xref: /dpdk/examples/ipsec-secgw/sa.c (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 /*
6  * Security Associations
7  */
8 #include <sys/types.h>
9 #include <netinet/in.h>
10 #include <netinet/ip.h>
11 #include <netinet/ip6.h>
12 
13 #include <rte_memzone.h>
14 #include <rte_crypto.h>
15 #include <rte_security.h>
16 #include <rte_cryptodev.h>
17 #include <rte_byteorder.h>
18 #include <rte_errno.h>
19 #include <rte_ip.h>
20 #include <rte_random.h>
21 #include <rte_ethdev.h>
22 #include <rte_malloc.h>
23 
24 #include "ipsec.h"
25 #include "esp.h"
26 #include "parser.h"
27 
28 #define IPDEFTTL 64
29 
30 struct supported_cipher_algo {
31 	const char *keyword;
32 	enum rte_crypto_cipher_algorithm algo;
33 	uint16_t iv_len;
34 	uint16_t block_size;
35 	uint16_t key_len;
36 };
37 
38 struct supported_auth_algo {
39 	const char *keyword;
40 	enum rte_crypto_auth_algorithm algo;
41 	uint16_t digest_len;
42 	uint16_t key_len;
43 	uint8_t key_not_req;
44 };
45 
46 struct supported_aead_algo {
47 	const char *keyword;
48 	enum rte_crypto_aead_algorithm algo;
49 	uint16_t iv_len;
50 	uint16_t block_size;
51 	uint16_t digest_len;
52 	uint16_t key_len;
53 	uint8_t aad_len;
54 };
55 
56 
57 const struct supported_cipher_algo cipher_algos[] = {
58 	{
59 		.keyword = "null",
60 		.algo = RTE_CRYPTO_CIPHER_NULL,
61 		.iv_len = 0,
62 		.block_size = 4,
63 		.key_len = 0
64 	},
65 	{
66 		.keyword = "aes-128-cbc",
67 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
68 		.iv_len = 16,
69 		.block_size = 16,
70 		.key_len = 16
71 	},
72 	{
73 		.keyword = "aes-256-cbc",
74 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
75 		.iv_len = 16,
76 		.block_size = 16,
77 		.key_len = 32
78 	},
79 	{
80 		.keyword = "aes-128-ctr",
81 		.algo = RTE_CRYPTO_CIPHER_AES_CTR,
82 		.iv_len = 8,
83 		.block_size = 4,
84 		.key_len = 20
85 	},
86 	{
87 		.keyword = "3des-cbc",
88 		.algo = RTE_CRYPTO_CIPHER_3DES_CBC,
89 		.iv_len = 8,
90 		.block_size = 8,
91 		.key_len = 24
92 	}
93 };
94 
95 const struct supported_auth_algo auth_algos[] = {
96 	{
97 		.keyword = "null",
98 		.algo = RTE_CRYPTO_AUTH_NULL,
99 		.digest_len = 0,
100 		.key_len = 0,
101 		.key_not_req = 1
102 	},
103 	{
104 		.keyword = "sha1-hmac",
105 		.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
106 		.digest_len = 12,
107 		.key_len = 20
108 	},
109 	{
110 		.keyword = "sha256-hmac",
111 		.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
112 		.digest_len = 12,
113 		.key_len = 32
114 	}
115 };
116 
117 const struct supported_aead_algo aead_algos[] = {
118 	{
119 		.keyword = "aes-128-gcm",
120 		.algo = RTE_CRYPTO_AEAD_AES_GCM,
121 		.iv_len = 8,
122 		.block_size = 4,
123 		.key_len = 20,
124 		.digest_len = 16,
125 		.aad_len = 8,
126 	}
127 };
128 
129 static struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES];
130 static uint32_t nb_sa_out;
131 
132 static struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES];
133 static uint32_t nb_sa_in;
134 
135 static const struct supported_cipher_algo *
136 find_match_cipher_algo(const char *cipher_keyword)
137 {
138 	size_t i;
139 
140 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
141 		const struct supported_cipher_algo *algo =
142 			&cipher_algos[i];
143 
144 		if (strcmp(cipher_keyword, algo->keyword) == 0)
145 			return algo;
146 	}
147 
148 	return NULL;
149 }
150 
151 static const struct supported_auth_algo *
152 find_match_auth_algo(const char *auth_keyword)
153 {
154 	size_t i;
155 
156 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
157 		const struct supported_auth_algo *algo =
158 			&auth_algos[i];
159 
160 		if (strcmp(auth_keyword, algo->keyword) == 0)
161 			return algo;
162 	}
163 
164 	return NULL;
165 }
166 
167 static const struct supported_aead_algo *
168 find_match_aead_algo(const char *aead_keyword)
169 {
170 	size_t i;
171 
172 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
173 		const struct supported_aead_algo *algo =
174 			&aead_algos[i];
175 
176 		if (strcmp(aead_keyword, algo->keyword) == 0)
177 			return algo;
178 	}
179 
180 	return NULL;
181 }
182 
183 /** parse_key_string
184  *  parse x:x:x:x.... hex number key string into uint8_t *key
185  *  return:
186  *  > 0: number of bytes parsed
187  *  0:   failed
188  */
189 static uint32_t
190 parse_key_string(const char *key_str, uint8_t *key)
191 {
192 	const char *pt_start = key_str, *pt_end = key_str;
193 	uint32_t nb_bytes = 0;
194 
195 	while (pt_end != NULL) {
196 		char sub_str[3] = {0};
197 
198 		pt_end = strchr(pt_start, ':');
199 
200 		if (pt_end == NULL) {
201 			if (strlen(pt_start) > 2)
202 				return 0;
203 			strncpy(sub_str, pt_start, 2);
204 		} else {
205 			if (pt_end - pt_start > 2)
206 				return 0;
207 
208 			strncpy(sub_str, pt_start, pt_end - pt_start);
209 			pt_start = pt_end + 1;
210 		}
211 
