xref: /dpdk/examples/l2fwd-crypto/main.c (revision 0499793854f52d0a42aa39a6b8036700f3719735)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 
49 #include <rte_atomic.h>
50 #include <rte_branch_prediction.h>
51 #include <rte_common.h>
52 #include <rte_cryptodev.h>
53 #include <rte_cycles.h>
54 #include <rte_debug.h>
55 #include <rte_eal.h>
56 #include <rte_ether.h>
57 #include <rte_ethdev.h>
58 #include <rte_interrupts.h>
59 #include <rte_ip.h>
60 #include <rte_launch.h>
61 #include <rte_lcore.h>
62 #include <rte_log.h>
63 #include <rte_malloc.h>
64 #include <rte_mbuf.h>
65 #include <rte_memcpy.h>
66 #include <rte_memory.h>
67 #include <rte_mempool.h>
68 #include <rte_memzone.h>
69 #include <rte_pci.h>
70 #include <rte_per_lcore.h>
71 #include <rte_prefetch.h>
72 #include <rte_random.h>
73 #include <rte_ring.h>
74 #include <rte_hexdump.h>
75 
76 enum cdev_type {
77 	CDEV_TYPE_ANY,
78 	CDEV_TYPE_HW,
79 	CDEV_TYPE_SW
80 };
81 
82 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
83 
84 #define NB_MBUF   8192
85 
86 #define MAX_STR_LEN 32
87 #define MAX_KEY_SIZE 128
88 #define MAX_PKT_BURST 32
89 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
90 
91 /*
92  * Configurable number of RX/TX ring descriptors
93  */
94 #define RTE_TEST_RX_DESC_DEFAULT 128
95 #define RTE_TEST_TX_DESC_DEFAULT 512
96 
97 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
98 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
99 
100 /* ethernet addresses of ports */
101 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
102 
103 /* mask of enabled ports */
104 static uint64_t l2fwd_enabled_port_mask;
105 static uint64_t l2fwd_enabled_crypto_mask;
106 
107 /* list of enabled ports */
108 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
109 
110 
111 struct pkt_buffer {
112 	unsigned len;
113 	struct rte_mbuf *buffer[MAX_PKT_BURST];
114 };
115 
116 struct op_buffer {
117 	unsigned len;
118 	struct rte_crypto_op *buffer[MAX_PKT_BURST];
119 };
120 
121 #define MAX_RX_QUEUE_PER_LCORE 16
122 #define MAX_TX_QUEUE_PER_PORT 16
123 
124 enum l2fwd_crypto_xform_chain {
125 	L2FWD_CRYPTO_CIPHER_HASH,
126 	L2FWD_CRYPTO_HASH_CIPHER,
127 	L2FWD_CRYPTO_CIPHER_ONLY,
128 	L2FWD_CRYPTO_HASH_ONLY
129 };
130 
131 struct l2fwd_key {
132 	uint8_t *data;
133 	uint32_t length;
134 	phys_addr_t phys_addr;
135 };
136 
137 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
138 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
139 
140 /** l2fwd crypto application command line options */
141 struct l2fwd_crypto_options {
142 	unsigned portmask;
143 	unsigned nb_ports_per_lcore;
144 	unsigned refresh_period;
145 	unsigned single_lcore:1;
146 
147 	enum cdev_type type;
148 	unsigned sessionless:1;
149 
150 	enum l2fwd_crypto_xform_chain xform_chain;
151 
152 	struct rte_crypto_sym_xform cipher_xform;
153 	unsigned ckey_param;
154 	int ckey_random_size;
155 
156 	struct l2fwd_key iv;
157 	unsigned iv_param;
158 	int iv_random_size;
159 
160 	struct rte_crypto_sym_xform auth_xform;
161 	uint8_t akey_param;
162 	int akey_random_size;
163 
164 	struct l2fwd_key aad;
165 	unsigned aad_param;
166 	int aad_random_size;
167 
168 	int digest_size;
169 
170 	uint16_t block_size;
171 	char string_type[MAX_STR_LEN];
172 };
173 
174 /** l2fwd crypto lcore params */
175 struct l2fwd_crypto_params {
176 	uint8_t dev_id;
177 	uint8_t qp_id;
178 
179 	unsigned digest_length;
180 	unsigned block_size;
181 
182 	struct l2fwd_key iv;
183 	struct l2fwd_key aad;
184 	struct rte_cryptodev_sym_session *session;
185 
186 	uint8_t do_cipher;
187 	uint8_t do_hash;
188 	uint8_t hash_verify;
189 
190 	enum rte_crypto_cipher_algorithm cipher_algo;
191 	enum rte_crypto_auth_algorithm auth_algo;
192 };
193 
194 /** lcore configuration */
195 struct lcore_queue_conf {
196 	unsigned nb_rx_ports;
197 	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
198 
199 	unsigned nb_crypto_devs;
200 	unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
201 
202 	struct op_buffer op_buf[RTE_MAX_ETHPORTS];
203 	struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
204 } __rte_cache_aligned;
205 
206 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
207 
208 static const struct rte_eth_conf port_conf = {
209 	.rxmode = {
210 		.mq_mode = ETH_MQ_RX_NONE,
211 		.max_rx_pkt_len = ETHER_MAX_LEN,
212 		.split_hdr_size = 0,
213 		.header_split   = 0, /**< Header Split disabled */
214 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
215 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
216 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
217 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
218 	},
219 	.txmode = {
220 		.mq_mode = ETH_MQ_TX_NONE,
221 	},
222 };
223 
224 struct rte_mempool *l2fwd_pktmbuf_pool;
225 struct rte_mempool *l2fwd_crypto_op_pool;
226 
227 /* Per-port statistics struct */
228 struct l2fwd_port_statistics {
229 	uint64_t tx;
230 	uint64_t rx;
231 
232 	uint64_t crypto_enqueued;
233 	uint64_t crypto_dequeued;
234 
235 	uint64_t dropped;
236 } __rte_cache_aligned;
237 
238 struct l2fwd_crypto_statistics {
239 	uint64_t enqueued;
240 	uint64_t dequeued;
241 
242 	uint64_t errors;
243 } __rte_cache_aligned;
244 
245 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
246 struct l2fwd_crypto_statistics crypto_statistics[RTE_MAX_ETHPORTS];
247 
248 /* A tsc-based timer responsible for triggering statistics printout */
249 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
250 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
251 
252 /* default period is 10 seconds */
253 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
254 
255 /* Print out statistics on packets dropped */
256 static void
257 print_stats(void)
258 {
259 	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
260 	uint64_t total_packets_enqueued, total_packets_dequeued,
261 		total_packets_errors;
262 	unsigned portid;
263 	uint64_t cdevid;
264 
265 	total_packets_dropped = 0;
266 	total_packets_tx = 0;
267 	total_packets_rx = 0;
268 	total_packets_enqueued = 0;
269 	total_packets_dequeued = 0;
270 	total_packets_errors = 0;
271 
272 	const char clr[] = { 27, '[', '2', 'J', '\0' };
273 	const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
274 
275 		/* Clear screen and move to top left */
276 	printf("%s%s", clr, topLeft);
277 
278 	printf("\nPort statistics ====================================");
279 
280 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
281 		/* skip disabled ports */
282 		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
283 			continue;
284 		printf("\nStatistics for port %u ------------------------------"
285 			   "\nPackets sent: %32"PRIu64
286 			   "\nPackets received: %28"PRIu64
287 			   "\nPackets dropped: %29"PRIu64,
288 			   portid,
289 			   port_statistics[portid].tx,
290 			   port_statistics[portid].rx,
291 			   port_statistics[portid].dropped);
292 
293 		total_packets_dropped += port_statistics[portid].dropped;
294 		total_packets_tx += port_statistics[portid].tx;
295 		total_packets_rx += port_statistics[portid].rx;
296 	}
297 	printf("\nCrypto statistics ==================================");
298 
299 	for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
300 		/* skip disabled ports */
301 		if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
302 			continue;
303 		printf("\nStatistics for cryptodev %"PRIu64
304 				" -------------------------"
305 			   "\nPackets enqueued: %28"PRIu64
306 			   "\nPackets dequeued: %28"PRIu64
307 			   "\nPackets errors: %30"PRIu64,
308 			   cdevid,
309 			   crypto_statistics[cdevid].enqueued,
310 			   crypto_statistics[cdevid].dequeued,
311 			   crypto_statistics[cdevid].errors);
312 
313 		total_packets_enqueued += crypto_statistics[cdevid].enqueued;
314 		total_packets_dequeued += crypto_statistics[cdevid].dequeued;
315 		total_packets_errors += crypto_statistics[cdevid].errors;
316 	}
