1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <time.h> 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <sys/queue.h> 42 #include <netinet/in.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <ctype.h> 46 #include <errno.h> 47 #include <getopt.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_common.h> 54 #include <rte_cryptodev.h> 55 #include <rte_cycles.h> 56 #include <rte_debug.h> 57 #include <rte_eal.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_interrupts.h> 61 #include <rte_ip.h> 62 #include <rte_launch.h> 63 #include <rte_lcore.h> 64 #include <rte_log.h> 65 #include <rte_malloc.h> 66 #include <rte_mbuf.h> 67 #include <rte_memcpy.h> 68 #include <rte_memory.h> 69 #include <rte_mempool.h> 70 #include <rte_memzone.h> 71 #include <rte_pci.h> 72 #include <rte_per_lcore.h> 73 #include <rte_prefetch.h> 74 #include <rte_random.h> 75 #include <rte_hexdump.h> 76 77 enum cdev_type { 78 CDEV_TYPE_ANY, 79 CDEV_TYPE_HW, 80 CDEV_TYPE_SW 81 }; 82 83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 84 85 #define NB_MBUF 8192 86 87 #define MAX_STR_LEN 32 88 #define MAX_KEY_SIZE 128 89 #define MAX_PKT_BURST 32 90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 91 #define MAX_SESSIONS 32 92 #define SESSION_POOL_CACHE_SIZE 0 93 94 #define MAXIMUM_IV_LENGTH 16 95 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 96 sizeof(struct rte_crypto_sym_op)) 97 98 /* 99 * Configurable number of RX/TX ring descriptors 100 */ 101 #define RTE_TEST_RX_DESC_DEFAULT 128 102 #define RTE_TEST_TX_DESC_DEFAULT 512 103 104 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 105 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 106 107 /* ethernet addresses of ports */ 108 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; 109 110 /* mask of enabled ports */ 111 static uint64_t l2fwd_enabled_port_mask; 112 static uint64_t l2fwd_enabled_crypto_mask; 113 114 /* list of enabled ports */ 115 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; 116 117 118 struct pkt_buffer { 119 unsigned len; 120 struct rte_mbuf *buffer[MAX_PKT_BURST]; 121 }; 122 123 struct op_buffer { 124 unsigned len; 125 struct rte_crypto_op *buffer[MAX_PKT_BURST]; 126 }; 127 128 #define MAX_RX_QUEUE_PER_LCORE 16 129 #define MAX_TX_QUEUE_PER_PORT 16 130 131 enum l2fwd_crypto_xform_chain { 132 L2FWD_CRYPTO_CIPHER_HASH, 133 L2FWD_CRYPTO_HASH_CIPHER, 134 L2FWD_CRYPTO_CIPHER_ONLY, 135 L2FWD_CRYPTO_HASH_ONLY, 136 L2FWD_CRYPTO_AEAD 137 }; 138 139 struct l2fwd_key { 140 uint8_t *data; 141 uint32_t length; 142 phys_addr_t phys_addr; 143 }; 144 145 struct l2fwd_iv { 146 uint8_t *data; 147 uint16_t length; 148 }; 149 150 /** l2fwd crypto application command line options */ 151 struct l2fwd_crypto_options { 152 unsigned portmask; 153 unsigned nb_ports_per_lcore; 154 unsigned refresh_period; 155 unsigned single_lcore:1; 156 157 enum cdev_type type; 158 unsigned sessionless:1; 159 160 enum l2fwd_crypto_xform_chain xform_chain; 161 162 struct rte_crypto_sym_xform cipher_xform; 163 unsigned ckey_param; 164 int ckey_random_size; 165 166 struct l2fwd_iv cipher_iv; 167 unsigned int cipher_iv_param; 168 int cipher_iv_random_size; 169 170 struct rte_crypto_sym_xform auth_xform; 171 uint8_t akey_param; 172 int akey_random_size; 173 174 struct l2fwd_iv auth_iv; 175 unsigned int auth_iv_param; 176 int auth_iv_random_size; 177 178 struct rte_crypto_sym_xform aead_xform; 179 unsigned int aead_key_param; 180 int aead_key_random_size; 181 182 struct l2fwd_iv aead_iv; 183 unsigned int aead_iv_param; 184 int aead_iv_random_size; 185 186 struct l2fwd_key aad; 187 unsigned aad_param; 188 int aad_random_size; 189 190 int digest_size; 191 192 uint16_t block_size; 193 char string_type[MAX_STR_LEN]; 194 195 uint64_t cryptodev_mask; 196 197 unsigned int mac_updating; 198 }; 199 200 /** l2fwd crypto lcore params */ 201 struct l2fwd_crypto_params { 202 uint8_t dev_id; 203 uint8_t qp_id; 204 205 unsigned digest_length; 206 unsigned block_size; 207 208 struct l2fwd_iv cipher_iv; 209 struct l2fwd_iv auth_iv; 210 struct l2fwd_iv aead_iv; 211 struct l2fwd_key aad; 212 struct rte_cryptodev_sym_session *session; 213 214 uint8_t do_cipher; 215 uint8_t do_hash; 216 uint8_t do_aead; 217 uint8_t hash_verify; 218 219 enum rte_crypto_cipher_algorithm cipher_algo; 220 enum rte_crypto_auth_algorithm auth_algo; 221 enum rte_crypto_aead_algorithm aead_algo; 222 }; 223 224 /** lcore configuration */ 225 struct lcore_queue_conf { 226 unsigned nb_rx_ports; 227 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 228 229 unsigned nb_crypto_devs; 230 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; 231 232 struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; 233 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; 234 } __rte_cache_aligned; 235 236 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 237 238 static const struct rte_eth_conf port_conf = { 239 .rxmode = { 240 .mq_mode = ETH_MQ_RX_NONE, 241 .max_rx_pkt_len = ETHER_MAX_LEN, 242 .split_hdr_size = 0, 243 .header_split = 0, /**< Header Split disabled */ 244 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 245 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 246 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 247 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 248 }, 249 .txmode = { 250 .mq_mode = ETH_MQ_TX_NONE, 251 }, 252 }; 253 254 struct rte_mempool *l2fwd_pktmbuf_pool; 255 struct rte_mempool *l2fwd_crypto_op_pool; 256 struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; 257 258 /* Per-port statistics struct */ 259 struct l2fwd_port_statistics { 260 uint64_t tx; 261 uint64_t rx; 262 263 uint64_t crypto_enqueued; 264 uint64_t crypto_dequeued; 265 266 uint64_t dropped; 267 } __rte_cache_aligned; 268 269 struct l2fwd_crypto_statistics { 270 uint64_t enqueued; 271 uint64_t dequeued; 272 273 uint64_t errors; 274 } __rte_cache_aligned; 275 276 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; 277 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; 278 279 /* A tsc-based timer responsible for triggering statistics printout */ 280 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ 281 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ 282 283 /* default period is 10 seconds */ 284 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; 285 286 /* Print out statistics on packets dropped */ 287 static void 288 print_stats(void) 289 { 290 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; 291 uint64_t total_packets_enqueued, total_packets_dequeued, 292 total_packets_errors; 293 unsigned portid; 294 uint64_t cdevid; 295 296 total_packets_dropped = 0; 297 total_packets_tx = 0; 298 total_packets_rx = 0; 299 total_packets_enqueued = 0; 300 total_packets_dequeued = 0; 301 total_packets_errors = 0; 302 303 const char clr[] = { 27, '[', '2', 'J', '\0' }; 304 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 305 306 /* Clear screen and move to top left */ 307 printf("%s%s", clr, topLeft); 308 309 printf("\nPort statistics ===================================="); 310 311 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 312 /* skip disabled ports */ 313 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 314 continue; 315 printf("\nStatistics for port %u ------------------------------" 316 "\nPackets sent: %32"PRIu64 317 "\nPackets received: %28"PRIu64 318 "\nPackets dropped: %29"PRIu64, 319 portid, 320 port_statistics[portid].tx, 321 port_statistics[portid].rx, 322 port_statistics[portid].dropped); 323 324 total_packets_dropped += port_statistics[portid].dropped; 325 total_packets_tx += port_statistics[portid].tx; 326 total_packets_rx += port_statistics[portid].rx; 327 } 328 printf("\nCrypto statistics =================================="); 329 330 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { 331 /* skip disabled ports */ 332 if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) 333 continue; 334 printf("\nStatistics for cryptodev %"PRIu64 335 " -------------------------" 336 "\nPackets enqueued: %28"PRIu64 337 "\nPackets dequeued: %28"PRIu64 338 "\nPackets errors: %30"PRIu64, 339 cdevid, 340 crypto_statistics[cdevid].enqueued, 341 crypto_statistics[cdevid].dequeued, 342 crypto_statistics[cdevid].errors); 343 344 total_packets_enqueued += crypto_statistics[cdevid].enqueued; 345 total_packets_dequeued += crypto_statistics[cdevid].dequeued; 346 total_packets_errors += crypto_statistics[cdevid].errors; 347 } 348 printf("\nAggregate statistics ===============================" 349 "\nTotal packets received: %22"PRIu64 350 "\nTotal packets enqueued: %22"PRIu64 351 "\nTotal packets dequeued: %22"PRIu64 352 "\nTotal packets sent: %26"PRIu64 353 "\nTotal packets dropped: %23"PRIu64 354 "\nTotal packets crypto errors: %17"PRIu64, 355 total_packets_rx, 356 total_packets_enqueued, 357 total_packets_dequeued, 358 total_packets_tx, 359 total_packets_dropped, 360 total_packets_errors); 361 printf("\n====================================================\n"); 362 } 363 364 static int 365 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, 366 struct l2fwd_crypto_params *cparams) 367 { 368 struct rte_crypto_op **op_buffer; 369 unsigned ret; 370 371 op_buffer = (struct rte_crypto_op **) 372 qconf->op_buf[cparams->dev_id].buffer; 373 374 ret = rte_cryptodev_enqueue_burst(cparams->dev_id, 375 cparams->qp_id, op_buffer, (uint16_t) n); 376 377 crypto_statistics[cparams->dev_id].enqueued += ret; 378 if (unlikely(ret < n)) { 379 crypto_statistics[cparams->dev_id].errors += (n - ret); 380 