212 		key[nb_bytes++] = strtol(sub_str, NULL, 16);
213 	}
214 
215 	return nb_bytes;
216 }
217 
218 void
219 parse_sa_tokens(char **tokens, uint32_t n_tokens,
220 	struct parse_status *status)
221 {
222 	struct ipsec_sa *rule = NULL;
223 	uint32_t ti; /*token index*/
224 	uint32_t *ri /*rule index*/;
225 	uint32_t cipher_algo_p = 0;
226 	uint32_t auth_algo_p = 0;
227 	uint32_t aead_algo_p = 0;
228 	uint32_t src_p = 0;
229 	uint32_t dst_p = 0;
230 	uint32_t mode_p = 0;
231 	uint32_t type_p = 0;
232 	uint32_t portid_p = 0;
233 
234 	if (strcmp(tokens[0], "in") == 0) {
235 		ri = &nb_sa_in;
236 
237 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
238 			"too many sa rules, abort insertion\n");
239 		if (status->status < 0)
240 			return;
241 
242 		rule = &sa_in[*ri];
243 	} else {
244 		ri = &nb_sa_out;
245 
246 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
247 			"too many sa rules, abort insertion\n");
248 		if (status->status < 0)
249 			return;
250 
251 		rule = &sa_out[*ri];
252 	}
253 
254 	/* spi number */
255 	APP_CHECK_TOKEN_IS_NUM(tokens, 1, status);
256 	if (status->status < 0)
257 		return;
258 	if (atoi(tokens[1]) == INVALID_SPI)
259 		return;
260 	rule->spi = atoi(tokens[1]);
261 
262 	for (ti = 2; ti < n_tokens; ti++) {
263 		if (strcmp(tokens[ti], "mode") == 0) {
264 			APP_CHECK_PRESENCE(mode_p, tokens[ti], status);
265 			if (status->status < 0)
266 				return;
267 
268 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
269 			if (status->status < 0)
270 				return;
271 
272 			if (strcmp(tokens[ti], "ipv4-tunnel") == 0)
273 				rule->flags = IP4_TUNNEL;
274 			else if (strcmp(tokens[ti], "ipv6-tunnel") == 0)
275 				rule->flags = IP6_TUNNEL;
276 			else if (strcmp(tokens[ti], "transport") == 0)
277 				rule->flags = TRANSPORT;
278 			else {
279 				APP_CHECK(0, status, "unrecognized "
280 					"input \"%s\"", tokens[ti]);
281 				return;
282 			}
283 
284 			mode_p = 1;
285 			continue;
286 		}
287 
288 		if (strcmp(tokens[ti], "cipher_algo") == 0) {
289 			const struct supported_cipher_algo *algo;
290 			uint32_t key_len;
291 
292 			APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti],
293 				status);
294 			if (status->status < 0)
295 				return;
296 
297 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
298 			if (status->status < 0)
299 				return;
300 
301 			algo = find_match_cipher_algo(tokens[ti]);
302 
303 			APP_CHECK(algo != NULL, status, "unrecognized "
304 				"input \"%s\"", tokens[ti]);
305 
306 			rule->cipher_algo = algo->algo;
307 			rule->block_size = algo->block_size;
308 			rule->iv_len = algo->iv_len;
309 			rule->cipher_key_len = algo->key_len;
310 
311 			/* for NULL algorithm, no cipher key required */
312 			if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
313 				cipher_algo_p = 1;
314 				continue;
315 			}
316 
317 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
318 			if (status->status < 0)
319 				return;
320 
321 			APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0,
322 				status, "unrecognized input \"%s\", "
323 				"expect \"cipher_key\"", tokens[ti]);
324 			if (status->status < 0)
325 				return;
326 
327 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
328 			if (status->status < 0)
329 				return;
330 
331 			key_len = parse_key_string(tokens[ti],
332 				rule->cipher_key);
333 			APP_CHECK(key_len == rule->cipher_key_len, status,
334 				"unrecognized input \"%s\"", tokens[ti]);
335 			if (status->status < 0)
336 				return;
337 
338 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC ||
339 				algo->algo == RTE_CRYPTO_CIPHER_3DES_CBC)
340 				rule->salt = (uint32_t)rte_rand();
341 
342 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) {
343 				key_len -= 4;
344 				rule->cipher_key_len = key_len;
345 				memcpy(&rule->salt,
346 					&rule->cipher_key[key_len], 4);
347 			}
348 
349 			cipher_algo_p = 1;
350 			continue;
351 		}
352 
353 		if (strcmp(tokens[ti], "auth_algo") == 0) {
354 			const struct supported_auth_algo *algo;
355 			uint32_t key_len;
356 
357 			APP_CHECK_PRESENCE(auth_algo_p, tokens[ti],
358 				status);
359 			if (status->status < 0)
360 				return;
361 
362 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
363 			if (status->status < 0)
364 				return;
365 
366 			algo = find_match_auth_algo(tokens[ti]);
367 			APP_CHECK(algo != NULL, status, "unrecognized "
368 				"input \"%s\"", tokens[ti]);
369 
370 			rule->auth_algo = algo->algo;
371 			rule->auth_key_len = algo->key_len;
372 			rule->digest_len = algo->digest_len;
373 
374 			/* NULL algorithm and combined algos do not
375 			 * require auth key
376 			 */
377 			if (algo->key_not_req) {
378 				auth_algo_p = 1;
379 				continue;
380 			}
381 
382 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
383 			if (status->status < 0)
384 				return;
385 