317 	printf("\nAggregate statistics ==============================="
318 		   "\nTotal packets received: %22"PRIu64
319 		   "\nTotal packets enqueued: %22"PRIu64
320 		   "\nTotal packets dequeued: %22"PRIu64
321 		   "\nTotal packets sent: %26"PRIu64
322 		   "\nTotal packets dropped: %23"PRIu64
323 		   "\nTotal packets crypto errors: %17"PRIu64,
324 		   total_packets_rx,
325 		   total_packets_enqueued,
326 		   total_packets_dequeued,
327 		   total_packets_tx,
328 		   total_packets_dropped,
329 		   total_packets_errors);
330 	printf("\n====================================================\n");
331 }
332 
333 static void
334 fill_supported_algorithm_tables(void)
335 {
336 	unsigned i;
337 
338 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
339 		strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
340 
341 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
342 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
343 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
344 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
345 		"AES_XCBC_MAC");
346 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
347 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
348 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
349 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
350 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
351 	strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
352 
353 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
354 		strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
355 
356 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
357 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
358 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
359 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
360 	strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
361 }
362 
363 
364 static int
365 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
366 		struct l2fwd_crypto_params *cparams)
367 {
368 	struct rte_crypto_op **op_buffer;
369 	unsigned ret;
370 
371 	op_buffer = (struct rte_crypto_op **)
372 			qconf->op_buf[cparams->dev_id].buffer;
373 
374 	ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
375 			cparams->qp_id,	op_buffer, (uint16_t) n);
376 
377 	crypto_statistics[cparams->dev_id].enqueued += ret;
378 	if (unlikely(ret < n)) {
379 		crypto_statistics[cparams->dev_id].errors += (n - ret);
380 		do {
381 			rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
382 			rte_crypto_op_free(op_buffer[ret]);
383 		} while (++ret < n);
384 	}
385 
386 	return 0;
387 }
388 
389 static int
390 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
391 		struct l2fwd_crypto_params *cparams)
392 {
393 	unsigned lcore_id, len;
394 	struct lcore_queue_conf *qconf;
395 
396 	lcore_id = rte_lcore_id();
397 
398 	qconf = &lcore_queue_conf[lcore_id];
399 	len = qconf->op_buf[cparams->dev_id].len;
400 	qconf->op_buf[cparams->dev_id].buffer[len] = op;
401 	len++;
402 
403 	/* enough ops to be sent */
404 	if (len == MAX_PKT_BURST) {
405 		l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
406 		len = 0;
407 	}
408 
409 	qconf->op_buf[cparams->dev_id].len = len;
410 	return 0;
411 }
412 
413 static int
414 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
415 		struct rte_crypto_op *op,
416 		struct l2fwd_crypto_params *cparams)
417 {
418 	struct ether_hdr *eth_hdr;
419 	struct ipv4_hdr *ip_hdr;
420 
421 	unsigned ipdata_offset, pad_len, data_len;
422 	char *padding;
423 
424 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
425 
426 	if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
427 		return -1;
428 
429 	ipdata_offset = sizeof(struct ether_hdr);
430 
431 	ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
432 			ipdata_offset);
433 
434 	ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
435 			* IPV4_IHL_MULTIPLIER;
436 
437 
438 	/* Zero pad data to be crypto'd so it is block aligned */
439 	data_len  = rte_pktmbuf_data_len(m) - ipdata_offset;
440 	pad_len = data_len % cparams->block_size ? cparams->block_size -
441 			(data_len % cparams->block_size) : 0;
442 
443 	if (pad_len) {
444 		padding = rte_pktmbuf_append(m, pad_len);
445 		if (unlikely(!padding))
446 			return -1;
447 
448 		data_len += pad_len;
449 		memset(padding, 0, pad_len);
450 	}
451 
452 	/* Set crypto operation data parameters */
453 	rte_crypto_op_attach_sym_session(op, cparams->session);
454 
455 	if (cparams->do_hash) {
456 		if (!cparams->hash_verify) {
457 			/* Append space for digest to end of packet */
458 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
459 				cparams->digest_length);
460 		} else {
461 			op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
462 				cparams->digest_length);
463 		}
464 
465 		op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
466 				rte_pktmbuf_pkt_len(m) - cparams->digest_length);
467 		op->sym->auth.digest.length = cparams->digest_length;
468 
469 		/* For SNOW3G algorithms, offset/length must be in bits */
470 		if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) {
471 			op->sym->auth.data.offset = ipdata_offset << 3;
472 			op->sym->auth.data.length = data_len << 3;
473 		} else {
474 			op->sym->auth.data.offset = ipdata_offset;
475 			op->sym->auth.data.length = data_len;
476 		}
477 
478 		if (cparams->aad.length) {
479 			op->sym->auth.aad.data = cparams->aad.data;
480 			op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
481 			op->sym->auth.aad.length = cparams->aad.length;
482 		}
483 	}
484 
485 	if (cparams->do_cipher) {
486 		op->sym->cipher.iv.data = cparams->iv.data;
487 		op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
488 		op->sym->cipher.iv.length = cparams->iv.length;
489 
490 		/* For SNOW3G algorithms, offset/length must be in bits */
491 		if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2) {
492 			op->sym->cipher.data.offset = ipdata_offset << 3;
493 			if (cparams->do_hash && cparams->hash_verify)
494 				/* Do not cipher the hash tag */
495 				op->sym->cipher.data.length = (data_len -
496 					cparams->digest_length) << 3;
497 			else
498 				op->sym->cipher.data.length = data_len << 3;
499 
500 		} else {
501 			op->sym->cipher.data.offset = ipdata_offset;
502 			if (cparams->do_hash && cparams->hash_verify)
503 				/* Do not cipher the hash tag */
504 				op->sym->cipher.data.length = data_len -
505 					cparams->digest_length;
506 			else
507 				op->sym->cipher.data.length = data_len;
508 		}
509 	}
510 
511 	op->sym->m_src = m;
512 
513 	return l2fwd_crypto_enqueue(op, cparams);
514 }
515 
516 
517 /* Send the burst of packets on an output interface */
518 static int
519 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
520 		uint8_t port)
521 {
522 	struct rte_mbuf **pkt_buffer;
523 	unsigned ret;
524 
525 	pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
526 
527 	ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
528 	port_statistics[port].tx += ret;
529 	if (unlikely(ret < n)) {
530 		port_statistics[port].dropped += (n - ret);
531 		do {
532 			rte_pktmbuf_free(pkt_buffer[ret]);
533 		} while (++ret < n);
534 	}
535 
536 	return 0;
537 }
538 
539 /* Enqueue packets for TX and prepare them to be sent */
540 static int
541 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
542 {
543 	unsigned lcore_id, len;
544 	struct lcore_queue_conf *qconf;
545 
546 	lcore_id = rte_lcore_id();
547 
548 	qconf = &lcore_queue_conf[lcore_id];
549 	len = qconf->pkt_buf[port].len;
550 	qconf->pkt_buf[port].buffer[len] = m;
551 	len++;
552 
553 	/* enough pkts to be sent */
554 	if (unlikely(len == MAX_PKT_BURST)) {
555 		l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
556 		len = 0;
557 	}
558 
559 	qconf->pkt_buf[port].len = len;
560 	return 0;
561 }
562 
563 static void
564 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
565 {