do { 381 rte_pktmbuf_free(op_buffer[ret]->sym->m_src); 382 rte_crypto_op_free(op_buffer[ret]); 383 } while (++ret < n); 384 } 385 386 return 0; 387 } 388 389 static int 390 l2fwd_crypto_enqueue(struct rte_crypto_op *op, 391 struct l2fwd_crypto_params *cparams) 392 { 393 unsigned lcore_id, len; 394 struct lcore_queue_conf *qconf; 395 396 lcore_id = rte_lcore_id(); 397 398 qconf = &lcore_queue_conf[lcore_id]; 399 len = qconf->op_buf[cparams->dev_id].len; 400 qconf->op_buf[cparams->dev_id].buffer[len] = op; 401 len++; 402 403 /* enough ops to be sent */ 404 if (len == MAX_PKT_BURST) { 405 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); 406 len = 0; 407 } 408 409 qconf->op_buf[cparams->dev_id].len = len; 410 return 0; 411 } 412 413 static int 414 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, 415 struct rte_crypto_op *op, 416 struct l2fwd_crypto_params *cparams) 417 { 418 struct ether_hdr *eth_hdr; 419 struct ipv4_hdr *ip_hdr; 420 421 uint32_t ipdata_offset, data_len; 422 uint32_t pad_len = 0; 423 char *padding; 424 425 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 426 427 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 428 return -1; 429 430 ipdata_offset = sizeof(struct ether_hdr); 431 432 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + 433 ipdata_offset); 434 435 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) 436 * IPV4_IHL_MULTIPLIER; 437 438 439 /* Zero pad data to be crypto'd so it is block aligned */ 440 data_len = rte_pktmbuf_data_len(m) - ipdata_offset; 441 442 if (cparams->do_hash && cparams->hash_verify) 443 data_len -= cparams->digest_length; 444 445 if (cparams->do_cipher) { 446 /* 447 * Following algorithms are block cipher algorithms, 448 * and might need padding 449 */ 450 switch (cparams->cipher_algo) { 451 case RTE_CRYPTO_CIPHER_AES_CBC: 452 case RTE_CRYPTO_CIPHER_AES_ECB: 453 case RTE_CRYPTO_CIPHER_DES_CBC: 454 case RTE_CRYPTO_CIPHER_3DES_CBC: 455 case RTE_CRYPTO_CIPHER_3DES_ECB: 456 if (data_len % cparams->block_size) 457 pad_len = cparams->block_size - 458 (data_len % cparams->block_size); 459 break; 460 default: 461 pad_len = 0; 462 } 463 464 if (pad_len) { 465 padding = rte_pktmbuf_append(m, pad_len); 466 if (unlikely(!padding)) 467 return -1; 468 469 data_len += pad_len; 470 memset(padding, 0, pad_len); 471 } 472 } 473 474 /* Set crypto operation data parameters */ 475 rte_crypto_op_attach_sym_session(op, cparams->session); 476 477 if (cparams->do_hash) { 478 if (cparams->auth_iv.length) { 479 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, 480 uint8_t *, 481 IV_OFFSET + 482 cparams->cipher_iv.length); 483 /* 484 * Copy IV at the end of the crypto operation, 485 * after the cipher IV, if added 486 */ 487 rte_memcpy(iv_ptr, cparams->auth_iv.data, 488 cparams->auth_iv.length); 489 } 490 if (!cparams->hash_verify) { 491 /* Append space for digest to end of packet */ 492 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, 493 cparams->digest_length); 494 } else { 495 op->sym->auth.digest.data = rte_pktmbuf_mtod(m, 496 uint8_t *) + ipdata_offset + data_len; 497 } 498 499 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 500 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 501 502 /* For wireless algorithms, offset/length must be in bits */ 503 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || 504 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || 505 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { 506 op->sym->auth.data.offset = ipdata_offset << 3; 507 op->sym->auth.data.length = data_len << 3; 508 } else { 509 op->sym->auth.data.offset = ipdata_offset; 510 op->sym->auth.data.length = data_len; 511 } 512 } 513 514 if (cparams->do_cipher) { 515 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 516 IV_OFFSET); 517 /* Copy IV at the end of the crypto operation */ 518 rte_memcpy(iv_ptr, cparams->cipher_iv.data, 519 cparams->cipher_iv.length); 520 521 /* For wireless algorithms, offset/length must be in bits */ 522 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || 523 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || 524 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { 525 op->sym->cipher.data.offset = ipdata_offset << 3; 526 op->sym->cipher.data.length = data_len << 3; 527 } else { 528 op->sym->cipher.data.offset = ipdata_offset; 529 op->sym->cipher.data.length = data_len; 530 } 531 } 532 533 if (cparams->do_aead) { 534 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, 535 IV_OFFSET); 536 /* Copy IV at the end of the crypto operation */ 537 rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); 538 539 op->sym->aead.data.offset = ipdata_offset; 540 op->sym->aead.data.length = data_len; 541 542 if (!cparams->hash_verify) { 543 /* Append space for digest to end of packet */ 544 op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, 545 cparams->digest_length); 546 } else { 547 op->sym->aead.digest.data = rte_pktmbuf_mtod(m, 548 uint8_t *) + ipdata_offset + data_len; 549 } 550 551 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, 552 rte_pktmbuf_pkt_len(m) - cparams->digest_length); 553 554 if (cparams->aad.length) { 555 op->sym->aead.aad.data = cparams->aad.data; 556 op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; 557 } 558 } 559 560 op->sym->m_src = m; 561 562 return l2fwd_crypto_enqueue(op, cparams); 563 } 564 565 566 /* Send the burst of packets on an output interface */ 567 static int 568 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, 569 uint8_t port) 570 { 571 struct rte_mbuf **pkt_buffer; 572 unsigned ret; 573 574 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; 575 576 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); 577 port_statistics[port].tx += ret; 578 if (unlikely(ret < n)) { 579 port_statistics[port].dropped += (n - ret); 580 do { 581 rte_pktmbuf_free(pkt_buffer[ret]); 582 } while (++ret < n); 583 } 584 585 return 0; 586 } 587 588 /* Enqueue packets for TX and prepare them to be sent */ 589 static int 590 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 591 { 592 unsigned lcore_id, len; 593 struct lcore_queue_conf *qconf; 594 595 lcore_id = rte_lcore_id(); 596 597 qconf = &lcore_queue_conf[lcore_id]; 598 len = qconf->pkt_buf[port].len; 599 qconf->pkt_buf[port].buffer[len] = m; 600 len++; 601 602 /* enough pkts to be sent */ 603 if (unlikely(len == MAX_PKT_BURST)) { 604 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 605 len = 0; 606 } 607 608 qconf->pkt_buf[port].len = len; 609 return 0; 610 } 611 612 static void 613 l2fwd_mac_updating(struct rte_mbuf *m, unsigned int dest_portid) 614 { 615 struct ether_hdr *eth; 616 void *tmp; 617 618 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 619 620 /* 02:00:00:00:00:xx */ 621 tmp = ð->d_addr.addr_bytes[0]; 622 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); 623 624 /* src addr */ 625 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); 626 } 627 628 static void 629 l2fwd_simple_forward(struct rte_mbuf *m, unsigned int portid, 630 struct l2fwd_crypto_options *options) 631 { 632 unsigned int dst_port; 633 634 dst_port = l2fwd_dst_ports[portid]; 635 636 if (options->mac_updating) 637 l2fwd_mac_updating(m, dst_port); 638 639 l2fwd_send_packet(m, (uint8_t) dst_port); 640 } 641 642 /** Generate random key */ 643 static void 644 generate_random_key(uint8_t *key, unsigned length) 645 { 646 int fd; 647 int ret; 648 649 fd = open("/dev/urandom", O_RDONLY); 650 if (fd < 0) 651 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 652 653 ret = read(fd, key, length); 654 close(fd); 655 656 if (ret != (signed)length) 657 rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); 658 } 659 660 static struct rte_cryptodev_sym_session * 661 initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) 662 { 663 struct rte_crypto_sym_xform *first_xform; 664 struct rte_cryptodev_sym_session *session; 665 int retval = rte_cryptodev_socket_id(cdev_id); 666 667 if (retval < 0) 668 return NULL; 669 670 uint8_t socket_id = (uint8_t) retval; 671 struct rte_mempool *sess_mp = session_pool_socket[socket_id]; 672 673 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 674 first_xform = &options->aead_xform; 675 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { 676 first_xform = &options->cipher_xform; 677 first_xform->next = &options->auth_xform; 678 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { 679 first_xform = &options->auth_xform; 680 first_xform->next = &options->cipher_xform; 681 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 682 first_xform = &options->cipher_xform; 683 } else { 684 first_xform = &options->auth_xform; 685 } 686 687 session = rte_cryptodev_sym_session_create(sess_mp); 688 689 if (session == NULL) 690 return NULL; 691 692 if (rte_cryptodev_sym_session_init(cdev_id, session, 693 first_xform, sess_mp) < 0) 694 return NULL; 695 696 return session; 697 } 698 699 static void 700 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); 701 702 /* main processing loop */ 703 static void 704 l2fwd_main_loop(struct l2fwd_crypto_options *options) 705 { 706 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; 707 struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; 708 709 unsigned lcore_id = rte_lcore_id(); 710 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 711 unsigned i, j, portid, nb_rx, len; 712 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; 713 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 714 US_PER_S * BURST_TX_DRAIN_US; 715 struct