386 			APP_CHECK(strcmp(tokens[ti], "auth_key") == 0,
387 				status, "unrecognized input \"%s\", "
388 				"expect \"auth_key\"", tokens[ti]);
389 			if (status->status < 0)
390 				return;
391 
392 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
393 			if (status->status < 0)
394 				return;
395 
396 			key_len = parse_key_string(tokens[ti],
397 				rule->auth_key);
398 			APP_CHECK(key_len == rule->auth_key_len, status,
399 				"unrecognized input \"%s\"", tokens[ti]);
400 			if (status->status < 0)
401 				return;
402 
403 			auth_algo_p = 1;
404 			continue;
405 		}
406 
407 		if (strcmp(tokens[ti], "aead_algo") == 0) {
408 			const struct supported_aead_algo *algo;
409 			uint32_t key_len;
410 
411 			APP_CHECK_PRESENCE(aead_algo_p, tokens[ti],
412 				status);
413 			if (status->status < 0)
414 				return;
415 
416 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
417 			if (status->status < 0)
418 				return;
419 
420 			algo = find_match_aead_algo(tokens[ti]);
421 
422 			APP_CHECK(algo != NULL, status, "unrecognized "
423 				"input \"%s\"", tokens[ti]);
424 
425 			rule->aead_algo = algo->algo;
426 			rule->cipher_key_len = algo->key_len;
427 			rule->digest_len = algo->digest_len;
428 			rule->aad_len = algo->aad_len;
429 			rule->block_size = algo->block_size;
430 			rule->iv_len = algo->iv_len;
431 
432 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
433 			if (status->status < 0)
434 				return;
435 
436 			APP_CHECK(strcmp(tokens[ti], "aead_key") == 0,
437 				status, "unrecognized input \"%s\", "
438 				"expect \"aead_key\"", tokens[ti]);
439 			if (status->status < 0)
440 				return;
441 
442 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
443 			if (status->status < 0)
444 				return;
445 
446 			key_len = parse_key_string(tokens[ti],
447 				rule->cipher_key);
448 			APP_CHECK(key_len == rule->cipher_key_len, status,
449 				"unrecognized input \"%s\"", tokens[ti]);
450 			if (status->status < 0)
451 				return;
452 
453 			key_len -= 4;
454 			rule->cipher_key_len = key_len;
455 			memcpy(&rule->salt,
456 				&rule->cipher_key[key_len], 4);
457 
458 			aead_algo_p = 1;
459 			continue;
460 		}
461 
462 		if (strcmp(tokens[ti], "src") == 0) {
463 			APP_CHECK_PRESENCE(src_p, tokens[ti], status);
464 			if (status->status < 0)
465 				return;
466 
467 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
468 			if (status->status < 0)
469 				return;
470 
471 			if (rule->flags == IP4_TUNNEL) {
472 				struct in_addr ip;
473 
474 				APP_CHECK(parse_ipv4_addr(tokens[ti],
475 					&ip, NULL) == 0, status,
476 					"unrecognized input \"%s\", "
477 					"expect valid ipv4 addr",
478 					tokens[ti]);
479 				if (status->status < 0)
480 					return;
481 				rule->src.ip.ip4 = rte_bswap32(
482 					(uint32_t)ip.s_addr);
483 			} else if (rule->flags == IP6_TUNNEL) {
484 				struct in6_addr ip;
485 
486 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
487 					NULL) == 0, status,
488 					"unrecognized input \"%s\", "
489 					"expect valid ipv6 addr",
490 					tokens[ti]);
491 				if (status->status < 0)
492 					return;
493 				memcpy(rule->src.ip.ip6.ip6_b,
494 					ip.s6_addr, 16);
495 			} else if (rule->flags == TRANSPORT) {
496 				APP_CHECK(0, status, "unrecognized input "
497 					"\"%s\"", tokens[ti]);
498 				return;
499 			}
500 
501 			src_p = 1;
502 			continue;
503 		}
504 
505 		if (strcmp(tokens[ti], "dst") == 0) {
506 			APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
507 			if (status->status < 0)
508 				return;
509 
510 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
511 			if (status->status < 0)
512 				return;
513 
514 			if (rule->flags == IP4_TUNNEL) {
515 				struct in_addr ip;
516 
517 				APP_CHECK(parse_ipv4_addr(tokens[ti],
518 					&ip, NULL) == 0, status,
519 					"unrecognized input \"%s\", "
520 					"expect valid ipv4 addr",
521 					tokens[ti]);
522 				if (status->status < 0)
523 					return;
524 				rule->dst.ip.ip4 = rte_bswap32(
525 					(uint32_t)ip.s_addr);
526 			} else if (rule->flags == IP6_TUNNEL) {
527 				struct in6_addr ip;
528 
529 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
530 					NULL) == 0, status,
531 					"unrecognized input \"%s\", "
532 					"expect valid ipv6 addr",
533 					tokens[ti]);
534 				if (status->status < 0)
535 					return;
536 				memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16);
537 			} else if (rule->flags == TRANSPORT) {
538 				APP_CHECK(0, status, "unrecognized "
539 					"input \"%s\"",	tokens[ti]);
540 				return;
541 			}
542 
543 			dst_p = 1;
544 			continue;
545 		}
546 
547 		if (strcmp(tokens[ti], "type") == 0) {
548 			APP_CHECK_PRESENCE(type_p, tokens[ti], status);
549 			if (status->status < 0)
550 				return;
551 
552 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
553 			if (status->status < 0)
554 				return;
555 