566 	struct ether_hdr *eth;
567 	void *tmp;
568 	unsigned dst_port;
569 
570 	dst_port = l2fwd_dst_ports[portid];
571 	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
572 
573 	/* 02:00:00:00:00:xx */
574 	tmp = &eth->d_addr.addr_bytes[0];
575 	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
576 
577 	/* src addr */
578 	ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
579 
580 	l2fwd_send_packet(m, (uint8_t) dst_port);
581 }
582 
583 /** Generate random key */
584 static void
585 generate_random_key(uint8_t *key, unsigned length)
586 {
587 	unsigned i;
588 
589 	for (i = 0; i < length; i++)
590 		key[i] = rand() % 0xff;
591 }
592 
593 static struct rte_cryptodev_sym_session *
594 initialize_crypto_session(struct l2fwd_crypto_options *options,
595 		uint8_t cdev_id)
596 {
597 	struct rte_crypto_sym_xform *first_xform;
598 
599 	if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
600 		first_xform = &options->cipher_xform;
601 		first_xform->next = &options->auth_xform;
602 	} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
603 		first_xform = &options->auth_xform;
604 		first_xform->next = &options->cipher_xform;
605 	} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
606 		first_xform = &options->cipher_xform;
607 	} else {
608 		first_xform = &options->auth_xform;
609 	}
610 
611 	/* Setup Cipher Parameters */
612 	return rte_cryptodev_sym_session_create(cdev_id, first_xform);
613 }
614 
615 static void
616 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
617 
618 /* main processing loop */
619 static void
620 l2fwd_main_loop(struct l2fwd_crypto_options *options)
621 {
622 	struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
623 	struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
624 
625 	unsigned lcore_id = rte_lcore_id();
626 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
627 	unsigned i, j, portid, nb_rx;
628 	struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
629 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
630 			US_PER_S * BURST_TX_DRAIN_US;
631 	struct l2fwd_crypto_params *cparams;
632 	struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
633 
634 	if (qconf->nb_rx_ports == 0) {
635 		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
636 		return;
637 	}
638 
639 	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
640 
641 	for (i = 0; i < qconf->nb_rx_ports; i++) {
642 
643 		portid = qconf->rx_port_list[i];
644 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
645 			portid);
646 	}
647 
648 	for (i = 0; i < qconf->nb_crypto_devs; i++) {
649 		port_cparams[i].do_cipher = 0;
650 		port_cparams[i].do_hash = 0;
651 
652 		switch (options->xform_chain) {
653 		case L2FWD_CRYPTO_CIPHER_HASH:
654 		case L2FWD_CRYPTO_HASH_CIPHER:
655 			port_cparams[i].do_cipher = 1;
656 			port_cparams[i].do_hash = 1;
657 			break;
658 		case L2FWD_CRYPTO_HASH_ONLY:
659 			port_cparams[i].do_hash = 1;
660 			break;
661 		case L2FWD_CRYPTO_CIPHER_ONLY:
662 			port_cparams[i].do_cipher = 1;
663 			break;
664 		}
665 
666 		port_cparams[i].dev_id = qconf->cryptodev_list[i];
667 		port_cparams[i].qp_id = 0;
668 
669 		port_cparams[i].block_size = options->block_size;
670 
671 		if (port_cparams[i].do_hash) {
672 			port_cparams[i].digest_length =
673 					options->auth_xform.auth.digest_length;
674 			if (options->auth_xform.auth.add_auth_data_length) {
675 				port_cparams[i].aad.data = options->aad.data;
676 				port_cparams[i].aad.length =
677 					options->auth_xform.auth.add_auth_data_length;
678 				port_cparams[i].aad.phys_addr = options->aad.phys_addr;
679 				if (!options->aad_param)
680 					generate_random_key(port_cparams[i].aad.data,
681 						port_cparams[i].aad.length);
682 
683 			}
684 
685 			if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
686 				port_cparams[i].hash_verify = 1;
687 			else
688 				port_cparams[i].hash_verify = 0;
689 
690 			port_cparams[i].auth_algo = options->auth_xform.auth.algo;
691 		}
692 
693 		if (port_cparams[i].do_cipher) {
694 			port_cparams[i].iv.data = options->iv.data;
695 			port_cparams[i].iv.length = options->iv.length;
696 			port_cparams[i].iv.phys_addr = options->iv.phys_addr;
697 			if (!options->iv_param)
698 				generate_random_key(port_cparams[i].iv.data,
699 						port_cparams[i].iv.length);
700 
701 			port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
702 		}
703 
704 		port_cparams[i].session = initialize_crypto_session(options,
705 				port_cparams[i].dev_id);
706 
707 		if (port_cparams[i].session == NULL)
708 			return;
709 		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
710 				port_cparams[i].dev_id);
711 	}
712 
713 	l2fwd_crypto_options_print(options);
714 
715 	/*
716 	 * Initialize previous tsc timestamp before the loop,
717 	 * to avoid showing the port statistics immediately,
718 	 * so user can see the crypto information.
719 	 */
720 	prev_tsc = rte_rdtsc();
721 	while (1) {
722 
723 		cur_tsc = rte_rdtsc();
724 
725 		/*
726 		 * TX burst queue drain
727 		 */
728 		diff_tsc = cur_tsc - prev_tsc;
729 		if (unlikely(diff_tsc > drain_tsc)) {
730 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
731 				if (qconf->pkt_buf[portid].len == 0)
732 					continue;
733 				l2fwd_send_burst(&lcore_queue_conf[lcore_id],
734 						 qconf->pkt_buf[portid].len,
735 						 (uint8_t) portid);
736 				qconf->pkt_buf[portid].len = 0;
737 			}
738 
739 			/* if timer is enabled */
740 			if (timer_period > 0) {
741 
742 				/* advance the timer */
743 				timer_tsc += diff_tsc;
744 
745 				/* if timer has reached its timeout */
746 				if (unlikely(timer_tsc >=
747 						(uint64_t)timer_period)) {
748 
749 					/* do this only on master core */
750 					if (lcore_id == rte_get_master_lcore()
751 						&& options->refresh_period) {
752 						print_stats();
753 						timer_tsc = 0;
754 					}
755 				}
756 			}
757 
758 			prev_tsc = cur_tsc;
759 		}
760 
761 		/*
762 		 * Read packet from RX queues
763 		 */
764 		for (i = 0; i < qconf->nb_rx_ports; i++) {
765 			portid = qconf->rx_port_list[i];
766 
767 			cparams = &port_cparams[i];
768 
769 			nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
770 						 pkts_burst, MAX_PKT_BURST);
771 
772 			port_statistics[portid].rx += nb_rx;
773 
774 			if (nb_rx) {
775 				/*
776 				 * If we can't allocate a crypto_ops, then drop
777 				 * the rest of the burst and dequeue and
778 				 * process the packets to free offload structs
779 				 */
780 				if (rte_crypto_op_bulk_alloc(
781 						l2fwd_crypto_op_pool,
782 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
783 						ops_burst, nb_rx) !=
784 								nb_rx) {
785 					for (j = 0; j < nb_rx; j++)
786 						rte_pktmbuf_free(pkts_burst[i]);
787 
788 					nb_rx = 0;
789 				}
790 
791 				/* Enqueue packets from Crypto device*/
792 				for (j = 0; j < nb_rx; j++) {
793 					m = pkts_burst[j];
794 
795 					l2fwd_simple_crypto_enqueue(m,
796 							ops_burst[j], cparams);
797 				}
798 			}
799 
800 			/* Dequeue packets from Crypto device */
801 			do {
802 				nb_rx = rte_cryptodev_dequeue_burst(
803 						cparams->dev_id, cparams->qp_id,
804 						ops_burst, MAX_PKT_BURST);
805 
806 				crypto_statistics[cparams->dev_id].dequeued +=
807 						nb_rx;
808 
809 				/* Forward crypto'd packets */
810 				for (j = 0; j < nb_rx; j++) {
811 					m = ops_burst[j]->sym->m_src;
812 
813 					rte_crypto_op_free(ops_burst[j]);
814 					l2fwd_simple_forward(m, portid);
815 				}
816 			} while (nb_rx == MAX_PKT_BURST);
817 		}
818 	}
819 }
820 
821 static int
822 l2fwd_launch_one_lcore(void *arg)
823 {
824 	l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
825 	return 0;
826 }
827 
828 /* Display command line arguments usage */
829 static void
830 l2fwd_crypto_usage(const char *prgname)
831 {
832 	printf("%s [EAL options] --\n"
833 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
