname;
1766 
1767 	retval = optind-1;
1768 	optind = 1; /* reset getopt lib */
1769 
1770 	return retval;
1771 }
1772 
1773 /* Check the link status of all ports in up to 9s, and print them finally */
1774 static void
1775 check_all_ports_link_status(uint32_t port_mask)
1776 {
1777 #define CHECK_INTERVAL 100 /* 100ms */
1778 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1779 	uint16_t portid;
1780 	uint8_t count, all_ports_up, print_flag = 0;
1781 	struct rte_eth_link link;
1782 	int ret;
1783 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1784 
1785 	printf("\nChecking link status");
1786 	fflush(stdout);
1787 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1788 		all_ports_up = 1;
1789 		RTE_ETH_FOREACH_DEV(portid) {
1790 			if ((port_mask & (1 << portid)) == 0)
1791 				continue;
1792 			memset(&link, 0, sizeof(link));
1793 			ret = rte_eth_link_get_nowait(portid, &link);
1794 			if (ret < 0) {
1795 				all_ports_up = 0;
1796 				if (print_flag == 1)
1797 					printf("Port %u link get failed: %s\n",
1798 						portid, rte_strerror(-ret));
1799 				continue;
1800 			}
1801 			/* print link status if flag set */
1802 			if (print_flag == 1) {
1803 				rte_eth_link_to_str(link_status_text,
1804 					sizeof(link_status_text), &link);
1805 				printf("Port %d %s\n", portid,
1806 					link_status_text);
1807 				continue;
1808 			}
1809 			/* clear all_ports_up flag if any link down */
1810 			if (link.link_status == RTE_ETH_LINK_DOWN) {
1811 				all_ports_up = 0;
1812 				break;
1813 			}
1814 		}
1815 		/* after finally printing all link status, get out */
1816 		if (print_flag == 1)
1817 			break;
1818 
1819 		if (all_ports_up == 0) {
1820 			printf(".");
1821 			fflush(stdout);
1822 			rte_delay_ms(CHECK_INTERVAL);
1823 		}
1824 
1825 		/* set the print_flag if all ports up or timeout */
1826 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1827 			print_flag = 1;
1828 			printf("done\n");
1829 		}
1830 	}
1831 }
1832 
1833 /* Check if device has to be HW/SW or any */
1834 static int
1835 check_type(const struct l2fwd_crypto_options *options,
1836 		const struct rte_cryptodev_info *dev_info)
1837 {
1838 	if (options->type == CDEV_TYPE_HW &&
1839 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1840 		return 0;
1841 	if (options->type == CDEV_TYPE_SW &&
1842 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1843 		return 0;
1844 	if (options->type == CDEV_TYPE_ANY)
1845 		return 0;
1846 
1847 	return -1;
1848 }
1849 
1850 static const struct rte_cryptodev_capabilities *
1851 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
1852 		const struct rte_cryptodev_info *dev_info,
1853 		uint8_t cdev_id)
1854 {
1855 	unsigned int i = 0;
1856 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1857 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1858 	enum rte_crypto_cipher_algorithm opt_cipher_algo =
1859 					options->cipher_xform.cipher.algo;
1860 
1861 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1862 		cap_cipher_algo = cap->sym.cipher.algo;
1863 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1864 			if (cap_cipher_algo == opt_cipher_algo) {
1865 				if (check_type(options, dev_info) == 0)
1866 					break;
1867 			}
1868 		}
1869 		cap = &dev_info->capabilities[++i];
1870 	}
1871 
1872 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1873 		printf("Algorithm %s not supported by cryptodev %u"
1874 			" or device not of preferred type (%s)\n",
1875 			rte_crypto_cipher_algorithm_strings[opt_cipher_algo],
1876 			cdev_id,
1877 			options->string_type);
1878 		return NULL;
1879 	}
1880 
1881 	return cap;
1882 }
1883 
1884 static const struct rte_cryptodev_capabilities *
1885 check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
1886 		const struct rte_cryptodev_info *dev_info,
1887 		uint8_t cdev_id)
1888 {
1889 	unsigned int i = 0;
1890 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1891 	enum rte_crypto_auth_algorithm cap_auth_algo;
1892 	enum rte_crypto_auth_algorithm opt_auth_algo =
1893 					options->auth_xform.auth.algo;
1894 
1895 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1896 		cap_auth_algo = cap->sym.auth.algo;
1897 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1898 			if (cap_auth_algo == opt_auth_algo) {
1899 				if (check_type(options, dev_info) == 0)
1900 					break;
1901 			}
1902 		}
1903 		cap = &dev_info->capabilities[++i];
1904 	}
1905 
1906 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1907 		printf("Algorithm %s not supported by cryptodev %u"