556 			if (strcmp(tokens[ti], "inline-crypto-offload") == 0)
557 				rule->type =
558 					RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO;
559 			else if (strcmp(tokens[ti],
560 					"inline-protocol-offload") == 0)
561 				rule->type =
562 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
563 			else if (strcmp(tokens[ti],
564 					"lookaside-protocol-offload") == 0)
565 				rule->type =
566 				RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL;
567 			else if (strcmp(tokens[ti], "no-offload") == 0)
568 				rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
569 			else {
570 				APP_CHECK(0, status, "Invalid input \"%s\"",
571 						tokens[ti]);
572 				return;
573 			}
574 
575 			type_p = 1;
576 			continue;
577 		}
578 
579 		if (strcmp(tokens[ti], "port_id") == 0) {
580 			APP_CHECK_PRESENCE(portid_p, tokens[ti], status);
581 			if (status->status < 0)
582 				return;
583 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
584 			if (status->status < 0)
585 				return;
586 			rule->portid = atoi(tokens[ti]);
587 			if (status->status < 0)
588 				return;
589 			portid_p = 1;
590 			continue;
591 		}
592 
593 		/* unrecognizeable input */
594 		APP_CHECK(0, status, "unrecognized input \"%s\"",
595 			tokens[ti]);
596 		return;
597 	}
598 
599 	if (aead_algo_p) {
600 		APP_CHECK(cipher_algo_p == 0, status,
601 				"AEAD used, no need for cipher options");
602 		if (status->status < 0)
603 			return;
604 
605 		APP_CHECK(auth_algo_p == 0, status,
606 				"AEAD used, no need for auth options");
607 		if (status->status < 0)
608 			return;
609 	} else {
610 		APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options");
611 		if (status->status < 0)
612 			return;
613 
614 		APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options");
615 		if (status->status < 0)
616 			return;
617 	}
618 
619 	APP_CHECK(mode_p == 1, status, "missing mode option");
620 	if (status->status < 0)
621 		return;
622 
623 	if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0))
624 		printf("Missing portid option, falling back to non-offload\n");
625 
626 	if (!type_p || !portid_p) {
627 		rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
628 		rule->portid = -1;
629 	}
630 
631 	*ri = *ri + 1;
632 }
633 
634 static void
635 print_one_sa_rule(const struct ipsec_sa *sa, int inbound)
636 {
637 	uint32_t i;
638 	uint8_t a, b, c, d;
639 
640 	printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi);
641 
642 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
643 		if (cipher_algos[i].algo == sa->cipher_algo &&
644 				cipher_algos[i].key_len == sa->cipher_key_len) {
645 			printf("%s ", cipher_algos[i].keyword);
646 			break;
647 		}
648 	}
649 
650 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
651 		if (auth_algos[i].algo == sa->auth_algo) {
652 			printf("%s ", auth_algos[i].keyword);
653 			break;
654 		}
655 	}
656 
657 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
658 		if (aead_algos[i].algo == sa->aead_algo) {
659 			printf("%s ", aead_algos[i].keyword);
660 			break;
661 		}
662 	}
663 
664 	printf("mode:");
665 
666 	switch (sa->flags) {
667 	case IP4_TUNNEL:
668 		printf("IP4Tunnel ");
669 		uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d);
670 		printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a);
671 		uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d);
672 		printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a);
673 		break;
674 	case IP6_TUNNEL:
675 		printf("IP6Tunnel ");
676 		for (i = 0; i < 16; i++) {
677 			if (i % 2 && i != 15)
678 				printf("%.2x:", sa->src.ip.ip6.ip6_b[i]);
679 			else
680 				printf("%.2x", sa->src.ip.ip6.ip6_b[i]);
681 		}
682 		printf(" ");
683 		for (i = 0; i < 16; i++) {
684 			if (i % 2 && i != 15)
685 				printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]);
686 			else
687 				printf("%.2x", sa->dst.ip.ip6.ip6_b[i]);
688 		}
689 		break;
690 	case TRANSPORT:
691 		printf("Transport ");
692 		break;
693 	}
694 	printf(" type:");
695 	switch (sa->type) {
696 	case RTE_SECURITY_ACTION_TYPE_NONE:
697 		printf("no-offload ");
698 		break;
699 	case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
700 		printf("inline-crypto-offload ");
701 		break;
702 	case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
703 		printf("inline-protocol-offload ");
704 		break;
705 	case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
706 		printf("lookaside-protocol-offload ");
707 		break;
708 	}
709 	printf("\n");
710 }
711 
712 struct sa_ctx {
713 	void *satbl; /* pointer to array of rte_ipsec_sa objects*/
714 	struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
715 	union {
716 		struct {
717 			struct rte_crypto_sym_xform a;
718 			struct rte_crypto_sym_xform b;
719 		};
720 	} xf[IPSEC_SA_MAX_ENTRIES];
721 };
722 
723 static struct sa_ctx *