l2fwd_crypto_params *cparams; 716 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; 717 struct rte_cryptodev_sym_session *session; 718 719 if (qconf->nb_rx_ports == 0) { 720 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); 721 return; 722 } 723 724 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); 725 726 for (i = 0; i < qconf->nb_rx_ports; i++) { 727 728 portid = qconf->rx_port_list[i]; 729 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, 730 portid); 731 } 732 733 for (i = 0; i < qconf->nb_crypto_devs; i++) { 734 port_cparams[i].do_cipher = 0; 735 port_cparams[i].do_hash = 0; 736 port_cparams[i].do_aead = 0; 737 738 switch (options->xform_chain) { 739 case L2FWD_CRYPTO_AEAD: 740 port_cparams[i].do_aead = 1; 741 break; 742 case L2FWD_CRYPTO_CIPHER_HASH: 743 case L2FWD_CRYPTO_HASH_CIPHER: 744 port_cparams[i].do_cipher = 1; 745 port_cparams[i].do_hash = 1; 746 break; 747 case L2FWD_CRYPTO_HASH_ONLY: 748 port_cparams[i].do_hash = 1; 749 break; 750 case L2FWD_CRYPTO_CIPHER_ONLY: 751 port_cparams[i].do_cipher = 1; 752 break; 753 } 754 755 port_cparams[i].dev_id = qconf->cryptodev_list[i]; 756 port_cparams[i].qp_id = 0; 757 758 port_cparams[i].block_size = options->block_size; 759 760 if (port_cparams[i].do_hash) { 761 port_cparams[i].auth_iv.data = options->auth_iv.data; 762 port_cparams[i].auth_iv.length = options->auth_iv.length; 763 if (!options->auth_iv_param) 764 generate_random_key(port_cparams[i].auth_iv.data, 765 port_cparams[i].auth_iv.length); 766 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 767 port_cparams[i].hash_verify = 1; 768 else 769 port_cparams[i].hash_verify = 0; 770 771 port_cparams[i].auth_algo = options->auth_xform.auth.algo; 772 port_cparams[i].digest_length = 773 options->auth_xform.auth.digest_length; 774 /* Set IV parameters */ 775 if (options->auth_iv.length) { 776 options->auth_xform.auth.iv.offset = 777 IV_OFFSET + options->cipher_iv.length; 778 options->auth_xform.auth.iv.length = 779 options->auth_iv.length; 780 } 781 } 782 783 if (port_cparams[i].do_aead) { 784 port_cparams[i].aead_iv.data = options->aead_iv.data; 785 port_cparams[i].aead_iv.length = options->aead_iv.length; 786 if (!options->aead_iv_param) 787 generate_random_key(port_cparams[i].aead_iv.data, 788 port_cparams[i].aead_iv.length); 789 port_cparams[i].aead_algo = options->aead_xform.aead.algo; 790 port_cparams[i].digest_length = 791 options->aead_xform.aead.digest_length; 792 if (options->aead_xform.aead.aad_length) { 793 port_cparams[i].aad.data = options->aad.data; 794 port_cparams[i].aad.phys_addr = options->aad.phys_addr; 795 port_cparams[i].aad.length = options->aad.length; 796 if (!options->aad_param) 797 generate_random_key(port_cparams[i].aad.data, 798 port_cparams[i].aad.length); 799 800 } else 801 port_cparams[i].aad.length = 0; 802 803 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) 804 port_cparams[i].hash_verify = 1; 805 else 806 port_cparams[i].hash_verify = 0; 807 808 /* Set IV parameters */ 809 options->aead_xform.aead.iv.offset = IV_OFFSET; 810 options->aead_xform.aead.iv.length = options->aead_iv.length; 811 } 812 813 if (port_cparams[i].do_cipher) { 814 port_cparams[i].cipher_iv.data = options->cipher_iv.data; 815 port_cparams[i].cipher_iv.length = options->cipher_iv.length; 816 if (!options->cipher_iv_param) 817 generate_random_key(port_cparams[i].cipher_iv.data, 818 port_cparams[i].cipher_iv.length); 819 820 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; 821 /* Set IV parameters */ 822 options->cipher_xform.cipher.iv.offset = IV_OFFSET; 823 options->cipher_xform.cipher.iv.length = 824 options->cipher_iv.length; 825 } 826 827 session = initialize_crypto_session(options, 828 port_cparams[i].dev_id); 829 if (session == NULL) 830 rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); 831 832 port_cparams[i].session = session; 833 834 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, 835 port_cparams[i].dev_id); 836 } 837 838 l2fwd_crypto_options_print(options); 839 840 /* 841 * Initialize previous tsc timestamp before the loop, 842 * to avoid showing the port statistics immediately, 843 * so user can see the crypto information. 844 */ 845 prev_tsc = rte_rdtsc(); 846 while (1) { 847 848 cur_tsc = rte_rdtsc(); 849 850 /* 851 * Crypto device/TX burst queue drain 852 */ 853 diff_tsc = cur_tsc - prev_tsc; 854 if (unlikely(diff_tsc > drain_tsc)) { 855 /* Enqueue all crypto ops remaining in buffers */ 856 for (i = 0; i < qconf->nb_crypto_devs; i++) { 857 cparams = &port_cparams[i]; 858 len = qconf->op_buf[cparams->dev_id].len; 859 l2fwd_crypto_send_burst(qconf, len, cparams); 860 qconf->op_buf[cparams->dev_id].len = 0; 861 } 862 /* Transmit all packets remaining in buffers */ 863 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 864 if (qconf->pkt_buf[portid].len == 0) 865 continue; 866 l2fwd_send_burst(&lcore_queue_conf[lcore_id], 867 qconf->pkt_buf[portid].len, 868 (uint8_t) portid); 869 qconf->pkt_buf[portid].len = 0; 870 } 871 872 /* if timer is enabled */ 873 if (timer_period > 0) { 874 875 /* advance the timer */ 876 timer_tsc += diff_tsc; 877 878 /* if timer has reached its timeout */ 879 if (unlikely(timer_tsc >= 880 (uint64_t)timer_period)) { 881 882 /* do this only on master core */ 883 if (lcore_id == rte_get_master_lcore() 884 && options->refresh_period) { 885 print_stats(); 886 timer_tsc = 0; 887 } 888 } 889 } 890 891 prev_tsc = cur_tsc; 892 } 893 894 /* 895 * Read packet from RX queues 896 */ 897 for (i = 0; i < qconf->nb_rx_ports; i++) { 898 portid = qconf->rx_port_list[i]; 899 900 cparams = &port_cparams[i]; 901 902 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, 903 pkts_burst, MAX_PKT_BURST); 904 905 port_statistics[portid].rx += nb_rx; 906 907 if (nb_rx) { 908 /* 909 * If we can't allocate a crypto_ops, then drop 910 * the rest of the burst and dequeue and 911 * process the packets to free offload structs 912 */ 913 if (rte_crypto_op_bulk_alloc( 914 l2fwd_crypto_op_pool, 915 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 916 ops_burst, nb_rx) != 917 nb_rx) { 918 for (j = 0; j < nb_rx; j++) 919 rte_pktmbuf_free(pkts_burst[j]); 920 921 nb_rx = 0; 922 } 923 924 /* Enqueue packets from Crypto device*/ 925 for (j = 0; j < nb_rx; j++) { 926 m = pkts_burst[j]; 927 928 l2fwd_simple_crypto_enqueue(m, 929 ops_burst[j], cparams); 930 } 931 } 932 933 /* Dequeue packets from Crypto device */ 934 do { 935 nb_rx = rte_cryptodev_dequeue_burst( 936 cparams->dev_id, cparams->qp_id, 937 ops_burst, MAX_PKT_BURST); 938 939 crypto_statistics[cparams->dev_id].dequeued += 940 nb_rx; 941 942 /* Forward crypto'd packets */ 943 for (j = 0; j < nb_rx; j++) { 944 m = ops_burst[j]->sym->m_src; 945 946 rte_crypto_op_free(ops_burst[j]); 947 l2fwd_simple_forward(m, portid, 948 options); 949 } 950 } while (nb_rx == MAX_PKT_BURST); 951 } 952 } 953 } 954 955 static int 956 l2fwd_launch_one_lcore(void *arg) 957 { 958 l2fwd_main_loop((struct l2fwd_crypto_options *)arg); 959 return 0; 960 } 961 962 /* Display command line arguments usage */ 963 static void 964 l2fwd_crypto_usage(const char *prgname) 965 { 966 printf("%s [EAL options] --\n" 967 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 968 " -q NQ: number of queue (=ports) per lcore (default is 1)\n" 969 " -s manage all ports from single lcore\n" 970 " -T PERIOD: statistics will be refreshed each PERIOD seconds" 971 " (0 to disable, 10 default, 86400 maximum)\n" 972 973 " --cdev_type HW / SW / ANY\n" 974 " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" 975 " HASH_ONLY / AEAD\n" 976 977 " --cipher_algo ALGO\n" 978 " --cipher_op ENCRYPT / DECRYPT\n" 979 " --cipher_key KEY (bytes separated with \":\")\n" 980 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" 981 " --cipher_iv IV (bytes separated with \":\")\n" 982 " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" 983 984 " --auth_algo ALGO\n" 985 " --auth_op GENERATE / VERIFY\n" 986 " --auth_key KEY (bytes separated with \":\")\n" 987 " --auth_key_random_size SIZE: size of auth key when generated randomly\n" 988 " --auth_iv IV (bytes separated with \":\")\n" 989 " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" 990 991 " --aead_algo ALGO\n" 992 " --aead_op ENCRYPT / DECRYPT\n" 993 " --aead_key KEY (bytes separated with \":\")\n" 994 " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" 995 " --aead_iv IV (bytes separated with \":\")\n" 996 " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" 997 " --aad AAD (bytes separated with \":\")\n" 998 " --aad_random_size SIZE: size of AAD when generated randomly\n" 999 1000 " --digest_size SIZE: size of digest to be generated/verified\n" 1001 1002 " --sessionless\n" 1003 " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" 1004 1005 " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" 1006 " When enabled:\n" 1007 " - The source MAC address is replaced by the TX port MAC address\n" 1008 " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", 1009 prgname); 1010 } 1011 1012 /** Parse crypto device type command line argument */ 1013 static int 1014 parse_cryptodev_type(enum cdev_type *type, char *optarg) 1015 { 1016 if (strcmp("HW", optarg) == 0) { 1017 *type = CDEV_TYPE_HW; 1018 return 0; 1019 } else if (strcmp("SW", optarg) == 0) { 1020 *type = CDEV_TYPE_SW; 1021 return 0; 1022 } else if (strcmp("ANY", optarg) == 0) { 1023 *type = CDEV_TYPE_ANY; 1024 return 0; 1025 } 1026 1027 return -1; 1028 } 1029 1030 /** Parse crypto chain xform command line argument */ 1031 static int 1032 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) 1033 { 1034 if (strcmp("CIPHER_HASH", optarg) == 0) { 1035 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1036 return 0; 1037 } else if (strcmp("HASH_CIPHER", optarg) == 0) { 1038 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; 1039 return 0; 1040 } else if (strcmp("CIPHER_ONLY", optarg) == 0) { 1041 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; 1042 return 0; 1043 } else if (strcmp("HASH_ONLY", optarg) == 0) { 1044 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; 1045 return 0; 1046 } else if (strcmp("AEAD", optarg) == 0) { 1047 options->xform_chain = L2FWD_CRYPTO_AEAD; 1048 return 0; 1049 } 1050 1051 return -1; 1052 } 1053 1054 /** Parse crypto cipher algo option command line argument */ 1055 static int 1056 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) 1057 { 1058 1059 if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { 1060 RTE_LOG(ERR, USER1, "Cipher algorithm specified " 1061 "not supported!