1908 			" or device not of preferred type (%s)\n",
1909 			rte_crypto_auth_algorithm_strings[opt_auth_algo],
1910 			cdev_id,
1911 			options->string_type);
1912 		return NULL;
1913 	}
1914 
1915 	return cap;
1916 }
1917 
1918 static const struct rte_cryptodev_capabilities *
1919 check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
1920 		const struct rte_cryptodev_info *dev_info,
1921 		uint8_t cdev_id)
1922 {
1923 	unsigned int i = 0;
1924 	const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0];
1925 	enum rte_crypto_aead_algorithm cap_aead_algo;
1926 	enum rte_crypto_aead_algorithm opt_aead_algo =
1927 					options->aead_xform.aead.algo;
1928 
1929 	while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1930 		cap_aead_algo = cap->sym.aead.algo;
1931 		if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1932 			if (cap_aead_algo == opt_aead_algo) {
1933 				if (check_type(options, dev_info) == 0)
1934 					break;
1935 			}
1936 		}
1937 		cap = &dev_info->capabilities[++i];
1938 	}
1939 
1940 	if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1941 		printf("Algorithm %s not supported by cryptodev %u"
1942 			" or device not of preferred type (%s)\n",
1943 			rte_crypto_aead_algorithm_strings[opt_aead_algo],
1944 			cdev_id,
1945 			options->string_type);
1946 		return NULL;
1947 	}
1948 
1949 	return cap;
1950 }
1951 
1952 /* Check if the device is enabled by cryptodev_mask */
1953 static int
1954 check_cryptodev_mask(struct l2fwd_crypto_options *options,
1955 		uint8_t cdev_id)
1956 {
1957 	if (options->cryptodev_mask & (1 << cdev_id))
1958 		return 0;
1959 
1960 	return -1;
1961 }
1962 
1963 static inline int
1964 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1965 		uint16_t increment)
1966 {
1967 	uint16_t supp_size;
1968 
1969 	/* Single value */
1970 	if (increment == 0) {
1971 		if (length == min)
1972 			return 0;
1973 		else
1974 			return -1;
1975 	}
1976 
1977 	/* Range of values */
1978 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1979 		if (length == supp_size)
1980 			return 0;
1981 	}
1982 
1983 	return -1;
1984 }
1985 
1986 static int
1987 check_iv_param(const struct rte_crypto_param_range *iv_range_size,
1988 		unsigned int iv_param, int iv_random_size,
1989 		uint16_t iv_length)
1990 {
1991 	/*
1992 	 * Check if length of provided IV is supported
1993 	 * by the algorithm chosen.
1994 	 */
1995 	if (iv_param) {
1996 		if (check_supported_size(iv_length,
1997 				iv_range_size->min,
1998 				iv_range_size->max,
1999 				iv_range_size->increment)
2000 					!= 0)
2001 			return -1;
2002 	/*
2003 	 * Check if length of IV to be randomly generated
2004 	 * is supported by the algorithm chosen.
2005 	 */
2006 	} else if (iv_random_size != -1) {
2007 		if (check_supported_size(iv_random_size,
2008 				iv_range_size->min,
2009 				iv_range_size->max,
2010 				iv_range_size->increment)
2011 					!= 0)
2012 			return -1;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static int
2019 check_capabilities(struct l2fwd_crypto_options *options, uint8_t cdev_id)
2020 {
2021 	struct rte_cryptodev_info dev_info;
2022 	const struct rte_cryptodev_capabilities *cap;
2023 
2024 	rte_cryptodev_info_get(cdev_id, &dev_info);
2025 
2026 	/* Set AEAD parameters */
2027 	if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
2028 		/* Check if device supports AEAD algo */
2029 		cap = check_device_support_aead_algo(options, &dev_info,
2030 						cdev_id);
2031 		if (cap == NULL)
2032 			return -1;
2033 
2034 		if (check_iv_param(&cap->sym.aead.iv_size,
2035 				options->aead_iv_param,
2036 				options->aead_iv_random_size,
2037 				options->aead_iv.length) != 0) {
2038 			RTE_LOG(DEBUG, USER1,
2039 				"Device %u does not support IV length\n",
2040 				cdev_id);
2041 			return -1;
2042 		}
2043 
2044 		/*
2045 		 * Check if length of provided AEAD key is supported
2046 		 * by the algorithm chosen.
2047 		 */
2048 		if (options->aead_key_param) {
2049 			if (check_supported_size(
2050 					options->aead_xform.aead.key.length,
2051 					cap->sym.aead.key_size.min,
2052 					cap->sym.aead.key_size.max,
2053 					cap->sym.aead.key_size.increment)
2054 						!= 0) {
2055 				RTE_LOG(DEBUG, USER1,
2056 					"Device %u does not support "
2057 					"AEAD key length\n",
2058 					cdev_id);
2059 				return -1;
2060 			}
2061 		/*
2062 		 * Check if length of the aead key to be randomly generated
2063 		 * is supported by the algorithm chosen.