724 sa_create(const char *name, int32_t socket_id)
725 {
726 	char s[PATH_MAX];
727 	struct sa_ctx *sa_ctx;
728 	uint32_t mz_size;
729 	const struct rte_memzone *mz;
730 
731 	snprintf(s, sizeof(s), "%s_%u", name, socket_id);
732 
733 	/* Create SA array table */
734 	printf("Creating SA context with %u maximum entries on socket %d\n",
735 			IPSEC_SA_MAX_ENTRIES, socket_id);
736 
737 	mz_size = sizeof(struct sa_ctx);
738 	mz = rte_memzone_reserve(s, mz_size, socket_id,
739 			RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
740 	if (mz == NULL) {
741 		printf("Failed to allocate SA DB memory\n");
742 		rte_errno = -ENOMEM;
743 		return NULL;
744 	}
745 
746 	sa_ctx = (struct sa_ctx *)mz->addr;
747 
748 	return sa_ctx;
749 }
750 
751 static int
752 check_eth_dev_caps(uint16_t portid, uint32_t inbound)
753 {
754 	struct rte_eth_dev_info dev_info;
755 
756 	rte_eth_dev_info_get(portid, &dev_info);
757 
758 	if (inbound) {
759 		if ((dev_info.rx_offload_capa &
760 				DEV_RX_OFFLOAD_SECURITY) == 0) {
761 			RTE_LOG(WARNING, PORT,
762 				"hardware RX IPSec offload is not supported\n");
763 			return -EINVAL;
764 		}
765 
766 	} else { /* outbound */
767 		if ((dev_info.tx_offload_capa &
768 				DEV_TX_OFFLOAD_SECURITY) == 0) {
769 			RTE_LOG(WARNING, PORT,
770 				"hardware TX IPSec offload is not supported\n");
771 			return -EINVAL;
772 		}
773 	}
774 	return 0;
775 }
776 
777 
778 static int
779 sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
780 		uint32_t nb_entries, uint32_t inbound)
781 {
782 	struct ipsec_sa *sa;
783 	uint32_t i, idx;
784 	uint16_t iv_length, aad_length;
785 
786 	/* for ESN upper 32 bits of SQN also need to be part of AAD */
787 	aad_length = (app_sa_prm.enable_esn != 0) ? sizeof(uint32_t) : 0;
788 
789 	for (i = 0; i < nb_entries; i++) {
790 		idx = SPI2IDX(entries[i].spi);
791 		sa = &sa_ctx->sa[idx];
792 		if (sa->spi != 0) {
793 			printf("Index %u already in use by SPI %u\n",
794 					idx, sa->spi);
795 			return -EINVAL;
796 		}
797 		*sa = entries[i];
798 		sa->seq = 0;
799 
800 		if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
801 			sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
802 			if (check_eth_dev_caps(sa->portid, inbound))
803 				return -EINVAL;
804 		}
805 
806 		sa->direction = (inbound == 1) ?
807 				RTE_SECURITY_IPSEC_SA_DIR_INGRESS :
808 				RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
809 
810 		switch (sa->flags) {
811 		case IP4_TUNNEL:
812 			sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
813 			sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
814 		}
815 
816 		if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
817 			iv_length = 16;
818 
819 			sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD;
820 			sa_ctx->xf[idx].a.aead.algo = sa->aead_algo;
821 			sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key;
822 			sa_ctx->xf[idx].a.aead.key.length =
823 				sa->cipher_key_len;
824 			sa_ctx->xf[idx].a.aead.op = (inbound == 1) ?
825 				RTE_CRYPTO_AEAD_OP_DECRYPT :
826 				RTE_CRYPTO_AEAD_OP_ENCRYPT;
827 			sa_ctx->xf[idx].a.next = NULL;
828 			sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET;
829 			sa_ctx->xf[idx].a.aead.iv.length = iv_length;
830 			sa_ctx->xf[idx].a.aead.aad_length =
831 				sa->aad_len + aad_length;
832 			sa_ctx->xf[idx].a.aead.digest_length =
833 				sa->digest_len;
834 
835 			sa->xforms = &sa_ctx->xf[idx].a;
836 
837 			print_one_sa_rule(sa, inbound);
838 		} else {
839 			switch (sa->cipher_algo) {
840 			case RTE_CRYPTO_CIPHER_NULL:
841 			case RTE_CRYPTO_CIPHER_3DES_CBC:
842 			case RTE_CRYPTO_CIPHER_AES_CBC:
843 				iv_length = sa->iv_len;
844 				break;
845 			case RTE_CRYPTO_CIPHER_AES_CTR:
846 				iv_length = 16;
847 				break;
848 			default:
849 				RTE_LOG(ERR, IPSEC_ESP,
850 						"unsupported cipher algorithm %u\n",
851 						sa->cipher_algo);
852 				return -EINVAL;
853 			}
854 
855 			if (inbound) {
856 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
857 				sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo;
858 				sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key;
859 				sa_ctx->xf[idx].b.cipher.key.length =
860 					sa->cipher_key_len;
861 				sa_ctx->xf[idx].b.cipher.op =
862 					RTE_CRYPTO_CIPHER_OP_DECRYPT;
863 				sa_ctx->xf[idx].b.next = NULL;
864 				sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET;
865 				sa_ctx->xf[idx].b.cipher.iv.length = iv_length;
866 
867 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH;
868 				sa_ctx->xf[idx].a.auth.algo = sa->auth_algo;
869 				sa_ctx->xf[idx].a.auth.key.data = sa->auth_key;
870 				sa_ctx->xf[idx].a.auth.key.length =
871 					sa->auth_key_len;
872 				sa_ctx->xf[idx].a.auth.digest_length =
873 					sa->digest_len;
874 				sa_ctx->xf[idx].a.auth.op =
875 					RTE_CRYPTO_AUTH_OP_VERIFY;
876 			} else { /* outbound */