\n"); 1062 return -1; 1063 } 1064 1065 return 0; 1066 } 1067 1068 /** Parse crypto cipher operation command line argument */ 1069 static int 1070 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) 1071 { 1072 if (strcmp("ENCRYPT", optarg) == 0) { 1073 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1074 return 0; 1075 } else if (strcmp("DECRYPT", optarg) == 0) { 1076 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 1077 return 0; 1078 } 1079 1080 printf("Cipher operation not supported!\n"); 1081 return -1; 1082 } 1083 1084 /** Parse crypto key command line argument */ 1085 static int 1086 parse_key(uint8_t *data, char *input_arg) 1087 { 1088 unsigned byte_count; 1089 char *token; 1090 1091 errno = 0; 1092 for (byte_count = 0, token = strtok(input_arg, ":"); 1093 (byte_count < MAX_KEY_SIZE) && (token != NULL); 1094 token = strtok(NULL, ":")) { 1095 1096 int number = (int)strtol(token, NULL, 16); 1097 1098 if (errno == EINVAL || errno == ERANGE || number > 0xFF) 1099 return -1; 1100 1101 data[byte_count++] = (uint8_t)number; 1102 } 1103 1104 return byte_count; 1105 } 1106 1107 /** Parse size param*/ 1108 static int 1109 parse_size(int *size, const char *q_arg) 1110 { 1111 char *end = NULL; 1112 unsigned long n; 1113 1114 /* parse hexadecimal string */ 1115 n = strtoul(q_arg, &end, 10); 1116 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1117 n = 0; 1118 1119 if (n == 0) { 1120 printf("invalid size\n"); 1121 return -1; 1122 } 1123 1124 *size = n; 1125 return 0; 1126 } 1127 1128 /** Parse crypto cipher operation command line argument */ 1129 static int 1130 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) 1131 { 1132 if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { 1133 RTE_LOG(ERR, USER1, "Authentication algorithm specified " 1134 "not supported!\n"); 1135 return -1; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static int 1142 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) 1143 { 1144 if (strcmp("VERIFY", optarg) == 0) { 1145 *op = RTE_CRYPTO_AUTH_OP_VERIFY; 1146 return 0; 1147 } else if (strcmp("GENERATE", optarg) == 0) { 1148 *op = RTE_CRYPTO_AUTH_OP_GENERATE; 1149 return 0; 1150 } 1151 1152 printf("Authentication operation specified not supported!\n"); 1153 return -1; 1154 } 1155 1156 static int 1157 parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) 1158 { 1159 if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { 1160 RTE_LOG(ERR, USER1, "AEAD algorithm specified " 1161 "not supported!\n"); 1162 return -1; 1163 } 1164 1165 return 0; 1166 } 1167 1168 static int 1169 parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) 1170 { 1171 if (strcmp("ENCRYPT", optarg) == 0) { 1172 *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1173 return 0; 1174 } else if (strcmp("DECRYPT", optarg) == 0) { 1175 *op = RTE_CRYPTO_AEAD_OP_DECRYPT; 1176 return 0; 1177 } 1178 1179 printf("AEAD operation specified not supported!\n"); 1180 return -1; 1181 } 1182 static int 1183 parse_cryptodev_mask(struct l2fwd_crypto_options *options, 1184 const char *q_arg) 1185 { 1186 char *end = NULL; 1187 uint64_t pm; 1188 1189 /* parse hexadecimal string */ 1190 pm = strtoul(q_arg, &end, 16); 1191 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1192 pm = 0; 1193 1194 options->cryptodev_mask = pm; 1195 if (options->cryptodev_mask == 0) { 1196 printf("invalid cryptodev_mask specified\n"); 1197 return -1; 1198 } 1199 1200 return 0; 1201 } 1202 1203 /** Parse long options */ 1204 static int 1205 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, 1206 struct option *lgopts, int option_index) 1207 { 1208 int retval; 1209 1210 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { 1211 retval = parse_cryptodev_type(&options->type, optarg); 1212 if (retval == 0) 1213 snprintf(options->string_type, MAX_STR_LEN, 1214 "%s", optarg); 1215 return retval; 1216 } 1217 1218 else if (strcmp(lgopts[option_index].name, "chain") == 0) 1219 return parse_crypto_opt_chain(options, optarg); 1220 1221 /* Cipher options */ 1222 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) 1223 return parse_cipher_algo(&options->cipher_xform.cipher.algo, 1224 optarg); 1225 1226 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) 1227 return parse_cipher_op(&options->cipher_xform.cipher.op, 1228 optarg); 1229 1230 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { 1231 options->ckey_param = 1; 1232 options->cipher_xform.cipher.key.length = 1233 parse_key(options->cipher_xform.cipher.key.data, optarg); 1234 if (options->cipher_xform.cipher.key.length > 0) 1235 return 0; 1236 else 1237 return -1; 1238 } 1239 1240 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) 1241 return parse_size(&options->ckey_random_size, optarg); 1242 1243 else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { 1244 options->cipher_iv_param = 1; 1245 options->cipher_iv.length = 1246 parse_key(options->cipher_iv.data, optarg); 1247 if (options->cipher_iv.length > 0) 1248 return 0; 1249 else 1250 return -1; 1251 } 1252 1253 else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) 1254 return parse_size(&options->cipher_iv_random_size, optarg); 1255 1256 /* Authentication options */ 1257 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { 1258 return parse_auth_algo(&options->auth_xform.auth.algo, 1259 optarg); 1260 } 1261 1262 else if (strcmp(lgopts[option_index].name, "auth_op") == 0) 1263 return parse_auth_op(&options->auth_xform.auth.op, 1264 optarg); 1265 1266 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { 1267 options->akey_param = 1; 1268 options->auth_xform.auth.key.length = 1269 parse_key(options->auth_xform.auth.key.data, optarg); 1270 if (options->auth_xform.auth.key.length > 0) 1271 return 0; 1272 else 1273 return -1; 1274 } 1275 1276 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { 1277 return parse_size(&options->akey_random_size, optarg); 1278 } 1279 1280 else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { 1281 options->auth_iv_param = 1; 1282 options->auth_iv.length = 1283 parse_key(options->auth_iv.data, optarg); 1284 if (options->auth_iv.length > 0) 1285 return 0; 1286 else 1287 return -1; 1288 } 1289 1290 else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) 1291 return parse_size(&options->auth_iv_random_size, optarg); 1292 1293 /* AEAD options */ 1294 else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { 1295 return parse_aead_algo(&options->aead_xform.aead.algo, 1296 optarg); 1297 } 1298 1299 else if (strcmp(lgopts[option_index].name, "aead_op") == 0) 1300 return parse_aead_op(&options->aead_xform.aead.op, 1301 optarg); 1302 1303 else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { 1304 options->aead_key_param = 1; 1305 options->aead_xform.aead.key.length = 1306 parse_key(options->aead_xform.aead.key.data, optarg); 1307 if (options->aead_xform.aead.key.length > 0) 1308 return 0; 1309 else 1310 return -1; 1311 } 1312 1313 else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) 1314 return parse_size(&options->aead_key_random_size, optarg); 1315 1316 1317 else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { 1318 options->aead_iv_param = 1; 1319 options->aead_iv.length = 1320 parse_key(options->aead_iv.data, optarg); 1321 if (options->aead_iv.length > 0) 1322 return 0; 1323 else 1324 return -1; 1325 } 1326 1327 else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) 1328 return parse_size(&options->aead_iv_random_size, optarg); 1329 1330 else if (strcmp(lgopts[option_index].name, "aad") == 0) { 1331 options->aad_param = 1; 1332 options->aad.length = 1333 parse_key(options->aad.data, optarg); 1334 if (options->aad.length > 0) 1335 return 0; 1336 else 1337 return -1; 1338 } 1339 1340 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { 1341 return parse_size(&options->aad_random_size, optarg); 1342 } 1343 1344 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { 1345 return parse_size(&options->digest_size, optarg); 1346 } 1347 1348 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { 1349 options->sessionless = 1; 1350 return 0; 1351 } 1352 1353 else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) 1354 return parse_cryptodev_mask(options, optarg); 1355 1356 else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { 1357 options->mac_updating = 1; 1358 return 0; 1359 } 1360 1361 else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { 1362 options->mac_updating = 0; 1363 return 0; 1364 } 1365 1366 return -1; 1367 } 1368 1369 /** Parse port mask */ 1370 