2064 		 */
2065 		} else if (options->aead_key_random_size != -1) {
2066 			if (check_supported_size(options->aead_key_random_size,
2067 					cap->sym.aead.key_size.min,
2068 					cap->sym.aead.key_size.max,
2069 					cap->sym.aead.key_size.increment)
2070 						!= 0) {
2071 				RTE_LOG(DEBUG, USER1,
2072 					"Device %u does not support "
2073 					"AEAD key length\n",
2074 					cdev_id);
2075 				return -1;
2076 			}
2077 		}
2078 
2079 
2080 		/*
2081 		 * Check if length of provided AAD is supported
2082 		 * by the algorithm chosen.
2083 		 */
2084 		if (options->aad_param) {
2085 			if (check_supported_size(options->aad.length,
2086 					cap->sym.aead.aad_size.min,
2087 					cap->sym.aead.aad_size.max,
2088 					cap->sym.aead.aad_size.increment)
2089 						!= 0) {
2090 				RTE_LOG(DEBUG, USER1,
2091 					"Device %u does not support "
2092 					"AAD length\n",
2093 					cdev_id);
2094 				return -1;
2095 			}
2096 		/*
2097 		 * Check if length of AAD to be randomly generated
2098 		 * is supported by the algorithm chosen.
2099 		 */
2100 		} else if (options->aad_random_size != -1) {
2101 			if (check_supported_size(options->aad_random_size,
2102 					cap->sym.aead.aad_size.min,
2103 					cap->sym.aead.aad_size.max,
2104 					cap->sym.aead.aad_size.increment)
2105 						!= 0) {
2106 				RTE_LOG(DEBUG, USER1,
2107 					"Device %u does not support "
2108 					"AAD length\n",
2109 					cdev_id);
2110 				return -1;
2111 			}
2112 		}
2113 
2114 		/* Check if digest size is supported by the algorithm. */
2115 		if (options->digest_size != -1) {
2116 			if (check_supported_size(options->digest_size,
2117 					cap->sym.aead.digest_size.min,
2118 					cap->sym.aead.digest_size.max,
2119 					cap->sym.aead.digest_size.increment)
2120 						!= 0) {
2121 				RTE_LOG(DEBUG, USER1,
2122 					"Device %u does not support "
2123 					"digest length\n",
2124 					cdev_id);
2125 				return -1;
2126 			}
2127 		}
2128 	}
2129 
2130 	/* Set cipher parameters */
2131 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2132 			options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2133 			options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2134 
2135 		/* Check if device supports cipher algo. 8< */
2136 		cap = check_device_support_cipher_algo(options, &dev_info,
2137 						cdev_id);
2138 		if (cap == NULL)
2139 			return -1;
2140 
2141 		if (check_iv_param(&cap->sym.cipher.iv_size,
2142 				options->cipher_iv_param,
2143 				options->cipher_iv_random_size,
2144 				options->cipher_iv.length) != 0) {
2145 			RTE_LOG(DEBUG, USER1,
2146 				"Device %u does not support IV length\n",
2147 				cdev_id);
2148 			return -1;
2149 		}
2150 		/* >8 End of check if device supports cipher algo. */
2151 
2152 		/* Check if capable cipher is supported. 8< */
2153 
2154 		/*
2155 		 * Check if length of provided cipher key is supported
2156 		 * by the algorithm chosen.
2157 		 */
2158 		if (options->ckey_param) {
2159 			if (check_supported_size(
2160 					options->cipher_xform.cipher.key.length,
2161 					cap->sym.cipher.key_size.min,
2162 					cap->sym.cipher.key_size.max,
2163 					cap->sym.cipher.key_size.increment)
2164 						!= 0) {
2165 				if (dev_info.feature_flags &
2166 				    RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY) {
2167 					RTE_LOG(DEBUG, USER1,
2168 					"Key length does not match the device "
2169 					"%u capability. Key may be wrapped\n",
2170 					cdev_id);
2171 				} else {
2172 					RTE_LOG(DEBUG, USER1,
2173 					"Key length does not match the device "
2174 					"%u capability\n",
2175 					cdev_id);
2176 					return -1;
2177 				}
2178 			}
2179 
2180 		/*
2181 		 * Check if length of the cipher key to be randomly generated
2182 		 * is supported by the algorithm chosen.