877 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
878 				sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo;
879 				sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key;
880 				sa_ctx->xf[idx].a.cipher.key.length =
881 					sa->cipher_key_len;
882 				sa_ctx->xf[idx].a.cipher.op =
883 					RTE_CRYPTO_CIPHER_OP_ENCRYPT;
884 				sa_ctx->xf[idx].a.next = NULL;
885 				sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET;
886 				sa_ctx->xf[idx].a.cipher.iv.length = iv_length;
887 
888 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH;
889 				sa_ctx->xf[idx].b.auth.algo = sa->auth_algo;
890 				sa_ctx->xf[idx].b.auth.key.data = sa->auth_key;
891 				sa_ctx->xf[idx].b.auth.key.length =
892 					sa->auth_key_len;
893 				sa_ctx->xf[idx].b.auth.digest_length =
894 					sa->digest_len;
895 				sa_ctx->xf[idx].b.auth.op =
896 					RTE_CRYPTO_AUTH_OP_GENERATE;
897 			}
898 
899 			sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
900 			sa_ctx->xf[idx].b.next = NULL;
901 			sa->xforms = &sa_ctx->xf[idx].a;
902 
903 			print_one_sa_rule(sa, inbound);
904 		}
905 	}
906 
907 	return 0;
908 }
909 
910 static inline int
911 sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
912 		uint32_t nb_entries)
913 {
914 	return sa_add_rules(sa_ctx, entries, nb_entries, 0);
915 }
916 
917 static inline int
918 sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
919 		uint32_t nb_entries)
920 {
921 	return sa_add_rules(sa_ctx, entries, nb_entries, 1);
922 }
923 
924 /*
925  * helper function, fills parameters that are identical for all SAs
926  */
927 static void
928 fill_ipsec_app_sa_prm(struct rte_ipsec_sa_prm *prm,
929 	const struct app_sa_prm *app_prm)
930 {
931 	memset(prm, 0, sizeof(*prm));
932 
933 	prm->flags = app_prm->flags;
934 	prm->ipsec_xform.options.esn = app_prm->enable_esn;
935 	prm->replay_win_sz = app_prm->window_size;
936 }
937 
938 /*
939  * Helper function, tries to determine next_proto for SPI
940  * by searching though SP rules.
941  */
942 static int
943 get_spi_proto(uint32_t spi, enum rte_security_ipsec_sa_direction dir)
944 {
945 	int32_t rc4, rc6;
946 
947 	rc4 = sp4_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
948 	rc6 = sp6_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
949 
950 	if (rc4 >= 0) {
951 		if (rc6 >= 0) {
952 			RTE_LOG(ERR, IPSEC,
953 				"%s: SPI %u used simultaeously by "
954 				"RTE_IPv4(%d) and IPv6 (%d) SP rules\n",
955 				__func__, spi, rc4, rc6);
956 			return -EINVAL;
957 		} else
958 			return IPPROTO_IPIP;
959 	} else if (rc6 < 0) {
960 		RTE_LOG(ERR, IPSEC,
961 			"%s: SPI %u is not used by any SP rule\n",
962 			__func__, spi);
963 		return -EINVAL;
964 	} else
965 		return IPPROTO_IPV6;
966 }
967 
968 static int
969 fill_ipsec_sa_prm(struct rte_ipsec_sa_prm *prm, const struct ipsec_sa *ss,
970 	const struct rte_ipv4_hdr *v4, struct rte_ipv6_hdr *v6)
971 {
972 	int32_t rc;
973 
974 	/*
975 	 * Try to get SPI next proto by searching that SPI in SPD.
976 	 * probably not the optimal way, but there seems nothing
977 	 * better right now.
978 	 */
979 	rc = get_spi_proto(ss->spi, ss->direction);
980 	if (rc < 0)
981 		return rc;
982 
983 	fill_ipsec_app_sa_prm(prm, &app_sa_prm);
984 	prm->userdata = (uintptr_t)ss;
985 
986 	/* setup ipsec xform */
987 	prm->ipsec_xform.spi = ss->spi;
988 	prm->ipsec_xform.salt = ss->salt;
989 	prm->ipsec_xform.direction = ss->direction;
990 	prm->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
991 	prm->ipsec_xform.mode = (ss->flags == TRANSPORT) ?
992 		RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT :
993 		RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
994 
995 	if (ss->flags == IP4_TUNNEL) {
996 		prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
997 		prm->tun.hdr_len = sizeof(*v4);
998 		prm->tun.next_proto = rc;
999 		prm->tun.hdr = v4;
1000 	} else if (ss->flags == IP6_TUNNEL) {
1001 		prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV6;
1002 		prm->tun.hdr_len = sizeof(*v6);
1003 		prm->tun.next_proto = rc;
1004 		prm->tun.hdr = v6;
1005 	} else {
1006 		/* transport mode */
1007 		prm->trs.proto = rc;
1008 	}
1009 
1010 	/* setup crypto section */
1011 	prm->crypto_xform = ss->xforms;
1012 	return 0;
1013 }
1014 
1015 static void
1016 fill_ipsec_session(struct rte_ipsec_session *ss, struct rte_ipsec_sa *sa,
1017 	const struct ipsec_sa *lsa)
1018 {
1019 	ss->sa = sa;
1020 	ss->type = lsa->type;
1021 
1022 	/* setup crypto section */
1023 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
1024 		ss->crypto.ses = lsa->crypto_session;
1025 	/* setup session action type */
1026 	} else {
1027 		ss->security.ses = lsa->sec_session;
1028 		ss->security.ctx = lsa->security_ctx;
1029 		ss->security.ol_flags = lsa->ol_flags;
1030 	}
1031 }
1032 
1033 /*
1034  * Initialise related rte_ipsec_sa object.