static int 1371 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, 1372 const char *q_arg) 1373 { 1374 char *end = NULL; 1375 unsigned long pm; 1376 1377 /* parse hexadecimal string */ 1378 pm = strtoul(q_arg, &end, 16); 1379 if ((pm == '\0') || (end == NULL) || (*end != '\0')) 1380 pm = 0; 1381 1382 options->portmask = pm; 1383 if (options->portmask == 0) { 1384 printf("invalid portmask specified\n"); 1385 return -1; 1386 } 1387 1388 return pm; 1389 } 1390 1391 /** Parse number of queues */ 1392 static int 1393 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, 1394 const char *q_arg) 1395 { 1396 char *end = NULL; 1397 unsigned long n; 1398 1399 /* parse hexadecimal string */ 1400 n = strtoul(q_arg, &end, 10); 1401 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1402 n = 0; 1403 else if (n >= MAX_RX_QUEUE_PER_LCORE) 1404 n = 0; 1405 1406 options->nb_ports_per_lcore = n; 1407 if (options->nb_ports_per_lcore == 0) { 1408 printf("invalid number of ports selected\n"); 1409 return -1; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /** Parse timer period */ 1416 static int 1417 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, 1418 const char *q_arg) 1419 { 1420 char *end = NULL; 1421 unsigned long n; 1422 1423 /* parse number string */ 1424 n = (unsigned)strtol(q_arg, &end, 10); 1425 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 1426 n = 0; 1427 1428 if (n >= MAX_TIMER_PERIOD) { 1429 printf("Warning refresh period specified %lu is greater than " 1430 "max value %lu! using max value", 1431 n, MAX_TIMER_PERIOD); 1432 n = MAX_TIMER_PERIOD; 1433 } 1434 1435 options->refresh_period = n * 1000 * TIMER_MILLISECOND; 1436 1437 return 0; 1438 } 1439 1440 /** Generate default options for application */ 1441 static void 1442 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) 1443 { 1444 options->portmask = 0xffffffff; 1445 options->nb_ports_per_lcore = 1; 1446 options->refresh_period = 10000; 1447 options->single_lcore = 0; 1448 options->sessionless = 0; 1449 1450 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; 1451 1452 /* Cipher Data */ 1453 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 1454 options->cipher_xform.next = NULL; 1455 options->ckey_param = 0; 1456 options->ckey_random_size = -1; 1457 options->cipher_xform.cipher.key.length = 0; 1458 options->cipher_iv_param = 0; 1459 options->cipher_iv_random_size = -1; 1460 options->cipher_iv.length = 0; 1461 1462 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; 1463 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 1464 1465 /* Authentication Data */ 1466 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; 1467 options->auth_xform.next = NULL; 1468 options->akey_param = 0; 1469 options->akey_random_size = -1; 1470 options->auth_xform.auth.key.length = 0; 1471 options->auth_iv_param = 0; 1472 options->auth_iv_random_size = -1; 1473 options->auth_iv.length = 0; 1474 1475 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 1476 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 1477 1478 /* AEAD Data */ 1479 options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; 1480 options->aead_xform.next = NULL; 1481 options->aead_key_param = 0; 1482 options->aead_key_random_size = -1; 1483 options->aead_xform.aead.key.length = 0; 1484 options->aead_iv_param = 0; 1485 options->aead_iv_random_size = -1; 1486 options->aead_iv.length = 0; 1487 1488 options->auth_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; 1489 options->auth_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; 1490 1491 options->aad_param = 0; 1492 options->aad_random_size = -1; 1493 options->aad.length = 0; 1494 1495 options->digest_size = -1; 1496 1497 options->type = CDEV_TYPE_ANY; 1498 options->cryptodev_mask = UINT64_MAX; 1499 1500 options->mac_updating = 1; 1501 } 1502 1503 static void 1504 display_cipher_info(struct l2fwd_crypto_options *options) 1505 { 1506 printf("\n---- Cipher information ---\n"); 1507 printf("Algorithm: %s\n", 1508 rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); 1509 rte_hexdump(stdout, "Cipher key:", 1510 options->cipher_xform.cipher.key.data, 1511 options->cipher_xform.cipher.key.length); 1512 rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); 1513 } 1514 1515 static void 1516 display_auth_info(struct l2fwd_crypto_options *options) 1517 { 1518 printf("\n---- Authentication information ---\n"); 1519 printf("Algorithm: %s\n", 1520 rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); 1521 rte_hexdump(stdout, "Auth key:", 1522 options->auth_xform.auth.key.data, 1523 options->auth_xform.auth.key.length); 1524 rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); 1525 } 1526 1527 static void 1528 display_aead_info(struct l2fwd_crypto_options *options) 1529 { 1530 printf("\n---- AEAD information ---\n"); 1531 printf("Algorithm: %s\n", 1532 rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); 1533 rte_hexdump(stdout, "AEAD key:", 1534 options->aead_xform.aead.key.data, 1535 options->aead_xform.aead.key.length); 1536 rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); 1537 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); 1538 } 1539 1540 static void 1541 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) 1542 { 1543 char string_cipher_op[MAX_STR_LEN]; 1544 char string_auth_op[MAX_STR_LEN]; 1545 char string_aead_op[MAX_STR_LEN]; 1546 1547 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1548 strcpy(string_cipher_op, "Encrypt"); 1549 else 1550 strcpy(string_cipher_op, "Decrypt"); 1551 1552 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) 1553 strcpy(string_auth_op, "Auth generate"); 1554 else 1555 strcpy(string_auth_op, "Auth verify"); 1556 1557 if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 1558 strcpy(string_aead_op, "Authenticated encryption"); 1559 else 1560 strcpy(string_aead_op, "Authenticated decryption"); 1561 1562 1563 printf("Options:-\nn"); 1564 printf("portmask: %x\n", options->portmask); 1565 printf("ports per lcore: %u\n", options->nb_ports_per_lcore); 1566 printf("refresh period : %u\n", options->refresh_period); 1567 printf("single lcore mode: %s\n", 1568 options->single_lcore ? "enabled" : "disabled"); 1569 printf("stats_printing: %s\n", 1570 options->refresh_period == 0 ? "disabled" : "enabled"); 1571 1572 printf("sessionless crypto: %s\n", 1573 options->sessionless ? "enabled" : "disabled"); 1574 1575 if (options->ckey_param && (options->ckey_random_size != -1)) 1576 printf("Cipher key already parsed, ignoring size of random key\n"); 1577 1578 if (options->akey_param && (options->akey_random_size != -1)) 1579 printf("Auth key already parsed, ignoring size of random key\n"); 1580 1581 if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) 1582 printf("Cipher IV already parsed, ignoring size of random IV\n"); 1583 1584 if (options->auth_iv_param && (options->auth_iv_random_size != -1)) 1585 printf("Auth IV already parsed, ignoring size of random IV\n"); 1586 1587 if (options->aad_param && (options->aad_random_size != -1)) 1588 printf("AAD already parsed, ignoring size of random AAD\n"); 1589 1590 printf("\nCrypto chain: "); 1591 switch (options->xform_chain) { 1592 case L2FWD_CRYPTO_AEAD: 1593 printf("Input --> %s --> Output\n", string_aead_op); 1594 display_aead_info(options); 1595 break; 1596 case L2FWD_CRYPTO_CIPHER_HASH: 1597 printf("Input --> %s --> %s --> Output\n", 1598 string_cipher_op, string_auth_op); 1599 display_cipher_info(options); 1600 display_auth_info(options); 1601 break; 1602 case L2FWD_CRYPTO_HASH_CIPHER: 1603 printf("Input --> %s --> %s --> Output\n", 1604 string_auth_op, string_cipher_op); 1605 display_cipher_info(options); 1606 display_auth_info(options); 1607 break; 1608 case L2FWD_CRYPTO_HASH_ONLY: 1609 printf("Input --> %s --> Output\n", string_auth_op); 1610 display_auth_info(options); 1611 break; 1612 case L2FWD_CRYPTO_CIPHER_ONLY: 1613 printf("Input --> %s --> Output\n", string_cipher_op); 1614 display_cipher_info(options); 1615 break; 1616 } 1617 } 1618 1619 /* Parse the argument given in the command line of the application */ 1620 static int 1621 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, 1622 int argc, char **argv) 1623 { 1624 int opt, retval, option_index; 1625 char **argvopt = argv, *prgname = argv[0]; 1626 1627 static struct option lgopts[] = { 1628 { "sessionless", no_argument, 0, 0 }, 1629 1630 { "cdev_type", required_argument, 0, 0 }, 1631 { "chain", required_argument, 0, 0 }, 1632 1633 { "cipher_algo", required_argument, 0, 0 }, 1634 { "cipher_op", required_argument, 0, 0 }, 1635 { "cipher_key", required_argument, 0, 0 }, 1636 { "cipher_key_random_size", required_argument, 0, 0 }, 1637 { "cipher_iv", required_argument, 0, 0 }, 1638 { "cipher_iv_random_size", required_argument, 0, 0 }, 1639 1640 { "auth_algo", required_argument, 0, 0 }, 1641 { "auth_op", required_argument, 0, 0 }, 1642 { "auth_key", required_argument, 0, 0 }, 1643 { "auth_key_random_size", required_argument, 0, 0 }, 1644 { "auth_iv", required_argument, 0, 0 }, 1645 { "auth_iv_random_size", required_argument, 0, 0 }, 1646 1647 { "aead_algo", required_argument, 0, 0 }, 1648 { "aead_op", required_argument, 0, 0 }, 1649 { "aead_key", required_argument, 0, 0 }, 1650 { "aead_key_random_size", required_argument, 0, 0 }, 1651 { "aead_iv", required_argument, 0, 0 }, 1652 { "aead_iv_random_size", required_argument, 0, 0 }, 1653 1654 { "aad", required_argument, 0, 0 }, 1655 { "aad_random_size", required_argument, 0, 0 }, 1656 1657 { "digest_size", required_argument, 0, 0 }, 1658 1659 { "sessionless", no_argument, 0, 0 }, 1660 { "cryptodev_mask", required_argument, 0, 0}, 1661 1662 { "mac-updating", no_argument, 0, 0}, 1663 { "no-mac-updating", no_argument, 0, 0}, 1664 1665 { NULL, 0, 0, 0 } 1666 }; 1667 1668 l2fwd_crypto_default_options(options); 1669 1670 while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, 1671 &option_index)) != EOF) { 1672 switch (opt) { 1673 /* long options */ 1674 case 0: 1675 retval = l2fwd_crypto_parse_args_long_options(options, 1676 lgopts, option_index); 1677 if (retval < 0) { 1678 l2fwd_crypto_usage(prgname); 1679 return -1; 1680 } 1681 break; 1682 1683 /* portmask */ 1684 case 'p': 1685 retval = l2fwd_crypto_parse_portmask(options, optarg); 1686 if (retval < 0) { 1687 l2fwd_crypto_usage(prgname); 1688 return -1; 1689 } 1690 break; 1691 1692 /* nqueue */ 1693 case 'q': 1694 retval = l2fwd_crypto_parse_nqueue(options, optarg); 1695 if (retval < 0) { 1696 l2fwd_crypto_usage(prgname); 1697 return -1; 1698 } 1699 break; 1700 1701 /* single */ 1702 case 's': 1703 options->single_lcore = 1; 1704 1705 break; 1706 1707 /* timer period */ 1708 case 'T': 1709 retval = l2fwd_crypto_parse_timer_period(options, 1710 optarg); 1711 if (retval < 0) { 1712 l2fwd_crypto_usage(prgname); 1713 return -1; 1714 } 1715 break; 1716 1717 default: 1718 l2fwd_crypto_usage(prgname); 1719 return -1; 1720 } 1721 } 1722 1723 1724 if (optind >= 0) 1725 argv[optind-1] = prgname; 1726 1727 retval = optind-1; 1728 optind = 1; /* reset getopt lib */ 1729 1730 return retval; 1731 } 1732 1733 /* Check the link status of all ports in up to 9s, and print them finally */ 1734 static void 1735 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 1736 { 1737 #define CHECK_INTERVAL 100 /* 100ms */ 1738 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1739 uint8_t portid, count, all_ports_up, print_flag = 0; 1740 struct rte_eth_link link; 1741 1742 printf("\nChecking link status"); 1743 fflush(stdout); 1744 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1745 all_ports_up = 1; 1746 for (portid = 0; portid < port_num; portid++) { 1747 if ((port_mask & (1 << portid)) == 0) 1748 continue; 1749 memset(&link, 0, sizeof(link)); 1750 rte_eth_link_get_nowait(portid, &link); 1751 /* print link status if flag set */ 1752 if (print_flag == 1) { 1753 if (link.link_status) 1754 printf("Port %d Link Up - speed %u " 1755 "Mbps - %s\n", (uint8_t)portid, 1756 (unsigned)link.link_speed, 1757 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1758 ("full-duplex") : ("half-duplex\n")); 1759 else 1760 printf("Port %d Link Down\n", 1761 (uint8_t)portid); 1762 continue; 1763 } 1764 /* clear all_ports_up flag if any link down */ 1765 if (link.link_status == ETH_LINK_DOWN) { 1766 all_ports_up = 0; 1767 break; 1768 } 1769 } 1770 /* after finally printing all link status, get out */ 1771 if (print_flag == 1) 1772 break; 1773 1774 if (all_ports_up == 0) { 1775 printf("."); 1776 fflush(stdout); 1777 rte_delay_ms(CHECK_INTERVAL); 1778 } 1779 1780 /* set the print_flag if all ports up or timeout */ 1781 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1782 print_flag = 1; 1783 printf("done\n"); 1784 } 1785 } 1786 } 1787 1788 /* Check if device has to be HW/SW or any */ 1789 static int 1790 check_type(const struct l2fwd_crypto_options *options, 1791 const struct rte_cryptodev_info *dev_info) 1792 { 1793 if (options->type == CDEV_TYPE_HW && 1794 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1795 return 0; 1796 if (options->type == CDEV_TYPE_SW && 1797 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) 1798 return 0; 1799 if (options->type == CDEV_TYPE_ANY) 1800 return 0; 1801 1802 return -1; 1803 } 1804 1805 static const struct rte_cryptodev_capabilities * 1806 check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, 1807 const struct rte_cryptodev_info *dev_info, 1808 uint8_t cdev_id) 1809 { 1810 unsigned int i = 0; 1811 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1812 enum rte_crypto_cipher_algorithm cap_cipher_algo; 1813 enum rte_crypto_cipher_algorithm opt_cipher_algo = 1814 options->cipher_xform.cipher.algo; 1815 1816 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1817 cap_cipher_algo = cap->sym.cipher.algo; 1818 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 1819 if (cap_cipher_algo == opt_cipher_algo) { 1820 if (check_type(options, dev_info) == 0) 1821 break; 1822 } 1823 } 1824 cap = &dev_info->capabilities[++i]; 1825 } 1826 1827 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1828 printf("Algorithm %s not supported by cryptodev %u" 1829 " or device not of preferred type (%s)\n", 1830 rte_crypto_cipher_algorithm_strings[opt_cipher_algo], 1831 cdev_id, 1832 options->string_type); 1833 return NULL; 1834 } 1835 1836 return cap; 1837 } 1838 1839 static const struct rte_cryptodev_capabilities * 1840 check_device_support_auth_algo(const struct l2fwd_crypto_options *options, 1841 const struct rte_cryptodev_info *dev_info, 1842 uint8_t cdev_id) 1843 { 1844 unsigned int i = 0; 1845 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1846 enum rte_crypto_auth_algorithm cap_auth_algo; 1847 enum rte_crypto_auth_algorithm opt_auth_algo = 1848 options->auth_xform.auth.algo; 1849 1850 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1851 cap_auth_algo = cap->sym.auth.algo; 1852 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { 1853 if (cap_auth_algo == opt_auth_algo) { 1854 if (check_type(options, dev_info) == 0) 1855 break; 1856 } 1857 } 1858 cap = &dev_info->capabilities[++i]; 1859 } 1860 1861 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1862 printf("Algorithm %s not supported by cryptodev %u" 1863 " or device not of preferred type (%s)\n", 1864 rte_crypto_auth_algorithm_strings[opt_auth_algo], 1865 cdev_id, 1866 options->string_type); 1867 return NULL; 1868 } 1869 1870 return cap; 1871 } 1872 1873 static const struct rte_cryptodev_capabilities * 1874 check_device_support_aead_algo(const struct l2fwd_crypto_options *options, 1875 const struct rte_cryptodev_info *dev_info, 1876 uint8_t cdev_id) 1877 { 1878 unsigned int i = 0; 1879 const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; 1880 enum rte_crypto_aead_algorithm cap_aead_algo; 1881 enum rte_crypto_aead_algorithm opt_aead_algo = 1882 options->aead_xform.aead.algo; 1883 1884 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1885 cap_aead_algo = cap->sym.aead.algo; 1886 if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1887 if (cap_aead_algo == opt_aead_algo) { 1888 if (check_type(options, dev_info) == 0) 1889 break; 1890 } 1891 } 1892 cap = &dev_info->capabilities[++i]; 1893 } 1894 1895 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { 1896 printf("Algorithm %s not supported by cryptodev %u" 1897 " or device not of preferred type (%s)\n", 1898 rte_crypto_aead_algorithm_strings[opt_aead_algo], 1899 cdev_id, 1900 options->string_type); 1901 return NULL; 1902 } 1903 1904 return cap; 1905 } 1906 1907 /* Check if the device is enabled by cryptodev_mask */ 1908 static int 1909 check_cryptodev_mask(struct l2fwd_crypto_options *options, 1910 uint8_t cdev_id) 1911 { 1912 if (options->cryptodev_mask & (1 << cdev_id)) 1913 return 0; 1914 1915 return -1; 1916 } 1917 1918 static inline int 1919 check_supported_size(uint16_t length, uint16_t min, uint16_t max, 1920 uint16_t increment) 1921 { 1922 uint16_t supp_size; 1923 1924 /* Single value */ 1925 if (increment == 0) { 1926 if (length == min) 1927 return 0; 1928 else 1929 return -1; 1930 } 1931 1932 /* Range of values */ 1933 for (supp_size = min; supp_size <= max; supp_size += increment) { 1934 if (length == supp_size) 1935 return 0; 1936 } 1937 1938 return -1; 1939 } 1940 1941 static int 1942 check_iv_param(const struct rte_crypto_param_range *iv_range_size, 1943 unsigned int iv_param, int iv_random_size, 1944 uint16_t *iv_length) 1945 { 1946 /* 1947 * Check if length of provided IV is supported 1948 * by the algorithm chosen. 1949 */ 1950 if (iv_param) { 1951 if (check_supported_size(*iv_length, 1952 iv_range_size->min, 1953 iv_range_size->max, 1954 iv_range_size->increment) 1955 != 0) { 1956 printf("Unsupported IV length\n"); 1957 return -1; 1958 } 1959 /* 1960 * Check if length of IV to be randomly generated 1961 * is supported by the algorithm chosen. 