834 		"  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
835 		"  -s manage all ports from single lcore\n"
836 		"  -T PERIOD: statistics will be refreshed each PERIOD seconds"
837 		" (0 to disable, 10 default, 86400 maximum)\n"
838 
839 		"  --cdev_type HW / SW / ANY\n"
840 		"  --chain HASH_CIPHER / CIPHER_HASH\n"
841 
842 		"  --cipher_algo ALGO\n"
843 		"  --cipher_op ENCRYPT / DECRYPT\n"
844 		"  --cipher_key KEY (bytes separated with \":\")\n"
845 		"  --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
846 		"  --iv IV (bytes separated with \":\")\n"
847 		"  --iv_random_size SIZE: size of IV when generated randomly\n"
848 
849 		"  --auth_algo ALGO\n"
850 		"  --auth_op GENERATE / VERIFY\n"
851 		"  --auth_key KEY (bytes separated with \":\")\n"
852 		"  --auth_key_random_size SIZE: size of auth key when generated randomly\n"
853 		"  --aad AAD (bytes separated with \":\")\n"
854 		"  --aad_random_size SIZE: size of AAD when generated randomly\n"
855 		"  --digest_size SIZE: size of digest to be generated/verified\n"
856 
857 		"  --sessionless\n",
858 	       prgname);
859 }
860 
861 /** Parse crypto device type command line argument */
862 static int
863 parse_cryptodev_type(enum cdev_type *type, char *optarg)
864 {
865 	if (strcmp("HW", optarg) == 0) {
866 		*type = CDEV_TYPE_HW;
867 		return 0;
868 	} else if (strcmp("SW", optarg) == 0) {
869 		*type = CDEV_TYPE_SW;
870 		return 0;
871 	} else if (strcmp("ANY", optarg) == 0) {
872 		*type = CDEV_TYPE_ANY;
873 		return 0;
874 	}
875 
876 	return -1;
877 }
878 
879 /** Parse crypto chain xform command line argument */
880 static int
881 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
882 {
883 	if (strcmp("CIPHER_HASH", optarg) == 0) {
884 		options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
885 		return 0;
886 	} else if (strcmp("HASH_CIPHER", optarg) == 0) {
887 		options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
888 		return 0;
889 	} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
890 		options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
891 		return 0;
892 	} else if (strcmp("HASH_ONLY", optarg) == 0) {
893 		options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
894 		return 0;
895 	}
896 
897 	return -1;
898 }
899 
900 /** Parse crypto cipher algo option command line argument */
901 static int
902 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
903 {
904 	unsigned i;
905 
906 	for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
907 		if (!strcmp(supported_cipher_algo[i], optarg)) {
908 			*algo = (enum rte_crypto_cipher_algorithm)i;
909 			return 0;
910 		}
911 	}
912 
913 	printf("Cipher algorithm  not supported!\n");
914 	return -1;
915 }
916 
917 /** Parse crypto cipher operation command line argument */
918 static int
919 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
920 {
921 	if (strcmp("ENCRYPT", optarg) == 0) {
922 		*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
923 		return 0;
924 	} else if (strcmp("DECRYPT", optarg) == 0) {
925 		*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
926 		return 0;
927 	}
928 
929 	printf("Cipher operation not supported!\n");
930 	return -1;
931 }
932 
933 /** Parse crypto key command line argument */
934 static int
935 parse_key(uint8_t *data, char *input_arg)
936 {
937 	unsigned byte_count;
938 	char *token;
939 
940 	for (byte_count = 0, token = strtok(input_arg, ":");
941 			(byte_count < MAX_KEY_SIZE) && (token != NULL);
942 			token = strtok(NULL, ":")) {
943 
944 		int number = (int)strtol(token, NULL, 16);
945 
946 		if (errno == EINVAL || errno == ERANGE || number > 0xFF)
947 			return -1;
948 
949 		data[byte_count++] = (uint8_t)number;
950 	}
951 
952 	return byte_count;
953 }
954 
955 /** Parse size param*/
956 static int
957 parse_size(int *size, const char *q_arg)
958 {
959 	char *end = NULL;
960 	unsigned long n;
961 
962 	/* parse hexadecimal string */
963 	n = strtoul(q_arg, &end, 10);
964 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
965 		n = 0;
966 
967 	if (n == 0) {
968 		printf("invalid size\n");
969 		return -1;
970 	}
971 
972 	*size = n;
973 	return 0;
974 }
975 
976 /** Parse crypto cipher operation command line argument */
977 static int
978 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
979 {
980 	unsigned i;
981 
982 	for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
983 		if (!strcmp(supported_auth_algo[i], optarg)) {
984 			*algo = (enum rte_crypto_auth_algorithm)i;
985 			return 0;
986 		}
987 	}
988 
989 	printf("Authentication algorithm specified not supported!\n");
990 	return -1;
991 }
992 
993 static int
994 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
995 {
996 	if (strcmp("VERIFY", optarg) == 0) {
997 		*op = RTE_CRYPTO_AUTH_OP_VERIFY;
998 		return 0;
999 	} else if (strcmp("GENERATE", optarg) == 0) {
1000 		*op = RTE_CRYPTO_AUTH_OP_GENERATE;
1001 		return 0;
1002 	}
1003 
1004 	printf("Authentication operation specified not supported!\n");
1005 	return -1;
1006 }
1007 
1008 /** Parse long options */
1009 static int
1010 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1011 		struct option *lgopts, int option_index)
1012 {
1013 	int retval;
1014 
1015 	if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1016 		retval = parse_cryptodev_type(&options->type, optarg);
1017 		if (retval == 0)
1018 			snprintf(options->string_type, MAX_STR_LEN,
1019 				"%s", optarg);
1020 		return retval;
1021 	}
1022 
1023 	else if (strcmp(lgopts[option_index].name, "chain") == 0)
1024 		return parse_crypto_opt_chain(options, optarg);
1025 
1026 	/* Cipher options */
1027 	else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1028 		return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1029 				optarg);
1030 
1031 	else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1032 		return parse_cipher_op(&options->cipher_xform.cipher.op,
1033 				optarg);
1034 
1035 	else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1036 		options->ckey_param = 1;
1037 		options->cipher_xform.cipher.key.length =
1038 			parse_key(options->cipher_xform.cipher.key.data, optarg);
1039 		if (options->cipher_xform.cipher.key.length > 0)
1040 			return 0;
1041 		else
1042 			return -1;
1043 	}
1044 
1045 	else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1046 		return parse_size(&options->ckey_random_size, optarg);
1047 
1048 	else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1049 		options->iv_param = 1;
1050 		options->iv.length =
1051 			parse_key(options->iv.data, optarg);
1052 		if (options->iv.length > 0)
1053 			return 0;
1054 		else
1055 			return -1;
1056 	}
1057 
1058 	else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1059 		return parse_size(&options->iv_random_size, optarg);
1060 
1061 	/* Authentication options */
1062 	else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1063 		return parse_auth_algo(&options->auth_xform.auth.algo,
1064 				optarg);
1065 	}
1066 
1067 	else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1068 		return parse_auth_op(&options->auth_xform.auth.op,
1069 				optarg);
1070 
1071 	else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1072 		options->akey_param = 1;
1073 		options->auth_xform.auth.key.length =
1074 			parse_key(options->auth_xform.auth.key.data, optarg);
1075 		if (options->auth_xform.auth.key.length > 0)
1076 			return 0;
1077 		else
1078 			return -1;
1079 	}
1080 
1081 	else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1082 		return parse_size(&options->akey_random_size, optarg);
1083 	}
1084 
1085 	else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1086 		options->aad_param = 1;
1087 		options->aad.length =
1088 			parse_key(options->aad.data, optarg);
1089 		if (options->aad.length > 0)
1090 			return 0;
1091 		else
1092 			return -1;
1093 	}
1094 