2183 		 */
2184 		} else if (options->ckey_random_size != -1) {
2185 			if (check_supported_size(options->ckey_random_size,
2186 					cap->sym.cipher.key_size.min,
2187 					cap->sym.cipher.key_size.max,
2188 					cap->sym.cipher.key_size.increment)
2189 						!= 0) {
2190 				RTE_LOG(DEBUG, USER1,
2191 					"Device %u does not support cipher "
2192 					"key length\n",
2193 					cdev_id);
2194 				return -1;
2195 			}
2196 		}
2197 
2198 		if (options->cipher_xform.cipher.dataunit_len > 0) {
2199 			if (!(dev_info.feature_flags &
2200 				RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)) {
2201 				RTE_LOG(DEBUG, USER1,
2202 					"Device %u does not support "
2203 					"cipher multiple data units\n",
2204 					cdev_id);
2205 				return -1;
2206 			}
2207 			if (cap->sym.cipher.dataunit_set != 0) {
2208 				int ret = 0;
2209 
2210 				switch (options->cipher_xform.cipher.dataunit_len) {
2211 				case 512:
2212 					if (!(cap->sym.cipher.dataunit_set &
2213 						RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES))
2214 						ret = -1;
2215 					break;
2216 				case 4096:
2217 					if (!(cap->sym.cipher.dataunit_set &
2218 						RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES))
2219 						ret = -1;
2220 					break;
2221 				case 1048576:
2222 					if (!(cap->sym.cipher.dataunit_set &
2223 						RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES))
2224 						ret = -1;
2225 					break;
2226 				default:
2227 					ret = -1;
2228 				}
2229 				if (ret == -1) {
2230 					RTE_LOG(DEBUG, USER1,
2231 						"Device %u does not support "
2232 						"data-unit length %u\n",
2233 						cdev_id,
2234 						options->cipher_xform.cipher.dataunit_len);
2235 					return -1;
2236 				}
2237 			}
2238 		}
2239 		/* >8 End of checking if cipher is supported. */
2240 	}
2241 
2242 	/* Set auth parameters */
2243 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2244 			options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2245 			options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2246 		/* Check if device supports auth algo */
2247 		cap = check_device_support_auth_algo(options, &dev_info,
2248 						cdev_id);
2249 		if (cap == NULL)
2250 			return -1;
2251 
2252 		if (check_iv_param(&cap->sym.auth.iv_size,
2253 				options->auth_iv_param,
2254 				options->auth_iv_random_size,
2255 				options->auth_iv.length) != 0) {
2256 			RTE_LOG(DEBUG, USER1,
2257 				"Device %u does not support IV length\n",
2258 				cdev_id);
2259 			return -1;
2260 		}
2261 		/*
2262 		 * Check if length of provided auth key is supported
2263 		 * by the algorithm chosen.
2264 		 */
2265 		if (options->akey_param) {
2266 			if (check_supported_size(
2267 					options->auth_xform.auth.key.length,
2268 					cap->sym.auth.key_size.min,
2269 					cap->sym.auth.key_size.max,
2270 					cap->sym.auth.key_size.increment)
2271 						!= 0) {
2272 				RTE_LOG(DEBUG, USER1,
2273 					"Device %u does not support auth "
2274 					"key length\n",
2275 					cdev_id);
2276 				return -1;
2277 			}
2278 		/*
2279 		 * Check if length of the auth key to be randomly generated
2280 		 * is supported by the algorithm chosen.
2281 		 */
2282 		} else if (options->akey_random_size != -1) {
2283 			if (check_supported_size(options->akey_random_size,
2284 					cap->sym.auth.key_size.min,
2285 					cap->sym.auth.key_size.max,
2286 					cap->sym.auth.key_size.increment)
2287 						!= 0) {
2288 				RTE_LOG(DEBUG, USER1,
2289 					"Device %u does not support auth "
2290 					"key length\n",
2291 					cdev_id);
2292 				return -1;
2293 			}
2294 		}
2295 
2296 		/* Check if digest size is supported by the algorithm. */
2297 		if (options->digest_size != -1) {
2298 			if (check_supported_size(options->digest_size,
2299 					cap->sym.auth.digest_size.min,
2300 					cap->sym.auth.digest_size.max,
2301 					cap->sym.auth.digest_size.increment)
2302 						!= 0) {
2303 				RTE_LOG(DEBUG, USER1,
2304 					"Device %u does not support "
2305 					"digest length\n",
2306 					cdev_id);
2307 				return -1;
2308 			}
2309 		}
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 static int
2316 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
2317 		uint8_t *enabled_cdevs)
2318 {
2319 	uint8_t cdev_id, cdev_count, enabled_cdev_count = 0;
2320 	const struct rte_cryptodev_capabilities *cap;
2321 	unsigned int sess_sz, max_sess_sz = 0;
2322 	uint32_t sessions_needed = 0;
2323 	int retval;
2324 
2325 	cdev_count = rte_cryptodev_count();
2326 	if (cdev_count == 0) {
2327 		printf("No crypto devices available\n");
2328 		return -1;
2329 	}
2330 
2331 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
2332 			cdev_id++) {
2333 		if (check_cryptodev_mask(options, cdev_id) < 0)
2334 			continue;
2335 
2336 		if (check_capabilities(options, cdev_id) < 0)