1962 */ 1963 } else if (iv_random_size != -1) { 1964 if (check_supported_size(iv_random_size, 1965 iv_range_size->min, 1966 iv_range_size->max, 1967 iv_range_size->increment) 1968 != 0) { 1969 printf("Unsupported IV length\n"); 1970 return -1; 1971 } 1972 *iv_length = iv_random_size; 1973 /* No size provided, use minimum size. */ 1974 } else 1975 *iv_length = iv_range_size->min; 1976 1977 return 0; 1978 } 1979 1980 static int 1981 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, 1982 uint8_t *enabled_cdevs) 1983 { 1984 unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; 1985 const struct rte_cryptodev_capabilities *cap; 1986 unsigned int sess_sz, max_sess_sz = 0; 1987 int retval; 1988 1989 cdev_count = rte_cryptodev_count(); 1990 if (cdev_count == 0) { 1991 printf("No crypto devices available\n"); 1992 return -1; 1993 } 1994 1995 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1996 sess_sz = rte_cryptodev_get_private_session_size(cdev_id); 1997 if (sess_sz > max_sess_sz) 1998 max_sess_sz = sess_sz; 1999 } 2000 2001 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; 2002 cdev_id++) { 2003 struct rte_cryptodev_qp_conf qp_conf; 2004 struct rte_cryptodev_info dev_info; 2005 retval = rte_cryptodev_socket_id(cdev_id); 2006 2007 if (retval < 0) { 2008 printf("Invalid crypto device id used\n"); 2009 return -1; 2010 } 2011 2012 uint8_t socket_id = (uint8_t) retval; 2013 2014 struct rte_cryptodev_config conf = { 2015 .nb_queue_pairs = 1, 2016 .socket_id = socket_id, 2017 }; 2018 2019 if (check_cryptodev_mask(options, (uint8_t)cdev_id)) 2020 continue; 2021 2022 rte_cryptodev_info_get(cdev_id, &dev_info); 2023 2024 if (session_pool_socket[socket_id] == NULL) { 2025 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2026 struct rte_mempool *sess_mp; 2027 2028 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2029 "sess_mp_%u", socket_id); 2030 2031 /* 2032 * Create enough objects for session headers and 2033 * device private data 2034 */ 2035 sess_mp = rte_mempool_create(mp_name, 2036 MAX_SESSIONS * 2, 2037 max_sess_sz, 2038 SESSION_POOL_CACHE_SIZE, 2039 0, NULL, NULL, NULL, 2040 NULL, socket_id, 2041 0); 2042 2043 if (sess_mp == NULL) { 2044 printf("Cannot create session pool on socket %d\n", 2045 socket_id); 2046 return -ENOMEM; 2047 } 2048 2049 printf("Allocated session pool on socket %d\n", socket_id); 2050 session_pool_socket[socket_id] = sess_mp; 2051 } 2052 2053 /* Set AEAD parameters */ 2054 if (options->xform_chain == L2FWD_CRYPTO_AEAD) { 2055 /* Check if device supports AEAD algo */ 2056 cap = check_device_support_aead_algo(options, &dev_info, 2057 cdev_id); 2058 if (cap == NULL) 2059 continue; 2060 2061 options->block_size = cap->sym.aead.block_size; 2062 2063 check_iv_param(&cap->sym.aead.iv_size, 2064 options->aead_iv_param, 2065 options->aead_iv_random_size, 2066 &options->aead_iv.length); 2067 2068 /* 2069 * Check if length of provided AEAD key is supported 2070 * by the algorithm chosen. 2071 */ 2072 if (options->aead_key_param) { 2073 if (check_supported_size( 2074 options->aead_xform.aead.key.length, 2075 cap->sym.aead.key_size.min, 2076 cap->sym.aead.key_size.max, 2077 cap->sym.aead.key_size.increment) 2078 != 0) { 2079 printf("Unsupported aead key length\n"); 2080 return -1; 2081 } 2082 /* 2083 * Check if length of the aead key to be randomly generated 2084 * is supported by the algorithm chosen. 2085 */ 2086 } else if (options->aead_key_random_size != -1) { 2087 if (check_supported_size(options->aead_key_random_size, 2088 cap->sym.aead.key_size.min, 2089 cap->sym.aead.key_size.max, 2090 cap->sym.aead.key_size.increment) 2091 != 0) { 2092 printf("Unsupported aead key length\n"); 2093 return -1; 2094 } 2095 options->aead_xform.aead.key.length = 2096 options->aead_key_random_size; 2097 /* No size provided, use minimum size. */ 2098 } else 2099 options->aead_xform.aead.key.length = 2100 cap->sym.aead.key_size.min; 2101 2102 if (!options->aead_key_param) 2103 generate_random_key( 2104 options->aead_xform.aead.key.data, 2105 options->aead_xform.aead.key.length); 2106 2107 /* 2108 * Check if length of provided AAD is supported 2109 * by the algorithm chosen. 2110 */ 2111 if (options->aad_param) { 2112 if (check_supported_size(options->aad.length, 2113 cap->sym.aead.aad_size.min, 2114 cap->sym.aead.aad_size.max, 2115 cap->sym.aead.aad_size.increment) 2116 != 0) { 2117 printf("Unsupported AAD length\n"); 2118 return -1; 2119 } 2120 /* 2121 * Check if length of AAD to be randomly generated 2122 * is supported by the algorithm chosen. 2123 */ 2124 } else if (options->aad_random_size != -1) { 2125 if (check_supported_size(options->aad_random_size, 2126 cap->sym.aead.aad_size.min, 2127 cap->sym.aead.aad_size.max, 2128 cap->sym.aead.aad_size.increment) 2129 != 0) { 2130 printf("Unsupported AAD length\n"); 2131 return -1; 2132 } 2133 options->aad.length = options->aad_random_size; 2134 /* No size provided, use minimum size. */ 2135 } else 2136 options->aad.length = cap->sym.auth.aad_size.min; 2137 2138 options->aead_xform.aead.aad_length = 2139 options->aad.length; 2140 2141 /* Check if digest size is supported by the algorithm. */ 2142 if (options->digest_size != -1) { 2143 if (check_supported_size(options->digest_size, 2144 cap->sym.aead.digest_size.min, 2145 cap->sym.aead.digest_size.max, 2146 cap->sym.aead.digest_size.increment) 2147 != 0) { 2148 printf("Unsupported digest length\n"); 2149 return -1; 2150 } 2151 options->aead_xform.aead.digest_length = 2152 options->digest_size; 2153 /* No size provided, use minimum size. */ 2154 } else 2155 options->aead_xform.aead.digest_length = 2156 cap->sym.aead.digest_size.min; 2157 } 2158 2159 /* Set cipher parameters */ 2160 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2161 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2162 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { 2163 /* Check if device supports cipher algo */ 2164 cap = check_device_support_cipher_algo(options, &dev_info, 2165 cdev_id); 2166 if (cap == NULL) 2167 continue; 2168 2169 options->block_size = cap->sym.cipher.block_size; 2170 2171 check_iv_param(&cap->sym.cipher.iv_size, 2172 options->cipher_iv_param, 2173 options->cipher_iv_random_size, 2174 &options->cipher_iv.length); 2175 2176 /* 2177 * Check if length of provided cipher key is supported 2178 * by the algorithm chosen. 2179 */ 2180 if (options->ckey_param) { 2181 if (check_supported_size( 2182 options->cipher_xform.cipher.key.length, 2183 cap->sym.cipher.key_size.min, 2184 cap->sym.cipher.key_size.max, 2185 cap->sym.cipher.key_size.increment) 2186 != 0) { 2187 printf("Unsupported cipher key length\n"); 2188 return -1; 2189 } 2190 /* 2191 * Check if length of the cipher key to be randomly generated 2192 * is supported by the algorithm chosen. 2193 */ 2194 } else if (options->ckey_random_size != -1) { 2195 if (check_supported_size(options->ckey_random_size, 2196 cap->sym.cipher.key_size.min, 2197 cap->sym.cipher.key_size.max, 2198 cap->sym.cipher.key_size.increment) 2199 != 0) { 2200 printf("Unsupported cipher key length\n"); 2201 return -1; 2202 } 2203 options->cipher_xform.cipher.key.length = 2204 options->ckey_random_size; 2205 /* No size provided, use minimum size. */ 2206 } else 2207 options->cipher_xform.cipher.key.length = 2208 cap->sym.cipher.key_size.min; 2209 2210 if (!options->ckey_param) 2211 generate_random_key( 2212 options->cipher_xform.cipher.key.data, 2213 options->cipher_xform.cipher.key.length); 2214 2215 } 2216 2217 /* Set auth parameters */ 2218 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || 2219 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || 2220 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { 2221 /* Check if device supports auth algo */ 2222 cap = check_device_support_auth_algo(options, &dev_info, 2223 cdev_id); 2224 if (cap == NULL) 2225 continue; 2226 2227 check_iv_param(&cap->sym.auth.iv_size, 2228 options->auth_iv_param, 2229 options->auth_iv_random_size, 2230 &options->auth_iv.length); 2231 /* 2232 * Check if length of provided auth key is supported 2233 * by the algorithm chosen. 2234 */ 2235 if (options->akey_param) { 2236 if (check_supported_size( 2237 options->auth_xform.auth.key.length, 2238 cap->sym.auth.key_size.min, 2239 cap->sym.auth.key_size.max, 2240 cap->sym.auth.key_size.increment) 2241 != 0) { 2242 printf("Unsupported auth key length\n"); 2243 return -1; 2244 } 2245 /* 2246 * Check if length of the auth key to be randomly generated 2247 * is supported by the algorithm chosen. 2248 */ 2249 } else if (options->akey_random_size != -1) { 2250 if (check_supported_size(options->akey_random_size, 2251 cap->sym.auth.key_size.min, 2252 cap->sym.auth.key_size.max, 2253 cap->sym.auth.key_size.increment) 2254 != 0) { 2255 printf("Unsupported auth key length\n"); 2256 return -1; 2257 } 2258 options->auth_xform.auth.key.length = 2259 options->akey_random_size; 2260 /* No size provided, use minimum size. */ 2261 } else 2262 options->auth_xform.auth.key.length = 2263 cap->sym.auth.key_size.min; 2264 2265 if (!options->akey_param) 2266 generate_random_key( 2267 options->auth_xform.auth.key.data, 2268 options->auth_xform.auth.key.length); 2269 2270 /* Check if digest size is supported by the algorithm. */ 2271 if (options->digest_size != -1) { 2272 if (check_supported_size(options->digest_size, 2273 cap->sym.auth.digest_size.min, 2274 cap->sym.auth.digest_size.max, 2275 cap->sym.auth.digest_size.increment) 2276 != 0) { 2277 printf("Unsupported digest length\n"); 2278 return -1; 2279 } 2280 options->auth_xform.auth.digest_length = 2281 options->digest_size; 2282 /* No size provided, use minimum size. */ 2283 } else 2284 options->auth_xform.auth.digest_length = 2285 cap->sym.auth.digest_size.min; 2286 } 2287 2288 retval = rte_cryptodev_configure(cdev_id, &conf); 2289 if (retval < 0) { 2290 printf("Failed to configure cryptodev %u", cdev_id); 2291 return -1; 2292 } 2293 2294 qp_conf.nb_descriptors = 2048; 2295 2296 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, 2297 socket_id, session_pool_socket[socket_id]); 2298 if (retval < 0) { 2299 printf("Failed to setup queue pair %u on cryptodev %u", 2300 0, cdev_id); 2301 return -1; 2302 } 2303 2304 retval = rte_cryptodev_start(cdev_id); 2305 if (retval < 0) { 2306 printf("Failed to start device %u: error %d\n", 2307 cdev_id, retval); 2308 return -1; 2309 } 2310 2311 l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); 2312 2313 enabled_cdevs[cdev_id] = 1; 2314 enabled_cdev_count++; 2315 } 2316 2317 return enabled_cdev_count; 2318 } 2319 2320 static int 2321 initialize_ports(struct l2fwd_crypto_options *options) 2322 { 2323 uint8_t last_portid, portid; 2324 