1095 	else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1096 		return parse_size(&options->aad_random_size, optarg);
1097 	}
1098 
1099 	else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1100 		return parse_size(&options->digest_size, optarg);
1101 	}
1102 
1103 	else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1104 		options->sessionless = 1;
1105 		return 0;
1106 	}
1107 
1108 	return -1;
1109 }
1110 
1111 /** Parse port mask */
1112 static int
1113 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1114 		const char *q_arg)
1115 {
1116 	char *end = NULL;
1117 	unsigned long pm;
1118 
1119 	/* parse hexadecimal string */
1120 	pm = strtoul(q_arg, &end, 16);
1121 	if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1122 		pm = 0;
1123 
1124 	options->portmask = pm;
1125 	if (options->portmask == 0) {
1126 		printf("invalid portmask specified\n");
1127 		return -1;
1128 	}
1129 
1130 	return pm;
1131 }
1132 
1133 /** Parse number of queues */
1134 static int
1135 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1136 		const char *q_arg)
1137 {
1138 	char *end = NULL;
1139 	unsigned long n;
1140 
1141 	/* parse hexadecimal string */
1142 	n = strtoul(q_arg, &end, 10);
1143 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1144 		n = 0;
1145 	else if (n >= MAX_RX_QUEUE_PER_LCORE)
1146 		n = 0;
1147 
1148 	options->nb_ports_per_lcore = n;
1149 	if (options->nb_ports_per_lcore == 0) {
1150 		printf("invalid number of ports selected\n");
1151 		return -1;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 /** Parse timer period */
1158 static int
1159 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1160 		const char *q_arg)
1161 {
1162 	char *end = NULL;
1163 	unsigned long n;
1164 
1165 	/* parse number string */
1166 	n = (unsigned)strtol(q_arg, &end, 10);
1167 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1168 		n = 0;
1169 
1170 	if (n >= MAX_TIMER_PERIOD) {
1171 		printf("Warning refresh period specified %lu is greater than "
1172 				"max value %lu! using max value",
1173 				n, MAX_TIMER_PERIOD);
1174 		n = MAX_TIMER_PERIOD;
1175 	}
1176 
1177 	options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1178 
1179 	return 0;
1180 }
1181 
1182 /** Generate default options for application */
1183 static void
1184 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1185 {
1186 	srand(time(NULL));
1187 
1188 	options->portmask = 0xffffffff;
1189 	options->nb_ports_per_lcore = 1;
1190 	options->refresh_period = 10000;
1191 	options->single_lcore = 0;
1192 	options->sessionless = 0;
1193 
1194 	options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1195 
1196 	/* Cipher Data */
1197 	options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1198 	options->cipher_xform.next = NULL;
1199 	options->ckey_param = 0;
1200 	options->ckey_random_size = -1;
1201 	options->cipher_xform.cipher.key.length = 0;
1202 	options->iv_param = 0;
1203 	options->iv_random_size = -1;
1204 	options->iv.length = 0;
1205 
1206 	options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1207 	options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1208 
1209 	/* Authentication Data */
1210 	options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1211 	options->auth_xform.next = NULL;
1212 	options->akey_param = 0;
1213 	options->akey_random_size = -1;
1214 	options->auth_xform.auth.key.length = 0;
1215 	options->aad_param = 0;
1216 	options->aad_random_size = -1;
1217 	options->aad.length = 0;
1218 	options->digest_size = -1;
1219 
1220 	options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1221 	options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1222 
1223 	options->type = CDEV_TYPE_ANY;
1224 }
1225 
1226 static void
1227 display_cipher_info(struct l2fwd_crypto_options *options)
1228 {
1229 	printf("\n---- Cipher information ---\n");
1230 	printf("Algorithm: %s\n",
1231 		supported_cipher_algo[options->cipher_xform.cipher.algo]);
1232 	rte_hexdump(stdout, "Cipher key:",
1233 			options->cipher_xform.cipher.key.data,
1234 			options->cipher_xform.cipher.key.length);
1235 	rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1236 }
1237 
1238 static void
1239 display_auth_info(struct l2fwd_crypto_options *options)
1240 {
1241 	printf("\n---- Authentication information ---\n");
1242 	printf("Algorithm: %s\n",
1243 		supported_auth_algo[options->auth_xform.auth.algo]);
1244 	rte_hexdump(stdout, "Auth key:",
1245 			options->auth_xform.auth.key.data,
1246 			options->auth_xform.auth.key.length);
1247 	rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1248 }
1249 
1250 static void
1251 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1252 {
1253 	char string_cipher_op[MAX_STR_LEN];
1254 	char string_auth_op[MAX_STR_LEN];
1255 
1256 	if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1257 		strcpy(string_cipher_op, "Encrypt");
1258 	else
1259 		strcpy(string_cipher_op, "Decrypt");
1260 
1261 	if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1262 		strcpy(string_auth_op, "Auth generate");
1263 	else
1264 		strcpy(string_auth_op, "Auth verify");
1265 
1266 	printf("Options:-\nn");
1267 	printf("portmask: %x\n", options->portmask);
1268 	printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1269 	printf("refresh period : %u\n", options->refresh_period);
1270 	printf("single lcore mode: %s\n",
1271 			options->single_lcore ? "enabled" : "disabled");
1272 	printf("stats_printing: %s\n",
1273 			options->refresh_period == 0 ? "disabled" : "enabled");
1274 
1275 	printf("sessionless crypto: %s\n",
1276 			options->sessionless ? "enabled" : "disabled");
1277 
1278 	if (options->ckey_param && (options->ckey_random_size != -1))
1279 		printf("Cipher key already parsed, ignoring size of random key\n");
1280 
1281 	if (options->akey_param && (options->akey_random_size != -1))
1282 		printf("Auth key already parsed, ignoring size of random key\n");
1283 
1284 	if (options->iv_param && (options->iv_random_size != -1))
1285 		printf("IV already parsed, ignoring size of random IV\n");
1286 
1287 	if (options->aad_param && (options->aad_random_size != -1))
1288 		printf("AAD already parsed, ignoring size of random AAD\n");
1289 
1290 	printf("\nCrypto chain: ");
1291 	switch (options->xform_chain) {
1292 	case L2FWD_CRYPTO_CIPHER_HASH:
1293 		printf("Input --> %s --> %s --> Output\n",
1294 			string_cipher_op, string_auth_op);
1295 		display_cipher_info(options);
1296 		display_auth_info(options);
1297 		break;
1298 	case L2FWD_CRYPTO_HASH_CIPHER:
1299 		printf("Input --> %s --> %s --> Output\n",
1300 			string_auth_op, string_cipher_op);
1301 		display_cipher_info(options);
1302 		display_auth_info(options);
1303 		break;
1304 	case L2FWD_CRYPTO_HASH_ONLY:
1305 		printf("Input --> %s --> Output\n", string_auth_op);
1306 		display_auth_info(options);
1307 		break;
1308 	case L2FWD_CRYPTO_CIPHER_ONLY:
1309 		printf("Input --> %s --> Output\n", string_cipher_op);
1310 		display_cipher_info(options);
1311 		break;
1312 	}
1313 }
1314 
1315 /* Parse the argument given in the command line of the application */
1316 static int
1317 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1318 		int argc, char **argv)
1319 {
1320 	int opt, retval, option_index;
1321 	char **argvopt = argv, *prgname = argv[0];
1322 
1323 	static struct option lgopts[] = {
1324 			{ "sessionless", no_argument, 0, 0 },
1325 
1326 			{ "cdev_type", required_argument, 0, 0 },
1327 			{ "chain", required_argument, 0, 0 },
1328 
1329 			{ "cipher_algo", required_argument, 0, 0 },
1330 			{ "cipher_op", required_argument, 0, 0 },
1331 			{ "cipher_key", required_argument, 0, 0 },
1332 			{ "cipher_key_random_size", required_argument, 0, 0 },
1333 
1334 			{ "auth_algo", required_argument, 0, 0 },
1335 			{ "auth_op", required_argument, 0, 0 },
1336 			{ "auth_key", required_argument, 0, 0 },
1337 			{ "auth_key_random_size", required_argument, 0, 0 },
1338 
1339 			{ "iv", required_argument, 0, 0 },