2337 			continue;
2338 
2339 		sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2340 		if (sess_sz > max_sess_sz)
2341 			max_sess_sz = sess_sz;
2342 
2343 		l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
2344 
2345 		enabled_cdevs[cdev_id] = 1;
2346 		enabled_cdev_count++;
2347 	}
2348 
2349 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
2350 		struct rte_cryptodev_qp_conf qp_conf;
2351 		struct rte_cryptodev_info dev_info;
2352 
2353 		if (enabled_cdevs[cdev_id] == 0)
2354 			continue;
2355 
2356 		if (check_cryptodev_mask(options, cdev_id) < 0)
2357 			continue;
2358 
2359 		if (check_capabilities(options, cdev_id) < 0)
2360 			continue;
2361 
2362 		retval = rte_cryptodev_socket_id(cdev_id);
2363 
2364 		if (retval < 0) {
2365 			printf("Invalid crypto device id used\n");
2366 			return -1;
2367 		}
2368 
2369 		uint8_t socket_id = (uint8_t) retval;
2370 
2371 		struct rte_cryptodev_config conf = {
2372 			.nb_queue_pairs = 1,
2373 			.socket_id = socket_id,
2374 			.ff_disable = RTE_CRYPTODEV_FF_SECURITY,
2375 		};
2376 
2377 		rte_cryptodev_info_get(cdev_id, &dev_info);
2378 
2379 		/*
2380 		 * Two sessions objects are required for each session
2381 		 * (one for the header, one for the private data)
2382 		 */
2383 		if (!strcmp(dev_info.driver_name, "crypto_scheduler")) {
2384 #ifdef RTE_CRYPTO_SCHEDULER
2385 			uint32_t nb_workers =
2386 				rte_cryptodev_scheduler_workers_get(cdev_id,
2387 								NULL);
2388 
2389 			sessions_needed = enabled_cdev_count * nb_workers;
2390 #endif
2391 		} else
2392 			sessions_needed = enabled_cdev_count;
2393 
2394 		if (session_pool_socket[socket_id].priv_mp == NULL) {
2395 			char mp_name[RTE_MEMPOOL_NAMESIZE];
2396 
2397 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2398 				"priv_sess_mp_%u", socket_id);
2399 
2400 			session_pool_socket[socket_id].priv_mp =
2401 					rte_mempool_create(mp_name,
2402 						sessions_needed,
2403 						max_sess_sz,
2404 						0, 0, NULL, NULL, NULL,
2405 						NULL, socket_id,
2406 						0);
2407 
2408 			if (session_pool_socket[socket_id].priv_mp == NULL) {
2409 				printf("Cannot create pool on socket %d\n",
2410 					socket_id);
2411 				return -ENOMEM;
2412 			}
2413 
2414 			printf("Allocated pool \"%s\" on socket %d\n",
2415 				mp_name, socket_id);
2416 		}
2417 
2418 		if (session_pool_socket[socket_id].sess_mp == NULL) {
2419 			char mp_name[RTE_MEMPOOL_NAMESIZE];
2420 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2421 				"sess_mp_%u", socket_id);
2422 
2423 			session_pool_socket[socket_id].sess_mp =
2424 					rte_cryptodev_sym_session_pool_create(
2425 							mp_name,
2426 							sessions_needed,
2427 							0, 0, 0, socket_id);
2428 
2429 			if (session_pool_socket[socket_id].sess_mp == NULL) {
2430 				printf("Cannot create pool on socket %d\n",
2431 					socket_id);
2432 				return -ENOMEM;
2433 			}
2434 
2435 			printf("Allocated pool \"%s\" on socket %d\n",
2436 				mp_name, socket_id);
2437 		}
2438 
2439 		/* Set AEAD parameters */
2440 		if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
2441 			cap = check_device_support_aead_algo(options, &dev_info,
2442 							cdev_id);
2443 
2444 			options->block_size = cap->sym.aead.block_size;
2445 
2446 			/* Set IV if not provided from command line */
2447 			if (options->aead_iv_param == 0) {
2448 				if (options->aead_iv_random_size != -1)
2449 					options->aead_iv.length =
2450 						options->aead_iv_random_size;
2451 				/* No size provided, use minimum size. */
2452 				else
2453 					options->aead_iv.length =
2454 						cap->sym.aead.iv_size.min;
2455 			}
2456 
2457 			/* Set key if not provided from command line */
2458 			if (options->aead_key_param == 0) {
2459 				if (options->aead_key_random_size != -1)
2460 					options->aead_xform.aead.key.length =
2461 						options->aead_key_random_size;
2462 				/* No size provided, use minimum size. */
2463 				else
2464 					options->aead_xform.aead.key.length =
2465 						cap->sym.aead.key_size.min;
2466 
2467 				generate_random_key(options->aead_key,
2468 					options->aead_xform.aead.key.length);
2469 			}
2470 
2471 			/* Set AAD if not provided from command line */
2472 			if (options->aad_param == 0) {
2473 				if (options->aad_random_size != -1)
2474 					options->aad.length =
2475 						options->aad_random_size;
2476 				/* No size provided, use minimum size. */
2477 				else
2478 					options->aad.length =
2479 						cap->sym.auth.aad_size.min;
2480 			}
2481 
2482 			options->aead_xform.aead.aad_length =
2483 						options->aad.length;
2484 
2485 			/* Set digest size if not provided from command line */
2486 			if (options->digest_size != -1)
2487 				options->aead_xform.aead.digest_length =
2488 							options->digest_size;