unsigned enabled_portcount = 0; 2325 unsigned nb_ports = rte_eth_dev_count(); 2326 2327 if (nb_ports == 0) { 2328 printf("No Ethernet ports - bye\n"); 2329 return -1; 2330 } 2331 2332 /* Reset l2fwd_dst_ports */ 2333 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 2334 l2fwd_dst_ports[portid] = 0; 2335 2336 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { 2337 int retval; 2338 2339 /* Skip ports that are not enabled */ 2340 if ((options->portmask & (1 << portid)) == 0) 2341 continue; 2342 2343 /* init port */ 2344 printf("Initializing port %u... ", (unsigned) portid); 2345 fflush(stdout); 2346 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); 2347 if (retval < 0) { 2348 printf("Cannot configure device: err=%d, port=%u\n", 2349 retval, (unsigned) portid); 2350 return -1; 2351 } 2352 2353 retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 2354 &nb_txd); 2355 if (retval < 0) { 2356 printf("Cannot adjust number of descriptors: err=%d, port=%u\n", 2357 retval, (unsigned) portid); 2358 return -1; 2359 } 2360 2361 /* init one RX queue */ 2362 fflush(stdout); 2363 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 2364 rte_eth_dev_socket_id(portid), 2365 NULL, l2fwd_pktmbuf_pool); 2366 if (retval < 0) { 2367 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", 2368 retval, (unsigned) portid); 2369 return -1; 2370 } 2371 2372 /* init one TX queue on each port */ 2373 fflush(stdout); 2374 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, 2375 rte_eth_dev_socket_id(portid), 2376 NULL); 2377 if (retval < 0) { 2378 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", 2379 retval, (unsigned) portid); 2380 2381 return -1; 2382 } 2383 2384 /* Start device */ 2385 retval = rte_eth_dev_start(portid); 2386 if (retval < 0) { 2387 printf("rte_eth_dev_start:err=%d, port=%u\n", 2388 retval, (unsigned) portid); 2389 return -1; 2390 } 2391 2392 rte_eth_promiscuous_enable(portid); 2393 2394 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); 2395 2396 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", 2397 (unsigned) portid, 2398 l2fwd_ports_eth_addr[portid].addr_bytes[0], 2399 l2fwd_ports_eth_addr[portid].addr_bytes[1], 2400 l2fwd_ports_eth_addr[portid].addr_bytes[2], 2401 l2fwd_ports_eth_addr[portid].addr_bytes[3], 2402 l2fwd_ports_eth_addr[portid].addr_bytes[4], 2403 l2fwd_ports_eth_addr[portid].addr_bytes[5]); 2404 2405 /* initialize port stats */ 2406 memset(&port_statistics, 0, sizeof(port_statistics)); 2407 2408 /* Setup port forwarding table */ 2409 if (enabled_portcount % 2) { 2410 l2fwd_dst_ports[portid] = last_portid; 2411 l2fwd_dst_ports[last_portid] = portid; 2412 } else { 2413 last_portid = portid; 2414 } 2415 2416 l2fwd_enabled_port_mask |= (1 << portid); 2417 enabled_portcount++; 2418 } 2419 2420 if (enabled_portcount == 1) { 2421 l2fwd_dst_ports[last_portid] = last_portid; 2422 } else if (enabled_portcount % 2) { 2423 printf("odd number of ports in portmask- bye\n"); 2424 return -1; 2425 } 2426 2427 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); 2428 2429 return enabled_portcount; 2430 } 2431 2432 static void 2433 reserve_key_memory(struct l2fwd_crypto_options *options) 2434 { 2435 options->cipher_xform.cipher.key.data = rte_malloc("crypto key", 2436 MAX_KEY_SIZE, 0); 2437 if (options->cipher_xform.cipher.key.data == NULL) 2438 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); 2439 2440 options->auth_xform.auth.key.data = rte_malloc("auth key", 2441 MAX_KEY_SIZE, 0); 2442 if (options->auth_xform.auth.key.data == NULL) 2443 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); 2444 2445 options->aead_xform.aead.key.data = rte_malloc("aead key", 2446 MAX_KEY_SIZE, 0); 2447 if (options->aead_xform.aead.key.data == NULL) 2448 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); 2449 2450 options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); 2451 if (options->cipher_iv.data == NULL) 2452 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); 2453 2454 options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); 2455 if (options->auth_iv.data == NULL) 2456 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); 2457 2458 options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); 2459 if (options->aead_iv.data == NULL) 2460 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); 2461 2462 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); 2463 if (options->aad.data == NULL) 2464 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); 2465 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data); 2466 } 2467 2468 int 2469 main(int argc, char **argv) 2470 { 2471 struct lcore_queue_conf *qconf; 2472 struct l2fwd_crypto_options options; 2473 2474 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id; 2475 unsigned lcore_id, rx_lcore_id; 2476 int ret, enabled_cdevcount, enabled_portcount; 2477 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; 2478 2479 /* init EAL */ 2480 ret = rte_eal_init(argc, argv); 2481 if (ret < 0) 2482 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 2483 argc -= ret; 2484 argv += ret; 2485 2486 /* reserve memory for Cipher/Auth key and IV */ 2487 reserve_key_memory(&options); 2488 2489 /* parse application arguments (after the EAL ones) */ 2490 ret = l2fwd_crypto_parse_args(&options, argc, argv); 2491 if (ret < 0) 2492 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); 2493 2494 printf("MAC updating %s\n", 2495 options.mac_updating ? "enabled" : "disabled"); 2496 2497 /* create the mbuf pool */ 2498 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, 2499 sizeof(struct rte_crypto_op), 2500 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 2501 if (l2fwd_pktmbuf_pool == NULL) 2502 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 2503 2504 /* create crypto op pool */ 2505 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", 2506 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, 2507 rte_socket_id()); 2508 if (l2fwd_crypto_op_pool == NULL) 2509 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); 2510 2511 /* Enable Ethernet ports */ 2512 enabled_portcount = initialize_ports(&options); 2513 if (enabled_portcount < 1) 2514 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); 2515 2516 nb_ports = rte_eth_dev_count(); 2517 /* Initialize the port/queue configuration of each logical core */ 2518 for (rx_lcore_id = 0, qconf = NULL, portid = 0; 2519 portid < nb_ports; portid++) { 2520 2521 /* skip ports that are not enabled */ 2522 if ((options.portmask & (1 << portid)) == 0) 2523 continue; 2524 2525 if (options.single_lcore && qconf == NULL) { 2526 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2527 rx_lcore_id++; 2528 if (rx_lcore_id >= RTE_MAX_LCORE) 2529 rte_exit(EXIT_FAILURE, 2530 "Not enough cores\n"); 2531 } 2532 } else if (!options.single_lcore) { 2533 /* get the lcore_id for this port */ 2534 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2535 lcore_queue_conf[rx_lcore_id].nb_rx_ports == 2536 options.nb_ports_per_lcore) { 2537 rx_lcore_id++; 2538 if (rx_lcore_id >= RTE_MAX_LCORE) 2539 rte_exit(EXIT_FAILURE, 2540 "Not enough cores\n"); 2541 } 2542 } 2543 2544 /* Assigned a new logical core in the loop above. */ 2545 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2546 qconf = &lcore_queue_conf[rx_lcore_id]; 2547 2548 qconf->rx_port_list[qconf->nb_rx_ports] = portid; 2549 qconf->nb_rx_ports++; 2550 2551 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid); 2552 } 2553 2554 /* Enable Crypto devices */ 2555 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, 2556 enabled_cdevs); 2557 if (enabled_cdevcount < 0) 2558 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); 2559 2560 if (enabled_cdevcount < enabled_portcount) 2561 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " 2562 "has to be more or equal to number of ports (%d)\n", 2563 enabled_cdevcount, enabled_portcount); 2564 2565 nb_cryptodevs = rte_cryptodev_count(); 2566 2567 /* Initialize the port/cryptodev configuration of each logical core */ 2568 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; 2569 cdev_id < nb_cryptodevs && enabled_cdevcount; 2570 cdev_id++) { 2571 /* Crypto op not supported by crypto device */ 2572 if (!enabled_cdevs[cdev_id]) 2573 continue; 2574 2575 if (options.single_lcore && qconf == NULL) { 2576 while (rte_lcore_is_enabled(rx_lcore_id) == 0) { 2577 rx_lcore_id++; 2578 if (rx_lcore_id >= RTE_MAX_LCORE) 2579 rte_exit(EXIT_FAILURE, 2580 "Not enough cores\n"); 2581 } 2582 } else if (!options.single_lcore) { 2583 /* get the lcore_id for this port */ 2584 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 2585 lcore_queue_conf[rx_lcore_id].nb_crypto_devs == 2586 options.nb_ports_per_lcore) { 2587 rx_lcore_id++; 2588 if (rx_lcore_id >= RTE_MAX_LCORE) 2589 rte_exit(EXIT_FAILURE, 2590 "Not enough cores\n"); 2591 } 2592 } 2593 2594 /* Assigned a new logical core in the loop above. */ 2595 if (qconf != &lcore_queue_conf[rx_lcore_id]) 2596 qconf = &lcore_queue_conf[rx_lcore_id]; 2597 2598 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; 2599 qconf->nb_crypto_devs++; 2600 2601 enabled_cdevcount--; 2602 2603 printf("Lcore %u: cryptodev %u\n", rx_lcore_id, 2604 (unsigned)cdev_id); 2605 } 2606 2607 /* launch per-lcore init on every lcore */ 2608 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, 2609 CALL_MASTER); 2610 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2611 if (rte_eal_wait_lcore(lcore_id) < 0) 2612 return -1; 2613 } 2614 2615 return 0; 2616 } 2617