1340 			{ "iv_random_size", required_argument, 0, 0 },
1341 			{ "aad", required_argument, 0, 0 },
1342 			{ "aad_random_size", required_argument, 0, 0 },
1343 			{ "digest_size", required_argument, 0, 0 },
1344 
1345 			{ "sessionless", no_argument, 0, 0 },
1346 
1347 			{ NULL, 0, 0, 0 }
1348 	};
1349 
1350 	l2fwd_crypto_default_options(options);
1351 
1352 	while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1353 			&option_index)) != EOF) {
1354 		switch (opt) {
1355 		/* long options */
1356 		case 0:
1357 			retval = l2fwd_crypto_parse_args_long_options(options,
1358 					lgopts, option_index);
1359 			if (retval < 0) {
1360 				l2fwd_crypto_usage(prgname);
1361 				return -1;
1362 			}
1363 			break;
1364 
1365 		/* portmask */
1366 		case 'p':
1367 			retval = l2fwd_crypto_parse_portmask(options, optarg);
1368 			if (retval < 0) {
1369 				l2fwd_crypto_usage(prgname);
1370 				return -1;
1371 			}
1372 			break;
1373 
1374 		/* nqueue */
1375 		case 'q':
1376 			retval = l2fwd_crypto_parse_nqueue(options, optarg);
1377 			if (retval < 0) {
1378 				l2fwd_crypto_usage(prgname);
1379 				return -1;
1380 			}
1381 			break;
1382 
1383 		/* single  */
1384 		case 's':
1385 			options->single_lcore = 1;
1386 
1387 			break;
1388 
1389 		/* timer period */
1390 		case 'T':
1391 			retval = l2fwd_crypto_parse_timer_period(options,
1392 					optarg);
1393 			if (retval < 0) {
1394 				l2fwd_crypto_usage(prgname);
1395 				return -1;
1396 			}
1397 			break;
1398 
1399 		default:
1400 			l2fwd_crypto_usage(prgname);
1401 			return -1;
1402 		}
1403 	}
1404 
1405 
1406 	if (optind >= 0)
1407 		argv[optind-1] = prgname;
1408 
1409 	retval = optind-1;
1410 	optind = 0; /* reset getopt lib */
1411 
1412 	return retval;
1413 }
1414 
1415 /* Check the link status of all ports in up to 9s, and print them finally */
1416 static void
1417 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1418 {
1419 #define CHECK_INTERVAL 100 /* 100ms */
1420 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1421 	uint8_t portid, count, all_ports_up, print_flag = 0;
1422 	struct rte_eth_link link;
1423 
1424 	printf("\nChecking link status");
1425 	fflush(stdout);
1426 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1427 		all_ports_up = 1;
1428 		for (portid = 0; portid < port_num; portid++) {
1429 			if ((port_mask & (1 << portid)) == 0)
1430 				continue;
1431 			memset(&link, 0, sizeof(link));
1432 			rte_eth_link_get_nowait(portid, &link);
1433 			/* print link status if flag set */
1434 			if (print_flag == 1) {
1435 				if (link.link_status)
1436 					printf("Port %d Link Up - speed %u "
1437 						"Mbps - %s\n", (uint8_t)portid,
1438 						(unsigned)link.link_speed,
1439 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1440 					("full-duplex") : ("half-duplex\n"));
1441 				else
1442 					printf("Port %d Link Down\n",
1443 						(uint8_t)portid);
1444 				continue;
1445 			}
1446 			/* clear all_ports_up flag if any link down */
1447 			if (link.link_status == ETH_LINK_DOWN) {
1448 				all_ports_up = 0;
1449 				break;
1450 			}
1451 		}
1452 		/* after finally printing all link status, get out */
1453 		if (print_flag == 1)
1454 			break;
1455 
1456 		if (all_ports_up == 0) {
1457 			printf(".");
1458 			fflush(stdout);
1459 			rte_delay_ms(CHECK_INTERVAL);
1460 		}
1461 
1462 		/* set the print_flag if all ports up or timeout */
1463 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1464 			print_flag = 1;
1465 			printf("done\n");
1466 		}
1467 	}
1468 }
1469 
1470 /* Check if device has to be HW/SW or any */
1471 static int
1472 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1473 {
1474 	if (options->type == CDEV_TYPE_HW &&
1475 			(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1476 		return 0;
1477 	if (options->type == CDEV_TYPE_SW &&
1478 			!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1479 		return 0;
1480 	if (options->type == CDEV_TYPE_ANY)
1481 		return 0;
1482 
1483 	return -1;
1484 }
1485 
1486 static inline int
1487 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1488 		uint16_t increment)
1489 {
1490 	uint16_t supp_size;
1491 
1492 	/* Single value */
1493 	if (increment == 0) {
1494 		if (length == min)
1495 			return 0;
1496 		else
1497 			return -1;
1498 	}
1499 
1500 	/* Range of values */
1501 	for (supp_size = min; supp_size <= max; supp_size += increment) {
1502 		if (length == supp_size)
1503 			return 0;
1504 	}
1505 
1506 	return -1;
1507 }
1508 static int
1509 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1510 		uint8_t *enabled_cdevs)
1511 {
1512 	unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1513 	const struct rte_cryptodev_capabilities *cap;
1514 	enum rte_crypto_auth_algorithm cap_auth_algo;
1515 	enum rte_crypto_auth_algorithm opt_auth_algo;
1516 	enum rte_crypto_cipher_algorithm cap_cipher_algo;
1517 	enum rte_crypto_cipher_algorithm opt_cipher_algo;
1518 	int retval;
1519 
1520 	cdev_count = rte_cryptodev_count();
1521 	if (cdev_count == 0) {
1522 		printf("No crypto devices available\n");
1523 		return -1;
1524 	}
1525 
1526 	for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1527 			cdev_id++) {
1528 		struct rte_cryptodev_qp_conf qp_conf;
1529 		struct rte_cryptodev_info dev_info;
1530 
1531 		struct rte_cryptodev_config conf = {
1532 			.nb_queue_pairs = 1,
1533 			.socket_id = SOCKET_ID_ANY,
1534 			.session_mp = {
1535 				.nb_objs = 2048,
1536 				.cache_size = 64
1537 			}
1538 		};
1539 
1540 		rte_cryptodev_info_get(cdev_id, &dev_info);
1541 
1542 		/* Set cipher parameters */
1543 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1544 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1545 				options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1546 			/* Check if device supports cipher algo */
1547 			i = 0;
1548 			opt_cipher_algo = options->cipher_xform.cipher.algo;
1549 			cap = &dev_info.capabilities[i];
1550 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1551 				cap_cipher_algo = cap->sym.cipher.algo;
1552 				if (cap->sym.xform_type ==
1553 						RTE_CRYPTO_SYM_XFORM_CIPHER) {
1554 					if (cap_cipher_algo == opt_cipher_algo) {
1555 						if (check_type(options, &dev_info) == 0)
1556 							break;
1557 					}
1558 				}
1559 				cap = &dev_info.capabilities[++i];
1560 			}
1561 
1562 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1563 				printf("Algorithm %s not supported by cryptodev %u"
1564 					" or device not of preferred type (%s)\n",
1565 					supported_cipher_algo[opt_cipher_algo],
1566 					cdev_id,
1567 					options->string_type);
1568 				continue;
1569 			}
1570 
1571 			options->block_size = cap->sym.cipher.block_size;
1572 			/*
1573 			 * Check if length of provided IV is supported
1574 			 * by the algorithm chosen.
1575 			 */
1576 			if (options->iv_param) {
1577 				if (check_supported_size(options->iv.length,
1578 						cap->sym.cipher.iv_size.min,
1579 						cap->sym.cipher.iv_size.max,
1580 						cap->sym.cipher.iv_size.increment)
1581 							!= 0) {
1582 					printf("Unsupported IV length\n");
1583 					return -1;
1584 				}
1585 			/*
1586 			 * Check if length of IV to be randomly generated
1587 			 * is supported by the algorithm chosen.
1588 			 */
1589 			} else if (options->iv_random_size != -1) {
1590 				if (check_supported_size(options->iv_random_size,
1591 						cap->sym.cipher.iv_size.min,
1592 						cap->sym.cipher.iv_size.max,
1593 						cap->sym.cipher.iv_size.increment)
1594 							!= 0) {
1595 					printf("Unsupported IV length\n");
1596 					return -1;
1597 				}
1598 				options->iv.length = options->iv_random_size;
1599 			/* No size provided, use minimum size. */
1600 			} else
1601 				options->iv.length = cap->sym.cipher.iv_size.min;
1602 
1603 			/*
1604 			 * Check if length of provided cipher key is supported
1605 			 * by the algorithm chosen.