2489 				/* No size provided, use minimum size. */
2490 			else
2491 				options->aead_xform.aead.digest_length =
2492 						cap->sym.aead.digest_size.min;
2493 		}
2494 
2495 		/* Set cipher parameters */
2496 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2497 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2498 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
2499 			cap = check_device_support_cipher_algo(options, &dev_info,
2500 							cdev_id);
2501 			options->block_size = cap->sym.cipher.block_size;
2502 
2503 			/* Set IV if not provided from command line */
2504 			if (options->cipher_iv_param == 0) {
2505 				if (options->cipher_iv_random_size != -1)
2506 					options->cipher_iv.length =
2507 						options->cipher_iv_random_size;
2508 				/* No size provided, use minimum size. */
2509 				else
2510 					options->cipher_iv.length =
2511 						cap->sym.cipher.iv_size.min;
2512 			}
2513 
2514 			/* Set key if not provided from command line */
2515 			if (options->ckey_param == 0) {
2516 				if (options->ckey_random_size != -1)
2517 					options->cipher_xform.cipher.key.length =
2518 						options->ckey_random_size;
2519 				/* No size provided, use minimum size. */
2520 				else
2521 					options->cipher_xform.cipher.key.length =
2522 						cap->sym.cipher.key_size.min;
2523 
2524 				generate_random_key(options->cipher_key,
2525 					options->cipher_xform.cipher.key.length);
2526 			}
2527 		}
2528 
2529 		/* Set auth parameters */
2530 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
2531 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
2532 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
2533 			cap = check_device_support_auth_algo(options, &dev_info,
2534 							cdev_id);
2535 
2536 			/* Set IV if not provided from command line */
2537 			if (options->auth_iv_param == 0) {
2538 				if (options->auth_iv_random_size != -1)
2539 					options->auth_iv.length =
2540 						options->auth_iv_random_size;
2541 				/* No size provided, use minimum size. */
2542 				else
2543 					options->auth_iv.length =
2544 						cap->sym.auth.iv_size.min;
2545 			}
2546 
2547 			/* Set key if not provided from command line */
2548 			if (options->akey_param == 0) {
2549 				if (options->akey_random_size != -1)
2550 					options->auth_xform.auth.key.length =
2551 						options->akey_random_size;
2552 				/* No size provided, use minimum size. */
2553 				else
2554 					options->auth_xform.auth.key.length =
2555 						cap->sym.auth.key_size.min;
2556 
2557 				generate_random_key(options->auth_key,
2558 					options->auth_xform.auth.key.length);
2559 			}
2560 
2561 			/* Set digest size if not provided from command line */
2562 			if (options->digest_size != -1)
2563 				options->auth_xform.auth.digest_length =
2564 							options->digest_size;
2565 				/* No size provided, use minimum size. */
2566 			else
2567 				options->auth_xform.auth.digest_length =
2568 						cap->sym.auth.digest_size.min;
2569 		}
2570 
2571 		retval = rte_cryptodev_configure(cdev_id, &conf);
2572 		if (retval < 0) {
2573 			printf("Failed to configure cryptodev %u", cdev_id);
2574 			return -1;
2575 		}
2576 
2577 		qp_conf.nb_descriptors = 2048;
2578 		qp_conf.mp_session = session_pool_socket[socket_id].sess_mp;
2579 		qp_conf.mp_session_private =
2580 				session_pool_socket[socket_id].priv_mp;
2581 
2582 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
2583 				socket_id);
2584 		if (retval < 0) {
2585 			printf("Failed to setup queue pair %u on cryptodev %u",
2586 					0, cdev_id);
2587 			return -1;
2588 		}
2589 
2590 		retval = rte_cryptodev_start(cdev_id);
2591 		if (retval < 0) {
2592 			printf("Failed to start device %u: error %d\n",
2593 					cdev_id, retval);
2594 			return -1;
2595 		}
2596 	}
2597 
2598 	return enabled_cdev_count;
2599 }
2600 
2601 static int
2602 initialize_ports(struct l2fwd_crypto_options *options)
2603 {
2604 	uint16_t last_portid = 0, portid;
2605 	unsigned enabled_portcount = 0;
2606 	unsigned nb_ports = rte_eth_dev_count_avail();
2607 
2608 	if (nb_ports == 0) {
2609 		printf("No Ethernet ports - bye\n");
2610 		return -1;
2611 	}
2612 
2613 	/* Reset l2fwd_dst_ports */
2614 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
2615 		l2fwd_dst_ports[portid] = 0;
2616 
2617 	RTE_ETH_FOREACH_DEV(portid) {
2618 		int retval;
2619 		struct rte_eth_dev_info dev_info;
2620 		struct rte_eth_rxconf rxq_conf;
2621 		struct rte_eth_txconf txq_conf;
2622 		struct rte_eth_conf local_port_conf = port_conf;
2623 
2624 		/* Skip ports that are not enabled */
2625 		if ((options->portmask & (1 << portid)) == 0)
2626 			continue;
2627 
2628 		/* init port */
2629 		printf("Initializing port %u... ", portid);
2630 		fflush(stdout);
2631 
2632 		retval = rte_eth_dev_info_get(portid, &dev_info);