1035  */
1036 static int
1037 ipsec_sa_init(struct ipsec_sa *lsa, struct rte_ipsec_sa *sa, uint32_t sa_size)
1038 {
1039 	int rc;
1040 	struct rte_ipsec_sa_prm prm;
1041 	struct rte_ipv4_hdr v4  = {
1042 		.version_ihl = IPVERSION << 4 |
1043 			sizeof(v4) / RTE_IPV4_IHL_MULTIPLIER,
1044 		.time_to_live = IPDEFTTL,
1045 		.next_proto_id = IPPROTO_ESP,
1046 		.src_addr = lsa->src.ip.ip4,
1047 		.dst_addr = lsa->dst.ip.ip4,
1048 	};
1049 	struct rte_ipv6_hdr v6 = {
1050 		.vtc_flow = htonl(IP6_VERSION << 28),
1051 		.proto = IPPROTO_ESP,
1052 	};
1053 
1054 	if (lsa->flags == IP6_TUNNEL) {
1055 		memcpy(v6.src_addr, lsa->src.ip.ip6.ip6_b, sizeof(v6.src_addr));
1056 		memcpy(v6.dst_addr, lsa->dst.ip.ip6.ip6_b, sizeof(v6.dst_addr));
1057 	}
1058 
1059 	rc = fill_ipsec_sa_prm(&prm, lsa, &v4, &v6);
1060 	if (rc == 0)
1061 		rc = rte_ipsec_sa_init(sa, &prm, sa_size);
1062 	if (rc < 0)
1063 		return rc;
1064 
1065 	fill_ipsec_session(&lsa->ips, sa, lsa);
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Allocate space and init rte_ipsec_sa strcutures,
1071  * one per session.
1072  */
1073 static int
1074 ipsec_satbl_init(struct sa_ctx *ctx, const struct ipsec_sa *ent,
1075 	uint32_t nb_ent, int32_t socket)
1076 {
1077 	int32_t rc, sz;
1078 	uint32_t i, idx;
1079 	size_t tsz;
1080 	struct rte_ipsec_sa *sa;
1081 	struct ipsec_sa *lsa;
1082 	struct rte_ipsec_sa_prm prm;
1083 
1084 	/* determine SA size */
1085 	idx = SPI2IDX(ent[0].spi);
1086 	fill_ipsec_sa_prm(&prm, ctx->sa + idx, NULL, NULL);
1087 	sz = rte_ipsec_sa_size(&prm);
1088 	if (sz < 0) {
1089 		RTE_LOG(ERR, IPSEC, "%s(%p, %u, %d): "
1090 			"failed to determine SA size, error code: %d\n",
1091 			__func__, ctx, nb_ent, socket, sz);
1092 		return sz;
1093 	}
1094 
1095 	tsz = sz * nb_ent;
1096 
1097 	ctx->satbl = rte_zmalloc_socket(NULL, tsz, RTE_CACHE_LINE_SIZE, socket);
1098 	if (ctx->satbl == NULL) {
1099 		RTE_LOG(ERR, IPSEC,
1100 			"%s(%p, %u, %d): failed to allocate %zu bytes\n",
1101 			__func__,  ctx, nb_ent, socket, tsz);
1102 		return -ENOMEM;
1103 	}
1104 
1105 	rc = 0;
1106 	for (i = 0; i != nb_ent && rc == 0; i++) {
1107 
1108 		idx = SPI2IDX(ent[i].spi);
1109 
1110 		sa = (struct rte_ipsec_sa *)((uintptr_t)ctx->satbl + sz * i);
1111 		lsa = ctx->sa + idx;
1112 
1113 		rc = ipsec_sa_init(lsa, sa, sz);
1114 	}
1115 
1116 	return rc;
1117 }
1118 
1119 /*
1120  * Walk through all SA rules to find an SA with given SPI
1121  */
1122 int
1123 sa_spi_present(uint32_t spi, int inbound)
1124 {
1125 	uint32_t i, num;
1126 	const struct ipsec_sa *sar;
1127 
1128 	if (inbound != 0) {
1129 		sar = sa_in;
1130 		num = nb_sa_in;
1131 	} else {
1132 		sar = sa_out;
1133 		num = nb_sa_out;
1134 	}
1135 
1136 	for (i = 0; i != num; i++) {
1137 		if (sar[i].spi == spi)
1138 			return i;
1139 	}
1140 
1141 	return -ENOENT;
1142 }
1143 
1144 void
1145 sa_init(struct socket_ctx *ctx, int32_t socket_id)
1146 {
1147 	int32_t rc;
1148 	const char *name;
1149 
1150 	if (ctx == NULL)
1151 		rte_exit(EXIT_FAILURE, "NULL context.\n");
1152 
1153 	if (ctx->sa_in != NULL)
1154 		rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
1155 				"initialized\n", socket_id);
1156 
1157 	if (ctx->sa_out != NULL)
1158 		rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
1159 				"initialized\n", socket_id);
1160 
1161 	if (nb_sa_in > 0) {
1162 		name = "sa_in";
1163 		ctx->sa_in = sa_create(name, socket_id);
1164 		if (ctx->sa_in == NULL)
1165 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1166 				"context %s in socket %d\n", rte_errno,
1167 				name, socket_id);
1168 
1169 		sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in);
1170 
1171 		if (app_sa_prm.enable != 0) {
1172 			rc = ipsec_satbl_init(ctx->sa_in, sa_in, nb_sa_in,
1173 				socket_id);
1174 			if (rc != 0)
1175 				rte_exit(EXIT_FAILURE,
1176 					"failed to init inbound SAs\n");
1177 		}
1178 	} else
1179 		RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n");
1180 
1181 	if (nb_sa_out > 0) {