1606 			 */
1607 			if (options->ckey_param) {
1608 				if (check_supported_size(
1609 						options->cipher_xform.cipher.key.length,
1610 						cap->sym.cipher.key_size.min,
1611 						cap->sym.cipher.key_size.max,
1612 						cap->sym.cipher.key_size.increment)
1613 							!= 0) {
1614 					printf("Unsupported cipher key length\n");
1615 					return -1;
1616 				}
1617 			/*
1618 			 * Check if length of the cipher key to be randomly generated
1619 			 * is supported by the algorithm chosen.
1620 			 */
1621 			} else if (options->ckey_random_size != -1) {
1622 				if (check_supported_size(options->ckey_random_size,
1623 						cap->sym.cipher.key_size.min,
1624 						cap->sym.cipher.key_size.max,
1625 						cap->sym.cipher.key_size.increment)
1626 							!= 0) {
1627 					printf("Unsupported cipher key length\n");
1628 					return -1;
1629 				}
1630 				options->cipher_xform.cipher.key.length =
1631 							options->ckey_random_size;
1632 			/* No size provided, use minimum size. */
1633 			} else
1634 				options->cipher_xform.cipher.key.length =
1635 						cap->sym.cipher.key_size.min;
1636 
1637 			if (!options->ckey_param)
1638 				generate_random_key(
1639 					options->cipher_xform.cipher.key.data,
1640 					options->cipher_xform.cipher.key.length);
1641 
1642 		}
1643 
1644 		/* Set auth parameters */
1645 		if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1646 				options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1647 				options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1648 			/* Check if device supports auth algo */
1649 			i = 0;
1650 			opt_auth_algo = options->auth_xform.auth.algo;
1651 			cap = &dev_info.capabilities[i];
1652 			while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1653 				cap_auth_algo = cap->sym.auth.algo;
1654 				if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1655 						(cap_auth_algo == opt_auth_algo) &&
1656 						(check_type(options, &dev_info) == 0)) {
1657 					break;
1658 				}
1659 				cap = &dev_info.capabilities[++i];
1660 			}
1661 
1662 			if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1663 				printf("Algorithm %s not supported by cryptodev %u"
1664 					" or device not of preferred type (%s)\n",
1665 					supported_auth_algo[opt_auth_algo],
1666 					cdev_id,
1667 					options->string_type);
1668 				continue;
1669 			}
1670 
1671 			options->block_size = cap->sym.auth.block_size;
1672 			/*
1673 			 * Check if length of provided AAD is supported
1674 			 * by the algorithm chosen.
1675 			 */
1676 			if (options->aad_param) {
1677 				if (check_supported_size(options->aad.length,
1678 						cap->sym.auth.aad_size.min,
1679 						cap->sym.auth.aad_size.max,
1680 						cap->sym.auth.aad_size.increment)
1681 							!= 0) {
1682 					printf("Unsupported AAD length\n");
1683 					return -1;
1684 				}
1685 			/*
1686 			 * Check if length of AAD to be randomly generated
1687 			 * is supported by the algorithm chosen.
1688 			 */
1689 			} else if (options->aad_random_size != -1) {
1690 				if (check_supported_size(options->aad_random_size,
1691 						cap->sym.auth.aad_size.min,
1692 						cap->sym.auth.aad_size.max,
1693 						cap->sym.auth.aad_size.increment)
1694 							!= 0) {
1695 					printf("Unsupported AAD length\n");
1696 					return -1;
1697 				}
1698 				options->aad.length = options->aad_random_size;
1699 			/* No size provided, use minimum size. */
1700 			} else
1701 				options->aad.length = cap->sym.auth.aad_size.min;
1702 
1703 			options->auth_xform.auth.add_auth_data_length =
1704 						options->aad.length;
1705 
1706 			/*
1707 			 * Check if length of provided auth key is supported
1708 			 * by the algorithm chosen.
1709 			 */
1710 			if (options->akey_param) {
1711 				if (check_supported_size(
1712 						options->auth_xform.auth.key.length,
1713 						cap->sym.auth.key_size.min,
1714 						cap->sym.auth.key_size.max,
1715 						cap->sym.auth.key_size.increment)
1716 							!= 0) {
1717 					printf("Unsupported auth key length\n");
1718 					return -1;
1719 				}
1720 			/*
1721 			 * Check if length of the auth key to be randomly generated
1722 			 * is supported by the algorithm chosen.
1723 			 */
1724 			} else if (options->akey_random_size != -1) {
1725 				if (check_supported_size(options->akey_random_size,
1726 						cap->sym.auth.key_size.min,
1727 						cap->sym.auth.key_size.max,
1728 						cap->sym.auth.key_size.increment)
1729 							!= 0) {
1730 					printf("Unsupported auth key length\n");
1731 					return -1;
1732 				}
1733 				options->auth_xform.auth.key.length =
1734 							options->akey_random_size;
1735 			/* No size provided, use minimum size. */
1736 			} else
1737 				options->auth_xform.auth.key.length =
1738 						cap->sym.auth.key_size.min;
1739 
1740 			if (!options->akey_param)
1741 				generate_random_key(
1742 					options->auth_xform.auth.key.data,
1743 					options->auth_xform.auth.key.length);
1744 
1745 			/* Check if digest size is supported by the algorithm. */
1746 			if (options->digest_size != -1) {
1747 				if (check_supported_size(options->digest_size,
1748 						cap->sym.auth.digest_size.min,
1749 						cap->sym.auth.digest_size.max,
1750 						cap->sym.auth.digest_size.increment)
1751 							!= 0) {
1752 					printf("Unsupported digest length\n");
1753 					return -1;
1754 				}
1755 				options->auth_xform.auth.digest_length =
1756 							options->digest_size;
1757 			/* No size provided, use minimum size. */
1758 			} else
1759 				options->auth_xform.auth.digest_length =
1760 						cap->sym.auth.digest_size.min;
1761 		}
1762 
1763 		retval = rte_cryptodev_configure(cdev_id, &conf);
1764 		if (retval < 0) {
1765 			printf("Failed to configure cryptodev %u", cdev_id);
1766 			return -1;
1767 		}
1768 
1769 		qp_conf.nb_descriptors = 2048;
1770 
1771 		retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1772 				SOCKET_ID_ANY);
1773 		if (retval < 0) {
1774 			printf("Failed to setup queue pair %u on cryptodev %u",
1775 					0, cdev_id);
1776 			return -1;
1777 		}
1778 
1779 		l2fwd_enabled_crypto_mask |= (1 << cdev_id);
1780 
1781 		enabled_cdevs[cdev_id] = 1;
1782 		enabled_cdev_count++;
1783 	}
1784 
1785 	return enabled_cdev_count;
1786 }
1787 
1788 static int
1789 initialize_ports(struct l2fwd_crypto_options *options)
1790 {
1791 	uint8_t last_portid, portid;
1792 	unsigned enabled_portcount = 0;
1793 	unsigned nb_ports = rte_eth_dev_count();
1794 
1795 	if (nb_ports == 0) {
1796 		printf("No Ethernet ports - bye\n");
1797 		return -1;
1798 	}
1799 
1800 	/* Reset l2fwd_dst_ports */
1801 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1802 		l2fwd_dst_ports[portid] = 0;
1803 
1804 	for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1805 		int retval;
1806 
1807 		/* Skip ports that are not enabled */
1808 		if ((options->portmask & (1 << portid)) == 0)
1809 			continue;
1810 
1811 		/* init port */
1812 		printf("Initializing port %u... ", (unsigned) portid);
1813 		fflush(stdout);
1814 		retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1815 		if (retval < 0) {
1816 			printf("Cannot configure device: err=%d, port=%u\n",
1817 				  retval, (unsigned) portid);
1818 			return -1;
1819 		}
1820 
1821 		/* init one RX queue */
1822 		fflush(stdout);
1823 		retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1824 					     rte_eth_dev_socket_id(portid),
1825 					     NULL, l2fwd_pktmbuf_pool);
1826 		if (retval < 0) {
1827 			printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1828 					retval, (unsigned) portid);
1829 			return -1;
1830 		}
1831 
1832 		/* init one TX queue on each port */
1833 		fflush(stdout);
1834 		retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1835 				rte_eth_dev_socket_id(portid),
1836 				NULL);
1837 		if (retval < 0) {
1838 			printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1839 				retval, (unsigned) portid);