2633 		if (retval != 0) {
2634 			printf("Error during getting device (port %u) info: %s\n",
2635 					portid, strerror(-retval));
2636 			return retval;
2637 		}
2638 
2639 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
2640 			local_port_conf.txmode.offloads |=
2641 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2642 		retval = rte_eth_dev_configure(portid, 1, 1, &local_port_conf);
2643 		if (retval < 0) {
2644 			printf("Cannot configure device: err=%d, port=%u\n",
2645 				  retval, portid);
2646 			return -1;
2647 		}
2648 
2649 		retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2650 							  &nb_txd);
2651 		if (retval < 0) {
2652 			printf("Cannot adjust number of descriptors: err=%d, port=%u\n",
2653 				retval, portid);
2654 			return -1;
2655 		}
2656 
2657 		/* init one RX queue */
2658 		fflush(stdout);
2659 		rxq_conf = dev_info.default_rxconf;
2660 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
2661 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
2662 					     rte_eth_dev_socket_id(portid),
2663 					     &rxq_conf, l2fwd_pktmbuf_pool);
2664 		if (retval < 0) {
2665 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
2666 					retval, portid);
2667 			return -1;
2668 		}
2669 
2670 		/* init one TX queue on each port */
2671 		fflush(stdout);
2672 		txq_conf = dev_info.default_txconf;
2673 		txq_conf.offloads = local_port_conf.txmode.offloads;
2674 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
2675 				rte_eth_dev_socket_id(portid),
2676 				&txq_conf);
2677 		if (retval < 0) {
2678 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
2679 				retval, portid);
2680 
2681 			return -1;
2682 		}
2683 
2684 		/* Start device */
2685 		retval = rte_eth_dev_start(portid);
2686 		if (retval < 0) {
2687 			printf("rte_eth_dev_start:err=%d, port=%u\n",
2688 					retval, portid);
2689 			return -1;
2690 		}
2691 
2692 		retval = rte_eth_promiscuous_enable(portid);
2693 		if (retval != 0) {
2694 			printf("rte_eth_promiscuous_enable:err=%s, port=%u\n",
2695 				rte_strerror(-retval), portid);
2696 			return -1;
2697 		}
2698 
2699 		retval = rte_eth_macaddr_get(portid,
2700 					     &l2fwd_ports_eth_addr[portid]);
2701 		if (retval < 0) {
2702 			printf("rte_eth_macaddr_get :err=%d, port=%u\n",
2703 					retval, portid);
2704 			return -1;
2705 		}
2706 
2707 		printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n",
2708 			portid,
2709 			RTE_ETHER_ADDR_BYTES(&l2fwd_ports_eth_addr[portid]));
2710 
2711 		/* initialize port stats */
2712 		memset(&port_statistics, 0, sizeof(port_statistics));
2713 
2714 		/* Setup port forwarding table */
2715 		if (enabled_portcount % 2) {
2716 			l2fwd_dst_ports[portid] = last_portid;
2717 			l2fwd_dst_ports[last_portid] = portid;
2718 		} else {
2719 			last_portid = portid;
2720 		}
2721 
2722 		l2fwd_enabled_port_mask |= (1 << portid);
2723 		enabled_portcount++;
2724 	}
2725 
2726 	if (enabled_portcount == 1) {
2727 		l2fwd_dst_ports[last_portid] = last_portid;
2728 	} else if (enabled_portcount % 2) {
2729 		printf("odd number of ports in portmask- bye\n");
2730 		return -1;
2731 	}
2732 
2733 	check_all_ports_link_status(l2fwd_enabled_port_mask);
2734 
2735 	return enabled_portcount;
2736 }
2737 
2738 static void
2739 reserve_key_memory(struct l2fwd_crypto_options *options)
2740 {
2741 	options->cipher_xform.cipher.key.data = options->cipher_key;
2742 
2743 	options->auth_xform.auth.key.data = options->auth_key;
2744 
2745 	options->aead_xform.aead.key.data = options->aead_key;
2746 
2747 	options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0);
2748 	if (options->cipher_iv.data == NULL)
2749 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV");
2750 
2751 	options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0);
2752 	if (options->auth_iv.data == NULL)
2753 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV");
2754 
2755 	options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0);
2756 	if (options->aead_iv.data == NULL)
2757 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv");
2758 
2759 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
2760 	if (options->aad.data == NULL)
2761 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
2762 	options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data);
2763 }
2764 
2765 int
2766 main(int argc, char **argv)
2767 {
2768 	struct lcore_queue_conf *qconf = NULL;
2769 	struct l2fwd_crypto_options options;
2770 
2771 	uint8_t nb_cryptodevs, cdev_id;
2772 	uint16_t portid;
2773 	unsigned lcore_id, rx_lcore_id = 0;
2774 	int ret, enabled_cdevcount, enabled_portcount;
2775 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
2776 
2777 	/* init EAL */
2778 	ret = rte_eal_init(argc, argv);
2779 	if (ret < 0)