1182 		name = "sa_out";
1183 		ctx->sa_out = sa_create(name, socket_id);
1184 		if (ctx->sa_out == NULL)
1185 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1186 				"context %s in socket %d\n", rte_errno,
1187 				name, socket_id);
1188 
1189 		sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out);
1190 
1191 		if (app_sa_prm.enable != 0) {
1192 			rc = ipsec_satbl_init(ctx->sa_out, sa_out, nb_sa_out,
1193 				socket_id);
1194 			if (rc != 0)
1195 				rte_exit(EXIT_FAILURE,
1196 					"failed to init outbound SAs\n");
1197 		}
1198 	} else
1199 		RTE_LOG(WARNING, IPSEC, "No SA Outbound rule "
1200 			"specified\n");
1201 }
1202 
1203 int
1204 inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
1205 {
1206 	struct ipsec_mbuf_metadata *priv;
1207 	struct ipsec_sa *sa;
1208 
1209 	priv = get_priv(m);
1210 	sa = priv->sa;
1211 	if (sa != NULL)
1212 		return (sa_ctx->sa[sa_idx].spi == sa->spi);
1213 
1214 	RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
1215 	return 0;
1216 }
1217 
1218 static inline void
1219 single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
1220 		struct ipsec_sa **sa_ret)
1221 {
1222 	struct rte_esp_hdr *esp;
1223 	struct ip *ip;
1224 	uint32_t *src4_addr;
1225 	uint8_t *src6_addr;
1226 	struct ipsec_sa *sa;
1227 
1228 	*sa_ret = NULL;
1229 
1230 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
1231 	if (ip->ip_v == IPVERSION)
1232 		esp = (struct rte_esp_hdr *)(ip + 1);
1233 	else
1234 		esp = (struct rte_esp_hdr *)(((struct ip6_hdr *)ip) + 1);
1235 
1236 	if (esp->spi == INVALID_SPI)
1237 		return;
1238 
1239 	sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
1240 	if (rte_be_to_cpu_32(esp->spi) != sa->spi)
1241 		return;
1242 
1243 	switch (sa->flags) {
1244 	case IP4_TUNNEL:
1245 		src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
1246 		if ((ip->ip_v == IPVERSION) &&
1247 				(sa->src.ip.ip4 == *src4_addr) &&
1248 				(sa->dst.ip.ip4 == *(src4_addr + 1)))
1249 			*sa_ret = sa;
1250 		break;
1251 	case IP6_TUNNEL:
1252 		src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
1253 		if ((ip->ip_v == IP6_VERSION) &&
1254 				!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
1255 				!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
1256 			*sa_ret = sa;
1257 		break;
1258 	case TRANSPORT:
1259 		*sa_ret = sa;
1260 	}
1261 }
1262 
1263 void
1264 inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
1265 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1266 {
1267 	uint32_t i;
1268 
1269 	for (i = 0; i < nb_pkts; i++)
1270 		single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
1271 }
1272 
1273 void
1274 outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
1275 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1276 {
1277 	uint32_t i;
1278 
1279 	for (i = 0; i < nb_pkts; i++)
1280 		sa[i] = &sa_ctx->sa[sa_idx[i]];
1281 }
1282 
1283 /*
1284  * Select HW offloads to be used.
1285  */
1286 int
1287 sa_check_offloads(uint16_t port_id, uint64_t *rx_offloads,
1288 		uint64_t *tx_offloads)
1289 {
1290 	struct ipsec_sa *rule;
1291 	uint32_t idx_sa;
1292 
1293 	*rx_offloads = 0;
1294 	*tx_offloads = 0;
1295 
1296 	/* Check for inbound rules that use offloads and use this port */
1297 	for (idx_sa = 0; idx_sa < nb_sa_in; idx_sa++) {
1298 		rule = &sa_in[idx_sa];
1299 		if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
1300 				rule->type ==
1301 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
1302 				&& rule->portid == port_id)
1303 			*rx_offloads |= DEV_RX_OFFLOAD_SECURITY;
1304 	}
1305 
1306 	/* Check for outbound rules that use offloads and use this port */
1307 	for (idx_sa = 0; idx_sa < nb_sa_out; idx_sa++) {
1308 		rule = &sa_out[idx_sa];
1309 		if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
1310 				rule->type ==
1311 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
1312 				&& rule->portid == port_id)
1313 			*tx_offloads |= DEV_TX_OFFLOAD_SECURITY;
1314 	}
1315 	return 0;
1316 }
1317