1840 
1841 			return -1;
1842 		}
1843 
1844 		/* Start device */
1845 		retval = rte_eth_dev_start(portid);
1846 		if (retval < 0) {
1847 			printf("rte_eth_dev_start:err=%d, port=%u\n",
1848 					retval, (unsigned) portid);
1849 			return -1;
1850 		}
1851 
1852 		rte_eth_promiscuous_enable(portid);
1853 
1854 		rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1855 
1856 		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1857 				(unsigned) portid,
1858 				l2fwd_ports_eth_addr[portid].addr_bytes[0],
1859 				l2fwd_ports_eth_addr[portid].addr_bytes[1],
1860 				l2fwd_ports_eth_addr[portid].addr_bytes[2],
1861 				l2fwd_ports_eth_addr[portid].addr_bytes[3],
1862 				l2fwd_ports_eth_addr[portid].addr_bytes[4],
1863 				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1864 
1865 		/* initialize port stats */
1866 		memset(&port_statistics, 0, sizeof(port_statistics));
1867 
1868 		/* Setup port forwarding table */
1869 		if (enabled_portcount % 2) {
1870 			l2fwd_dst_ports[portid] = last_portid;
1871 			l2fwd_dst_ports[last_portid] = portid;
1872 		} else {
1873 			last_portid = portid;
1874 		}
1875 
1876 		l2fwd_enabled_port_mask |= (1 << portid);
1877 		enabled_portcount++;
1878 	}
1879 
1880 	if (enabled_portcount == 1) {
1881 		l2fwd_dst_ports[last_portid] = last_portid;
1882 	} else if (enabled_portcount % 2) {
1883 		printf("odd number of ports in portmask- bye\n");
1884 		return -1;
1885 	}
1886 
1887 	check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1888 
1889 	return enabled_portcount;
1890 }
1891 
1892 static void
1893 reserve_key_memory(struct l2fwd_crypto_options *options)
1894 {
1895 	options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1896 						MAX_KEY_SIZE, 0);
1897 	if (options->cipher_xform.cipher.key.data == NULL)
1898 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1899 
1900 
1901 	options->auth_xform.auth.key.data = rte_malloc("auth key",
1902 						MAX_KEY_SIZE, 0);
1903 	if (options->auth_xform.auth.key.data == NULL)
1904 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1905 
1906 	options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1907 	if (options->iv.data == NULL)
1908 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1909 	options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1910 
1911 	options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1912 	if (options->aad.data == NULL)
1913 		rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1914 	options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1915 }
1916 
1917 int
1918 main(int argc, char **argv)
1919 {
1920 	struct lcore_queue_conf *qconf;
1921 	struct l2fwd_crypto_options options;
1922 
1923 	uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1924 	unsigned lcore_id, rx_lcore_id;
1925 	int ret, enabled_cdevcount, enabled_portcount;
1926 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1927 
1928 	/* init EAL */
1929 	ret = rte_eal_init(argc, argv);
1930 	if (ret < 0)
1931 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1932 	argc -= ret;
1933 	argv += ret;
1934 
1935 	/* reserve memory for Cipher/Auth key and IV */
1936 	reserve_key_memory(&options);
1937 
1938 	/* fill out the supported algorithm tables */
1939 	fill_supported_algorithm_tables();
1940 
1941 	/* parse application arguments (after the EAL ones) */
1942 	ret = l2fwd_crypto_parse_args(&options, argc, argv);
1943 	if (ret < 0)
1944 		rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1945 
1946 	/* create the mbuf pool */
1947 	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1948 			sizeof(struct rte_crypto_op),
1949 			RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
1950 	if (l2fwd_pktmbuf_pool == NULL)
1951 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1952 
1953 	/* create crypto op pool */
1954 	l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
1955 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
1956 			rte_socket_id());
1957 	if (l2fwd_crypto_op_pool == NULL)
1958 		rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
1959 
1960 	/* Enable Ethernet ports */
1961 	enabled_portcount = initialize_ports(&options);
1962 	if (enabled_portcount < 1)
1963 		rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
1964 
1965 	nb_ports = rte_eth_dev_count();
1966 	/* Initialize the port/queue configuration of each logical core */
1967 	for (rx_lcore_id = 0, qconf = NULL, portid = 0;
1968 			portid < nb_ports; portid++) {
1969 
1970 		/* skip ports that are not enabled */
1971 		if ((options.portmask & (1 << portid)) == 0)
1972 			continue;
1973 
1974 		if (options.single_lcore && qconf == NULL) {
1975 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
1976 				rx_lcore_id++;
1977 				if (rx_lcore_id >= RTE_MAX_LCORE)
1978 					rte_exit(EXIT_FAILURE,
1979 							"Not enough cores\n");
1980 			}
1981 		} else if (!options.single_lcore) {
1982 			/* get the lcore_id for this port */
1983 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1984 			       lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
1985 			       options.nb_ports_per_lcore) {
1986 				rx_lcore_id++;
1987 				if (rx_lcore_id >= RTE_MAX_LCORE)
1988 					rte_exit(EXIT_FAILURE,
1989 							"Not enough cores\n");
1990 			}
1991 		}
1992 
1993 		/* Assigned a new logical core in the loop above. */
1994 		if (qconf != &lcore_queue_conf[rx_lcore_id])
1995 			qconf = &lcore_queue_conf[rx_lcore_id];
1996 
1997 		qconf->rx_port_list[qconf->nb_rx_ports] = portid;
1998 		qconf->nb_rx_ports++;
1999 
2000 		printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2001 	}
2002 
2003 	/* Enable Crypto devices */
2004 	enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2005 			enabled_cdevs);
2006 	if (enabled_cdevcount < 0)
2007 		rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2008 
2009 	if (enabled_cdevcount < enabled_portcount)
2010 		rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2011 				"has to be more or equal to number of ports (%d)\n",
2012 				enabled_cdevcount, enabled_portcount);
2013 
2014 	nb_cryptodevs = rte_cryptodev_count();
2015 
2016 	/* Initialize the port/cryptodev configuration of each logical core */
2017 	for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2018 			cdev_id < nb_cryptodevs && enabled_cdevcount;
2019 			cdev_id++) {
2020 		/* Crypto op not supported by crypto device */
2021 		if (!enabled_cdevs[cdev_id])
2022 			continue;
2023 
2024 		if (options.single_lcore && qconf == NULL) {
2025 			while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2026 				rx_lcore_id++;
2027 				if (rx_lcore_id >= RTE_MAX_LCORE)
2028 					rte_exit(EXIT_FAILURE,
2029 							"Not enough cores\n");
2030 			}
2031 		} else if (!options.single_lcore) {
2032 			/* get the lcore_id for this port */
2033 			while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2034 			       lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2035 			       options.nb_ports_per_lcore) {
2036 				rx_lcore_id++;
2037 				if (rx_lcore_id >= RTE_MAX_LCORE)
2038 					rte_exit(EXIT_FAILURE,
2039 							"Not enough cores\n");
2040 			}
2041 		}
2042 
2043 		/* Assigned a new logical core in the loop above. */
2044 		if (qconf != &lcore_queue_conf[rx_lcore_id])
2045 			qconf = &lcore_queue_conf[rx_lcore_id];
2046 
2047 		qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2048 		qconf->nb_crypto_devs++;
2049 
2050 		enabled_cdevcount--;
2051 
2052 		printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2053 				(unsigned)cdev_id);
2054 	}
2055 
2056 	/* launch per-lcore init on every lcore */
2057 	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2058 			CALL_MASTER);
2059 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2060 		if (rte_eal_wait_lcore(lcore_id) < 0)
2061 			return -1;
2062 	}
2063 
2064 	return 0;
2065 }
2066