2780 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
2781 	argc -= ret;
2782 	argv += ret;
2783 
2784 	/* reserve memory for Cipher/Auth key and IV */
2785 	reserve_key_memory(&options);
2786 
2787 	/* parse application arguments (after the EAL ones) */
2788 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
2789 	if (ret < 0)
2790 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
2791 
2792 	printf("MAC updating %s\n",
2793 			options.mac_updating ? "enabled" : "disabled");
2794 
2795 	/* create the mbuf pool */
2796 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
2797 			RTE_ALIGN(sizeof(struct rte_crypto_op),
2798 				RTE_CACHE_LINE_SIZE),
2799 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
2800 	if (l2fwd_pktmbuf_pool == NULL)
2801 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
2802 
2803 	/* create crypto op pool */
2804 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
2805 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH,
2806 			rte_socket_id());
2807 	if (l2fwd_crypto_op_pool == NULL)
2808 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
2809 
2810 	/* Enable Ethernet ports */
2811 	enabled_portcount = initialize_ports(&options);
2812 	if (enabled_portcount < 1)
2813 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
2814 
2815 	/* Initialize the port/queue configuration of each logical core */
2816 	RTE_ETH_FOREACH_DEV(portid) {
2817 
2818 		/* skip ports that are not enabled */
2819 		if ((options.portmask & (1 << portid)) == 0)
2820 			continue;
2821 
2822 		if (options.single_lcore && qconf == NULL) {
2823 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2824 				rx_lcore_id++;
2825 				if (rx_lcore_id >= RTE_MAX_LCORE)
2826 					rte_exit(EXIT_FAILURE,
2827 							"Not enough cores\n");
2828 			}
2829 		} else if (!options.single_lcore) {
2830 			/* get the lcore_id for this port */
2831 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2832 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2833 			       options.nb_ports_per_lcore) {
2834 				rx_lcore_id++;
2835 				if (rx_lcore_id >= RTE_MAX_LCORE)
2836 					rte_exit(EXIT_FAILURE,
2837 							"Not enough cores\n");
2838 			}
2839 		}
2840 
2841 		/* Assigned a new logical core in the loop above. */
2842 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2843 			qconf = &lcore_queue_conf[rx_lcore_id];
2844 
2845 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2846 		qconf->nb_rx_ports++;
2847 
2848 		printf("Lcore %u: RX port %u\n", rx_lcore_id, portid);
2849 	}
2850 
2851 	/* Enable Crypto devices */
2852 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2853 			enabled_cdevs);
2854 	if (enabled_cdevcount < 0)
2855 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2856 
2857 	if (enabled_cdevcount < enabled_portcount)
2858 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2859 				"has to be more or equal to number of ports (%d)\n",
2860 				enabled_cdevcount, enabled_portcount);
2861 
2862 	nb_cryptodevs = rte_cryptodev_count();
2863 
2864 	/* Initialize the port/cryptodev configuration of each logical core */
2865 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2866 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2867 			cdev_id++) {
2868 		/* Crypto op not supported by crypto device */
2869 		if (!enabled_cdevs[cdev_id])
2870 			continue;
2871 
2872 		if (options.single_lcore && qconf == NULL) {
2873 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2874 				rx_lcore_id++;
2875 				if (rx_lcore_id >= RTE_MAX_LCORE)
2876 					rte_exit(EXIT_FAILURE,
2877 							"Not enough cores\n");
2878 			}
2879 		} else if (!options.single_lcore) {
2880 			/* get the lcore_id for this port */
2881 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2882 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2883 			       options.nb_ports_per_lcore) {
2884 				rx_lcore_id++;
2885 				if (rx_lcore_id >= RTE_MAX_LCORE)
2886 					rte_exit(EXIT_FAILURE,
2887 							"Not enough cores\n");
2888 			}
2889 		}
2890 
2891 		/* Assigned a new logical core in the loop above. */
2892 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2893 			qconf = &lcore_queue_conf[rx_lcore_id];
2894 
2895 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2896 		qconf->nb_crypto_devs++;
2897 
2898 		enabled_cdevcount--;
2899 
2900 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2901 				(unsigned)cdev_id);
2902 	}
2903 
2904 	/* launch per-lcore init on every lcore */
2905 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2906 			CALL_MAIN);
2907 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2908 		if (rte_eal_wait_lcore(lcore_id) < 0)
2909 			return -1;
2910 	}
2911 
2912 	/* clean up the EAL */
2913 	rte_eal_cleanup();
2914 
2915 	return 0;
2916 }
2917